1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_acl.h" 15 #include "xfs_quota.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_bmap_btree.h" 22 #include "xfs_trace.h" 23 #include "xfs_icache.h" 24 #include "xfs_symlink.h" 25 #include "xfs_dir2.h" 26 #include "xfs_iomap.h" 27 #include "xfs_error.h" 28 #include "xfs_ioctl.h" 29 #include "xfs_xattr.h" 30 #include "xfs_file.h" 31 #include "xfs_bmap.h" 32 33 #include <linux/posix_acl.h> 34 #include <linux/security.h> 35 #include <linux/iversion.h> 36 #include <linux/fiemap.h> 37 38 /* 39 * Directories have different lock order w.r.t. mmap_lock compared to regular 40 * files. This is due to readdir potentially triggering page faults on a user 41 * buffer inside filldir(), and this happens with the ilock on the directory 42 * held. For regular files, the lock order is the other way around - the 43 * mmap_lock is taken during the page fault, and then we lock the ilock to do 44 * block mapping. Hence we need a different class for the directory ilock so 45 * that lockdep can tell them apart. 46 */ 47 static struct lock_class_key xfs_nondir_ilock_class; 48 static struct lock_class_key xfs_dir_ilock_class; 49 50 static int 51 xfs_initxattrs( 52 struct inode *inode, 53 const struct xattr *xattr_array, 54 void *fs_info) 55 { 56 const struct xattr *xattr; 57 struct xfs_inode *ip = XFS_I(inode); 58 int error = 0; 59 60 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 61 struct xfs_da_args args = { 62 .dp = ip, 63 .attr_filter = XFS_ATTR_SECURE, 64 .name = xattr->name, 65 .namelen = strlen(xattr->name), 66 .value = xattr->value, 67 .valuelen = xattr->value_len, 68 }; 69 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT); 70 if (error < 0) 71 break; 72 } 73 return error; 74 } 75 76 /* 77 * Hook in SELinux. This is not quite correct yet, what we really need 78 * here (as we do for default ACLs) is a mechanism by which creation of 79 * these attrs can be journalled at inode creation time (along with the 80 * inode, of course, such that log replay can't cause these to be lost). 81 */ 82 int 83 xfs_inode_init_security( 84 struct inode *inode, 85 struct inode *dir, 86 const struct qstr *qstr) 87 { 88 return security_inode_init_security(inode, dir, qstr, 89 &xfs_initxattrs, NULL); 90 } 91 92 static void 93 xfs_dentry_to_name( 94 struct xfs_name *namep, 95 struct dentry *dentry) 96 { 97 namep->name = dentry->d_name.name; 98 namep->len = dentry->d_name.len; 99 namep->type = XFS_DIR3_FT_UNKNOWN; 100 } 101 102 static int 103 xfs_dentry_mode_to_name( 104 struct xfs_name *namep, 105 struct dentry *dentry, 106 int mode) 107 { 108 namep->name = dentry->d_name.name; 109 namep->len = dentry->d_name.len; 110 namep->type = xfs_mode_to_ftype(mode); 111 112 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN)) 113 return -EFSCORRUPTED; 114 115 return 0; 116 } 117 118 STATIC void 119 xfs_cleanup_inode( 120 struct inode *dir, 121 struct inode *inode, 122 struct dentry *dentry) 123 { 124 struct xfs_name teardown; 125 126 /* Oh, the horror. 127 * If we can't add the ACL or we fail in 128 * xfs_inode_init_security we must back out. 129 * ENOSPC can hit here, among other things. 130 */ 131 xfs_dentry_to_name(&teardown, dentry); 132 133 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode)); 134 } 135 136 /* 137 * Check to see if we are likely to need an extended attribute to be added to 138 * the inode we are about to allocate. This allows the attribute fork to be 139 * created during the inode allocation, reducing the number of transactions we 140 * need to do in this fast path. 141 * 142 * The security checks are optimistic, but not guaranteed. The two LSMs that 143 * require xattrs to be added here (selinux and smack) are also the only two 144 * LSMs that add a sb->s_security structure to the superblock. Hence if security 145 * is enabled and sb->s_security is set, we have a pretty good idea that we are 146 * going to be asked to add a security xattr immediately after allocating the 147 * xfs inode and instantiating the VFS inode. 