1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_quota.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_dquot_item.h" 22 #include "xfs_dquot.h" 23 #include "xfs_reflink.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_ag.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_health.h" 28 29 #include <linux/iversion.h> 30 31 /* Radix tree tags for incore inode tree. */ 32 33 /* inode is to be reclaimed */ 34 #define XFS_ICI_RECLAIM_TAG 0 35 /* Inode has speculative preallocations (posteof or cow) to clean. */ 36 #define XFS_ICI_BLOCKGC_TAG 1 37 38 /* 39 * The goal for walking incore inodes. These can correspond with incore inode 40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. 41 */ 42 enum xfs_icwalk_goal { 43 /* Goals directly associated with tagged inodes. */ 44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, 45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, 46 }; 47 48 static int xfs_icwalk(struct xfs_mount *mp, 49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 50 static int xfs_icwalk_ag(struct xfs_perag *pag, 51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); 52 53 /* 54 * Private inode cache walk flags for struct xfs_icwalk. Must not 55 * coincide with XFS_ICWALK_FLAGS_VALID. 56 */ 57 58 /* Stop scanning after icw_scan_limit inodes. */ 59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) 60 61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) 62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ 63 64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ 65 XFS_ICWALK_FLAG_RECLAIM_SICK | \ 66 XFS_ICWALK_FLAG_UNION) 67 68 /* 69 * Allocate and initialise an xfs_inode. 70 */ 71 struct xfs_inode * 72 xfs_inode_alloc( 73 struct xfs_mount *mp, 74 xfs_ino_t ino) 75 { 76 struct xfs_inode *ip; 77 78 /* 79 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL 80 * and return NULL here on ENOMEM. 81 */ 82 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); 83 84 if (inode_init_always(mp->m_super, VFS_I(ip))) { 85 kmem_cache_free(xfs_inode_cache, ip); 86 return NULL; 87 } 88 89 /* VFS doesn't initialise i_mode! */ 90 VFS_I(ip)->i_mode = 0; 91 mapping_set_large_folios(VFS_I(ip)->i_mapping); 92 93 XFS_STATS_INC(mp, vn_active); 94 ASSERT(atomic_read(&ip->i_pincount) == 0); 95 ASSERT(ip->i_ino == 0); 96 97 /* initialise the xfs inode */ 98 ip->i_ino = ino; 99 ip->i_mount = mp; 100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); 101 ip->i_cowfp = NULL; 102 memset(&ip->i_af, 0, sizeof(ip->i_af)); 103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 104 memset(&ip->i_df, 0, sizeof(ip->i_df)); 105 ip->i_flags = 0; 106 ip->i_delayed_blks = 0; 107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 108 ip->i_nblocks = 0; 109 ip->i_forkoff = 0; 110 ip->i_sick = 0; 111 ip->i_checked = 0; 112 INIT_WORK(&ip->i_ioend_work, xfs_end_io); 113 INIT_LIST_HEAD(&ip->i_ioend_list); 114 spin_lock_init(&ip->i_ioend_lock); 115 ip->i_next_unlinked = NULLAGINO; 116 ip->i_prev_unlinked = 0; 117 118 return ip; 119 } 120 121 STATIC void 122 xfs_inode_free_callback( 123 struct rcu_head *head) 124 { 125 struct inode *inode = container_of(head, struct inode, i_rcu); 126 struct xfs_inode *ip = XFS_I(inode); 127 128 switch (VFS_I(ip)->i_mode & S_IFMT) { 129 case S_IFREG: 130 case S_IFDIR: 131 case S_IFLNK: 132 xfs_idestroy_fork(&ip->i_df); 133 break; 134 } 135 136 xfs_ifork_zap_attr(ip); 137 138 if (ip->i_cowfp) { 139 xfs_idestroy_fork(ip->i_cowfp); 140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); 141 } 142 if (ip->i_itemp) { 143 ASSERT(!test_bit(XFS_LI_IN_AIL, 144 &ip->i_itemp->ili_item.li_flags)); 145 xfs_inode_item_destroy(ip); 146 ip->i_itemp = NULL; 147 } 148 149 kmem_cache_free(xfs_inode_cache, ip); 150 } 151 152 static void 153 __xfs_inode_free( 154 struct xfs_inode *ip) 155 { 156 /* asserts to verify all state is correct here */ 157 ASSERT(atomic_read(&ip->i_pincount) == 0); 158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); 159 XFS_STATS_DEC(ip->i_mount, vn_active); 160 161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); 162 } 163 164 void 165 xfs_inode_free( 166 struct xfs_inode *ip) 167 { 168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); 169 170 /* 171 * Because we use RCU freeing we need to ensure the inode always 172 * appears to be reclaimed with an invalid inode number when in the 173 * free state. The ip->i_flags_lock provides the barrier against lookup 174 * races. 175 */ 176 spin_lock(&ip->i_flags_lock); 177 ip->i_flags = XFS_IRECLAIM; 178 ip->i_ino = 0; 179 spin_unlock(&ip->i_flags_lock); 180 181 __xfs_inode_free(ip); 182 } 183 184 /* 185 * Queue background inode reclaim work if there are reclaimable inodes and there 186 * isn't reclaim work already scheduled or in progress. 187 */ 188 static void 189 xfs_reclaim_work_queue( 190 struct xfs_mount *mp) 191 { 192 193 rcu_read_lock(); 194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, 196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); 197 } 198 rcu_read_unlock(); 199 } 200 201 /* 202 * Background scanning to trim preallocated space. This is queued based on the 203 * 'speculative_prealloc_lifetime' tunable (5m by default). 204 */ 205 static inline void 206 xfs_blockgc_queue( 207 struct xfs_perag *pag) 208 { 209 struct xfs_mount *mp = pag->pag_mount; 210 211 if (!xfs_is_blockgc_enabled(mp)) 212 return; 213 214 rcu_read_lock(); 215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) 216 queue_delayed_work(pag->pag_mount->m_blockgc_wq, 217 &pag->pag_blockgc_work, 218 msecs_to_jiffies(xfs_blockgc_secs * 1000)); 219 rcu_read_unlock(); 220 } 221 222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */ 223 static void 224 xfs_perag_set_inode_tag( 225 struct xfs_perag *pag, 226 xfs_agino_t agino, 227 unsigned int tag) 228 { 229 struct xfs_mount *mp = pag->pag_mount; 230 bool was_tagged; 231 232 lockdep_assert_held(&pag->pag_ici_lock); 233 234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); 235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag); 236 237 if (tag == XFS_ICI_RECLAIM_TAG) 238 pag->pag_ici_reclaimable++; 239 240 if (was_tagged) 241 return; 242 243 /* propagate the tag up into the perag radix tree */ 244 spin_lock(&mp->m_perag_lock); 245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag); 246 spin_unlock(&mp->m_perag_lock); 247 248 /* start background work */ 249 switch (tag) { 250 case XFS_ICI_RECLAIM_TAG: 251 xfs_reclaim_work_queue(mp); 252 break; 253 case XFS_ICI_BLOCKGC_TAG: 254 xfs_blockgc_queue(pag); 255 break; 256 } 257 258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_); 259 } 260 261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ 262 static void 263 xfs_perag_clear_inode_tag( 264 struct xfs_perag *pag, 265 xfs_agino_t agino, 266 unsigned int tag) 267 { 268 struct xfs_mount *mp = pag->pag_mount; 269 270 lockdep_assert_held(&pag->pag_ici_lock); 271 272 /* 273 * Reclaim can signal (with a null agino) that it cleared its own tag 274 * by removing the inode from the radix tree. 275 */ 276 if (agino != NULLAGINO) 277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); 278 else 279 ASSERT(tag == XFS_ICI_RECLAIM_TAG); 280 281 if (tag == XFS_ICI_RECLAIM_TAG) 282 pag->pag_ici_reclaimable--; 283 284 if (radix_tree_tagged(&pag->pag_ici_root, tag)) 285 return; 286 287 /* clear the tag from the perag radix tree */ 288 spin_lock(&mp->m_perag_lock); 289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag); 290 spin_unlock(&mp->m_perag_lock); 291 292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); 293 } 294 295 /* 296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode 297 * part of the structure. This is made more complex by the fact we store 298 * information about the on-disk values in the VFS inode and so we can't just 299 * overwrite the values unconditionally. Hence we save the parameters we 300 * need to retain across reinitialisation, and rewrite them into the VFS inode 301 * after reinitialisation even if it fails. 