~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_icache.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_mount.h"
 13 #include "xfs_inode.h"
 14 #include "xfs_trans.h"
 15 #include "xfs_trans_priv.h"
 16 #include "xfs_inode_item.h"
 17 #include "xfs_quota.h"
 18 #include "xfs_trace.h"
 19 #include "xfs_icache.h"
 20 #include "xfs_bmap_util.h"
 21 #include "xfs_dquot_item.h"
 22 #include "xfs_dquot.h"
 23 #include "xfs_reflink.h"
 24 #include "xfs_ialloc.h"
 25 #include "xfs_ag.h"
 26 #include "xfs_log_priv.h"
 27 #include "xfs_health.h"
 28 
 29 #include <linux/iversion.h>
 30 
 31 /* Radix tree tags for incore inode tree. */
 32 
 33 /* inode is to be reclaimed */
 34 #define XFS_ICI_RECLAIM_TAG     0
 35 /* Inode has speculative preallocations (posteof or cow) to clean. */
 36 #define XFS_ICI_BLOCKGC_TAG     1
 37 
 38 /*
 39  * The goal for walking incore inodes.  These can correspond with incore inode
 40  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
 41  */
 42 enum xfs_icwalk_goal {
 43         /* Goals directly associated with tagged inodes. */
 44         XFS_ICWALK_BLOCKGC      = XFS_ICI_BLOCKGC_TAG,
 45         XFS_ICWALK_RECLAIM      = XFS_ICI_RECLAIM_TAG,
 46 };
 47 
 48 static int xfs_icwalk(struct xfs_mount *mp,
 49                 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
 50 static int xfs_icwalk_ag(struct xfs_perag *pag,
 51                 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
 52 
 53 /*
 54  * Private inode cache walk flags for struct xfs_icwalk.  Must not
 55  * coincide with XFS_ICWALK_FLAGS_VALID.
 56  */
 57 
 58 /* Stop scanning after icw_scan_limit inodes. */
 59 #define XFS_ICWALK_FLAG_SCAN_LIMIT      (1U << 28)
 60 
 61 #define XFS_ICWALK_FLAG_RECLAIM_SICK    (1U << 27)
 62 #define XFS_ICWALK_FLAG_UNION           (1U << 26) /* union filter algorithm */
 63 
 64 #define XFS_ICWALK_PRIVATE_FLAGS        (XFS_ICWALK_FLAG_SCAN_LIMIT | \
 65                                          XFS_ICWALK_FLAG_RECLAIM_SICK | \
 66                                          XFS_ICWALK_FLAG_UNION)
 67 
 68 /*
 69  * Allocate and initialise an xfs_inode.
 70  */
 71 struct xfs_inode *
 72 xfs_inode_alloc(
 73         struct xfs_mount        *mp,
 74         xfs_ino_t               ino)
 75 {
 76         struct xfs_inode        *ip;
 77 
 78         /*
 79          * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
 80          * and return NULL here on ENOMEM.
 81          */
 82         ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
 83 
 84         if (inode_init_always(mp->m_super, VFS_I(ip))) {
 85                 kmem_cache_free(xfs_inode_cache, ip);
 86                 return NULL;
 87         }
 88 
 89         /* VFS doesn't initialise i_mode! */
 90         VFS_I(ip)->i_mode = 0;
 91         mapping_set_large_folios(VFS_I(ip)->i_mapping);
 92 
 93         XFS_STATS_INC(mp, vn_active);
 94         ASSERT(atomic_read(&ip->i_pincount) == 0);
 95         ASSERT(ip->i_ino == 0);
 96 
 97         /* initialise the xfs inode */
 98         ip->i_ino = ino;
 99         ip->i_mount = mp;
100         memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101         ip->i_cowfp = NULL;
102         memset(&ip->i_af, 0, sizeof(ip->i_af));
103         ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104         memset(&ip->i_df, 0, sizeof(ip->i_df));
105         ip->i_flags = 0;
106         ip->i_delayed_blks = 0;
107         ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108         ip->i_nblocks = 0;
109         ip->i_forkoff = 0;
110         ip->i_sick = 0;
111         ip->i_checked = 0;
112         INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113         INIT_LIST_HEAD(&ip->i_ioend_list);
114         spin_lock_init(&ip->i_ioend_lock);
115         ip->i_next_unlinked = NULLAGINO;
116         ip->i_prev_unlinked = 0;
117 
118         return ip;
119 }
120 
121 STATIC void
122 xfs_inode_free_callback(
123         struct rcu_head         *head)
124 {
125         struct inode            *inode = container_of(head, struct inode, i_rcu);
126         struct xfs_inode        *ip = XFS_I(inode);
127 
128         switch (VFS_I(ip)->i_mode & S_IFMT) {
129         case S_IFREG:
130         case S_IFDIR:
131         case S_IFLNK:
132                 xfs_idestroy_fork(&ip->i_df);
133                 break;
134         }
135 
136         xfs_ifork_zap_attr(ip);
137 
138         if (ip->i_cowfp) {
139                 xfs_idestroy_fork(ip->i_cowfp);
140                 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141         }
142         if (ip->i_itemp) {
143                 ASSERT(!test_bit(XFS_LI_IN_AIL,
144                                  &ip->i_itemp->ili_item.li_flags));
145                 xfs_inode_item_destroy(ip);
146                 ip->i_itemp = NULL;
147         }
148 
149         kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
153 __xfs_inode_free(
154         struct xfs_inode        *ip)
155 {
156         /* asserts to verify all state is correct here */
157         ASSERT(atomic_read(&ip->i_pincount) == 0);
158         ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159         XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161         call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
165 xfs_inode_free(
166         struct xfs_inode        *ip)
167 {
168         ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170         /*
171          * Because we use RCU freeing we need to ensure the inode always
172          * appears to be reclaimed with an invalid inode number when in the
173          * free state. The ip->i_flags_lock provides the barrier against lookup
174          * races.
175          */
176         spin_lock(&ip->i_flags_lock);
177         ip->i_flags = XFS_IRECLAIM;
178         ip->i_ino = 0;
179         spin_unlock(&ip->i_flags_lock);
180 
181         __xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
189 xfs_reclaim_work_queue(
190         struct xfs_mount        *mp)
191 {
192 
193         rcu_read_lock();
194         if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195                 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196                         msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197         }
198         rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
206 xfs_blockgc_queue(
207         struct xfs_perag        *pag)
208 {
209         struct xfs_mount        *mp = pag->pag_mount;
210 
211         if (!xfs_is_blockgc_enabled(mp))
212                 return;
213 
214         rcu_read_lock();
215         if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216                 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217                                    &pag->pag_blockgc_work,
218                                    msecs_to_jiffies(xfs_blockgc_secs * 1000));
219         rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225         struct xfs_perag        *pag,
226         xfs_agino_t             agino,
227         unsigned int            tag)
228 {
229         struct xfs_mount        *mp = pag->pag_mount;
230         bool                    was_tagged;
231 
232         lockdep_assert_held(&pag->pag_ici_lock);
233 
234         was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235         radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237         if (tag == XFS_ICI_RECLAIM_TAG)
238                 pag->pag_ici_reclaimable++;
239 
240         if (was_tagged)
241                 return;
242 
243         /* propagate the tag up into the perag radix tree */
244         spin_lock(&mp->m_perag_lock);
245         radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246         spin_unlock(&mp->m_perag_lock);
247 
248         /* start background work */
249         switch (tag) {
250         case XFS_ICI_RECLAIM_TAG:
251                 xfs_reclaim_work_queue(mp);
252                 break;
253         case XFS_ICI_BLOCKGC_TAG:
254                 xfs_blockgc_queue(pag);
255                 break;
256         }
257 
258         trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264         struct xfs_perag        *pag,
265         xfs_agino_t             agino,
266         unsigned int            tag)
267 {
268         struct xfs_mount        *mp = pag->pag_mount;
269 
270         lockdep_assert_held(&pag->pag_ici_lock);
271 
272         /*
273          * Reclaim can signal (with a null agino) that it cleared its own tag
274          * by removing the inode from the radix tree.