148 */ 149 static inline bool 150 xfs_create_need_xattr( 151 struct inode *dir, 152 struct posix_acl *default_acl, 153 struct posix_acl *acl) 154 { 155 if (acl) 156 return true; 157 if (default_acl) 158 return true; 159 #if IS_ENABLED(CONFIG_SECURITY) 160 if (dir->i_sb->s_security) 161 return true; 162 #endif 163 return false; 164 } 165 166 167 STATIC int 168 xfs_generic_create( 169 struct mnt_idmap *idmap, 170 struct inode *dir, 171 struct dentry *dentry, 172 umode_t mode, 173 dev_t rdev, 174 struct file *tmpfile) /* unnamed file */ 175 { 176 struct xfs_icreate_args args = { 177 .idmap = idmap, 178 .pip = XFS_I(dir), 179 .rdev = rdev, 180 .mode = mode, 181 }; 182 struct inode *inode; 183 struct xfs_inode *ip = NULL; 184 struct posix_acl *default_acl, *acl; 185 struct xfs_name name; 186 int error; 187 188 /* 189 * Irix uses Missed'em'V split, but doesn't want to see 190 * the upper 5 bits of (14bit) major. 191 */ 192 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) { 193 if (unlikely(!sysv_valid_dev(args.rdev) || 194 MAJOR(args.rdev) & ~0x1ff)) 195 return -EINVAL; 196 } else { 197 args.rdev = 0; 198 } 199 200 error = posix_acl_create(dir, &args.mode, &default_acl, &acl); 201 if (error) 202 return error; 203 204 /* Verify mode is valid also for tmpfile case */ 205 error = xfs_dentry_mode_to_name(&name, dentry, args.mode); 206 if (unlikely(error)) 207 goto out_free_acl; 208 209 if (!tmpfile) { 210 if (xfs_create_need_xattr(dir, default_acl, acl)) 211 args.flags |= XFS_ICREATE_INIT_XATTRS; 212 213 error = xfs_create(&args, &name, &ip); 214 } else { 215 args.flags |= XFS_ICREATE_TMPFILE; 216 217 /* 218 * If this temporary file will not be linkable, don't bother 219 * creating an attr fork to receive a parent pointer. 220 */ 221 if (tmpfile->f_flags & O_EXCL) 222 args.flags |= XFS_ICREATE_UNLINKABLE; 223 224 error = xfs_create_tmpfile(&args, &ip); 225 } 226 if (unlikely(error)) 227 goto out_free_acl; 228 229 inode = VFS_I(ip); 230 231 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 232 if (unlikely(error)) 233 goto out_cleanup_inode; 234 235 if (default_acl) { 236 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); 237 if (error) 238 goto out_cleanup_inode; 239 } 240 if (acl) { 241 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS); 242 if (error) 243 goto out_cleanup_inode; 244 } 245 246 xfs_setup_iops(ip); 247 248 if (tmpfile) { 249 /* 250 * The VFS requires that any inode fed to d_tmpfile must have 251 * nlink == 1 so that it can decrement the nlink in d_tmpfile. 252 * However, we created the temp file with nlink == 0 because 253 * we're not allowed to put an inode with nlink > 0 on the 254 * unlinked list. Therefore we have to set nlink to 1 so that 255 * d_tmpfile can immediately set it back to zero. 256 */ 257 set_nlink(inode, 1); 258 d_tmpfile(tmpfile, inode); 259 } else 260 d_instantiate(dentry, inode); 261 262 xfs_finish_inode_setup(ip); 263 264 out_free_acl: 265 posix_acl_release(default_acl); 266 posix_acl_release(acl); 267 return error; 268 269 out_cleanup_inode: 270 xfs_finish_inode_setup(ip); 271 if (!tmpfile) 272 xfs_cleanup_inode(dir, inode, dentry); 273 xfs_irele(ip); 274 goto out_free_acl; 275 } 276 277 STATIC int 278 xfs_vn_mknod( 279 struct mnt_idmap *idmap, 280 struct inode *dir, 281 struct dentry *dentry, 282 umode_t