302 */ 303 static int 304 xfs_reinit_inode( 305 struct xfs_mount *mp, 306 struct inode *inode) 307 { 308 int error; 309 uint32_t nlink = inode->i_nlink; 310 uint32_t generation = inode->i_generation; 311 uint64_t version = inode_peek_iversion(inode); 312 umode_t mode = inode->i_mode; 313 dev_t dev = inode->i_rdev; 314 kuid_t uid = inode->i_uid; 315 kgid_t gid = inode->i_gid; 316 unsigned long state = inode->i_state; 317 318 error = inode_init_always(mp->m_super, inode); 319 320 set_nlink(inode, nlink); 321 inode->i_generation = generation; 322 inode_set_iversion_queried(inode, version); 323 inode->i_mode = mode; 324 inode->i_rdev = dev; 325 inode->i_uid = uid; 326 inode->i_gid = gid; 327 inode->i_state = state; 328 mapping_set_large_folios(inode->i_mapping); 329 return error; 330 } 331 332 /* 333 * Carefully nudge an inode whose VFS state has been torn down back into a 334 * usable state. Drops the i_flags_lock and the rcu read lock. 335 */ 336 static int 337 xfs_iget_recycle( 338 struct xfs_perag *pag, 339 struct xfs_inode *ip) __releases(&ip->i_flags_lock) 340 { 341 struct xfs_mount *mp = ip->i_mount; 342 struct inode *inode = VFS_I(ip); 343 int error; 344 345 trace_xfs_iget_recycle(ip); 346 347 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 348 return -EAGAIN; 349 350 /* 351 * We need to make it look like the inode is being reclaimed to prevent 352 * the actual reclaim workers from stomping over us while we recycle 353 * the inode. We can't clear the radix tree tag yet as it requires 354 * pag_ici_lock to be held exclusive. 355 */ 356 ip->i_flags |= XFS_IRECLAIM; 357 358 spin_unlock(&ip->i_flags_lock); 359 rcu_read_unlock(); 360 361 ASSERT(!rwsem_is_locked(&inode->i_rwsem)); 362 error = xfs_reinit_inode(mp, inode); 363 xfs_iunlock(ip, XFS_ILOCK_EXCL); 364 if (error) { 365 /* 366 * Re-initializing the inode failed, and we are in deep 367 * trouble. Try to re-add it to the reclaim list. 368 */ 369 rcu_read_lock(); 370 spin_lock(&ip->i_flags_lock); 371 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); 372 ASSERT(ip->i_flags & XFS_IRECLAIMABLE); 373 spin_unlock(&ip->i_flags_lock); 374 rcu_read_unlock(); 375 376 trace_xfs_iget_recycle_fail(ip); 377 return error; 378 } 379 380 spin_lock(&pag->pag_ici_lock); 381 spin_lock(&ip->i_flags_lock); 382 383 /* 384 * Clear the per-lifetime state in the inode as we are now effectively 385 * a new inode and need to return to the initial state before reuse 386 * occurs. 387 */ 388 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; 389 ip->i_flags |= XFS_INEW; 390 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 391 XFS_ICI_RECLAIM_TAG); 392 inode->i_state = I_NEW; 393 spin_unlock(&ip->i_flags_lock); 394 spin_unlock(&pag->pag_ici_lock); 395 396 return 0; 397 } 398 399 /* 400 * If we are allocating a new inode, then check what was returned is 401 * actually a free, empty inode. If we are not allocating an inode, 402 * then check we didn't find a free inode. 403 * 404 * Returns: 405 * 0 if the inode free state matches the lookup context 406 * -ENOENT if the inode is free and we are not allocating 407 * -EFSCORRUPTED if there is any state mismatch at all 408 */ 409 static int 410 xfs_iget_check_free_state( 411 struct xfs_inode *ip, 412 int flags) 413 { 414 if (flags & XFS_IGET_CREATE) { 415 /* should be a free inode */ 416 if (VFS_I(ip)->i_mode != 0) { 417 xfs_warn(ip->i_mount, 418 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", 419 ip->i_ino, VFS_I(ip)->i_mode); 420 xfs_agno_mark_sick(ip->i_mount, 421 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 422 XFS_SICK_AG_INOBT); 423 return -EFSCORRUPTED; 424 } 425 426 if (ip->i_nblocks != 0) { 427 xfs_warn(ip->i_mount, 428 "Corruption detected! Free inode 0x%llx has blocks allocated!", 429 ip->i_ino); 430 xfs_agno_mark_sick(ip->i_mount, 431 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), 432 XFS_SICK_AG_INOBT); 433 return -EFSCORRUPTED; 434 } 435 return 0; 436 } 437 438 /* should be an allocated inode */ 439 if (VFS_I(ip)->i_mode == 0) 440 return -ENOENT; 441 442 return 0; 443 } 444 445 /* Make all pending inactivation work start immediately. */ 446 static bool 447 xfs_inodegc_queue_all( 448 struct xfs_mount *mp) 449 { 450 struct xfs_inodegc *gc; 451 int cpu; 452 bool ret = false; 453 454 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 455 gc = per_cpu_ptr(mp->m_inodegc, cpu); 456 if (!llist_empty(&gc->list)) { 457 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 458 ret = true; 459 } 460 } 461 462 return ret; 463 } 464 465 /* Wait for all queued work and collect errors */ 466 static int 467 xfs_inodegc_wait_all( 468 struct xfs_mount *mp) 469 { 470 int cpu; 471 int error = 0; 472 473 flush_workqueue(mp->m_inodegc_wq); 474 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 475 struct xfs_inodegc *gc; 476 477 gc = per_cpu_ptr(mp->m_inodegc, cpu); 478 if (gc->error && !error) 479 error = gc->error; 480 gc->error = 0; 481 } 482 483 return error; 484 } 485 486 /* 487 * Check the validity of the inode we just found it the cache 488 */ 489 static int 490 xfs_iget_cache_hit( 491 struct xfs_perag *pag, 492 struct xfs_inode *ip, 493 xfs_ino_t ino, 494 int flags, 495 int lock_flags) __releases(RCU) 496 { 497 struct inode *inode = VFS_I(ip); 498 struct xfs_mount *mp = ip->i_mount; 499 int error; 500 501 /* 502 * check for re-use of an inode within an RCU grace period due to the 503 * radix tree nodes not being updated yet. We monitor for this by 504 * setting the inode number to zero before freeing the inode structure. 505 * If the inode has been reallocated and set up, then the inode number 506 * will not match, so check for that, too. 507 */ 508 spin_lock(&ip->i_flags_lock); 509 if (ip->i_ino != ino) 510 goto out_skip; 511 512 /* 513 * If we are racing with another cache hit that is currently 514 * instantiating this inode or currently recycling it out of 515 * reclaimable state, wait for the initialisation to complete 516 * before continuing. 517 * 518 * If we're racing with the inactivation worker we also want to wait. 519 * If we're creating a new file, it's possible that the worker 520 * previously marked the inode as free on disk but hasn't finished 521 * updating the incore state yet. The AGI buffer will be dirty and 522 * locked to the icreate transaction, so a synchronous push of the 523 * inodegc workers would result in deadlock. For a regular iget, the 524 * worker is running already, so we might as well wait. 525 * 526 * XXX(hch): eventually we should do something equivalent to 527 * wait_on_inode to wait for these flags to be cleared 528 * instead of polling for it. 529 */ 530 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) 531 goto out_skip; 532 533 if (ip->i_flags & XFS_NEED_INACTIVE) { 534 /* Unlinked inodes cannot be re-grabbed. */ 535 if (VFS_I(ip)->i_nlink == 0) { 536 error = -ENOENT; 537 goto out_error; 538 } 539 goto out_inodegc_flush; 540 } 541 542 /* 543 * Check the inode free state is valid. This also detects lookup 544 * racing with unlinks. 545 */ 546 error = xfs_iget_check_free_state(ip, flags); 547 if (error) 548 goto out_error; 549 550 /* Skip inodes that have no vfs state. */ 551 if ((flags & XFS_IGET_INCORE) && 552 (ip->i_flags & XFS_IRECLAIMABLE)) 553 goto out_skip; 554 555 /* The inode fits the selection criteria; process it. */ 556 if (ip->i_flags & XFS_IRECLAIMABLE) { 557 /* Drops i_flags_lock and RCU read lock. */ 558 error = xfs_iget_recycle(pag, ip); 559 if (error == -EAGAIN) 560 goto out_skip; 561 if (error) 562 return error; 563 } else { 564 /* If the VFS inode is being torn down, pause and try again. */ 565 if (!igrab(inode)) 566 goto out_skip; 567 568 /* We've got a live one. */ 569 spin_unlock(&ip->i_flags_lock); 570 rcu_read_unlock(); 571 trace_xfs_iget_hit(ip); 572 } 573 574 if (lock_flags != 0) 575 xfs_ilock(ip, lock_flags); 576 577 if (!