275          */
276         if (agino != NULLAGINO)
277                 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278         else
279                 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281         if (tag == XFS_ICI_RECLAIM_TAG)
282                 pag->pag_ici_reclaimable--;
283 
284         if (radix_tree_tagged(&pag->pag_ici_root, tag))
285                 return;
286 
287         /* clear the tag from the perag radix tree */
288         spin_lock(&mp->m_perag_lock);
289         radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290         spin_unlock(&mp->m_perag_lock);
291 
292         trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
304 xfs_reinit_inode(
305         struct xfs_mount        *mp,
306         struct inode            *inode)
307 {
308         int                     error;
309         uint32_t                nlink = inode->i_nlink;
310         uint32_t                generation = inode->i_generation;
311         uint64_t                version = inode_peek_iversion(inode);
312         umode_t                 mode = inode->i_mode;
313         dev_t                   dev = inode->i_rdev;
314         kuid_t                  uid = inode->i_uid;
315         kgid_t                  gid = inode->i_gid;
316         unsigned long           state = inode->i_state;
317 
318         error = inode_init_always(mp->m_super, inode);
319 
320         set_nlink(inode, nlink);
321         inode->i_generation = generation;
322         inode_set_iversion_queried(inode, version);
323         inode->i_mode = mode;
324         inode->i_rdev = dev;
325         inode->i_uid = uid;
326         inode->i_gid = gid;
327         inode->i_state = state;
328         mapping_set_large_folios(inode->i_mapping);
329         return error;
330 }
331 
332 /*
333  * Carefully nudge an inode whose VFS state has been torn down back into a
334  * usable state.  Drops the i_flags_lock and the rcu read lock.
335  */
336 static int
337 xfs_iget_recycle(
338         struct xfs_perag        *pag,
339         struct xfs_inode        *ip) __releases(&ip->i_flags_lock)
340 {
341         struct xfs_mount        *mp = ip->i_mount;
342         struct inode            *inode = VFS_I(ip);
343         int                     error;
344 
345         trace_xfs_iget_recycle(ip);
346 
347         if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
348                 return -EAGAIN;
349 
350         /*
351          * We need to make it look like the inode is being reclaimed to prevent
352          * the actual reclaim workers from stomping over us while we recycle
353          * the inode.  We can't clear the radix tree tag yet as it requires
354          * pag_ici_lock to be held exclusive.
355          */
356         ip->i_flags |= XFS_IRECLAIM;
357 
358         spin_unlock(&ip->i_flags_lock);
359         rcu_read_unlock();
360 
361         ASSERT(!rwsem_is_locked(&inode->i_rwsem));
362         error = xfs_reinit_inode(mp, inode);
363         xfs_iunlock(ip, XFS_ILOCK_EXCL);
364         if (error) {
365                 /*
366                  * Re-initializing the inode failed, and we are in deep
367                  * trouble.  Try to re-add it to the reclaim list.
368                  */
369                 rcu_read_lock();
370                 spin_lock(&ip->i_flags_lock);
371                 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
372                 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
373                 spin_unlock(&ip->i_flags_lock);
374                 rcu_read_unlock();
375 
376                 trace_xfs_iget_recycle_fail(ip);
377                 return error;
378         }
379 
380         spin_lock(&pag->pag_ici_lock);
381         spin_lock(&ip->i_flags_lock);
382 
383         /*
384          * Clear the per-lifetime state in the inode as we are now effectively
385          * a new inode and need to return to the initial state before reuse
386          * occurs.
387          */
388         ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
389         ip->i_flags |= XFS_INEW;
390         xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
391                         XFS_ICI_RECLAIM_TAG);
392         inode->i_state = I_NEW;
393         spin_unlock(&ip->i_flags_lock);
394         spin_unlock(&pag->pag_ici_lock);
395 
396         return 0;
397 }
398 
399 /*
400  * If we are allocating a new inode, then check what was returned is
401  * actually a free, empty inode. If we are not allocating an inode,
402  * then check we didn't find a free inode.
403  *
404  * Returns:
405  *      0               if the inode free state matches the lookup context
406  *      -ENOENT         if the inode is free and we are not allocating
407  *      -EFSCORRUPTED   if there is any state mismatch at all
408  */
409 static int
410 xfs_iget_check_free_state(
411         struct xfs_inode        *ip,
412         int                     flags)
413 {
414         if (flags & XFS_IGET_CREATE) {
415                 /* should be a free inode */
416                 if (VFS_I(ip)->i_mode != 0) {
417                         xfs_warn(ip->i_mount,
418 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
419                                 ip->i_ino, VFS_I(ip)->i_mode);
420                         xfs_agno_mark_sick(ip->i_mount,
421                                         XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
422                                         XFS_SICK_AG_INOBT);
423                         return -EFSCORRUPTED;
424                 }
425 
426                 if (ip->i_nblocks != 0) {
427                         xfs_warn(ip->i_mount,
428 "Corruption detected! Free inode 0x%llx has blocks allocated!",
429                                 ip->i_ino);
430                         xfs_agno_mark_sick(ip->i_mount,
431                                         XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
432                                         XFS_SICK_AG_INOBT);
433                         return -EFSCORRUPTED;
434                 }
435                 return 0;
436         }
437 
438         /* should be an allocated inode */
439         if (VFS_I(ip)->i_mode == 0)
440                 return -ENOENT;
441 
442         return 0;
443 }
444 
445 /* Make all pending inactivation work start immediately. */
446 static bool
447 xfs_inodegc_queue_all(
448         struct xfs_mount        *mp)
449 {
450         struct xfs_inodegc      *gc;
451         int                     cpu;
452         bool                    ret = false;
453 
454         for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
455                 gc = per_cpu_ptr(mp->m_inodegc, cpu);
456                 if (!llist_empty(&gc->list)) {
457                         mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
458                         ret = true;
459                 }
460         }
461 
462         return ret;
463 }
464 
465 /* Wait for all queued work and collect errors */
466 static int
467 xfs_inodegc_wait_all(
468         struct xfs_mount        *mp)
469 {
470         int                     cpu;
471         int                     error = 0;
472 
473         flush_workqueue(mp->m_inodegc_wq);
474         for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
475                 struct xfs_inodegc      *gc;
476 
477                 gc = per_cpu_ptr(mp->m_inodegc, cpu);
478                 if (gc->error && !error)
479                         error = gc->error;
480                 gc->error = 0;
481         }
482 
483         return error;
484 }
485 
486 /*
487  * Check the validity of the inode we just found it the cache
488  */
489 static int
490 xfs_iget_cache_hit(
491         struct xfs_perag        *pag,
492         struct xfs_inode        *ip,
493         xfs_ino_t               ino,
494         int                     flags,
495         int                     lock_flags) __releases(RCU)
496 {
497         struct inode            *inode = VFS_I(ip);
498         struct xfs_mount        *mp = ip->i_mount;
499         int                     error;
500 
501         /*
502          * check for re-use of an inode within an RCU grace period due to the
503          * radix tree nodes not being updated yet. We monitor for this by
504          * setting the inode number to zero before freeing the inode structure.
505          * If the inode has been reallocated and set up, then the inode number
506          * will not match, so check for that, too.
507          */
508         spin_lock(&ip->i_flags_lock);
509         if (ip->i_ino != ino)
510                 goto out_skip;
511 
512         /*
513          * If we are racing with another cache hit that is currently
514          * instantiating this inode or currently recycling it out of
515          * reclaimable state, wait for the initialisation to complete
516          * before continuing.
517          *
518          * If we're racing with the inactivation worker we also want to wait.
519          * If we're creating a new file, it's possible that the worker
520          * previously marked the inode as free on disk but hasn't finished
521          * updating the incore state yet.  The AGI buffer will be dirty and
522          * locked to the icreate transaction, so a synchronous push of the
523          * inodegc workers would result in deadlock.  For a regular iget, the
524          * worker is running already, so we might as well wait.
525          *
526          * XXX(hch): eventually we should do something equivalent to
527          *           wait_on_inode to wait for these flags to be cleared
528          *           instead of polling for it.
529          */
530         if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
531                 goto out_skip;
532 
533         if (ip->i_flags & XFS_NEED_INACTIVE) {
534                 /* Unlinked inodes cannot be re-grabbed. */
535                 if (VFS_I(ip)->i_nlink == 0) {
536                         error = -ENOENT;
537                         goto out_error;
538                 }
539                 goto out_inodegc_flush;
540         }
541 
542         /*
543          * Check the inode free state is valid. This also detects lookup
544          * racing with unlinks.
545          */
546         error = xfs_iget_check_free_state(ip, flags);
547         if (error)
548                 goto out_error;
549 
550         /* Skip inodes that have no vfs state. */
551         if ((flags & XFS_IGET_INCORE) &&
552             (ip->i_flags & XFS_IRECLAIMABLE))
553                 goto out_skip;
554 
555         /* The inode fits the selection criteria; process it. */
556         if (ip->i_flags & XFS_IRECLAIMABLE) {
557                 /* Drops i_flags_lock and RCU read lock. */
558                 error = xfs_iget_recycle(pag, ip);
559                 if (error == -EAGAIN)
560                         goto out_skip;
561                 if (error)
562                         return error;
563         } else {
564                 /* If the VFS inode is being torn down, pause and try again. */
565                 if (!igrab(inode))
566                         goto out_skip;
567 
568                 /* We've got a live one. */
569                 spin_unlock(&ip->i_flags_lock);
570                 rcu_read_unlock();
571                 trace_xfs_iget_hit(ip);
572         }
573 
574         if (lock_flags != 0)
575                 xfs_ilock(ip, lock_flags);
576 
577         if (!(flags & XFS_IGET_INCORE))
578                 xfs_iflags_clear(ip, XFS_ISTALE);
579         XFS_STATS_INC(mp, xs_ig_found);
580 
581         return 0;
582 
583 out_skip:
584         trace_xfs_iget_skip(ip);
585         XFS_STATS_INC(mp, xs_ig_frecycle);
586         error = -EAGAIN;
587 out_error:
588         spin_unlock(&ip->i_flags_lock);
589         rcu_read_unlock();
590         return error;
591 
592 out_inodegc_flush:
593         spin_unlock(&ip->i_flags_lock);
594         rcu_read_unlock();
595         /*
596          * Do not wait for the workers, because the caller could hold an AGI
597          * buffer lock.  We're just going to sleep in a loop anyway.
