1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_trace.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_buf_item.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_error.h" 22 #include "xfs_rtbitmap.h" 23 24 #include <linux/iversion.h> 25 26 struct kmem_cache *xfs_ili_cache; /* inode log item */ 27 28 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) 29 { 30 return container_of(lip, struct xfs_inode_log_item, ili_item); 31 } 32 33 static uint64_t 34 xfs_inode_item_sort( 35 struct xfs_log_item *lip) 36 { 37 return INODE_ITEM(lip)->ili_inode->i_ino; 38 } 39 40 #ifdef DEBUG_EXPENSIVE 41 static void 42 xfs_inode_item_precommit_check( 43 struct xfs_inode *ip) 44 { 45 struct xfs_mount *mp = ip->i_mount; 46 struct xfs_dinode *dip; 47 xfs_failaddr_t fa; 48 49 dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS); 50 if (!dip) { 51 ASSERT(dip != NULL); 52 return; 53 } 54 55 xfs_inode_to_disk(ip, dip, 0); 56 xfs_dinode_calc_crc(mp, dip); 57 fa = xfs_dinode_verify(mp, ip->i_ino, dip); 58 if (fa) { 59 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 60 sizeof(*dip), fa); 61 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 62 ASSERT(fa == NULL); 63 } 64 kfree(dip); 65 } 66 #else 67 # define xfs_inode_item_precommit_check(ip) ((void)0) 68 #endif 69 70 /* 71 * Prior to finally logging the inode, we have to ensure that all the 72 * per-modification inode state changes are applied. This includes VFS inode 73 * state updates, format conversions, verifier state synchronisation and 74 * ensuring the inode buffer remains in memory whilst the inode is dirty. 75 * 76 * We have to be careful when we grab the inode cluster buffer due to lock 77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item) 78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is 79 * not locked until ->precommit, so it happens after everything else has been 80 * modified. 81 * 82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we 83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we 84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because 85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the 86 * AGF lock modifying directory blocks. 87 * 88 * Rather than force a complete rework of all the transactions to call 89 * xfs_trans_log_inode() once and once only at the end of every transaction, we 90 * move the pinning of the inode cluster buffer to a ->precommit operation. This 91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it 92 * ensures that the inode cluster buffer locking is always done last in a 93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode 94 * cluster buffer. 95 * 96 * If we return the inode number as the precommit sort key then we'll also 97 * guarantee that the order all inode cluster buffer locking is the same all the 98 * inodes and unlink items in the transaction. 99 */ 100 static int 101 xfs_inode_item_precommit( 102 struct xfs_trans *tp, 103 struct xfs_log_item *lip) 104 { 105 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 106 struct xfs_inode *ip = iip->ili_inode; 107 struct inode *inode = VFS_I(ip); 108 unsigned int flags = iip->ili_dirty_flags; 109 110 /* 111 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races 112 * don't matter - we either will need an extra transaction in 24 hours 113 * to log the timestamps, or will clear already cleared fields in the 114 * worst case. 115 */ 116 if (inode->i_state & I_DIRTY_TIME) { 117 spin_lock(&inode->i_lock); 118 inode->i_state &= ~I_DIRTY_TIME; 119 spin_unlock(&inode->i_lock); 120 } 121 122 /* 123 * If we're updating the inode core or the timestamps and it's possible 124 * to upgrade this inode to bigtime format, do so now. 125 */ 126 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && 127 xfs_has_bigtime(ip->i_mount) && 128 !xfs_inode_has_bigtime(ip)) { 129 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; 130 flags |= XFS_ILOG_CORE; 131 } 132 133 /* 134 * Inode verifiers do not check that the extent size hint is an integer 135 * multiple of the rt extent size on a directory with both rtinherit 136 * and extszinherit flags set. If we're logging a directory that is 137 * misconfigured in this way, clear the hint. 138 */ 139 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) && 140 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) && 141 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) { 142 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 143 XFS_DIFLAG_EXTSZINHERIT); 144 ip->i_extsize = 0; 145 flags |= XFS_ILOG_CORE; 146 } 147 148 /* 149 * Record the specific change for fdatasync optimisation. This allows 150 * fdatasync to skip log forces for inodes that are only timestamp 151 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it 152 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking 153 * (ili_fields) correctly tracks that the version has changed. 