(flags & XFS_IGET_INCORE)) 578 xfs_iflags_clear(ip, XFS_ISTALE); 579 XFS_STATS_INC(mp, xs_ig_found); 580 581 return 0; 582 583 out_skip: 584 trace_xfs_iget_skip(ip); 585 XFS_STATS_INC(mp, xs_ig_frecycle); 586 error = -EAGAIN; 587 out_error: 588 spin_unlock(&ip->i_flags_lock); 589 rcu_read_unlock(); 590 return error; 591 592 out_inodegc_flush: 593 spin_unlock(&ip->i_flags_lock); 594 rcu_read_unlock(); 595 /* 596 * Do not wait for the workers, because the caller could hold an AGI 597 * buffer lock. We're just going to sleep in a loop anyway. 598 */ 599 if (xfs_is_inodegc_enabled(mp)) 600 xfs_inodegc_queue_all(mp); 601 return -EAGAIN; 602 } 603 604 static int 605 xfs_iget_cache_miss( 606 struct xfs_mount *mp, 607 struct xfs_perag *pag, 608 xfs_trans_t *tp, 609 xfs_ino_t ino, 610 struct xfs_inode **ipp, 611 int flags, 612 int lock_flags) 613 { 614 struct xfs_inode *ip; 615 int error; 616 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); 617 618 ip = xfs_inode_alloc(mp, ino); 619 if (!ip) 620 return -ENOMEM; 621 622 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); 623 if (error) 624 goto out_destroy; 625 626 /* 627 * For version 5 superblocks, if we are initialising a new inode and we 628 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can 629 * simply build the new inode core with a random generation number. 630 * 631 * For version 4 (and older) superblocks, log recovery is dependent on 632 * the i_flushiter field being initialised from the current on-disk 633 * value and hence we must also read the inode off disk even when 634 * initializing new inodes. 635 */ 636 if (xfs_has_v3inodes(mp) && 637 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { 638 VFS_I(ip)->i_generation = get_random_u32(); 639 } else { 640 struct xfs_buf *bp; 641 642 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); 643 if (error) 644 goto out_destroy; 645 646 error = xfs_inode_from_disk(ip, 647 xfs_buf_offset(bp, ip->i_imap.im_boffset)); 648 if (!error) 649 xfs_buf_set_ref(bp, XFS_INO_REF); 650 else 651 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 652 xfs_trans_brelse(tp, bp); 653 654 if (error) 655 goto out_destroy; 656 } 657 658 trace_xfs_iget_miss(ip); 659 660 /* 661 * Check the inode free state is valid. This also detects lookup 662 * racing with unlinks. 663 */ 664 error = xfs_iget_check_free_state(ip, flags); 665 if (error) 666 goto out_destroy; 667 668 /* 669 * Preload the radix tree so we can insert safely under the 670 * write spinlock. Note that we cannot sleep inside the preload 671 * region. 672 */ 673 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { 674 error = -EAGAIN; 675 goto out_destroy; 676 } 677 678 /* 679 * Because the inode hasn't been added to the radix-tree yet it can't 680 * be found by another thread, so we can do the non-sleeping lock here. 681 */ 682 if (lock_flags) { 683 if (!xfs_ilock_nowait(ip, lock_flags)) 684 BUG(); 685 } 686 687 /* 688 * These values must be set before inserting the inode into the radix 689 * tree as the moment it is inserted a concurrent lookup (allowed by the 690 * RCU locking mechanism) can find it and that lookup must see that this 691 * is an inode currently under construction (i.e. that XFS_INEW is set). 692 * The ip->i_flags_lock that protects the XFS_INEW flag forms the 693 * memory barrier that ensures this detection works correctly at lookup 694 * time. 695 */ 696 if (flags & XFS_IGET_DONTCACHE) 697 d_mark_dontcache(VFS_I(ip)); 698 ip->i_udquot = NULL; 699 ip->i_gdquot = NULL; 700 ip->i_pdquot = NULL; 701 xfs_iflags_set(ip, XFS_INEW); 702 703 /* insert the new inode */ 704 spin_lock(&pag->pag_ici_lock); 705 error = radix_tree_insert(&pag->pag_ici_root, agino, ip); 706 if (unlikely(error)) { 707 WARN_ON(error != -EEXIST); 708 XFS_STATS_INC(mp, xs_ig_dup); 709 error = -EAGAIN; 710 goto out_preload_end; 711 } 712 spin_unlock(&pag->pag_ici_lock); 713 radix_tree_preload_end(); 714 715 *ipp = ip; 716 return 0; 717 718 out_preload_end: 719 spin_unlock(&pag->pag_ici_lock); 720 radix_tree_preload_end(); 721 if (lock_flags) 722 xfs_iunlock(ip, lock_flags); 723 out_destroy: 724 __destroy_inode(VFS_I(ip)); 725 xfs_inode_free(ip); 726 return error; 727 } 728 729 /* 730 * Look up an inode by number in the given file system. The inode is looked up 731 * in the cache held in each AG. If the inode is found in the cache, initialise 732 * the vfs inode if necessary. 733 * 734 * If it is not in core, read it in from the file system's device, add it to the 735 * cache and initialise the vfs inode. 736 * 737 * The inode is locked according to the value of the lock_flags parameter. 738 * Inode lookup is only done during metadata operations and not as part of the 739 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. 740 */ 741 int 742 xfs_iget( 743 struct xfs_mount *mp, 744 struct xfs_trans *tp, 745 xfs_ino_t ino, 746 uint flags, 747 uint lock_flags, 748 struct xfs_inode **ipp) 749 { 750 struct xfs_inode *ip; 751 struct xfs_perag *pag; 752 xfs_agino_t agino; 753 int error; 754 755 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); 756 757 /* reject inode numbers outside existing AGs */ 758 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) 759 return -EINVAL; 760 761 XFS_STATS_INC(mp, xs_ig_attempts); 762 763 /* get the perag structure and ensure that it's inode capable */ 764 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); 765 agino = XFS_INO_TO_AGINO(mp, ino); 766 767 again: 768 error = 0; 769 rcu_read_lock(); 770 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 771 772 if (ip) { 773 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); 774 if (error) 775 goto out_error_or_again; 776 } else { 777 rcu_read_unlock(); 778 if (flags & XFS_IGET_INCORE) { 779 error = -ENODATA; 780 goto out_error_or_again; 781 } 782 XFS_STATS_INC(mp, xs_ig_missed); 783 784 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, 785 flags, lock_flags); 786 if (error) 787 goto out_error_or_again; 788 } 789 xfs_perag_put(pag); 790 791 *ipp = ip; 792 793 /* 794 * If we have a real type for an on-disk inode, we can setup the inode 795 * now. If it's a new inode being created, xfs_init_new_inode will 796 * handle it. 797 */ 798 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) 799 xfs_setup_existing_inode(ip); 800 return 0; 801 802 out_error_or_again: 803 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && 804 error == -EAGAIN) { 805 delay(1); 806 goto again; 807 } 808 xfs_perag_put(pag); 809 return error; 810 } 811 812 /* 813 * Grab the inode for reclaim exclusively. 814 * 815 * We have found this inode via a lookup under RCU, so the inode may have 816 * already been freed, or it may be in the process of being recycled by 817 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode 818 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE 819 * will not be set. Hence we need to check for both these flag conditions to 820 * avoid inodes that are no longer reclaim candidates. 821 * 822 * Note: checking for other state flags here, under the i_flags_lock or not, is 823 * racy and should be avoided. Those races should be resolved only after we have 824 * ensured that we are able to reclaim this inode and the world can see that we 825 * are going to reclaim it. 826 * 827 * Return true if we grabbed it, false otherwise. 828 */ 829 static bool 830 xfs_reclaim_igrab( 831 struct xfs_inode *ip, 832 struct xfs_icwalk *icw) 833 { 834 ASSERT(rcu_read_lock_held()); 835 836 spin_lock(&ip->i_flags_lock); 837 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || 838 __xfs_iflags_test(ip, XFS_IRECLAIM)) { 839 /* not a reclaim candidate. */ 840 spin_unlock(&ip->i_flags_lock); 841 return false; 842 } 843 844 /* Don't reclaim a sick inode unless the caller asked for it. */ 845 if (ip->i_sick && 846 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { 847 spin_unlock(&ip->i_flags_lock); 848 return false; 849 } 850 851 __xfs_iflags_set(ip, XFS_IRECLAIM); 852 spin_unlock(&ip->i_flags_lock); 853 return true; 854 } 855 856 /* 857 * Inode reclaim is non-blocking, so the default action if progress cannot be 858 * made is to "requeue" the inode for reclaim by unlocking it and clearing the 859 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about 860 * blocking anymore and hence we can wait for the inode to be able to reclaim 861 * it. 862 * 863 * We do no IO here - if callers require inodes to be cleaned they must push the 864 * AIL first to trigger writeback of dirty inodes. This enables writeback to be 865 * done in the background in a non-blocking manner, and enables memory reclaim 866 * to make progress without blocking. 