598          */
599         if (xfs_is_inodegc_enabled(mp))
600                 xfs_inodegc_queue_all(mp);
601         return -EAGAIN;
602 }
603 
604 static int
605 xfs_iget_cache_miss(
606         struct xfs_mount        *mp,
607         struct xfs_perag        *pag,
608         xfs_trans_t             *tp,
609         xfs_ino_t               ino,
610         struct xfs_inode        **ipp,
611         int                     flags,
612         int                     lock_flags)
613 {
614         struct xfs_inode        *ip;
615         int                     error;
616         xfs_agino_t             agino = XFS_INO_TO_AGINO(mp, ino);
617 
618         ip = xfs_inode_alloc(mp, ino);
619         if (!ip)
620                 return -ENOMEM;
621 
622         error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
623         if (error)
624                 goto out_destroy;
625 
626         /*
627          * For version 5 superblocks, if we are initialising a new inode and we
628          * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
629          * simply build the new inode core with a random generation number.
630          *
631          * For version 4 (and older) superblocks, log recovery is dependent on
632          * the i_flushiter field being initialised from the current on-disk
633          * value and hence we must also read the inode off disk even when
634          * initializing new inodes.
635          */
636         if (xfs_has_v3inodes(mp) &&
637             (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
638                 VFS_I(ip)->i_generation = get_random_u32();
639         } else {
640                 struct xfs_buf          *bp;
641 
642                 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
643                 if (error)
644                         goto out_destroy;
645 
646                 error = xfs_inode_from_disk(ip,
647                                 xfs_buf_offset(bp, ip->i_imap.im_boffset));
648                 if (!error)
649                         xfs_buf_set_ref(bp, XFS_INO_REF);
650                 else
651                         xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
652                 xfs_trans_brelse(tp, bp);
653 
654                 if (error)
655                         goto out_destroy;
656         }
657 
658         trace_xfs_iget_miss(ip);
659 
660         /*
661          * Check the inode free state is valid. This also detects lookup
662          * racing with unlinks.
663          */
664         error = xfs_iget_check_free_state(ip, flags);
665         if (error)
666                 goto out_destroy;
667 
668         /*
669          * Preload the radix tree so we can insert safely under the
670          * write spinlock. Note that we cannot sleep inside the preload
671          * region.
672          */
673         if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
674                 error = -EAGAIN;
675                 goto out_destroy;
676         }
677 
678         /*
679          * Because the inode hasn't been added to the radix-tree yet it can't
680          * be found by another thread, so we can do the non-sleeping lock here.
681          */
682         if (lock_flags) {
683                 if (!xfs_ilock_nowait(ip, lock_flags))
684                         BUG();
685         }
686 
687         /*
688          * These values must be set before inserting the inode into the radix
689          * tree as the moment it is inserted a concurrent lookup (allowed by the
690          * RCU locking mechanism) can find it and that lookup must see that this
691          * is an inode currently under construction (i.e. that XFS_INEW is set).
692          * The ip->i_flags_lock that protects the XFS_INEW flag forms the
693          * memory barrier that ensures this detection works correctly at lookup
694          * time.
695          */
696         if (flags & XFS_IGET_DONTCACHE)
697                 d_mark_dontcache(VFS_I(ip));
698         ip->i_udquot = NULL;
699         ip->i_gdquot = NULL;
700         ip->i_pdquot = NULL;
701         xfs_iflags_set(ip, XFS_INEW);
702 
703         /* insert the new inode */
704         spin_lock(&pag->pag_ici_lock);
705         error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
706         if (unlikely(error)) {
707                 WARN_ON(error != -EEXIST);
708                 XFS_STATS_INC(mp, xs_ig_dup);
709                 error = -EAGAIN;
710                 goto out_preload_end;
711         }
712         spin_unlock(&pag->pag_ici_lock);
713         radix_tree_preload_end();
714 
715         *ipp = ip;
716         return 0;
717 
718 out_preload_end:
719         spin_unlock(&pag->pag_ici_lock);
720         radix_tree_preload_end();
721         if (lock_flags)
722                 xfs_iunlock(ip, lock_flags);
723 out_destroy:
724         __destroy_inode(VFS_I(ip));
725         xfs_inode_free(ip);
726         return error;
727 }
728 
729 /*
730  * Look up an inode by number in the given file system.  The inode is looked up
731  * in the cache held in each AG.  If the inode is found in the cache, initialise
732  * the vfs inode if necessary.
733  *
734  * If it is not in core, read it in from the file system's device, add it to the
735  * cache and initialise the vfs inode.
736  *
737  * The inode is locked according to the value of the lock_flags parameter.
738  * Inode lookup is only done during metadata operations and not as part of the
739  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
740  */
741 int
742 xfs_iget(
743         struct xfs_mount        *mp,
744         struct xfs_trans        *tp,
745         xfs_ino_t               ino,
746         uint                    flags,
747         uint                    lock_flags,
748         struct xfs_inode        **ipp)
749 {
750         struct xfs_inode        *ip;
751         struct xfs_perag        *pag;
752         xfs_agino_t             agino;
753         int                     error;
754 
755         ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
756 
757         /* reject inode numbers outside existing AGs */
758         if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
759                 return -EINVAL;
760 
761         XFS_STATS_INC(mp, xs_ig_attempts);
762 
763         /* get the perag structure and ensure that it's inode capable */
764         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
765         agino = XFS_INO_TO_AGINO(mp, ino);
766 
767 again:
768         error = 0;
769         rcu_read_lock();
770         ip = radix_tree_lookup(&pag->pag_ici_root, agino);
771 
772         if (ip) {
773                 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
774                 if (error)
775                         goto out_error_or_again;
776         } else {
777                 rcu_read_unlock();
778                 if (flags & XFS_IGET_INCORE) {
779                         error = -ENODATA;
780                         goto out_error_or_again;
781                 }
782                 XFS_STATS_INC(mp, xs_ig_missed);
783 
784                 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
785                                                         flags, lock_flags);
786                 if (error)
787                         goto out_error_or_again;
788         }
789         xfs_perag_put(pag);
790 
791         *ipp = ip;
792 
793         /*
794          * If we have a real type for an on-disk inode, we can setup the inode
795          * now.  If it's a new inode being created, xfs_init_new_inode will
796          * handle it.
797          */
798         if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
799                 xfs_setup_existing_inode(ip);
800         return 0;
801 
802 out_error_or_again:
803         if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
804             error == -EAGAIN) {
805                 delay(1);
806                 goto again;
807         }
808         xfs_perag_put(pag);
809         return error;
810 }
811 
812 /*
813  * Grab the inode for reclaim exclusively.
814  *
815  * We have found this inode via a lookup under RCU, so the inode may have
816  * already been freed, or it may be in the process of being recycled by
817  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
818  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
819  * will not be set. Hence we need to check for both these flag conditions to
820  * avoid inodes that are no longer reclaim candidates.
821  *
822  * Note: checking for other state flags here, under the i_flags_lock or not, is
823  * racy and should be avoided. Those races should be resolved only after we have
824  * ensured that we are able to reclaim this inode and the world can see that we
825  * are going to reclaim it.
826  *
827  * Return true if we grabbed it, false otherwise.
828  */
829 static bool
830 xfs_reclaim_igrab(
831         struct xfs_inode        *ip,
832         struct xfs_icwalk       *icw)
833 {
834         ASSERT(rcu_read_lock_held());
835 
836         spin_lock(&ip->i_flags_lock);
837         if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
838             __xfs_iflags_test(ip, XFS_IRECLAIM)) {
839                 /* not a reclaim candidate. */
840                 spin_unlock(&ip->i_flags_lock);
841                 return false;
842         }
843 
844         /* Don't reclaim a sick inode unless the caller asked for it. */
845         if (ip->i_sick &&
846             (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
847                 spin_unlock(&ip->i_flags_lock);
848                 return false;
849         }
850 
851         __xfs_iflags_set(ip, XFS_IRECLAIM);
852         spin_unlock(&ip->i_flags_lock);
853         return true;
854 }
855 
856 /*
857  * Inode reclaim is non-blocking, so the default action if progress cannot be
858  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
859  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
860  * blocking anymore and hence we can wait for the inode to be able to reclaim
861  * it.