mode, 283 dev_t rdev) 284 { 285 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL); 286 } 287 288 STATIC int 289 xfs_vn_create( 290 struct mnt_idmap *idmap, 291 struct inode *dir, 292 struct dentry *dentry, 293 umode_t mode, 294 bool flags) 295 { 296 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL); 297 } 298 299 STATIC int 300 xfs_vn_mkdir( 301 struct mnt_idmap *idmap, 302 struct inode *dir, 303 struct dentry *dentry, 304 umode_t mode) 305 { 306 return xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL); 307 } 308 309 STATIC struct dentry * 310 xfs_vn_lookup( 311 struct inode *dir, 312 struct dentry *dentry, 313 unsigned int flags) 314 { 315 struct inode *inode; 316 struct xfs_inode *cip; 317 struct xfs_name name; 318 int error; 319 320 if (dentry->d_name.len >= MAXNAMELEN) 321 return ERR_PTR(-ENAMETOOLONG); 322 323 xfs_dentry_to_name(&name, dentry); 324 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL); 325 if (likely(!error)) 326 inode = VFS_I(cip); 327 else if (likely(error == -ENOENT)) 328 inode = NULL; 329 else 330 inode = ERR_PTR(error); 331 return d_splice_alias(inode, dentry); 332 } 333 334 STATIC struct dentry * 335 xfs_vn_ci_lookup( 336 struct inode *dir, 337 struct dentry *dentry, 338 unsigned int flags) 339 { 340 struct xfs_inode *ip; 341 struct xfs_name xname; 342 struct xfs_name ci_name; 343 struct qstr dname; 344 int error; 345 346 if (dentry->d_name.len >= MAXNAMELEN) 347 return ERR_PTR(-ENAMETOOLONG); 348 349 xfs_dentry_to_name(&xname, dentry); 350 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name); 351 if (unlikely(error)) { 352 if (unlikely(error != -ENOENT)) 353 return ERR_PTR(error); 354 /* 355 * call d_add(dentry, NULL) here when d_drop_negative_children 356 * is called in xfs_vn_mknod (ie. allow negative dentries 357 * with CI filesystems). 358 */ 359 return NULL; 360 } 361 362 /* if exact match, just splice and exit */ 363 if (!ci_name.name) 364 return d_splice_alias(VFS_I(ip), dentry); 365 366 /* else case-insensitive match... */ 367 dname.name = ci_name.name; 368 dname.len = ci_name.len; 369 dentry = d_add_ci(dentry, VFS_I(ip), &dname); 370 kfree(ci_name.name); 371 return dentry; 372 } 373 374 STATIC int 375 xfs_vn_link( 376 struct dentry *old_dentry, 377 struct inode *dir, 378 struct dentry *dentry) 379 { 380 struct inode *inode = d_inode(old_dentry); 381 struct xfs_name name; 382 int error; 383 384 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode); 385 if (unlikely(error)) 386 return error; 387 388 if (IS_PRIVATE(inode)) 389 return -EPERM; 390 391 error = xfs_link(XFS_I(dir), XFS_I(inode), &name); 392 if (unlikely(error)) 393 return error; 394 395 ihold(inode); 396 d_instantiate(dentry, inode); 397 return 0; 398 } 399 400 STATIC int 401 xfs_vn_unlink( 402 struct inode *dir, 403 struct dentry *dentry) 404 { 405 struct xfs_name name; 406 int error; 407 408 xfs_dentry_to_name(&name, dentry); 409 410 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry))); 411 if (error) 412 return error; 413 414 /* 415 * With unlink, the VFS makes the dentry "negative": no inode, 416 * but still hashed. This is incompatible with case-insensitive 417 * mode, so invalidate (unhash) the dentry in CI-mode. 418 */ 419 if (xfs_has_asciici(XFS_M(dir->i_sb))) 420 d_invalidate(dentry); 421 return 0; 422 } 423 424 STATIC int 425 xfs_vn_symlink( 426 struct mnt_idmap *idmap, 427 struct inode *dir, 428 struct dentry *dentry, 429 const char *symname) 430 { 431 struct inode *inode; 432 struct xfs_inode *cip = NULL; 433 struct xfs_name name; 434 int error; 435 umode_t mode; 436 437 mode = S_IFLNK | 438 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO); 439 error = xfs_dentry_mode_to_name(&name, dentry, mode); 440 if (unlikely(error)) 441 goto out; 442 443 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip); 444 if (unlikely(error)) 445 goto out; 446 447 inode = VFS_I(cip); 448 449 error = xfs_inode_init_security(inode, dir, &dentry->d_name); 450 if (unlikely(error)) 451 goto out_cleanup_inode; 452 453 xfs_setup_iops(cip); 454 455 d_instantiate(dentry, inode); 456 xfs_finish_inode_setup(cip); 457 return 0; 458 459 out_cleanup_inode: 460 xfs_finish_inode_setup(cip); 461 xfs_cleanup_inode(dir, inode, dentry); 462 xfs_irele(cip); 463 out: 464 return error; 465 } 466 467 STATIC int 468 xfs_vn_rename( 469 struct mnt_idmap *idmap, 470 struct inode *odir, 471 struct dentry *odentry, 472 struct inode *ndir, 473 struct dentry *ndentry, 474 unsigned int flags) 475 { 476 struct inode *new_inode = d_inode(ndentry); 477 int omode = 0; 478 int error; 479 struct xfs_name oname; 480 struct xfs_name nname; 481 482 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 483 return -EINVAL; 484 485 /* if we are exchanging files, we need to set i_mode of both files */ 486 if (flags & RENAME_EXCHANGE) 487 omode = d_inode(ndentry)->i_mode; 488 489 error = xfs_dentry_mode_to_name(&oname, odentry, omode); 490 if (omode && unlikely(error)) 491 return error; 492 493 error = xfs_dentry_mode_to_name(&nname, ndentry, 494 d_inode(odentry)->i_mode); 495 if (unlikely(error)) 496 return error; 497 498 return xfs_rename(idmap, XFS_I(odir), &oname, 499 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname, 500 new_inode ? XFS_I(new_inode) : NULL, flags); 501 } 502 503 /* 504 * careful here - this function can get called recursively, so 505 * we need to be very careful about how much stack we use. 506 * uio is kmalloced for this reason... 507 */ 508 STATIC const char * 509 xfs_vn_get_link( 510 struct dentry *dentry, 511 struct inode *inode, 512 struct delayed_call *done) 513 { 514 char *link; 515 int error = -ENOMEM; 516 517 if (!dentry) 518 return ERR_PTR(-ECHILD); 519 520 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL); 521 if (!link) 522 goto out_err; 523 524 error = xfs_readlink(XFS_I(d_inode(dentry)), link); 525 if (unlikely(error)) 526 goto out_kfree; 527 528 set_delayed_call(done, kfree_link, link); 529 return link; 530 531 out_kfree: 532 kfree(link); 533 out_err: 534 return ERR_PTR(error); 535 } 536 537 static uint32_t 538 xfs_stat_blksize( 539 struct xfs_inode *ip) 540 { 541 struct xfs_mount *mp = ip->i_mount; 542 543 /* 544 * If the file blocks are being allocated from a realtime volume, then 545 * always return the realtime extent size. 546 */ 547 if (XFS_IS_REALTIME_INODE(ip)) 548 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1); 549 550 /* 551 * Allow large block sizes to be reported to userspace programs if the 552 * "largeio" mount option is used. 553 * 554 * If compatibility mode is specified, simply return the basic unit of 555 * caching so that we don't get inefficient read/modify/write I/O from 556 * user apps. Otherwise.... 557 * 558 * If the underlying volume is a stripe, then return the stripe width in 559 * bytes as the recommended I/O size. It is not a stripe and we've set a 560 * default buffered I/O size, return that, otherwise return the compat 561 * default. 