154 */ 155 spin_lock(&iip->ili_lock); 156 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION); 157 if (flags & XFS_ILOG_IVERSION) 158 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE); 159 160 if (!iip->ili_item.li_buf) { 161 struct xfs_buf *bp; 162 int error; 163 164 /* 165 * We hold the ILOCK here, so this inode is not going to be 166 * flushed while we are here. Further, because there is no 167 * buffer attached to the item, we know that there is no IO in 168 * progress, so nothing will clear the ili_fields while we read 169 * in the buffer. Hence we can safely drop the spin lock and 170 * read the buffer knowing that the state will not change from 171 * here. 172 */ 173 spin_unlock(&iip->ili_lock); 174 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); 175 if (error) 176 return error; 177 178 /* 179 * We need an explicit buffer reference for the log item but 180 * don't want the buffer to remain attached to the transaction. 181 * Hold the buffer but release the transaction reference once 182 * we've attached the inode log item to the buffer log item 183 * list. 184 */ 185 xfs_buf_hold(bp); 186 spin_lock(&iip->ili_lock); 187 iip->ili_item.li_buf = bp; 188 bp->b_flags |= _XBF_INODES; 189 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); 190 xfs_trans_brelse(tp, bp); 191 } 192 193 /* 194 * Always OR in the bits from the ili_last_fields field. This is to 195 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines 196 * in the eventual clearing of the ili_fields bits. See the big comment 197 * in xfs_iflush() for an explanation of this coordination mechanism. 198 */ 199 iip->ili_fields |= (flags | iip->ili_last_fields); 200 spin_unlock(&iip->ili_lock); 201 202 xfs_inode_item_precommit_check(ip); 203 204 /* 205 * We are done with the log item transaction dirty state, so clear it so 206 * that it doesn't pollute future transactions. 207 */ 208 iip->ili_dirty_flags = 0; 209 return 0; 210 } 211 212 /* 213 * The logged size of an inode fork is always the current size of the inode 214 * fork. This means that when an inode fork is relogged, the size of the logged 215 * region is determined by the current state, not the combination of the 216 * previously logged state + the current state. This is different relogging 217 * behaviour to most other log items which will retain the size of the 218 * previously logged changes when smaller regions are relogged. 219 * 220 * Hence operations that remove data from the inode fork (e.g. shortform 221 * dir/attr remove, extent form extent removal, etc), the size of the relogged 222 * inode gets -smaller- rather than stays the same size as the previously logged 223 * size and this can result in the committing transaction reducing the amount of 224 * space being consumed by the CIL. 225 */ 226 STATIC void 227 xfs_inode_item_data_fork_size( 228 struct xfs_inode_log_item *iip, 229 int *nvecs, 230 int *nbytes) 231 { 232 struct xfs_inode *ip = iip->ili_inode; 233 234 switch (ip->i_df.if_format) { 235 case XFS_DINODE_FMT_EXTENTS: 236 if ((iip->ili_fields & XFS_ILOG_DEXT) && 237 ip->i_df.if_nextents > 0 && 238 ip->i_df.if_bytes > 0) { 239 /* worst case, doesn't subtract delalloc extents */ 240 *nbytes += xfs_inode_data_fork_size(ip); 241 *nvecs += 1; 242 } 243 break; 244 case XFS_DINODE_FMT_BTREE: 245 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 246 ip->i_df.if_broot_bytes > 0) { 247 *nbytes += ip->i_df.if_broot_bytes; 248 *nvecs += 1; 249 } 250 break; 251 case XFS_DINODE_FMT_LOCAL: 252 if ((iip->ili_fields & XFS_ILOG_DDATA) && 253 ip->i_df.if_bytes > 0) { 254 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); 255 *nvecs += 1; 256 } 257 break; 258 259 case XFS_DINODE_FMT_DEV: 260 break; 261 default: 262 ASSERT(0); 263 break; 264 } 265 } 266 267 STATIC void 268 xfs_inode_item_attr_fork_size( 269 struct xfs_inode_log_item *iip, 270 int *nvecs, 271 int *nbytes) 272 { 273 struct xfs_inode *ip = iip->ili_inode; 274 275 switch (ip->i_af.if_format) { 276 case XFS_DINODE_FMT_EXTENTS: 277 if ((iip->ili_fields & XFS_ILOG_AEXT) && 278 ip->i_af.if_nextents > 0 && 279 ip->i_af.if_bytes > 0) { 280 /* worst case, doesn't subtract unused space */ 281 *nbytes += xfs_inode_attr_fork_size(ip); 282 *nvecs += 1; 283 } 284 break; 285 case XFS_DINODE_FMT_BTREE: 286 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 287 ip->i_af.if_broot_bytes > 0) { 288 *nbytes += ip->i_af.if_broot_bytes; 289 *nvecs += 1; 290 } 291 break; 292 case XFS_DINODE_FMT_LOCAL: 293 if ((iip->ili_fields & XFS_ILOG_ADATA) && 294 ip->i_af.if_bytes > 0) { 295 