867 */ 868 static void 869 xfs_reclaim_inode( 870 struct xfs_inode *ip, 871 struct xfs_perag *pag) 872 { 873 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ 874 875 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 876 goto out; 877 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) 878 goto out_iunlock; 879 880 /* 881 * Check for log shutdown because aborting the inode can move the log 882 * tail and corrupt in memory state. This is fine if the log is shut 883 * down, but if the log is still active and only the mount is shut down 884 * then the in-memory log tail movement caused by the abort can be 885 * incorrectly propagated to disk. 886 */ 887 if (xlog_is_shutdown(ip->i_mount->m_log)) { 888 xfs_iunpin_wait(ip); 889 xfs_iflush_shutdown_abort(ip); 890 goto reclaim; 891 } 892 if (xfs_ipincount(ip)) 893 goto out_clear_flush; 894 if (!xfs_inode_clean(ip)) 895 goto out_clear_flush; 896 897 xfs_iflags_clear(ip, XFS_IFLUSHING); 898 reclaim: 899 trace_xfs_inode_reclaiming(ip); 900 901 /* 902 * Because we use RCU freeing we need to ensure the inode always appears 903 * to be reclaimed with an invalid inode number when in the free state. 904 * We do this as early as possible under the ILOCK so that 905 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to 906 * detect races with us here. By doing this, we guarantee that once 907 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that 908 * it will see either a valid inode that will serialise correctly, or it 909 * will see an invalid inode that it can skip. 910 */ 911 spin_lock(&ip->i_flags_lock); 912 ip->i_flags = XFS_IRECLAIM; 913 ip->i_ino = 0; 914 ip->i_sick = 0; 915 ip->i_checked = 0; 916 spin_unlock(&ip->i_flags_lock); 917 918 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); 919 xfs_iunlock(ip, XFS_ILOCK_EXCL); 920 921 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); 922 /* 923 * Remove the inode from the per-AG radix tree. 924 * 925 * Because radix_tree_delete won't complain even if the item was never 926 * added to the tree assert that it's been there before to catch 927 * problems with the inode life time early on. 928 */ 929 spin_lock(&pag->pag_ici_lock); 930 if (!radix_tree_delete(&pag->pag_ici_root, 931 XFS_INO_TO_AGINO(ip->i_mount, ino))) 932 ASSERT(0); 933 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); 934 spin_unlock(&pag->pag_ici_lock); 935 936 /* 937 * Here we do an (almost) spurious inode lock in order to coordinate 938 * with inode cache radix tree lookups. This is because the lookup 939 * can reference the inodes in the cache without taking references. 940 * 941 * We make that OK here by ensuring that we wait until the inode is 942 * unlocked after the lookup before we go ahead and free it. 943 */ 944 xfs_ilock(ip, XFS_ILOCK_EXCL); 945 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); 946 xfs_iunlock(ip, XFS_ILOCK_EXCL); 947 ASSERT(xfs_inode_clean(ip)); 948 949 __xfs_inode_free(ip); 950 return; 951 952 out_clear_flush: 953 xfs_iflags_clear(ip, XFS_IFLUSHING); 954 out_iunlock: 955 xfs_iunlock(ip, XFS_ILOCK_EXCL); 956 out: 957 xfs_iflags_clear(ip, XFS_IRECLAIM); 958 } 959 960 /* Reclaim sick inodes if we're unmounting or the fs went down. */ 961 static inline bool 962 xfs_want_reclaim_sick( 963 struct xfs_mount *mp) 964 { 965 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || 966 xfs_is_shutdown(mp); 967 } 968 969 void 970 xfs_reclaim_inodes( 971 struct xfs_mount *mp) 972 { 973 struct xfs_icwalk icw = { 974 .icw_flags = 0, 975 }; 976 977 if (xfs_want_reclaim_sick(mp)) 978 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 979 980 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { 981 xfs_ail_push_all_sync(mp->m_ail); 982 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 983 } 984 } 985 986 /* 987 * The shrinker infrastructure determines how many inodes we should scan for 988 * reclaim. We want as many clean inodes ready to reclaim as possible, so we 989 * push the AIL here. We also want to proactively free up memory if we can to 990 * minimise the amount of work memory reclaim has to do so we kick the 991 * background reclaim if it isn't already scheduled. 992 */ 993 long 994 xfs_reclaim_inodes_nr( 995 struct xfs_mount *mp, 996 unsigned long nr_to_scan) 997 { 998 struct xfs_icwalk icw = { 999 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, 1000 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), 1001 }; 1002 1003 if (xfs_want_reclaim_sick(mp)) 1004 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; 1005 1006 /* kick background reclaimer and push the AIL */ 1007 xfs_reclaim_work_queue(mp); 1008 xfs_ail_push_all(mp->m_ail); 1009 1010 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); 1011 return 0; 1012 } 1013 1014 /* 1015 * Return the number of reclaimable inodes in the filesystem for 1016 * the shrinker to determine how much to reclaim. 1017 */ 1018 long 1019 xfs_reclaim_inodes_count( 1020 struct xfs_mount *mp) 1021 { 1022 struct xfs_perag *pag; 1023 xfs_agnumber_t ag = 0; 1024 long reclaimable = 0; 1025 1026 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { 1027 ag = pag->pag_agno + 1; 1028 reclaimable += pag->pag_ici_reclaimable; 1029 xfs_perag_put(pag); 1030 } 1031 return reclaimable; 1032 } 1033 1034 STATIC bool 1035 xfs_icwalk_match_id( 1036 struct xfs_inode *ip, 1037 struct xfs_icwalk *icw) 1038 { 1039 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1040 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1041 return false; 1042 1043 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1044 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1045 return false; 1046 1047 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1048 ip->i_projid != icw->icw_prid) 1049 return false; 1050 1051 return true; 1052 } 1053 1054 /* 1055 * A union-based inode filtering algorithm. Process the inode if any of the 1056 * criteria match. This is for global/internal scans only. 1057 */ 1058 STATIC bool 1059 xfs_icwalk_match_id_union( 1060 struct xfs_inode *ip, 1061 struct xfs_icwalk *icw) 1062 { 1063 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && 1064 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) 1065 return true; 1066 1067 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && 1068 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) 1069 return true; 1070 1071 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && 1072 ip->i_projid == icw->icw_prid) 1073 return true; 1074 1075 return false; 1076 } 1077 1078 /* 1079 * Is this inode @ip eligible for eof/cow block reclamation, given some 1080 * filtering parameters @icw? The inode is eligible if @icw is null or 1081 * if the predicate functions match. 