562 */ 563 if (xfs_has_large_iosize(mp)) { 564 if (mp->m_swidth) 565 return XFS_FSB_TO_B(mp, mp->m_swidth); 566 if (xfs_has_allocsize(mp)) 567 return 1U << mp->m_allocsize_log; 568 } 569 570 return PAGE_SIZE; 571 } 572 573 STATIC int 574 xfs_vn_getattr( 575 struct mnt_idmap *idmap, 576 const struct path *path, 577 struct kstat *stat, 578 u32 request_mask, 579 unsigned int query_flags) 580 { 581 struct inode *inode = d_inode(path->dentry); 582 struct xfs_inode *ip = XFS_I(inode); 583 struct xfs_mount *mp = ip->i_mount; 584 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode); 585 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 586 587 trace_xfs_getattr(ip); 588 589 if (xfs_is_shutdown(mp)) 590 return -EIO; 591 592 stat->size = XFS_ISIZE(ip); 593 stat->dev = inode->i_sb->s_dev; 594 stat->mode = inode->i_mode; 595 stat->nlink = inode->i_nlink; 596 stat->uid = vfsuid_into_kuid(vfsuid); 597 stat->gid = vfsgid_into_kgid(vfsgid); 598 stat->ino = ip->i_ino; 599 stat->atime = inode_get_atime(inode); 600 stat->mtime = inode_get_mtime(inode); 601 stat->ctime = inode_get_ctime(inode); 602 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks); 603 604 if (xfs_has_v3inodes(mp)) { 605 if (request_mask & STATX_BTIME) { 606 stat->result_mask |= STATX_BTIME; 607 stat->btime = ip->i_crtime; 608 } 609 } 610 611 if ((request_mask & STATX_CHANGE_COOKIE) && IS_I_VERSION(inode)) { 612 stat->change_cookie = inode_query_iversion(inode); 613 stat->result_mask |= STATX_CHANGE_COOKIE; 614 } 615 616 /* 617 * Note: If you add another clause to set an attribute flag, please 618 * update attributes_mask below. 619 */ 620 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 621 stat->attributes |= STATX_ATTR_IMMUTABLE; 622 if (ip->i_diflags & XFS_DIFLAG_APPEND) 623 stat->attributes |= STATX_ATTR_APPEND; 624 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 625 stat->attributes |= STATX_ATTR_NODUMP; 626 627 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE | 628 STATX_ATTR_APPEND | 629 STATX_ATTR_NODUMP); 630 631 switch (inode->i_mode & S_IFMT) { 632 case S_IFBLK: 633 case S_IFCHR: 634 stat->blksize = BLKDEV_IOSIZE; 635 stat->rdev = inode->i_rdev; 636 break; 637 case S_IFREG: 638 if (request_mask & STATX_DIOALIGN) { 639 struct xfs_buftarg *target = xfs_inode_buftarg(ip); 640 struct block_device *bdev = target->bt_bdev; 641 642 stat->result_mask |= STATX_DIOALIGN; 643 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 644 stat->dio_offset_align = bdev_logical_block_size(bdev); 645 } 646 fallthrough; 647 default: 648 stat->blksize = xfs_stat_blksize(ip); 649 stat->rdev = 0; 650 break; 651 } 652 653 return 0; 654 } 655 656 static int 657 xfs_vn_change_ok( 658 struct mnt_idmap *idmap, 659 struct dentry *dentry, 660 struct iattr *iattr) 661 { 662 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount; 663 664 if (xfs_is_readonly(mp)) 665 return -EROFS; 666 667 if (xfs_is_shutdown(mp)) 668 return -EIO; 669 670 return setattr_prepare(idmap, dentry, iattr); 671 } 672 673 /* 674 * Set non-size attributes of an inode. 675 * 676 * Caution: The caller of this function is responsible for calling 677 * setattr_prepare() or otherwise verifying the change is fine. 678 */ 679 static int 680 xfs_setattr_nonsize( 681 struct mnt_idmap *idmap, 682 struct dentry *dentry, 683 struct xfs_inode *ip, 684 struct iattr *iattr) 685 { 686 xfs_mount_t *mp = ip->i_mount; 687 struct inode *inode = VFS_I(ip); 688 int mask = iattr->ia_valid; 689 xfs_trans_t *tp; 690 int error; 691 kuid_t uid = GLOBAL_ROOT_UID; 692 kgid_t gid = GLOBAL_ROOT_GID; 693 struct xfs_dquot *udqp = NULL, *gdqp = NULL; 694 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL; 695 696 ASSERT((mask & ATTR_SIZE) == 0); 697 698 /* 699 * If disk quotas is on, we make sure that the dquots do exist on disk, 700 * before we start any other transactions. Trying to do this later 701 * is messy. We don't care to take a readlock to look at the ids 702 * in inode here, because we can't hold it across the trans_reserve. 703 * If the IDs do change before we take the ilock, we're covered 704 * because the i_*dquot fields will get updated anyway. 