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); 296 *nvecs += 1; 297 } 298 break; 299 default: 300 ASSERT(0); 301 break; 302 } 303 } 304 305 /* 306 * This returns the number of iovecs needed to log the given inode item. 307 * 308 * We need one iovec for the inode log format structure, one for the 309 * inode core, and possibly one for the inode data/extents/b-tree root 310 * and one for the inode attribute data/extents/b-tree root. 311 */ 312 STATIC void 313 xfs_inode_item_size( 314 struct xfs_log_item *lip, 315 int *nvecs, 316 int *nbytes) 317 { 318 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 319 struct xfs_inode *ip = iip->ili_inode; 320 321 *nvecs += 2; 322 *nbytes += sizeof(struct xfs_inode_log_format) + 323 xfs_log_dinode_size(ip->i_mount); 324 325 xfs_inode_item_data_fork_size(iip, nvecs, nbytes); 326 if (xfs_inode_has_attr_fork(ip)) 327 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); 328 } 329 330 STATIC void 331 xfs_inode_item_format_data_fork( 332 struct xfs_inode_log_item *iip, 333 struct xfs_inode_log_format *ilf, 334 struct xfs_log_vec *lv, 335 struct xfs_log_iovec **vecp) 336 { 337 struct xfs_inode *ip = iip->ili_inode; 338 size_t data_bytes; 339 340 switch (ip->i_df.if_format) { 341 case XFS_DINODE_FMT_EXTENTS: 342 iip->ili_fields &= 343 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 344 345 if ((iip->ili_fields & XFS_ILOG_DEXT) && 346 ip->i_df.if_nextents > 0 && 347 ip->i_df.if_bytes > 0) { 348 struct xfs_bmbt_rec *p; 349 350 ASSERT(xfs_iext_count(&ip->i_df) > 0); 351 352 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); 353 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); 354 xlog_finish_iovec(lv, *vecp, data_bytes); 355 356 ASSERT(data_bytes <= ip->i_df.if_bytes); 357 358 ilf->ilf_dsize = data_bytes; 359 ilf->ilf_size++; 360 } else { 361 iip->ili_fields &= ~XFS_ILOG_DEXT; 362 } 363 break; 364 case XFS_DINODE_FMT_BTREE: 365 iip->ili_fields &= 366 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); 367 368 if ((iip->ili_fields & XFS_ILOG_DBROOT) && 369 ip->i_df.if_broot_bytes > 0) { 370 ASSERT(ip->i_df.if_broot != NULL); 371 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, 372 ip->i_df.if_broot, 373 ip->i_df.if_broot_bytes); 374 ilf->ilf_dsize = ip->i_df.if_broot_bytes; 375 ilf->ilf_size++; 376 } else { 377 ASSERT(!(iip->ili_fields & 378 XFS_ILOG_DBROOT)); 379 iip->ili_fields &= ~XFS_ILOG_DBROOT; 380 } 381 break; 382 case XFS_DINODE_FMT_LOCAL: 383 iip->ili_fields &= 384 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); 385 if ((iip->ili_fields & XFS_ILOG_DDATA) && 386 ip->i_df.if_bytes > 0) { 387 ASSERT(ip->i_df.if_data != NULL); 388 ASSERT(ip->i_disk_size > 0); 389 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, 390 ip->i_df.if_data, ip->i_df.if_bytes); 391 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; 392 ilf->ilf_size++; 393 } else { 394 iip->ili_fields &= ~XFS_ILOG_DDATA; 395 } 396 break; 397 case XFS_DINODE_FMT_DEV: 398 iip->ili_fields &= 399 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); 400 if (iip->ili_fields & XFS_ILOG_DEV) 401 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); 402 break; 403 default: 404 ASSERT(0); 405 break; 406 } 407 } 408 409 STATIC void 410 xfs_inode_item_format_attr_fork( 411 struct xfs_inode_log_item *iip, 412 struct xfs_inode_log_format *ilf, 413 struct xfs_log_vec *lv, 414 struct xfs_log_iovec **vecp) 415 { 416 struct xfs_inode *ip = iip->ili_inode; 417 size_t data_bytes; 418 419 switch (ip->i_af.if_format) { 420 case XFS_DINODE_FMT_EXTENTS: 421 iip->ili_fields &= 422 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); 423 424 if ((iip->ili_fields & XFS_ILOG_AEXT) && 425 ip->i_af.if_nextents > 0 && 426 ip->i_af.if_bytes > 0) { 427 struct xfs_bmbt_rec *p; 428 429 ASSERT(xfs_iext_count(&ip->i_af) == 430 ip->i_af.if_nextents); 431 432 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); 433 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); 434 xlog_finish_iovec(lv, *vecp, data_bytes); 435 436 ilf->ilf_asize = data_bytes; 437 ilf->ilf_size++; 438 } else { 439 iip->ili_fields &= ~XFS_ILOG_AEXT; 440 } 441 break; 442 case XFS_DINODE_FMT_BTREE: 443 iip->ili_fields &= 444 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); 445 446 if ((iip->ili_fields & XFS_ILOG_ABROOT) && 447 ip->i_af.if_broot_bytes > 0) { 448 ASSERT(ip->i_af.if_broot != NULL); 449 450 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, 451 ip->i_af.if_broot, 452 ip->i_af.if_broot_bytes); 453 ilf->ilf_asize = ip->i_af.if_broot_bytes; 454 ilf->ilf_size++; 455 } else { 456 iip->ili_fields &= ~XFS_ILOG_ABROOT; 457 } 458 break; 459 case XFS_DINODE_FMT_LOCAL: 460 iip->ili_fields &= 461 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); 462 463 if ((iip->ili_fields & XFS_ILOG_ADATA) && 464 ip->i_af.if_bytes > 0) { 465 ASSERT(ip->i_af.if_data != NULL); 466 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, 467 ip->i_af.if_data, ip->i_af.if_bytes); 468 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; 469 ilf->ilf_size++; 470 } else { 471 iip->ili_fields &= ~XFS_ILOG_ADATA; 472 } 473 break; 474 default: 475 ASSERT(0); 476 break; 477 } 478 } 479 480 /* 481 * Convert an incore timestamp to a log timestamp. Note that the log format 482 * specifies host endian format! 