1082 */ 1083 static bool 1084 xfs_icwalk_match( 1085 struct xfs_inode *ip, 1086 struct xfs_icwalk *icw) 1087 { 1088 bool match; 1089 1090 if (!icw) 1091 return true; 1092 1093 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) 1094 match = xfs_icwalk_match_id_union(ip, icw); 1095 else 1096 match = xfs_icwalk_match_id(ip, icw); 1097 if (!match) 1098 return false; 1099 1100 /* skip the inode if the file size is too small */ 1101 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && 1102 XFS_ISIZE(ip) < icw->icw_min_file_size) 1103 return false; 1104 1105 return true; 1106 } 1107 1108 /* 1109 * This is a fast pass over the inode cache to try to get reclaim moving on as 1110 * many inodes as possible in a short period of time. It kicks itself every few 1111 * seconds, as well as being kicked by the inode cache shrinker when memory 1112 * goes low. 1113 */ 1114 void 1115 xfs_reclaim_worker( 1116 struct work_struct *work) 1117 { 1118 struct xfs_mount *mp = container_of(to_delayed_work(work), 1119 struct xfs_mount, m_reclaim_work); 1120 1121 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); 1122 xfs_reclaim_work_queue(mp); 1123 } 1124 1125 STATIC int 1126 xfs_inode_free_eofblocks( 1127 struct xfs_inode *ip, 1128 struct xfs_icwalk *icw, 1129 unsigned int *lockflags) 1130 { 1131 bool wait; 1132 1133 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1134 1135 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) 1136 return 0; 1137 1138 /* 1139 * If the mapping is dirty the operation can block and wait for some 1140 * time. Unless we are waiting, skip it. 1141 */ 1142 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) 1143 return 0; 1144 1145 if (!xfs_icwalk_match(ip, icw)) 1146 return 0; 1147 1148 /* 1149 * If the caller is waiting, return -EAGAIN to keep the background 1150 * scanner moving and revisit the inode in a subsequent pass. 1151 */ 1152 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1153 if (wait) 1154 return -EAGAIN; 1155 return 0; 1156 } 1157 *lockflags |= XFS_IOLOCK_EXCL; 1158 1159 if (xfs_can_free_eofblocks(ip)) 1160 return xfs_free_eofblocks(ip); 1161 1162 /* inode could be preallocated or append-only */ 1163 trace_xfs_inode_free_eofblocks_invalid(ip); 1164 xfs_inode_clear_eofblocks_tag(ip); 1165 return 0; 1166 } 1167 1168 static void 1169 xfs_blockgc_set_iflag( 1170 struct xfs_inode *ip, 1171 unsigned long iflag) 1172 { 1173 struct xfs_mount *mp = ip->i_mount; 1174 struct xfs_perag *pag; 1175 1176 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1177 1178 /* 1179 * Don't bother locking the AG and looking up in the radix trees 1180 * if we already know that we have the tag set. 1181 */ 1182 if (ip->i_flags & iflag) 1183 return; 1184 spin_lock(&ip->i_flags_lock); 1185 ip->i_flags |= iflag; 1186 spin_unlock(&ip->i_flags_lock); 1187 1188 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1189 spin_lock(&pag->pag_ici_lock); 1190 1191 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1192 XFS_ICI_BLOCKGC_TAG); 1193 1194 spin_unlock(&pag->pag_ici_lock); 1195 xfs_perag_put(pag); 1196 } 1197 1198 void 1199 xfs_inode_set_eofblocks_tag( 1200 xfs_inode_t *ip) 1201 { 1202 trace_xfs_inode_set_eofblocks_tag(ip); 1203 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); 1204 } 1205 1206 static void 1207 xfs_blockgc_clear_iflag( 1208 struct xfs_inode *ip, 1209 unsigned long iflag) 1210 { 1211 struct xfs_mount *mp = ip->i_mount; 1212 struct xfs_perag *pag; 1213 bool clear_tag; 1214 1215 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); 1216 1217 spin_lock(&ip->i_flags_lock); 1218 ip->i_flags &= ~iflag; 1219 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; 1220 spin_unlock(&ip->i_flags_lock); 1221 1222 if (!clear_tag) 1223 return; 1224 1225 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1226 spin_lock(&pag->pag_ici_lock); 1227 1228 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1229 XFS_ICI_BLOCKGC_TAG); 1230 1231 spin_unlock(&pag->pag_ici_lock); 1232 xfs_perag_put(pag); 1233 } 1234 1235 void 1236 xfs_inode_clear_eofblocks_tag( 1237 xfs_inode_t *ip) 1238 { 1239 trace_xfs_inode_clear_eofblocks_tag(ip); 1240 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); 1241 } 1242 1243 /* 1244 * Set ourselves up to free CoW blocks from this file. If it's already clean 1245 * then we can bail out quickly, but otherwise we must back off if the file 1246 * is undergoing some kind of write. 1247 */ 1248 static bool 1249 xfs_prep_free_cowblocks( 1250 struct xfs_inode *ip) 1251 { 1252 /* 1253 * Just clear the tag if we have an empty cow fork or none at all. It's 1254 * possible the inode was fully unshared since it was originally tagged. 1255 */ 1256 if (!xfs_inode_has_cow_data(ip)) { 1257 trace_xfs_inode_free_cowblocks_invalid(ip); 1258 xfs_inode_clear_cowblocks_tag(ip); 1259 return false; 1260 } 1261 1262 /* 1263 * If the mapping is dirty or under writeback we cannot touch the 1264 * CoW fork. Leave it alone if we're in the midst of a directio. 1265 */ 1266 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || 1267 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || 1268 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || 1269 atomic_read(&VFS_I(ip)->i_dio_count)) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 /* 1276 * Automatic CoW Reservation Freeing 1277 * 1278 * These functions automatically garbage collect leftover CoW reservations 1279 * that were made on behalf of a cowextsize hint when we start to run out 1280 * of quota or when the reservations sit around for too long. If the file 1281 * has dirty pages or is undergoing writeback, its CoW reservations will 1282 * be retained. 1283 * 1284 * The actual garbage collection piggybacks off the same code that runs 1285 * the speculative EOF preallocation garbage collector. 1286 */ 1287 STATIC int 1288 xfs_inode_free_cowblocks( 1289 struct xfs_inode *ip, 1290 struct xfs_icwalk *icw, 1291 unsigned int *lockflags) 1292 { 1293 bool wait; 1294 int ret = 0; 1295 1296 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); 1297 1298 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) 1299 return 0; 1300 1301 if (!xfs_prep_free_cowblocks(ip)) 1302 return 0; 1303 1304 if (!xfs_icwalk_match(ip, icw)) 1305 return 0; 1306 1307 /* 1308 * If the caller is waiting, return -EAGAIN to keep the background 1309 * scanner moving and revisit the inode in a subsequent pass. 1310 */ 1311 if (!(*lockflags & XFS_IOLOCK_EXCL) && 1312 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1313 if (wait) 1314 return -EAGAIN; 1315 return 0; 1316 } 1317 *lockflags |= XFS_IOLOCK_EXCL; 1318 1319 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { 1320 if (wait) 1321 return -EAGAIN; 1322 return 0; 1323 } 1324 *lockflags |= XFS_MMAPLOCK_EXCL; 1325 1326 /* 1327 * Check again, nobody else should be able to dirty blocks or change 1328 * the reflink iflag now that we have the first two locks held. 1329 */ 1330 if (xfs_prep_free_cowblocks(ip)) 1331 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); 1332 return ret; 1333 } 1334 1335 void 1336 xfs_inode_set_cowblocks_tag( 1337 xfs_inode_t *ip) 1338 { 1339 trace_xfs_inode_set_cowblocks_tag(ip); 1340 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); 1341 } 1342 1343 void 1344 xfs_inode_clear_cowblocks_tag( 1345 xfs_inode_t *ip) 1346 { 1347 trace_xfs_inode_clear_cowblocks_tag(ip); 1348 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); 1349 } 1350 1351 /* Disable post-EOF and CoW block auto-reclamation. */ 1352 void 1353 xfs_blockgc_stop( 1354 struct xfs_mount *mp) 1355 { 1356 struct xfs_perag *pag; 1357 xfs_agnumber_t agno; 1358 1359 if (!xfs_clear_blockgc_enabled(mp)) 1360 return; 1361 1362 for_each_perag(mp, agno, pag) 1363 cancel_delayed_work_sync(&pag->pag_blockgc_work); 1364 trace_xfs_blockgc_stop(mp, __return_address); 1365 } 1366 1367 /* Enable post-EOF and CoW block auto-reclamation. */ 1368 void 1369 xfs_blockgc_start( 1370 struct xfs_mount *mp) 1371 { 1372 struct xfs_perag *pag; 1373 xfs_agnumber_t agno; 1374 1375 if (xfs_set_blockgc_enabled(mp)) 1376 return; 1377 1378 trace_xfs_blockgc_start(mp, __return_address); 1379 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1380 xfs_blockgc_queue(pag); 1381 } 1382 1383 /* Don't try to run block gc on an inode that's in any of these states. */ 1384 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ 1385 XFS_NEED_INACTIVE | \ 1386 XFS_INACTIVATING | \ 1387 XFS_IRECLAIMABLE | \ 1388 XFS_IRECLAIM) 1389 /* 1390 * Decide if the given @ip is eligible for garbage collection of speculative 1391 * preallocations, and grab it if so. Returns true if it's ready to go or 1392 * false if we should just ignore it. 1393 */ 1394 static bool 1395 xfs_blockgc_igrab( 1396 struct xfs_inode *ip) 1397 { 1398 struct inode *inode = VFS_I(ip); 1399 1400 ASSERT(rcu_read_lock_held()); 1401 1402 /* Check for stale RCU freed inode */ 1403 spin_lock(&ip->i_flags_lock); 1404 if (!ip->i_ino) 1405 