862  *
863  * We do no IO here - if callers require inodes to be cleaned they must push the
864  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
865  * done in the background in a non-blocking manner, and enables memory reclaim
866  * to make progress without blocking.
867  */
868 static void
869 xfs_reclaim_inode(
870         struct xfs_inode        *ip,
871         struct xfs_perag        *pag)
872 {
873         xfs_ino_t               ino = ip->i_ino; /* for radix_tree_delete */
874 
875         if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
876                 goto out;
877         if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
878                 goto out_iunlock;
879 
880         /*
881          * Check for log shutdown because aborting the inode can move the log
882          * tail and corrupt in memory state. This is fine if the log is shut
883          * down, but if the log is still active and only the mount is shut down
884          * then the in-memory log tail movement caused by the abort can be
885          * incorrectly propagated to disk.
886          */
887         if (xlog_is_shutdown(ip->i_mount->m_log)) {
888                 xfs_iunpin_wait(ip);
889                 xfs_iflush_shutdown_abort(ip);
890                 goto reclaim;
891         }
892         if (xfs_ipincount(ip))
893                 goto out_clear_flush;
894         if (!xfs_inode_clean(ip))
895                 goto out_clear_flush;
896 
897         xfs_iflags_clear(ip, XFS_IFLUSHING);
898 reclaim:
899         trace_xfs_inode_reclaiming(ip);
900 
901         /*
902          * Because we use RCU freeing we need to ensure the inode always appears
903          * to be reclaimed with an invalid inode number when in the free state.
904          * We do this as early as possible under the ILOCK so that
905          * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
906          * detect races with us here. By doing this, we guarantee that once
907          * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
908          * it will see either a valid inode that will serialise correctly, or it
909          * will see an invalid inode that it can skip.
910          */
911         spin_lock(&ip->i_flags_lock);
912         ip->i_flags = XFS_IRECLAIM;
913         ip->i_ino = 0;
914         ip->i_sick = 0;
915         ip->i_checked = 0;
916         spin_unlock(&ip->i_flags_lock);
917 
918         ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
919         xfs_iunlock(ip, XFS_ILOCK_EXCL);
920 
921         XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
922         /*
923          * Remove the inode from the per-AG radix tree.
924          *
925          * Because radix_tree_delete won't complain even if the item was never
926          * added to the tree assert that it's been there before to catch
927          * problems with the inode life time early on.
928          */
929         spin_lock(&pag->pag_ici_lock);
930         if (!radix_tree_delete(&pag->pag_ici_root,
931                                 XFS_INO_TO_AGINO(ip->i_mount, ino)))
932                 ASSERT(0);
933         xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
934         spin_unlock(&pag->pag_ici_lock);
935 
936         /*
937          * Here we do an (almost) spurious inode lock in order to coordinate
938          * with inode cache radix tree lookups.  This is because the lookup
939          * can reference the inodes in the cache without taking references.
940          *
941          * We make that OK here by ensuring that we wait until the inode is
942          * unlocked after the lookup before we go ahead and free it.
943          */
944         xfs_ilock(ip, XFS_ILOCK_EXCL);
945         ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
946         xfs_iunlock(ip, XFS_ILOCK_EXCL);
947         ASSERT(xfs_inode_clean(ip));
948 
949         __xfs_inode_free(ip);
950         return;
951 
952 out_clear_flush:
953         xfs_iflags_clear(ip, XFS_IFLUSHING);
954 out_iunlock:
955         xfs_iunlock(ip, XFS_ILOCK_EXCL);
956 out:
957         xfs_iflags_clear(ip, XFS_IRECLAIM);
958 }
959 
960 /* Reclaim sick inodes if we're unmounting or the fs went down. */
961 static inline bool
962 xfs_want_reclaim_sick(
963         struct xfs_mount        *mp)
964 {
965         return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
966                xfs_is_shutdown(mp);
967 }
968 
969 void
970 xfs_reclaim_inodes(
971         struct xfs_mount        *mp)
972 {
973         struct xfs_icwalk       icw = {
974                 .icw_flags      = 0,
975         };
976 
977         if (xfs_want_reclaim_sick(mp))
978                 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
979 
980         while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
981                 xfs_ail_push_all_sync(mp->m_ail);
982                 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
983         }
984 }
985 
986 /*
987  * The shrinker infrastructure determines how many inodes we should scan for
988  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
989  * push the AIL here. We also want to proactively free up memory if we can to
990  * minimise the amount of work memory reclaim has to do so we kick the
991  * background reclaim if it isn't already scheduled.
992  */
993 long
994 xfs_reclaim_inodes_nr(
995         struct xfs_mount        *mp,
996         unsigned long           nr_to_scan)
997 {
998         struct xfs_icwalk       icw = {
999                 .icw_flags      = XFS_ICWALK_FLAG_SCAN_LIMIT,
1000                 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1001         };
1002 
1003         if (xfs_want_reclaim_sick(mp))
1004                 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1005 
1006         /* kick background reclaimer and push the AIL */
1007         xfs_reclaim_work_queue(mp);
1008         xfs_ail_push_all(mp->m_ail);
1009 
1010         xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1011         return 0;
1012 }
1013 
1014 /*
1015  * Return the number of reclaimable inodes in the filesystem for
1016  * the shrinker to determine how much to reclaim.
1017  */
1018 long
1019 xfs_reclaim_inodes_count(
1020         struct xfs_mount        *mp)
1021 {
1022         struct xfs_perag        *pag;
1023         xfs_agnumber_t          ag = 0;
1024         long                    reclaimable = 0;
1025 
1026         while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1027                 ag = pag->pag_agno + 1;
1028                 reclaimable += pag->pag_ici_reclaimable;
1029                 xfs_perag_put(pag);
1030         }
1031         return reclaimable;
1032 }
1033 
1034 STATIC bool
1035 xfs_icwalk_match_id(
1036         struct xfs_inode        *ip,
1037         struct xfs_icwalk       *icw)
1038 {
1039         if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1040             !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1041                 return false;
1042 
1043         if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1044             !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1045                 return false;
1046 
1047         if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1048             ip->i_projid != icw->icw_prid)
1049                 return false;
1050 
1051         return true;
1052 }
1053 
1054 /*
1055  * A union-based inode filtering algorithm. Process the inode if any of the
1056  * criteria match. This is for global/internal scans only.
1057  */
1058 STATIC bool
1059 xfs_icwalk_match_id_union(
1060         struct xfs_inode        *ip,
1061         struct xfs_icwalk       *icw)
1062 {
1063         if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1064             uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1065                 return true;
1066 
1067         if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1068             gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1069                 return true;
1070 
1071         if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1072             ip->i_projid == icw->icw_prid)
1073                 return true;
1074 
1075         return false;
1076 }
1077 
1078 /*
1079  * Is this inode @ip eligible for eof/cow block reclamation, given some
1080  * filtering parameters @icw?  The inode is eligible if @icw is null or
1081  * if the predicate functions match.
1082  */
1083 static bool
1084 xfs_icwalk_match(
1085         struct xfs_inode        *ip,
1086         struct xfs_icwalk       *icw)
1087 {
1088         bool                    match;
1089 
1090         if (!icw)
1091                 return true;
1092 
1093         if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1094                 match = xfs_icwalk_match_id_union(ip, icw);
1095         else
1096                 match = xfs_icwalk_match_id(ip, icw);
1097         if (!match)
1098                 return false;
1099 
1100         /* skip the inode if the file size is too small */
1101         if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1102             XFS_ISIZE(ip) < icw->icw_min_file_size)
1103                 return false;
1104 
1105         return true;
1106 }
1107 
1108 /*
1109  * This is a fast pass over the inode cache to try to get reclaim moving on as
1110  * many inodes as possible in a short period of time. It kicks itself every few
1111  * seconds, as well as being kicked by the inode cache shrinker when memory
1112  * goes low.
1113  */
1114 void
1115 xfs_reclaim_worker(
1116         struct work_struct *work)
1117 {
1118         struct xfs_mount *mp = container_of(to_delayed_work(work),
1119                                         struct xfs_mount, m_reclaim_work);
1120 
1121         xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1122         xfs_reclaim_work_queue(mp);
1123 }
1124 
1125 STATIC int
1126 xfs_inode_free_eofblocks(
1127         struct xfs_inode        *ip,
1128         struct xfs_icwalk       *icw,
1129         unsigned int            *lockflags)
1130 {
1131         bool                    wait;
1132 
1133         wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1134 
1135         if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1136                 return 0;
1137 
1138         /*
1139          * If the mapping is dirty the operation can block and wait for some
1140          * time. Unless we are waiting, skip it.