483 */ 484 static inline xfs_log_timestamp_t 485 xfs_inode_to_log_dinode_ts( 486 struct xfs_inode *ip, 487 const struct timespec64 tv) 488 { 489 struct xfs_log_legacy_timestamp *lits; 490 xfs_log_timestamp_t its; 491 492 if (xfs_inode_has_bigtime(ip)) 493 return xfs_inode_encode_bigtime(tv); 494 495 lits = (struct xfs_log_legacy_timestamp *)&its; 496 lits->t_sec = tv.tv_sec; 497 lits->t_nsec = tv.tv_nsec; 498 499 return its; 500 } 501 502 /* 503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes, 504 * but not in the in-memory one. But we are guaranteed to have an inode buffer 505 * in memory when logging an inode, so we can just copy it from the on-disk 506 * inode to the in-log inode here so that recovery of file system with these 507 * fields set to non-zero values doesn't lose them. For all other cases we zero 508 * the fields. 509 */ 510 static void 511 xfs_copy_dm_fields_to_log_dinode( 512 struct xfs_inode *ip, 513 struct xfs_log_dinode *to) 514 { 515 struct xfs_dinode *dip; 516 517 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, 518 ip->i_imap.im_boffset); 519 520 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { 521 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); 522 to->di_dmstate = be16_to_cpu(dip->di_dmstate); 523 } else { 524 to->di_dmevmask = 0; 525 to->di_dmstate = 0; 526 } 527 } 528 529 static inline void 530 xfs_inode_to_log_dinode_iext_counters( 531 struct xfs_inode *ip, 532 struct xfs_log_dinode *to) 533 { 534 if (xfs_inode_has_large_extent_counts(ip)) { 535 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); 536 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); 537 to->di_nrext64_pad = 0; 538 } else { 539 to->di_nextents = xfs_ifork_nextents(&ip->i_df); 540 to->di_anextents = xfs_ifork_nextents(&ip->i_af); 541 } 542 } 543 544 static void 545 xfs_inode_to_log_dinode( 546 struct xfs_inode *ip, 547 struct xfs_log_dinode *to, 548 xfs_lsn_t lsn) 549 { 550 struct inode *inode = VFS_I(ip); 551 552 to->di_magic = XFS_DINODE_MAGIC; 553 to->di_format = xfs_ifork_format(&ip->i_df); 554 to->di_uid = i_uid_read(inode); 555 to->di_gid = i_gid_read(inode); 556 to->di_projid_lo = ip->i_projid & 0xffff; 557 to->di_projid_hi = ip->i_projid >> 16; 558 559 memset(to->di_pad3, 0, sizeof(to->di_pad3)); 560 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode)); 561 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode)); 562 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode)); 563 to->di_nlink = inode->i_nlink; 564 to->di_gen = inode->i_generation; 565 to->di_mode = inode->i_mode; 566 567 to->di_size = ip->i_disk_size; 568 to->di_nblocks = ip->i_nblocks; 569 to->di_extsize = ip->i_extsize; 570 to->di_forkoff = ip->i_forkoff; 571 to->di_aformat = xfs_ifork_format(&ip->i_af); 572 to->di_flags = ip->i_diflags; 573 574 xfs_copy_dm_fields_to_log_dinode(ip, to); 575 576 /* log a dummy value to ensure log structure is fully initialised */ 577 to->di_next_unlinked = NULLAGINO; 578 579 if (xfs_has_v3inodes(ip->i_mount)) { 580 to->di_version = 3; 581 to->di_changecount = inode_peek_iversion(inode); 582 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); 583 to->di_flags2 = ip->i_diflags2; 584 to->di_cowextsize = ip->i_cowextsize; 585 to->di_ino = ip->i_ino; 586 to->di_lsn = lsn; 587 memset(to->di_pad2, 0, sizeof(to->di_pad2)); 588 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); 589 to->di_v3_pad = 0; 590 591 /* dummy value for initialisation */ 592 to->di_crc = 0; 593 } else { 594 to->di_version = 2; 595 to->di_flushiter = ip->i_flushiter; 596 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); 597 } 598 599 xfs_inode_to_log_dinode_iext_counters(ip, to); 600 } 601 602 /* 603 * Format the inode core. Current timestamp data is only in the VFS inode 604 * fields, so we need to grab them from there. Hence rather than just copying 605 * the XFS inode core structure, format the fields directly into the iovec. 