goto out_unlock_noent; 1406 1407 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) 1408 goto out_unlock_noent; 1409 spin_unlock(&ip->i_flags_lock); 1410 1411 /* nothing to sync during shutdown */ 1412 if (xfs_is_shutdown(ip->i_mount)) 1413 return false; 1414 1415 /* If we can't grab the inode, it must on it's way to reclaim. */ 1416 if (!igrab(inode)) 1417 return false; 1418 1419 /* inode is valid */ 1420 return true; 1421 1422 out_unlock_noent: 1423 spin_unlock(&ip->i_flags_lock); 1424 return false; 1425 } 1426 1427 /* Scan one incore inode for block preallocations that we can remove. */ 1428 static int 1429 xfs_blockgc_scan_inode( 1430 struct xfs_inode *ip, 1431 struct xfs_icwalk *icw) 1432 { 1433 unsigned int lockflags = 0; 1434 int error; 1435 1436 error = xfs_inode_free_eofblocks(ip, icw, &lockflags); 1437 if (error) 1438 goto unlock; 1439 1440 error = xfs_inode_free_cowblocks(ip, icw, &lockflags); 1441 unlock: 1442 if (lockflags) 1443 xfs_iunlock(ip, lockflags); 1444 xfs_irele(ip); 1445 return error; 1446 } 1447 1448 /* Background worker that trims preallocated space. */ 1449 void 1450 xfs_blockgc_worker( 1451 struct work_struct *work) 1452 { 1453 struct xfs_perag *pag = container_of(to_delayed_work(work), 1454 struct xfs_perag, pag_blockgc_work); 1455 struct xfs_mount *mp = pag->pag_mount; 1456 int error; 1457 1458 trace_xfs_blockgc_worker(mp, __return_address); 1459 1460 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); 1461 if (error) 1462 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", 1463 pag->pag_agno, error); 1464 xfs_blockgc_queue(pag); 1465 } 1466 1467 /* 1468 * Try to free space in the filesystem by purging inactive inodes, eofblocks 1469 * and cowblocks. 1470 */ 1471 int 1472 xfs_blockgc_free_space( 1473 struct xfs_mount *mp, 1474 struct xfs_icwalk *icw) 1475 { 1476 int error; 1477 1478 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); 1479 1480 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); 1481 if (error) 1482 return error; 1483 1484 return xfs_inodegc_flush(mp); 1485 } 1486 1487 /* 1488 * Reclaim all the free space that we can by scheduling the background blockgc 1489 * and inodegc workers immediately and waiting for them all to clear. 1490 */ 1491 int 1492 xfs_blockgc_flush_all( 1493 struct xfs_mount *mp) 1494 { 1495 struct xfs_perag *pag; 1496 xfs_agnumber_t agno; 1497 1498 trace_xfs_blockgc_flush_all(mp, __return_address); 1499 1500 /* 1501 * For each blockgc worker, move its queue time up to now. If it 1502 * wasn't queued, it will not be requeued. Then flush whatever's 1503 * left. 1504 */ 1505 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1506 mod_delayed_work(pag->pag_mount->m_blockgc_wq, 1507 &pag->pag_blockgc_work, 0); 1508 1509 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG) 1510 flush_delayed_work(&pag->pag_blockgc_work); 1511 1512 return xfs_inodegc_flush(mp); 1513 } 1514 1515 /* 1516 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which 1517 * quota caused an allocation failure, so we make a best effort by including 1518 * each quota under low free space conditions (less than 1% free space) in the 1519 * scan. 1520 * 1521 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan 1522 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or 1523 * MMAPLOCK. 1524 */ 1525 int 1526 xfs_blockgc_free_dquots( 1527 struct xfs_mount *mp, 1528 struct xfs_dquot *udqp, 1529 struct xfs_dquot *gdqp, 1530 struct xfs_dquot *pdqp, 1531 unsigned int iwalk_flags) 1532 { 1533 struct xfs_icwalk icw = {0}; 1534 bool do_work = false; 1535 1536 if (!udqp && !gdqp && !pdqp) 1537 return 0; 1538 1539 /* 1540 * Run a scan to free blocks using the union filter to cover all 1541 * applicable quotas in a single scan. 1542 */ 1543 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; 1544 1545 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { 1546 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); 1547 icw.icw_flags |= XFS_ICWALK_FLAG_UID; 1548 do_work = true; 1549 } 1550 1551 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { 1552 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); 1553 icw.icw_flags |= XFS_ICWALK_FLAG_GID; 1554 do_work = true; 1555 } 1556 1557 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { 1558 icw.icw_prid = pdqp->q_id; 1559 icw.icw_flags |= XFS_ICWALK_FLAG_PRID; 1560 do_work = true; 1561 } 1562 1563 if (!do_work) 1564 return 0; 1565 1566 return xfs_blockgc_free_space(mp, &icw); 1567 } 1568 1569 /* Run cow/eofblocks scans on the quotas attached to the inode. */ 1570 int 1571 xfs_blockgc_free_quota( 1572 struct xfs_inode *ip, 1573 unsigned int iwalk_flags) 1574 { 1575 return xfs_blockgc_free_dquots(ip->i_mount, 1576 xfs_inode_dquot(ip, XFS_DQTYPE_USER), 1577 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), 1578 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); 1579 } 1580 1581 /* XFS Inode Cache Walking Code */ 1582 1583 /* 1584 * The inode lookup is done in batches to keep the amount of lock traffic and 1585 * radix tree lookups to a minimum. The batch size is a trade off between 1586 * lookup reduction and stack usage. This is in the reclaim path, so we can't 1587 * be too greedy. 1588 */ 1589 #define XFS_LOOKUP_BATCH 32 1590 1591 1592 /* 1593 * Decide if we want to grab this inode in anticipation of doing work towards 1594 * the goal. 1595 */ 1596 static inline bool 1597 xfs_icwalk_igrab( 1598 enum xfs_icwalk_goal goal, 1599 struct xfs_inode *ip, 1600 struct xfs_icwalk *icw) 1601 { 1602 switch (goal) { 1603 case XFS_ICWALK_BLOCKGC: 1604 return xfs_blockgc_igrab(ip); 1605 case XFS_ICWALK_RECLAIM: 1606 return xfs_reclaim_igrab(ip, icw); 1607 default: 1608 return false; 1609 } 1610 } 1611 1612 /* 1613 * Process an inode. Each processing function must handle any state changes 1614 * made by the icwalk igrab function. Return -EAGAIN to skip an inode. 1615 */ 1616 static inline int 1617 xfs_icwalk_process_inode( 1618 enum xfs_icwalk_goal goal, 1619 struct xfs_inode *ip, 1620 struct xfs_perag *pag, 1621 struct xfs_icwalk *icw) 1622 { 1623 int error = 0; 1624 1625 switch (goal) { 1626 case XFS_ICWALK_BLOCKGC: 1627 error = xfs_blockgc_scan_inode(ip, icw); 1628 break; 1629 case XFS_ICWALK_RECLAIM: 1630 xfs_reclaim_inode(ip, pag); 1631 break; 1632 } 1633 return error; 1634 } 1635 1636 /* 1637 * For a given per-AG structure @pag and a goal, grab qualifying inodes and 1638 * process them in some manner. 1639 */ 1640 static int 1641 xfs_icwalk_ag( 1642 struct xfs_perag *pag, 1643 enum xfs_icwalk_goal goal, 1644 struct xfs_icwalk *icw) 1645 { 1646 struct xfs_mount *mp = pag->pag_mount; 1647 uint32_t first_index; 1648 int last_error = 0; 1649 int skipped; 1650 bool done; 1651 int nr_found; 1652 1653 restart: 1654 done = false; 1655 skipped = 0; 1656 if (goal == XFS_ICWALK_RECLAIM) 1657 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); 1658 else 1659 first_index = 0; 1660 nr_found = 0; 1661 do { 1662 struct xfs_inode *batch[XFS_LOOKUP_BATCH]; 1663 int error = 0; 1664 int i; 1665 1666 rcu_read_lock(); 1667 1668 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, 1669 (void **) batch, first_index, 1670 XFS_LOOKUP_BATCH, goal); 1671 if (!nr_found) { 1672 done = true; 1673 rcu_read_unlock(); 1674 break; 1675 } 1676 1677 /* 1678 * Grab the inodes before we drop the lock. if we found 1679 * nothing, nr == 0 and the loop will be skipped. 1680 */ 1681 for (i = 0; i < nr_found; i++) { 1682 struct xfs_inode *ip = batch[i]; 1683 1684 if (done || !xfs_icwalk_igrab(goal, ip, icw)) 1685 batch[i] = NULL; 1686 1687 /* 1688 * Update the index for the next lookup. Catch 1689 * overflows into the next AG range which can occur if 1690 * we have inodes in the last block of the AG and we 1691 * are currently pointing to the last inode. 1692 * 1693 * Because we may see inodes that are from the wrong AG 1694 * due to RCU freeing and reallocation, only update the 1695 * index if it lies in this AG. It was a race that lead 1696 * us to see this inode, so another lookup from the 1697 * same index will not find it again. 