1141          */
1142         if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1143                 return 0;
1144 
1145         if (!xfs_icwalk_match(ip, icw))
1146                 return 0;
1147 
1148         /*
1149          * If the caller is waiting, return -EAGAIN to keep the background
1150          * scanner moving and revisit the inode in a subsequent pass.
1151          */
1152         if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1153                 if (wait)
1154                         return -EAGAIN;
1155                 return 0;
1156         }
1157         *lockflags |= XFS_IOLOCK_EXCL;
1158 
1159         if (xfs_can_free_eofblocks(ip))
1160                 return xfs_free_eofblocks(ip);
1161 
1162         /* inode could be preallocated or append-only */
1163         trace_xfs_inode_free_eofblocks_invalid(ip);
1164         xfs_inode_clear_eofblocks_tag(ip);
1165         return 0;
1166 }
1167 
1168 static void
1169 xfs_blockgc_set_iflag(
1170         struct xfs_inode        *ip,
1171         unsigned long           iflag)
1172 {
1173         struct xfs_mount        *mp = ip->i_mount;
1174         struct xfs_perag        *pag;
1175 
1176         ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1177 
1178         /*
1179          * Don't bother locking the AG and looking up in the radix trees
1180          * if we already know that we have the tag set.
1181          */
1182         if (ip->i_flags & iflag)
1183                 return;
1184         spin_lock(&ip->i_flags_lock);
1185         ip->i_flags |= iflag;
1186         spin_unlock(&ip->i_flags_lock);
1187 
1188         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1189         spin_lock(&pag->pag_ici_lock);
1190 
1191         xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1192                         XFS_ICI_BLOCKGC_TAG);
1193 
1194         spin_unlock(&pag->pag_ici_lock);
1195         xfs_perag_put(pag);
1196 }
1197 
1198 void
1199 xfs_inode_set_eofblocks_tag(
1200         xfs_inode_t     *ip)
1201 {
1202         trace_xfs_inode_set_eofblocks_tag(ip);
1203         return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1204 }
1205 
1206 static void
1207 xfs_blockgc_clear_iflag(
1208         struct xfs_inode        *ip,
1209         unsigned long           iflag)
1210 {
1211         struct xfs_mount        *mp = ip->i_mount;
1212         struct xfs_perag        *pag;
1213         bool                    clear_tag;
1214 
1215         ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1216 
1217         spin_lock(&ip->i_flags_lock);
1218         ip->i_flags &= ~iflag;
1219         clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1220         spin_unlock(&ip->i_flags_lock);
1221 
1222         if (!clear_tag)
1223                 return;
1224 
1225         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1226         spin_lock(&pag->pag_ici_lock);
1227 
1228         xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1229                         XFS_ICI_BLOCKGC_TAG);
1230 
1231         spin_unlock(&pag->pag_ici_lock);
1232         xfs_perag_put(pag);
1233 }
1234 
1235 void
1236 xfs_inode_clear_eofblocks_tag(
1237         xfs_inode_t     *ip)
1238 {
1239         trace_xfs_inode_clear_eofblocks_tag(ip);
1240         return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1241 }
1242 
1243 /*
1244  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1245  * then we can bail out quickly, but otherwise we must back off if the file
1246  * is undergoing some kind of write.
1247  */
1248 static bool
1249 xfs_prep_free_cowblocks(
1250         struct xfs_inode        *ip)
1251 {
1252         /*
1253          * Just clear the tag if we have an empty cow fork or none at all. It's
1254          * possible the inode was fully unshared since it was originally tagged.
1255          */
1256         if (!xfs_inode_has_cow_data(ip)) {
1257                 trace_xfs_inode_free_cowblocks_invalid(ip);
1258                 xfs_inode_clear_cowblocks_tag(ip);
1259                 return false;
1260         }
1261 
1262         /*
1263          * If the mapping is dirty or under writeback we cannot touch the
1264          * CoW fork.  Leave it alone if we're in the midst of a directio.
1265          */
1266         if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1267             mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1268             mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1269             atomic_read(&VFS_I(ip)->i_dio_count))
1270                 return false;
1271 
1272         return true;
1273 }
1274 
1275 /*
1276  * Automatic CoW Reservation Freeing
1277  *
1278  * These functions automatically garbage collect leftover CoW reservations
1279  * that were made on behalf of a cowextsize hint when we start to run out
1280  * of quota or when the reservations sit around for too long.  If the file
1281  * has dirty pages or is undergoing writeback, its CoW reservations will
1282  * be retained.
1283  *
1284  * The actual garbage collection piggybacks off the same code that runs
1285  * the speculative EOF preallocation garbage collector.
1286  */
1287 STATIC int
1288 xfs_inode_free_cowblocks(
1289         struct xfs_inode        *ip,
1290         struct xfs_icwalk       *icw,
1291         unsigned int            *lockflags)
1292 {
1293         bool                    wait;
1294         int                     ret = 0;
1295 
1296         wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1297 
1298         if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1299                 return 0;
1300 
1301         if (!xfs_prep_free_cowblocks(ip))
1302                 return 0;
1303 
1304         if (!xfs_icwalk_match(ip, icw))
1305                 return 0;
1306 
1307         /*
1308          * If the caller is waiting, return -EAGAIN to keep the background
1309          * scanner moving and revisit the inode in a subsequent pass.
1310          */
1311         if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1312             !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1313                 if (wait)
1314                         return -EAGAIN;
1315                 return 0;
1316         }
1317         *lockflags |= XFS_IOLOCK_EXCL;
1318 
1319         if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1320                 if (wait)
1321                         return -EAGAIN;
1322                 return 0;
1323         }
1324         *lockflags |= XFS_MMAPLOCK_EXCL;
1325 
1326         /*
1327          * Check again, nobody else should be able to dirty blocks or change
1328          * the reflink iflag now that we have the first two locks held.
1329          */
1330         if (xfs_prep_free_cowblocks(ip))
1331                 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1332         return ret;
1333 }
1334 
1335 void
1336 xfs_inode_set_cowblocks_tag(
1337         xfs_inode_t     *ip)
1338 {
1339         trace_xfs_inode_set_cowblocks_tag(ip);
1340         return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1341 }
1342 
1343 void
1344 xfs_inode_clear_cowblocks_tag(
1345         xfs_inode_t     *ip)
1346 {
1347         trace_xfs_inode_clear_cowblocks_tag(ip);
1348         return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1349 }
1350 
1351 /* Disable post-EOF and CoW block auto-reclamation. */
1352 void
1353 xfs_blockgc_stop(
1354         struct xfs_mount        *mp)
1355 {
1356         struct xfs_perag        *pag;
1357         xfs_agnumber_t          agno;
1358 
1359         if (!xfs_clear_blockgc_enabled(mp))
1360                 return;
1361 
1362         for_each_perag(mp, agno, pag)
1363                 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1364         trace_xfs_blockgc_stop(mp, __return_address);
1365 }
1366 
1367 /* Enable post-EOF and CoW block auto-reclamation. */
1368 void
1369 xfs_blockgc_start(
1370         struct xfs_mount        *mp)
1371 {
1372         struct xfs_perag        *pag;
1373         xfs_agnumber_t          agno;
1374 
1375         if (xfs_set_blockgc_enabled(mp))
1376                 return;
1377 
1378         trace_xfs_blockgc_start(mp, __return_address);
1379         for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1380                 xfs_blockgc_queue(pag);
1381 }
1382 
1383 /* Don't try to run block gc on an inode that's in any of these states. */
1384 #define XFS_BLOCKGC_NOGRAB_IFLAGS       (XFS_INEW | \
1385                                          XFS_NEED_INACTIVE | \
1386                                          XFS_INACTIVATING | \
1387                                          XFS_IRECLAIMABLE | \
1388                                          XFS_IRECLAIM)
1389 /*
1390  * Decide if the given @ip is eligible for garbage collection of speculative
1391  * preallocations, and grab it if so.  Returns true if it's ready to go or
1392  * false if we should just ignore it.