606 */ 607 static void 608 xfs_inode_item_format_core( 609 struct xfs_inode *ip, 610 struct xfs_log_vec *lv, 611 struct xfs_log_iovec **vecp) 612 { 613 struct xfs_log_dinode *dic; 614 615 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); 616 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); 617 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); 618 } 619 620 /* 621 * This is called to fill in the vector of log iovecs for the given inode 622 * log item. It fills the first item with an inode log format structure, 623 * the second with the on-disk inode structure, and a possible third and/or 624 * fourth with the inode data/extents/b-tree root and inode attributes 625 * data/extents/b-tree root. 626 * 627 * Note: Always use the 64 bit inode log format structure so we don't 628 * leave an uninitialised hole in the format item on 64 bit systems. Log 629 * recovery on 32 bit systems handles this just fine, so there's no reason 630 * for not using an initialising the properly padded structure all the time. 631 */ 632 STATIC void 633 xfs_inode_item_format( 634 struct xfs_log_item *lip, 635 struct xfs_log_vec *lv) 636 { 637 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 638 struct xfs_inode *ip = iip->ili_inode; 639 struct xfs_log_iovec *vecp = NULL; 640 struct xfs_inode_log_format *ilf; 641 642 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); 643 ilf->ilf_type = XFS_LI_INODE; 644 ilf->ilf_ino = ip->i_ino; 645 ilf->ilf_blkno = ip->i_imap.im_blkno; 646 ilf->ilf_len = ip->i_imap.im_len; 647 ilf->ilf_boffset = ip->i_imap.im_boffset; 648 ilf->ilf_fields = XFS_ILOG_CORE; 649 ilf->ilf_size = 2; /* format + core */ 650 651 /* 652 * make sure we don't leak uninitialised data into the log in the case 653 * when we don't log every field in the inode. 654 */ 655 ilf->ilf_dsize = 0; 656 ilf->ilf_asize = 0; 657 ilf->ilf_pad = 0; 658 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); 659 660 xlog_finish_iovec(lv, vecp, sizeof(*ilf)); 661 662 xfs_inode_item_format_core(ip, lv, &vecp); 663 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); 664 if (xfs_inode_has_attr_fork(ip)) { 665 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); 666 } else { 667 iip->ili_fields &= 668 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); 669 } 670 671 /* update the format with the exact fields we actually logged */ 672 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); 673 } 674 675 /* 676 * This is called to pin the inode associated with the inode log 677 * item in memory so it cannot be written out. 678 */ 679 STATIC void 680 xfs_inode_item_pin( 681 struct xfs_log_item *lip) 682 { 683 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 684 685 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 686 ASSERT(lip->li_buf); 687 688 trace_xfs_inode_pin(ip, _RET_IP_); 689 atomic_inc(&ip->i_pincount); 690 } 691 692 693 /* 694 * This is called to unpin the inode associated with the inode log 695 * item which was previously pinned with a call to xfs_inode_item_pin(). 696 * 697 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. 698 * 699 * Note that unpin can race with inode cluster buffer freeing marking the buffer 700 * stale. In that case, flush completions are run from the buffer unpin call, 701 * which may happen before the inode is unpinned. If we lose the race, there 702 * will be no buffer attached to the log item, but the inode will be marked 703 * XFS_ISTALE. 704 */ 705 STATIC void 706 xfs_inode_item_unpin( 707 struct xfs_log_item *lip, 708 int remove) 709 { 710 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; 711 712 trace_xfs_inode_unpin(ip, _RET_IP_); 713 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); 714 ASSERT(atomic_read(&ip->i_pincount) > 0); 715 if (atomic_dec_and_test(&ip->i_pincount)) 716 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); 717 } 718 719 STATIC uint 720 xfs_inode_item_push( 721 struct xfs_log_item *lip, 722 struct list_head *buffer_list) 723 __releases(&lip->li_ailp->ail_lock) 724 __acquires(&lip->li_ailp->ail_lock) 725 { 726 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 727 struct xfs_inode *ip = iip->ili_inode; 728 struct xfs_buf *bp = lip->li_buf; 729 uint rval = XFS_ITEM_SUCCESS; 730 int error; 731 732 if (!bp || (ip->i_flags & XFS_ISTALE)) { 733 /* 734 * Inode item/buffer is being aborted due to cluster 735 * buffer deletion. Trigger a log force to have that operation 736 * completed and items removed from the AIL before the next push 737 * attempt. 738 */ 739 return XFS_ITEM_PINNED; 740 } 741 742 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) 743 return XFS_ITEM_PINNED; 744 745 if (xfs_iflags_test(ip, XFS_IFLUSHING)) 746 return XFS_ITEM_FLUSHING; 747 748 if (!xfs_buf_trylock(bp)) 749 return XFS_ITEM_LOCKED; 750 751 spin_unlock(&lip->li_ailp->ail_lock); 752 753 /* 754 * We need to hold a reference for flushing the cluster buffer as it may 755 * fail the buffer without IO submission. In which case, we better get a 756 * reference for that completion because otherwise we don't get a 757 * reference for IO until we queue the buffer for delwri submission. 