1698 */ 1699 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1700 continue; 1701 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1702 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1703 done = true; 1704 } 1705 1706 /* unlock now we've grabbed the inodes. */ 1707 rcu_read_unlock(); 1708 1709 for (i = 0; i < nr_found; i++) { 1710 if (!batch[i]) 1711 continue; 1712 error = xfs_icwalk_process_inode(goal, batch[i], pag, 1713 icw); 1714 if (error == -EAGAIN) { 1715 skipped++; 1716 continue; 1717 } 1718 if (error && last_error != -EFSCORRUPTED) 1719 last_error = error; 1720 } 1721 1722 /* bail out if the filesystem is corrupted. */ 1723 if (error == -EFSCORRUPTED) 1724 break; 1725 1726 cond_resched(); 1727 1728 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { 1729 icw->icw_scan_limit -= XFS_LOOKUP_BATCH; 1730 if (icw->icw_scan_limit <= 0) 1731 break; 1732 } 1733 } while (nr_found && !done); 1734 1735 if (goal == XFS_ICWALK_RECLAIM) { 1736 if (done) 1737 first_index = 0; 1738 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); 1739 } 1740 1741 if (skipped) { 1742 delay(1); 1743 goto restart; 1744 } 1745 return last_error; 1746 } 1747 1748 /* Walk all incore inodes to achieve a given goal. */ 1749 static int 1750 xfs_icwalk( 1751 struct xfs_mount *mp, 1752 enum xfs_icwalk_goal goal, 1753 struct xfs_icwalk *icw) 1754 { 1755 struct xfs_perag *pag; 1756 int error = 0; 1757 int last_error = 0; 1758 xfs_agnumber_t agno; 1759 1760 for_each_perag_tag(mp, agno, pag, goal) { 1761 error = xfs_icwalk_ag(pag, goal, icw); 1762 if (error) { 1763 last_error = error; 1764 if (error == -EFSCORRUPTED) { 1765 xfs_perag_rele(pag); 1766 break; 1767 } 1768 } 1769 } 1770 return last_error; 1771 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); 1772 } 1773 1774 #ifdef DEBUG 1775 static void 1776 xfs_check_delalloc( 1777 struct xfs_inode *ip, 1778 int whichfork) 1779 { 1780 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 1781 struct xfs_bmbt_irec got; 1782 struct xfs_iext_cursor icur; 1783 1784 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) 1785 return; 1786 do { 1787 if (isnullstartblock(got.br_startblock)) { 1788 xfs_warn(ip->i_mount, 1789 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", 1790 ip->i_ino, 1791 whichfork == XFS_DATA_FORK ? "data" : "cow", 1792 got.br_startoff, got.br_blockcount); 1793 } 1794 } while (xfs_iext_next_extent(ifp, &icur, &got)); 1795 } 1796 #else 1797 #define xfs_check_delalloc(ip, whichfork) do { } while (0) 1798 #endif 1799 1800 /* Schedule the inode for reclaim. */ 1801 static void 1802 xfs_inodegc_set_reclaimable( 1803 struct xfs_inode *ip) 1804 { 1805 struct xfs_mount *mp = ip->i_mount; 1806 struct xfs_perag *pag; 1807 1808 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { 1809 xfs_check_delalloc(ip, XFS_DATA_FORK); 1810 xfs_check_delalloc(ip, XFS_COW_FORK); 1811 ASSERT(0); 1812 } 1813 1814 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1815 spin_lock(&pag->pag_ici_lock); 1816 spin_lock(&ip->i_flags_lock); 1817 1818 trace_xfs_inode_set_reclaimable(ip); 1819 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); 1820 ip->i_flags |= XFS_IRECLAIMABLE; 1821 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 1822 XFS_ICI_RECLAIM_TAG); 1823 1824 spin_unlock(&ip->i_flags_lock); 1825 spin_unlock(&pag->pag_ici_lock); 1826 xfs_perag_put(pag); 1827 } 1828 1829 /* 1830 * Free all speculative preallocations and possibly even the inode itself. 1831 * This is the last chance to make changes to an otherwise unreferenced file 1832 * before incore reclamation happens. 1833 */ 1834 static int 1835 xfs_inodegc_inactivate( 1836 struct xfs_inode *ip) 1837 { 1838 int error; 1839 1840 trace_xfs_inode_inactivating(ip); 1841 error = xfs_inactive(ip); 1842 xfs_inodegc_set_reclaimable(ip); 1843 return error; 1844 1845 } 1846 1847 void 1848 xfs_inodegc_worker( 1849 struct work_struct *work) 1850 { 1851 struct xfs_inodegc *gc = container_of(to_delayed_work(work), 1852 struct xfs_inodegc, work); 1853 struct llist_node *node = llist_del_all(&gc->list); 1854 struct xfs_inode *ip, *n; 1855 struct xfs_mount *mp = gc->mp; 1856 unsigned int nofs_flag; 1857 1858 /* 1859 * Clear the cpu mask bit and ensure that we have seen the latest 1860 * update of the gc structure associated with this CPU. This matches 1861 * with the release semantics used when setting the cpumask bit in 1862 * xfs_inodegc_queue. 1863 */ 1864 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); 1865 smp_mb__after_atomic(); 1866 1867 WRITE_ONCE(gc->items, 0); 1868 1869 if (!node) 1870 return; 1871 1872 /* 1873 * We can allocate memory here while doing writeback on behalf of 1874 * memory reclaim. To avoid memory allocation deadlocks set the 1875 * task-wide nofs context for the following operations. 1876 */ 1877 nofs_flag = memalloc_nofs_save(); 1878 1879 ip = llist_entry(node, struct xfs_inode, i_gclist); 1880 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); 1881 1882 WRITE_ONCE(gc->shrinker_hits, 0); 1883 llist_for_each_entry_safe(ip, n, node, i_gclist) { 1884 int error; 1885 1886 xfs_iflags_set(ip, XFS_INACTIVATING); 1887 error = xfs_inodegc_inactivate(ip); 1888 if (error && !gc->error) 1889 gc->error = error; 1890 } 1891 1892 memalloc_nofs_restore(nofs_flag); 1893 } 1894 1895 /* 1896 * Expedite all pending inodegc work to run immediately. This does not wait for 1897 * completion of the work. 1898 */ 1899 void 1900 xfs_inodegc_push( 1901 struct xfs_mount *mp) 1902 { 1903 if (!xfs_is_inodegc_enabled(mp)) 1904 return; 1905 trace_xfs_inodegc_push(mp, __return_address); 1906 xfs_inodegc_queue_all(mp); 1907 } 1908 1909 /* 1910 * Force all currently queued inode inactivation work to run immediately and 1911 * wait for the work to finish. 1912 */ 1913 int 1914 xfs_inodegc_flush( 1915 struct xfs_mount *mp) 1916 { 1917 xfs_inodegc_push(mp); 1918 trace_xfs_inodegc_flush(mp, __return_address); 1919 return xfs_inodegc_wait_all(mp); 1920 } 1921 1922 /* 1923 * Flush all the pending work and then disable the inode inactivation background 1924 * workers and wait for them to stop. Caller must hold sb->s_umount to 1925 * coordinate changes in the inodegc_enabled state. 1926 */ 1927 void 1928 xfs_inodegc_stop( 1929 struct xfs_mount *mp) 1930 { 1931 bool rerun; 1932 1933 if (!xfs_clear_inodegc_enabled(mp)) 1934 return; 1935 1936 /* 1937 * Drain all pending inodegc work, including inodes that could be 1938 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan 1939 * threads that sample the inodegc state just prior to us clearing it. 1940 * The inodegc flag state prevents new threads from queuing more 1941 * inodes, so we queue pending work items and flush the workqueue until 1942 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue 1943 * here because it does not allow other unserialized mechanisms to 1944 * reschedule inodegc work while this draining is in progress. 1945 */ 1946 xfs_inodegc_queue_all(mp); 1947 do { 1948 flush_workqueue(mp->m_inodegc_wq); 1949 rerun = xfs_inodegc_queue_all(mp); 1950 } while (rerun); 1951 1952 trace_xfs_inodegc_stop(mp, __return_address); 1953 } 1954 1955 /* 1956 * Enable the inode inactivation background workers and schedule deferred inode 1957 * inactivation work if there is any. Caller must hold sb->s_umount to 1958 * coordinate changes in the inodegc_enabled state. 1959 */ 1960 void 1961 xfs_inodegc_start( 1962 struct xfs_mount *mp) 1963 { 1964 if (xfs_set_inodegc_enabled(mp)) 1965 return; 1966 1967 trace_xfs_inodegc_start(mp, __return_address); 1968 xfs_inodegc_queue_all(mp); 1969 } 1970 1971 #ifdef CONFIG_XFS_RT 1972 static inline bool 1973 xfs_inodegc_want_queue_rt_file( 1974 struct xfs_inode *ip) 1975 { 1976 struct xfs_mount *mp = ip->i_mount; 1977 1978 if (!XFS_IS_REALTIME_INODE(ip)) 1979 return false; 1980 1981 if (__percpu_counter_compare(&mp->m_frextents, 1982 mp->m_low_rtexts[XFS_LOWSP_5_PCNT], 1983 XFS_FDBLOCKS_BATCH) < 0) 1984 return true; 1985 1986 return false; 1987 } 1988 #else 1989 # define xfs_inodegc_want_queue_rt_file(ip) (false) 1990 #endif /* CONFIG_XFS_RT */ 1991 1992 /* 1993 * Schedule the inactivation worker when: 1994 * 1995 * - We've accumulated more than one inode cluster buffer's worth of inodes. 