1393  */
1394 static bool
1395 xfs_blockgc_igrab(
1396         struct xfs_inode        *ip)
1397 {
1398         struct inode            *inode = VFS_I(ip);
1399 
1400         ASSERT(rcu_read_lock_held());
1401 
1402         /* Check for stale RCU freed inode */
1403         spin_lock(&ip->i_flags_lock);
1404         if (!ip->i_ino)
1405                 goto out_unlock_noent;
1406 
1407         if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1408                 goto out_unlock_noent;
1409         spin_unlock(&ip->i_flags_lock);
1410 
1411         /* nothing to sync during shutdown */
1412         if (xfs_is_shutdown(ip->i_mount))
1413                 return false;
1414 
1415         /* If we can't grab the inode, it must on it's way to reclaim. */
1416         if (!igrab(inode))
1417                 return false;
1418 
1419         /* inode is valid */
1420         return true;
1421 
1422 out_unlock_noent:
1423         spin_unlock(&ip->i_flags_lock);
1424         return false;
1425 }
1426 
1427 /* Scan one incore inode for block preallocations that we can remove. */
1428 static int
1429 xfs_blockgc_scan_inode(
1430         struct xfs_inode        *ip,
1431         struct xfs_icwalk       *icw)
1432 {
1433         unsigned int            lockflags = 0;
1434         int                     error;
1435 
1436         error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1437         if (error)
1438                 goto unlock;
1439 
1440         error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1441 unlock:
1442         if (lockflags)
1443                 xfs_iunlock(ip, lockflags);
1444         xfs_irele(ip);
1445         return error;
1446 }
1447 
1448 /* Background worker that trims preallocated space. */
1449 void
1450 xfs_blockgc_worker(
1451         struct work_struct      *work)
1452 {
1453         struct xfs_perag        *pag = container_of(to_delayed_work(work),
1454                                         struct xfs_perag, pag_blockgc_work);
1455         struct xfs_mount        *mp = pag->pag_mount;
1456         int                     error;
1457 
1458         trace_xfs_blockgc_worker(mp, __return_address);
1459 
1460         error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1461         if (error)
1462                 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1463                                 pag->pag_agno, error);
1464         xfs_blockgc_queue(pag);
1465 }
1466 
1467 /*
1468  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1469  * and cowblocks.
1470  */
1471 int
1472 xfs_blockgc_free_space(
1473         struct xfs_mount        *mp,
1474         struct xfs_icwalk       *icw)
1475 {
1476         int                     error;
1477 
1478         trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1479 
1480         error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1481         if (error)
1482                 return error;
1483 
1484         return xfs_inodegc_flush(mp);
1485 }
1486 
1487 /*
1488  * Reclaim all the free space that we can by scheduling the background blockgc
1489  * and inodegc workers immediately and waiting for them all to clear.
1490  */
1491 int
1492 xfs_blockgc_flush_all(
1493         struct xfs_mount        *mp)
1494 {
1495         struct xfs_perag        *pag;
1496         xfs_agnumber_t          agno;
1497 
1498         trace_xfs_blockgc_flush_all(mp, __return_address);
1499 
1500         /*
1501          * For each blockgc worker, move its queue time up to now.  If it
1502          * wasn't queued, it will not be requeued.  Then flush whatever's
1503          * left.
1504          */
1505         for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1506                 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1507                                 &pag->pag_blockgc_work, 0);
1508 
1509         for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1510                 flush_delayed_work(&pag->pag_blockgc_work);
1511 
1512         return xfs_inodegc_flush(mp);
1513 }
1514 
1515 /*
1516  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1517  * quota caused an allocation failure, so we make a best effort by including
1518  * each quota under low free space conditions (less than 1% free space) in the
1519  * scan.
1520  *
1521  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1522  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1523  * MMAPLOCK.
1524  */
1525 int
1526 xfs_blockgc_free_dquots(
1527         struct xfs_mount        *mp,
1528         struct xfs_dquot        *udqp,
1529         struct xfs_dquot        *gdqp,
1530         struct xfs_dquot        *pdqp,
1531         unsigned int            iwalk_flags)
1532 {
1533         struct xfs_icwalk       icw = {0};
1534         bool                    do_work = false;
1535 
1536         if (!udqp && !gdqp && !pdqp)
1537                 return 0;
1538 
1539         /*
1540          * Run a scan to free blocks using the union filter to cover all
1541          * applicable quotas in a single scan.
1542          */
1543         icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1544 
1545         if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1546                 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1547                 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1548                 do_work = true;
1549         }
1550 
1551         if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1552                 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1553                 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1554                 do_work = true;
1555         }
1556 
1557         if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1558                 icw.icw_prid = pdqp->q_id;
1559                 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1560                 do_work = true;
1561         }
1562 
1563         if (!do_work)
1564                 return 0;
1565 
1566         return xfs_blockgc_free_space(mp, &icw);
1567 }
1568 
1569 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1570 int
1571 xfs_blockgc_free_quota(
1572         struct xfs_inode        *ip,
1573         unsigned int            iwalk_flags)
1574 {
1575         return xfs_blockgc_free_dquots(ip->i_mount,
1576                         xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1577                         xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1578                         xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1579 }
1580 
1581 /* XFS Inode Cache Walking Code */
1582 
1583 /*
1584  * The inode lookup is done in batches to keep the amount of lock traffic and
1585  * radix tree lookups to a minimum. The batch size is a trade off between
1586  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1587  * be too greedy.
1588  */
1589 #define XFS_LOOKUP_BATCH        32
1590 
1591 
1592 /*
1593  * Decide if we want to grab this inode in anticipation of doing work towards
1594  * the goal.
1595  */
1596 static inline bool
1597 xfs_icwalk_igrab(
1598         enum xfs_icwalk_goal    goal,
1599         struct xfs_inode        *ip,
1600         struct xfs_icwalk       *icw)
1601 {
1602         switch (goal) {
1603         case XFS_ICWALK_BLOCKGC:
1604                 return xfs_blockgc_igrab(ip);
1605         case XFS_ICWALK_RECLAIM:
1606                 return xfs_reclaim_igrab(ip, icw);
1607         default:
1608                 return false;
1609         }
1610 }
1611 
1612 /*
1613  * Process an inode.  Each processing function must handle any state changes
1614  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1615  */
1616 static inline int
1617 xfs_icwalk_process_inode(
1618         enum xfs_icwalk_goal    goal,
1619         struct xfs_inode        *ip,
1620         struct xfs_perag        *pag,
1621         struct xfs_icwalk       *icw)
1622 {
1623         int                     error = 0;
1624 
1625         switch (goal) {
1626         case XFS_ICWALK_BLOCKGC:
1627                 error = xfs_blockgc_scan_inode(ip, icw);
1628                 break;
1629         case XFS_ICWALK_RECLAIM:
1630                 xfs_reclaim_inode(ip, pag);
1631                 break;
1632         }
1633         return error;
1634 }
1635 
1636 /*
1637  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1638  * process them in some manner.
1639  */
1640 static int
1641 xfs_icwalk_ag(
1642         struct xfs_perag        *pag,
1643         enum xfs_icwalk_goal    goal,
1644         struct xfs_icwalk       *icw)
1645 {
1646         struct xfs_mount        *mp = pag->pag_mount;
1647         uint32_t                first_index;
1648         int                     last_error = 0;
1649         int                     skipped;
1650         bool                    done;
1651         int                     nr_found;
1652 
1653 restart:
1654         done = false;
1655         skipped = 0;
1656         if (goal == XFS_ICWALK_RECLAIM)
1657                 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1658         else
1659                 first_index = 0;
1660         nr_found = 0;
1661         do {
1662                 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1663                 int             error = 0;
1664                 int             i;
1665 
1666                 rcu_read_lock();
1667 
1668                 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1669                                 (void **) batch, first_index,
1670                                 XFS_LOOKUP_BATCH, goal);
1671                 if (!nr_found) {
1672                         done = true;
1673                         rcu_read_unlock();
1674                         break;
1675                 }
1676 
1677                 /*
1678                  * Grab the inodes before we drop the lock. if we found
1679                  * nothing, nr == 0 and the loop will be skipped.
1680                  */
1681                 for (i = 0; i < nr_found; i++) {
1682                         struct xfs_inode *ip = batch[i];
1683 
1684                         if (done || !xfs_icwalk_igrab(goal, ip, icw))
1685                                 batch[i] = NULL;
1686 
1687                         /*
1688                          * Update the index for the next lookup. Catch
1689                          * overflows into the next AG range which can occur if
1690                          * we have inodes in the last block of the AG and we
1691                          * are currently pointing to the last inode.
1692                          *
1693                          * Because we may see inodes that are from the wrong AG
1694                          * due to RCU freeing and reallocation, only update the
1695                          * index if it lies in this AG. It was a race that lead
1696                          * us to see this inode, so another lookup from the
1697                          * same index will not find it again.