758 */ 759 xfs_buf_hold(bp); 760 error = xfs_iflush_cluster(bp); 761 if (!error) { 762 if (!xfs_buf_delwri_queue(bp, buffer_list)) 763 rval = XFS_ITEM_FLUSHING; 764 xfs_buf_relse(bp); 765 } else { 766 /* 767 * Release the buffer if we were unable to flush anything. On 768 * any other error, the buffer has already been released. 769 */ 770 if (error == -EAGAIN) 771 xfs_buf_relse(bp); 772 rval = XFS_ITEM_LOCKED; 773 } 774 775 spin_lock(&lip->li_ailp->ail_lock); 776 return rval; 777 } 778 779 /* 780 * Unlock the inode associated with the inode log item. 781 */ 782 STATIC void 783 xfs_inode_item_release( 784 struct xfs_log_item *lip) 785 { 786 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 787 struct xfs_inode *ip = iip->ili_inode; 788 unsigned short lock_flags; 789 790 ASSERT(ip->i_itemp != NULL); 791 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 792 793 lock_flags = iip->ili_lock_flags; 794 iip->ili_lock_flags = 0; 795 if (lock_flags) 796 xfs_iunlock(ip, lock_flags); 797 } 798 799 /* 800 * This is called to find out where the oldest active copy of the inode log 801 * item in the on disk log resides now that the last log write of it completed 802 * at the given lsn. Since we always re-log all dirty data in an inode, the 803 * latest copy in the on disk log is the only one that matters. Therefore, 804 * simply return the given lsn. 805 * 806 * If the inode has been marked stale because the cluster is being freed, we 807 * don't want to (re-)insert this inode into the AIL. There is a race condition 808 * where the cluster buffer may be unpinned before the inode is inserted into 809 * the AIL during transaction committed processing. If the buffer is unpinned 810 * before the inode item has been committed and inserted, then it is possible 811 * for the buffer to be written and IO completes before the inode is inserted 812 * into the AIL. In that case, we'd be inserting a clean, stale inode into the 813 * AIL which will never get removed. It will, however, get reclaimed which 814 * triggers an assert in xfs_inode_free() complaining about freein an inode 815 * still in the AIL. 816 * 817 * To avoid this, just unpin the inode directly and return a LSN of -1 so the 818 * transaction committed code knows that it does not need to do any further 819 * processing on the item. 820 */ 821 STATIC xfs_lsn_t 822 xfs_inode_item_committed( 823 struct xfs_log_item *lip, 824 xfs_lsn_t lsn) 825 { 826 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 827 struct xfs_inode *ip = iip->ili_inode; 828 829 if (xfs_iflags_test(ip, XFS_ISTALE)) { 830 xfs_inode_item_unpin(lip, 0); 831 return -1; 832 } 833 return lsn; 834 } 835 836 STATIC void 837 xfs_inode_item_committing( 838 struct xfs_log_item *lip, 839 xfs_csn_t seq) 840 { 841 INODE_ITEM(lip)->ili_commit_seq = seq; 842 return xfs_inode_item_release(lip); 843 } 844 845 static const struct xfs_item_ops xfs_inode_item_ops = { 846 .iop_sort = xfs_inode_item_sort, 847 .iop_precommit = xfs_inode_item_precommit, 848 .iop_size = xfs_inode_item_size, 849 .iop_format = xfs_inode_item_format, 850 .iop_pin = xfs_inode_item_pin, 851 .iop_unpin = xfs_inode_item_unpin, 852 .iop_release = xfs_inode_item_release, 853 .iop_committed = xfs_inode_item_committed, 854 .iop_push = xfs_inode_item_push, 855 .iop_committing = xfs_inode_item_committing, 856 }; 857 858 859 /* 860 * Initialize the inode log item for a newly allocated (in-core) inode. 861 */ 862 void 863 xfs_inode_item_init( 864 struct xfs_inode *ip, 865 struct xfs_mount *mp) 866 { 867 struct xfs_inode_log_item *iip; 868 869 ASSERT(ip->i_itemp == NULL); 870 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, 871 GFP_KERNEL | __GFP_NOFAIL); 872 873 iip->ili_inode = ip; 874 spin_lock_init(&iip->ili_lock); 875 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, 876 &xfs_inode_item_ops); 877 } 878 879 /* 880 * Free the inode log item and any memory hanging off of it. 881 */ 882 void 883 xfs_inode_item_destroy( 884 struct xfs_inode *ip) 885 { 886 struct xfs_inode_log_item *iip = ip->i_itemp; 887 888 ASSERT(iip->ili_item.li_buf == NULL); 889 890 ip->i_itemp = NULL; 891 kvfree(iip->ili_item.li_lv_shadow); 892 kmem_cache_free(xfs_ili_cache, iip); 893 } 894 895 896 /* 897 * We only want to pull the item from the AIL if it is actually there 898 * and its location in the log has not changed since we started the 899 * flush. Thus, we only bother if the inode's lsn has not changed. 