1996 * - There is less than 5% free space left. 1997 * - Any of the quotas for this inode are near an enforcement limit. 1998 */ 1999 static inline bool 2000 xfs_inodegc_want_queue_work( 2001 struct xfs_inode *ip, 2002 unsigned int items) 2003 { 2004 struct xfs_mount *mp = ip->i_mount; 2005 2006 if (items > mp->m_ino_geo.inodes_per_cluster) 2007 return true; 2008 2009 if (__percpu_counter_compare(&mp->m_fdblocks, 2010 mp->m_low_space[XFS_LOWSP_5_PCNT], 2011 XFS_FDBLOCKS_BATCH) < 0) 2012 return true; 2013 2014 if (xfs_inodegc_want_queue_rt_file(ip)) 2015 return true; 2016 2017 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) 2018 return true; 2019 2020 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) 2021 return true; 2022 2023 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) 2024 return true; 2025 2026 return false; 2027 } 2028 2029 /* 2030 * Upper bound on the number of inodes in each AG that can be queued for 2031 * inactivation at any given time, to avoid monopolizing the workqueue. 2032 */ 2033 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) 2034 2035 /* 2036 * Make the frontend wait for inactivations when: 2037 * 2038 * - Memory shrinkers queued the inactivation worker and it hasn't finished. 2039 * - The queue depth exceeds the maximum allowable percpu backlog. 2040 * 2041 * Note: If we are in a NOFS context here (e.g. current thread is running a 2042 * transaction) the we don't want to block here as inodegc progress may require 2043 * filesystem resources we hold to make progress and that could result in a 2044 * deadlock. Hence we skip out of here if we are in a scoped NOFS context. 2045 */ 2046 static inline bool 2047 xfs_inodegc_want_flush_work( 2048 struct xfs_inode *ip, 2049 unsigned int items, 2050 unsigned int shrinker_hits) 2051 { 2052 if (current->flags & PF_MEMALLOC_NOFS) 2053 return false; 2054 2055 if (shrinker_hits > 0) 2056 return true; 2057 2058 if (items > XFS_INODEGC_MAX_BACKLOG) 2059 return true; 2060 2061 return false; 2062 } 2063 2064 /* 2065 * Queue a background inactivation worker if there are inodes that need to be 2066 * inactivated and higher level xfs code hasn't disabled the background 2067 * workers. 2068 */ 2069 static void 2070 xfs_inodegc_queue( 2071 struct xfs_inode *ip) 2072 { 2073 struct xfs_mount *mp = ip->i_mount; 2074 struct xfs_inodegc *gc; 2075 int items; 2076 unsigned int shrinker_hits; 2077 unsigned int cpu_nr; 2078 unsigned long queue_delay = 1; 2079 2080 trace_xfs_inode_set_need_inactive(ip); 2081 spin_lock(&ip->i_flags_lock); 2082 ip->i_flags |= XFS_NEED_INACTIVE; 2083 spin_unlock(&ip->i_flags_lock); 2084 2085 cpu_nr = get_cpu(); 2086 gc = this_cpu_ptr(mp->m_inodegc); 2087 llist_add(&ip->i_gclist, &gc->list); 2088 items = READ_ONCE(gc->items); 2089 WRITE_ONCE(gc->items, items + 1); 2090 shrinker_hits = READ_ONCE(gc->shrinker_hits); 2091 2092 /* 2093 * Ensure the list add is always seen by anyone who finds the cpumask 2094 * bit set. This effectively gives the cpumask bit set operation 2095 * release ordering semantics. 2096 */ 2097 smp_mb__before_atomic(); 2098 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) 2099 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); 2100 2101 /* 2102 * We queue the work while holding the current CPU so that the work 2103 * is scheduled to run on this CPU. 2104 */ 2105 if (!xfs_is_inodegc_enabled(mp)) { 2106 put_cpu(); 2107 return; 2108 } 2109 2110 if (xfs_inodegc_want_queue_work(ip, items)) 2111 queue_delay = 0; 2112 2113 trace_xfs_inodegc_queue(mp, __return_address); 2114 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, 2115 queue_delay); 2116 put_cpu(); 2117 2118 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { 2119 trace_xfs_inodegc_throttle(mp, __return_address); 2120 flush_delayed_work(&gc->work); 2121 } 2122 } 2123 2124 /* 2125 * We set the inode flag atomically with the radix tree tag. Once we get tag 2126 * lookups on the radix tree, this inode flag can go away. 2127 * 2128 * We always use background reclaim here because even if the inode is clean, it 2129 * still may be under IO and hence we have wait for IO completion to occur 2130 * before we can reclaim the inode. The background reclaim path handles this 2131 * more efficiently than we can here, so simply let background reclaim tear down 2132 * all inodes. 2133 */ 2134 void 2135 xfs_inode_mark_reclaimable( 2136 struct xfs_inode *ip) 2137 { 2138 struct xfs_mount *mp = ip->i_mount; 2139 bool need_inactive; 2140 2141 XFS_STATS_INC(mp, vn_reclaim); 2142 2143 /* 2144 * We should never get here with any of the reclaim flags already set. 2145 */ 2146 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); 2147 2148 need_inactive = xfs_inode_needs_inactive(ip); 2149 if (need_inactive) { 2150 xfs_inodegc_queue(ip); 2151 return; 2152 } 2153 2154 /* Going straight to reclaim, so drop the dquots. */ 2155 xfs_qm_dqdetach(ip); 2156 xfs_inodegc_set_reclaimable(ip); 2157 } 2158 2159 /* 2160 * Register a phony shrinker so that we can run background inodegc sooner when 2161 * there's memory pressure. Inactivation does not itself free any memory but 2162 * it does make inodes reclaimable, which eventually frees memory. 2163 * 2164 * The count function, seek value, and batch value are crafted to trigger the 2165 * scan function during the second round of scanning. Hopefully this means 2166 * that we reclaimed enough memory that initiating metadata transactions won't 2167 * make things worse. 2168 */ 2169 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) 2170 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) 2171 2172 static unsigned long 2173 xfs_inodegc_shrinker_count( 2174 struct shrinker *shrink, 2175 struct shrink_control *sc) 2176 { 2177 struct xfs_mount *mp = shrink->private_data; 2178 struct xfs_inodegc *gc; 2179 int cpu; 2180 2181 if (!xfs_is_inodegc_enabled(mp)) 2182 return 0; 2183 2184 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2185 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2186 if (!llist_empty(&gc->list)) 2187 return XFS_INODEGC_SHRINKER_COUNT; 2188 } 2189 2190 return 0; 2191 } 2192 2193 static unsigned long 2194 xfs_inodegc_shrinker_scan( 2195 struct shrinker *shrink, 2196 struct shrink_control *sc) 2197 { 2198 struct xfs_mount *mp = shrink->private_data; 2199 struct xfs_inodegc *gc; 2200 int cpu; 2201 bool no_items = true; 2202 2203 if (!xfs_is_inodegc_enabled(mp)) 2204 return SHRINK_STOP; 2205 2206 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); 2207 2208 for_each_cpu(cpu, &mp->m_inodegc_cpumask) { 2209 gc = per_cpu_ptr(mp->m_inodegc, cpu); 2210 if (!llist_empty(&gc->list)) { 2211 unsigned int h = READ_ONCE(gc->shrinker_hits); 2212 2213 WRITE_ONCE(gc->shrinker_hits, h + 1); 2214 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); 2215 no_items = false; 2216 } 2217 } 2218 2219 /* 2220 * If there are no inodes to inactivate, we don't want the shrinker 2221 * to think there's deferred work to call us back about. 2222 */ 2223 if (no_items) 2224 return LONG_MAX; 2225 2226 return SHRINK_STOP; 2227 } 2228 2229 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ 2230 int 2231 xfs_inodegc_register_shrinker( 2232 struct xfs_mount *mp) 2233 { 2234 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, 2235 "xfs-inodegc:%s", 2236 mp->m_super->s_id); 2237 if (!mp->m_inodegc_shrinker) 2238 return -ENOMEM; 2239 2240 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; 2241 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; 2242 mp->m_inodegc_shrinker->seeks = 0; 2243 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; 2244 mp->m_inodegc_shrinker->private_data = mp; 2245 2246 shrinker_register(mp->m_inodegc_shrinker); 2247 2248 return 0; 2249 } 2250
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.