1698                          */
1699                         if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1700                                 continue;
1701                         first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1702                         if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1703                                 done = true;
1704                 }
1705 
1706                 /* unlock now we've grabbed the inodes. */
1707                 rcu_read_unlock();
1708 
1709                 for (i = 0; i < nr_found; i++) {
1710                         if (!batch[i])
1711                                 continue;
1712                         error = xfs_icwalk_process_inode(goal, batch[i], pag,
1713                                         icw);
1714                         if (error == -EAGAIN) {
1715                                 skipped++;
1716                                 continue;
1717                         }
1718                         if (error && last_error != -EFSCORRUPTED)
1719                                 last_error = error;
1720                 }
1721 
1722                 /* bail out if the filesystem is corrupted.  */
1723                 if (error == -EFSCORRUPTED)
1724                         break;
1725 
1726                 cond_resched();
1727 
1728                 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1729                         icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1730                         if (icw->icw_scan_limit <= 0)
1731                                 break;
1732                 }
1733         } while (nr_found && !done);
1734 
1735         if (goal == XFS_ICWALK_RECLAIM) {
1736                 if (done)
1737                         first_index = 0;
1738                 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1739         }
1740 
1741         if (skipped) {
1742                 delay(1);
1743                 goto restart;
1744         }
1745         return last_error;
1746 }
1747 
1748 /* Walk all incore inodes to achieve a given goal. */
1749 static int
1750 xfs_icwalk(
1751         struct xfs_mount        *mp,
1752         enum xfs_icwalk_goal    goal,
1753         struct xfs_icwalk       *icw)
1754 {
1755         struct xfs_perag        *pag;
1756         int                     error = 0;
1757         int                     last_error = 0;
1758         xfs_agnumber_t          agno;
1759 
1760         for_each_perag_tag(mp, agno, pag, goal) {
1761                 error = xfs_icwalk_ag(pag, goal, icw);
1762                 if (error) {
1763                         last_error = error;
1764                         if (error == -EFSCORRUPTED) {
1765                                 xfs_perag_rele(pag);
1766                                 break;
1767                         }
1768                 }
1769         }
1770         return last_error;
1771         BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1772 }
1773 
1774 #ifdef DEBUG
1775 static void
1776 xfs_check_delalloc(
1777         struct xfs_inode        *ip,
1778         int                     whichfork)
1779 {
1780         struct xfs_ifork        *ifp = xfs_ifork_ptr(ip, whichfork);
1781         struct xfs_bmbt_irec    got;
1782         struct xfs_iext_cursor  icur;
1783 
1784         if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1785                 return;
1786         do {
1787                 if (isnullstartblock(got.br_startblock)) {
1788                         xfs_warn(ip->i_mount,
1789         "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1790                                 ip->i_ino,
1791                                 whichfork == XFS_DATA_FORK ? "data" : "cow",
1792                                 got.br_startoff, got.br_blockcount);
1793                 }
1794         } while (xfs_iext_next_extent(ifp, &icur, &got));
1795 }
1796 #else
1797 #define xfs_check_delalloc(ip, whichfork)       do { } while (0)
1798 #endif
1799 
1800 /* Schedule the inode for reclaim. */
1801 static void
1802 xfs_inodegc_set_reclaimable(
1803         struct xfs_inode        *ip)
1804 {
1805         struct xfs_mount        *mp = ip->i_mount;
1806         struct xfs_perag        *pag;
1807 
1808         if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1809                 xfs_check_delalloc(ip, XFS_DATA_FORK);
1810                 xfs_check_delalloc(ip, XFS_COW_FORK);
1811                 ASSERT(0);
1812         }
1813 
1814         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1815         spin_lock(&pag->pag_ici_lock);
1816         spin_lock(&ip->i_flags_lock);
1817 
1818         trace_xfs_inode_set_reclaimable(ip);
1819         ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1820         ip->i_flags |= XFS_IRECLAIMABLE;
1821         xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1822                         XFS_ICI_RECLAIM_TAG);
1823 
1824         spin_unlock(&ip->i_flags_lock);
1825         spin_unlock(&pag->pag_ici_lock);
1826         xfs_perag_put(pag);
1827 }
1828 
1829 /*
1830  * Free all speculative preallocations and possibly even the inode itself.
1831  * This is the last chance to make changes to an otherwise unreferenced file
1832  * before incore reclamation happens.
1833  */
1834 static int
1835 xfs_inodegc_inactivate(
1836         struct xfs_inode        *ip)
1837 {
1838         int                     error;
1839 
1840         trace_xfs_inode_inactivating(ip);
1841         error = xfs_inactive(ip);
1842         xfs_inodegc_set_reclaimable(ip);
1843         return error;
1844 
1845 }
1846 
1847 void
1848 xfs_inodegc_worker(
1849         struct work_struct      *work)
1850 {
1851         struct xfs_inodegc      *gc = container_of(to_delayed_work(work),
1852                                                 struct xfs_inodegc, work);
1853         struct llist_node       *node = llist_del_all(&gc->list);
1854         struct xfs_inode        *ip, *n;
1855         struct xfs_mount        *mp = gc->mp;
1856         unsigned int            nofs_flag;
1857 
1858         /*
1859          * Clear the cpu mask bit and ensure that we have seen the latest
1860          * update of the gc structure associated with this CPU. This matches
1861          * with the release semantics used when setting the cpumask bit in
1862          * xfs_inodegc_queue.
1863          */
1864         cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1865         smp_mb__after_atomic();
1866 
1867         WRITE_ONCE(gc->items, 0);
1868 
1869         if (!node)
1870                 return;
1871 
1872         /*
1873          * We can allocate memory here while doing writeback on behalf of
1874          * memory reclaim.  To avoid memory allocation deadlocks set the
1875          * task-wide nofs context for the following operations.
1876          */
1877         nofs_flag = memalloc_nofs_save();
1878 
1879         ip = llist_entry(node, struct xfs_inode, i_gclist);
1880         trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1881 
1882         WRITE_ONCE(gc->shrinker_hits, 0);
1883         llist_for_each_entry_safe(ip, n, node, i_gclist) {
1884                 int     error;
1885 
1886                 xfs_iflags_set(ip, XFS_INACTIVATING);
1887                 error = xfs_inodegc_inactivate(ip);
1888                 if (error && !gc->error)
1889                         gc->error = error;
1890         }
1891 
1892         memalloc_nofs_restore(nofs_flag);
1893 }
1894 
1895 /*
1896  * Expedite all pending inodegc work to run immediately. This does not wait for
1897  * completion of the work.
1898  */
1899 void
1900 xfs_inodegc_push(
1901         struct xfs_mount        *mp)
1902 {
1903         if (!xfs_is_inodegc_enabled(mp))
1904                 return;
1905         trace_xfs_inodegc_push(mp, __return_address);
1906         xfs_inodegc_queue_all(mp);
1907 }
1908 
1909 /*
1910  * Force all currently queued inode inactivation work to run immediately and
1911  * wait for the work to finish.
1912  */
1913 int
1914 xfs_inodegc_flush(
1915         struct xfs_mount        *mp)
1916 {
1917         xfs_inodegc_push(mp);
1918         trace_xfs_inodegc_flush(mp, __return_address);
1919         return xfs_inodegc_wait_all(mp);
1920 }
1921 
1922 /*
1923  * Flush all the pending work and then disable the inode inactivation background
1924  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1925  * coordinate changes in the inodegc_enabled state.
1926  */
1927 void
1928 xfs_inodegc_stop(
1929         struct xfs_mount        *mp)
1930 {
1931         bool                    rerun;
1932 
1933         if (!xfs_clear_inodegc_enabled(mp))
1934                 return;
1935 
1936         /*
1937          * Drain all pending inodegc work, including inodes that could be
1938          * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1939          * threads that sample the inodegc state just prior to us clearing it.
1940          * The inodegc flag state prevents new threads from queuing more
1941          * inodes, so we queue pending work items and flush the workqueue until
1942          * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1943          * here because it does not allow other unserialized mechanisms to
1944          * reschedule inodegc work while this draining is in progress.
1945          */
1946         xfs_inodegc_queue_all(mp);
1947         do {
1948                 flush_workqueue(mp->m_inodegc_wq);
1949                 rerun = xfs_inodegc_queue_all(mp);
1950         } while (rerun);
1951 
1952         trace_xfs_inodegc_stop(mp, __return_address);
1953 }
1954 
1955 /*
1956  * Enable the inode inactivation background workers and schedule deferred inode
1957  * inactivation work if there is any.  Caller must hold sb->s_umount to
1958  * coordinate changes in the inodegc_enabled state.
1959  */
1960 void
1961 xfs_inodegc_start(
1962         struct xfs_mount        *mp)
1963 {
1964         if (xfs_set_inodegc_enabled(mp))
1965                 return;
1966 
1967         trace_xfs_inodegc_start(mp, __return_address);
1968         xfs_inodegc_queue_all(mp);
1969 }
1970 
1971 #ifdef CONFIG_XFS_RT
1972 static inline bool
1973 xfs_inodegc_want_queue_rt_file(
1974         struct xfs_inode        *ip)
1975 {
1976         struct xfs_mount        *mp = ip->i_mount;
1977 
1978         if (!XFS_IS_REALTIME_INODE(ip))
1979                 return false;
1980 
1981         if (__percpu_counter_compare(&mp->m_frextents,
1982                                 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1983                                 XFS_FDBLOCKS_BATCH) < 0)
1984                 return true;
1985 
1986         return false;
1987 }
1988 #else
1989 # define xfs_inodegc_want_queue_rt_file(ip)     (false)
1990 #endif /* CONFIG_XFS_RT */
1991 
1992 /*
1993  * Schedule the inactivation worker when:
1994  *
1995  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1996  *  - There is less than 5% free space left.