900 */ 901 static void 902 xfs_iflush_ail_updates( 903 struct xfs_ail *ailp, 904 struct list_head *list) 905 { 906 struct xfs_log_item *lip; 907 xfs_lsn_t tail_lsn = 0; 908 909 /* this is an opencoded batch version of xfs_trans_ail_delete */ 910 spin_lock(&ailp->ail_lock); 911 list_for_each_entry(lip, list, li_bio_list) { 912 xfs_lsn_t lsn; 913 914 clear_bit(XFS_LI_FAILED, &lip->li_flags); 915 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) 916 continue; 917 918 /* 919 * dgc: Not sure how this happens, but it happens very 920 * occassionaly via generic/388. xfs_iflush_abort() also 921 * silently handles this same "under writeback but not in AIL at 922 * shutdown" condition via xfs_trans_ail_delete(). 923 */ 924 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { 925 ASSERT(xlog_is_shutdown(lip->li_log)); 926 continue; 927 } 928 929 lsn = xfs_ail_delete_one(ailp, lip); 930 if (!tail_lsn && lsn) 931 tail_lsn = lsn; 932 } 933 xfs_ail_update_finish(ailp, tail_lsn); 934 } 935 936 /* 937 * Walk the list of inodes that have completed their IOs. If they are clean 938 * remove them from the list and dissociate them from the buffer. Buffers that 939 * are still dirty remain linked to the buffer and on the list. Caller must 940 * handle them appropriately. 941 */ 942 static void 943 xfs_iflush_finish( 944 struct xfs_buf *bp, 945 struct list_head *list) 946 { 947 struct xfs_log_item *lip, *n; 948 949 list_for_each_entry_safe(lip, n, list, li_bio_list) { 950 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 951 bool drop_buffer = false; 952 953 spin_lock(&iip->ili_lock); 954 955 /* 956 * Remove the reference to the cluster buffer if the inode is 957 * clean in memory and drop the buffer reference once we've 958 * dropped the locks we hold. 959 */ 960 ASSERT(iip->ili_item.li_buf == bp); 961 if (!iip->ili_fields) { 962 iip->ili_item.li_buf = NULL; 963 list_del_init(&lip->li_bio_list); 964 drop_buffer = true; 965 } 966 iip->ili_last_fields = 0; 967 iip->ili_flush_lsn = 0; 968 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 969 spin_unlock(&iip->ili_lock); 970 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); 971 if (drop_buffer) 972 xfs_buf_rele(bp); 973 } 974 } 975 976 /* 977 * Inode buffer IO completion routine. It is responsible for removing inodes 978 * attached to the buffer from the AIL if they have not been re-logged and 979 * completing the inode flush. 980 */ 981 void 982 xfs_buf_inode_iodone( 983 struct xfs_buf *bp) 984 { 985 struct xfs_log_item *lip, *n; 986 LIST_HEAD(flushed_inodes); 987 LIST_HEAD(ail_updates); 988 989 /* 990 * Pull the attached inodes from the buffer one at a time and take the 991 * appropriate action on them. 992 */ 993 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 994 struct xfs_inode_log_item *iip = INODE_ITEM(lip); 995 996 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { 997 xfs_iflush_abort(iip->ili_inode); 998 continue; 999 } 1000 if (!iip->ili_last_fields) 1001 continue; 1002 1003 /* Do an unlocked check for needing the AIL lock. */ 1004 if (iip->ili_flush_lsn == lip->li_lsn || 1005 test_bit(XFS_LI_FAILED, &lip->li_flags)) 1006 list_move_tail(&lip->li_bio_list, &ail_updates); 1007 else 1008 list_move_tail(&lip->li_bio_list, &flushed_inodes); 1009 } 1010 1011 if (!list_empty(&ail_updates)) { 1012 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); 1013 list_splice_tail(&ail_updates, &flushed_inodes); 1014 } 1015 1016 xfs_iflush_finish(bp, &flushed_inodes); 1017 if (!list_empty(&flushed_inodes)) 1018 list_splice_tail(&flushed_inodes, &bp->b_li_list); 1019 } 1020 1021 void 1022 xfs_buf_inode_io_fail( 1023 struct xfs_buf *bp) 1024 { 1025 struct xfs_log_item *lip; 1026 1027 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 1028 set_bit(XFS_LI_FAILED, &lip->li_flags); 1029 clear_bit(XFS_LI_FLUSHING, &lip->li_flags); 1030 } 1031 } 1032 1033 /* 1034 * Clear the inode logging fields so no more flushes are attempted. If we are 1035 * on a buffer list, it is now safe to remove it because the buffer is 1036 * guaranteed to be locked. The caller will drop the reference to the buffer 1037 * the log item held. 1038 */ 1039 static void 1040 xfs_iflush_abort_clean( 1041 struct xfs_inode_log_item *iip) 1042 { 1043 iip->ili_last_fields = 0; 1044 iip->ili_fields = 0; 1045 iip->ili_fsync_fields = 0; 1046 iip->ili_flush_lsn = 0; 1047 iip->ili_item.li_buf = NULL; 1048 list_del_init(&iip->ili_item.li_bio_list); 1049 clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags); 1050 } 1051 1052 /* 1053 * Abort flushing the inode from a context holding the cluster buffer locked. 1054 * 1055 * This is the normal runtime method of aborting writeback of an inode that is 1056 * attached to a cluster buffer. It occurs when the inode and the backing 1057 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster 1058 * flushing or buffer IO completion encounters a log shutdown situation. 