1997  *  - Any of the quotas for this inode are near an enforcement limit.
1998  */
1999 static inline bool
2000 xfs_inodegc_want_queue_work(
2001         struct xfs_inode        *ip,
2002         unsigned int            items)
2003 {
2004         struct xfs_mount        *mp = ip->i_mount;
2005 
2006         if (items > mp->m_ino_geo.inodes_per_cluster)
2007                 return true;
2008 
2009         if (__percpu_counter_compare(&mp->m_fdblocks,
2010                                 mp->m_low_space[XFS_LOWSP_5_PCNT],
2011                                 XFS_FDBLOCKS_BATCH) < 0)
2012                 return true;
2013 
2014         if (xfs_inodegc_want_queue_rt_file(ip))
2015                 return true;
2016 
2017         if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2018                 return true;
2019 
2020         if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2021                 return true;
2022 
2023         if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2024                 return true;
2025 
2026         return false;
2027 }
2028 
2029 /*
2030  * Upper bound on the number of inodes in each AG that can be queued for
2031  * inactivation at any given time, to avoid monopolizing the workqueue.
2032  */
2033 #define XFS_INODEGC_MAX_BACKLOG         (4 * XFS_INODES_PER_CHUNK)
2034 
2035 /*
2036  * Make the frontend wait for inactivations when:
2037  *
2038  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2039  *  - The queue depth exceeds the maximum allowable percpu backlog.
2040  *
2041  * Note: If we are in a NOFS context here (e.g. current thread is running a
2042  * transaction) the we don't want to block here as inodegc progress may require
2043  * filesystem resources we hold to make progress and that could result in a
2044  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2045  */
2046 static inline bool
2047 xfs_inodegc_want_flush_work(
2048         struct xfs_inode        *ip,
2049         unsigned int            items,
2050         unsigned int            shrinker_hits)
2051 {
2052         if (current->flags & PF_MEMALLOC_NOFS)
2053                 return false;
2054 
2055         if (shrinker_hits > 0)
2056                 return true;
2057 
2058         if (items > XFS_INODEGC_MAX_BACKLOG)
2059                 return true;
2060 
2061         return false;
2062 }
2063 
2064 /*
2065  * Queue a background inactivation worker if there are inodes that need to be
2066  * inactivated and higher level xfs code hasn't disabled the background
2067  * workers.
2068  */
2069 static void
2070 xfs_inodegc_queue(
2071         struct xfs_inode        *ip)
2072 {
2073         struct xfs_mount        *mp = ip->i_mount;
2074         struct xfs_inodegc      *gc;
2075         int                     items;
2076         unsigned int            shrinker_hits;
2077         unsigned int            cpu_nr;
2078         unsigned long           queue_delay = 1;
2079 
2080         trace_xfs_inode_set_need_inactive(ip);
2081         spin_lock(&ip->i_flags_lock);
2082         ip->i_flags |= XFS_NEED_INACTIVE;
2083         spin_unlock(&ip->i_flags_lock);
2084 
2085         cpu_nr = get_cpu();
2086         gc = this_cpu_ptr(mp->m_inodegc);
2087         llist_add(&ip->i_gclist, &gc->list);
2088         items = READ_ONCE(gc->items);
2089         WRITE_ONCE(gc->items, items + 1);
2090         shrinker_hits = READ_ONCE(gc->shrinker_hits);
2091 
2092         /*
2093          * Ensure the list add is always seen by anyone who finds the cpumask
2094          * bit set. This effectively gives the cpumask bit set operation
2095          * release ordering semantics.
2096          */
2097         smp_mb__before_atomic();
2098         if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2099                 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2100 
2101         /*
2102          * We queue the work while holding the current CPU so that the work
2103          * is scheduled to run on this CPU.
2104          */
2105         if (!xfs_is_inodegc_enabled(mp)) {
2106                 put_cpu();
2107                 return;
2108         }
2109 
2110         if (xfs_inodegc_want_queue_work(ip, items))
2111                 queue_delay = 0;
2112 
2113         trace_xfs_inodegc_queue(mp, __return_address);
2114         mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2115                         queue_delay);
2116         put_cpu();
2117 
2118         if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2119                 trace_xfs_inodegc_throttle(mp, __return_address);
2120                 flush_delayed_work(&gc->work);
2121         }
2122 }
2123 
2124 /*
2125  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2126  * lookups on the radix tree, this inode flag can go away.
2127  *
2128  * We always use background reclaim here because even if the inode is clean, it
2129  * still may be under IO and hence we have wait for IO completion to occur
2130  * before we can reclaim the inode. The background reclaim path handles this
2131  * more efficiently than we can here, so simply let background reclaim tear down
2132  * all inodes.
2133  */
2134 void
2135 xfs_inode_mark_reclaimable(
2136         struct xfs_inode        *ip)
2137 {
2138         struct xfs_mount        *mp = ip->i_mount;
2139         bool                    need_inactive;
2140 
2141         XFS_STATS_INC(mp, vn_reclaim);
2142 
2143         /*
2144          * We should never get here with any of the reclaim flags already set.
2145          */
2146         ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2147 
2148         need_inactive = xfs_inode_needs_inactive(ip);
2149         if (need_inactive) {
2150                 xfs_inodegc_queue(ip);
2151                 return;
2152         }
2153 
2154         /* Going straight to reclaim, so drop the dquots. */
2155         xfs_qm_dqdetach(ip);
2156         xfs_inodegc_set_reclaimable(ip);
2157 }
2158 
2159 /*
2160  * Register a phony shrinker so that we can run background inodegc sooner when
2161  * there's memory pressure.  Inactivation does not itself free any memory but
2162  * it does make inodes reclaimable, which eventually frees memory.
2163  *
2164  * The count function, seek value, and batch value are crafted to trigger the
2165  * scan function during the second round of scanning.  Hopefully this means
2166  * that we reclaimed enough memory that initiating metadata transactions won't
2167  * make things worse.
2168  */
2169 #define XFS_INODEGC_SHRINKER_COUNT      (1UL << DEF_PRIORITY)
2170 #define XFS_INODEGC_SHRINKER_BATCH      ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2171 
2172 static unsigned long
2173 xfs_inodegc_shrinker_count(
2174         struct shrinker         *shrink,
2175         struct shrink_control   *sc)
2176 {
2177         struct xfs_mount        *mp = shrink->private_data;
2178         struct xfs_inodegc      *gc;
2179         int                     cpu;
2180 
2181         if (!xfs_is_inodegc_enabled(mp))
2182                 return 0;
2183 
2184         for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2185                 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2186                 if (!llist_empty(&gc->list))
2187                         return XFS_INODEGC_SHRINKER_COUNT;
2188         }
2189 
2190         return 0;
2191 }
2192 
2193 static unsigned long
2194 xfs_inodegc_shrinker_scan(
2195         struct shrinker         *shrink,
2196         struct shrink_control   *sc)
2197 {
2198         struct xfs_mount        *mp = shrink->private_data;
2199         struct xfs_inodegc      *gc;
2200         int                     cpu;
2201         bool                    no_items = true;
2202 
2203         if (!xfs_is_inodegc_enabled(mp))
2204                 return SHRINK_STOP;
2205 
2206         trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2207 
2208         for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2209                 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2210                 if (!llist_empty(&gc->list)) {
2211                         unsigned int    h = READ_ONCE(gc->shrinker_hits);
2212 
2213                         WRITE_ONCE(gc->shrinker_hits, h + 1);
2214                         mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2215                         no_items = false;
2216                 }
2217         }
2218 
2219         /*
2220          * If there are no inodes to inactivate, we don't want the shrinker
2221          * to think there's deferred work to call us back about.
2222          */
2223         if (no_items)
2224                 return LONG_MAX;
2225 
2226         return SHRINK_STOP;
2227 }
2228 
2229 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2230 int
2231 xfs_inodegc_register_shrinker(
2232         struct xfs_mount        *mp)
2233 {
2234         mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2235                                                 "xfs-inodegc:%s",
2236                                                 mp->m_super->s_id);
2237         if (!mp->m_inodegc_shrinker)
2238                 return -ENOMEM;
2239 
2240         mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2241         mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2242         mp->m_inodegc_shrinker->seeks = 0;
2243         mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2244         mp->m_inodegc_shrinker->private_data = mp;
2245 
2246         shrinker_register(mp->m_inodegc_shrinker);
2247 
2248         return 0;
2249 }
2250 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php