1059 * 1060 * If we need to abort inode writeback and we don't already hold the buffer 1061 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be 1062 * necessary in a shutdown situation. 1063 */ 1064 void 1065 xfs_iflush_abort( 1066 struct xfs_inode *ip) 1067 { 1068 struct xfs_inode_log_item *iip = ip->i_itemp; 1069 struct xfs_buf *bp; 1070 1071 if (!iip) { 1072 /* clean inode, nothing to do */ 1073 xfs_iflags_clear(ip, XFS_IFLUSHING); 1074 return; 1075 } 1076 1077 /* 1078 * Remove the inode item from the AIL before we clear its internal 1079 * state. Whilst the inode is in the AIL, it should have a valid buffer 1080 * pointer for push operations to access - it is only safe to remove the 1081 * inode from the buffer once it has been removed from the AIL. 1082 * 1083 * We also clear the failed bit before removing the item from the AIL 1084 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer 1085 * references the inode item owns and needs to hold until we've fully 1086 * aborted the inode log item and detached it from the buffer. 1087 */ 1088 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); 1089 xfs_trans_ail_delete(&iip->ili_item, 0); 1090 1091 /* 1092 * Grab the inode buffer so can we release the reference the inode log 1093 * item holds on it. 1094 */ 1095 spin_lock(&iip->ili_lock); 1096 bp = iip->ili_item.li_buf; 1097 xfs_iflush_abort_clean(iip); 1098 spin_unlock(&iip->ili_lock); 1099 1100 xfs_iflags_clear(ip, XFS_IFLUSHING); 1101 if (bp) 1102 xfs_buf_rele(bp); 1103 } 1104 1105 /* 1106 * Abort an inode flush in the case of a shutdown filesystem. This can be called 1107 * from anywhere with just an inode reference and does not require holding the 1108 * inode cluster buffer locked. If the inode is attached to a cluster buffer, 1109 * it will grab and lock it safely, then abort the inode flush. 1110 */ 1111 void 1112 xfs_iflush_shutdown_abort( 1113 struct xfs_inode *ip) 1114 { 1115 struct xfs_inode_log_item *iip = ip->i_itemp; 1116 struct xfs_buf *bp; 1117 1118 if (!iip) { 1119 /* clean inode, nothing to do */ 1120 xfs_iflags_clear(ip, XFS_IFLUSHING); 1121 return; 1122 } 1123 1124 spin_lock(&iip->ili_lock); 1125 bp = iip->ili_item.li_buf; 1126 if (!bp) { 1127 spin_unlock(&iip->ili_lock); 1128 xfs_iflush_abort(ip); 1129 return; 1130 } 1131 1132 /* 1133 * We have to take a reference to the buffer so that it doesn't get 1134 * freed when we drop the ili_lock and then wait to lock the buffer. 1135 * We'll clean up the extra reference after we pick up the ili_lock 1136 * again. 1137 */ 1138 xfs_buf_hold(bp); 1139 spin_unlock(&iip->ili_lock); 1140 xfs_buf_lock(bp); 1141 1142 spin_lock(&iip->ili_lock); 1143 if (!iip->ili_item.li_buf) { 1144 /* 1145 * Raced with another removal, hold the only reference 1146 * to bp now. Inode should not be in the AIL now, so just clean 1147 * up and return; 1148 */ 1149 ASSERT(list_empty(&iip->ili_item.li_bio_list)); 1150 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); 1151 xfs_iflush_abort_clean(iip); 1152 spin_unlock(&iip->ili_lock); 1153 xfs_iflags_clear(ip, XFS_IFLUSHING); 1154 xfs_buf_relse(bp); 1155 return; 1156 } 1157 1158 /* 1159 * Got two references to bp. The first will get dropped by 1160 * xfs_iflush_abort() when the item is removed from the buffer list, but 1161 * we can't drop our reference until _abort() returns because we have to 1162 * unlock the buffer as well. Hence we abort and then unlock and release 1163 * our reference to the buffer. 1164 */ 1165 ASSERT(iip->ili_item.li_buf == bp); 1166 spin_unlock(&iip->ili_lock); 1167 xfs_iflush_abort(ip); 1168 xfs_buf_relse(bp); 1169 } 1170 1171 1172 /* 1173 * convert an xfs_inode_log_format struct from the old 32 bit version 1174 * (which can have different field alignments) to the native 64 bit version 1175 */ 1176 int 1177 xfs_inode_item_format_convert( 1178 struct xfs_log_iovec *buf, 1179 struct xfs_inode_log_format *in_f) 1180 { 1181 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; 1182 1183 if (buf->i_len != sizeof(*in_f32)) { 1184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 1185 return -EFSCORRUPTED; 1186 } 1187 1188 in_f->ilf_type = in_f32->ilf_type; 1189 in_f->ilf_size = in_f32->ilf_size; 1190 in_f->ilf_fields = in_f32->ilf_fields; 1191 in_f->ilf_asize = in_f32->ilf_asize; 1192 in_f->ilf_dsize = in_f32->ilf_dsize; 1193 in_f->ilf_ino = in_f32->ilf_ino; 1194 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); 1195 in_f->ilf_blkno = in_f32->ilf_blkno; 1196 in_f->ilf_len = in_f32->ilf_len; 1197 in_f->ilf_boffset = in_f32->ilf_boffset; 1198 return 0; 1199 } 1200
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.