705 */ 706 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { 707 uint qflags = 0; 708 709 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { 710 uid = from_vfsuid(idmap, i_user_ns(inode), 711 iattr->ia_vfsuid); 712 qflags |= XFS_QMOPT_UQUOTA; 713 } else { 714 uid = inode->i_uid; 715 } 716 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { 717 gid = from_vfsgid(idmap, i_user_ns(inode), 718 iattr->ia_vfsgid); 719 qflags |= XFS_QMOPT_GQUOTA; 720 } else { 721 gid = inode->i_gid; 722 } 723 724 /* 725 * We take a reference when we initialize udqp and gdqp, 726 * so it is important that we never blindly double trip on 727 * the same variable. See xfs_create() for an example. 728 */ 729 ASSERT(udqp == NULL); 730 ASSERT(gdqp == NULL); 731 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid, 732 qflags, &udqp, &gdqp, NULL); 733 if (error) 734 return error; 735 } 736 737 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL, 738 has_capability_noaudit(current, CAP_FOWNER), &tp); 739 if (error) 740 goto out_dqrele; 741 742 /* 743 * Register quota modifications in the transaction. Must be the owner 744 * or privileged. These IDs could have changed since we last looked at 745 * them. But, we're assured that if the ownership did change while we 746 * didn't have the inode locked, inode's dquot(s) would have changed 747 * also. 748 */ 749 if (XFS_IS_UQUOTA_ON(mp) && 750 i_uid_needs_update(idmap, iattr, inode)) { 751 ASSERT(udqp); 752 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); 753 } 754 if (XFS_IS_GQUOTA_ON(mp) && 755 i_gid_needs_update(idmap, iattr, inode)) { 756 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp)); 757 ASSERT(gdqp); 758 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); 759 } 760 761 setattr_copy(idmap, inode, iattr); 762 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 763 764 XFS_STATS_INC(mp, xs_ig_attrchg); 765 766 if (xfs_has_wsync(mp)) 767 xfs_trans_set_sync(tp); 768 error = xfs_trans_commit(tp); 769 770 /* 771 * Release any dquot(s) the inode had kept before chown. 772 */ 773 xfs_qm_dqrele(old_udqp); 774 xfs_qm_dqrele(old_gdqp); 775 xfs_qm_dqrele(udqp); 776 xfs_qm_dqrele(gdqp); 777 778 if (error) 779 return error; 780 781 /* 782 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode 783 * update. We could avoid this with linked transactions 784 * and passing down the transaction pointer all the way 785 * to attr_set. No previous user of the generic 786 * Posix ACL code seems to care about this issue either. 787 */ 788 if (mask & ATTR_MODE) { 789 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 790 if (error) 791 return error; 792 } 793 794 return 0; 795 796 out_dqrele: 797 xfs_qm_dqrele(udqp); 798 xfs_qm_dqrele(gdqp); 799 return error; 800 } 801 802 /* 803 * Truncate file. Must have write permission and not be a directory. 804 * 805 * Caution: The caller of this function is responsible for calling 806 * setattr_prepare() or otherwise verifying the change is fine. 807 */ 808 STATIC int 809 xfs_setattr_size( 810 struct mnt_idmap *idmap, 811 struct dentry *dentry, 812 struct xfs_inode *ip, 813 struct iattr *iattr) 814 { 815 struct xfs_mount *mp = ip->i_mount; 816 struct inode *inode = VFS_I(ip); 817 xfs_off_t oldsize, newsize; 818 struct xfs_trans *tp; 819 int error; 820 uint lock_flags = 0; 821 uint resblks = 0; 822 bool did_zeroing = false; 823 824 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 825 ASSERT(S_ISREG(inode->i_mode)); 826 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET| 827 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0); 828 829 oldsize = inode->i_size; 830 newsize = iattr->ia_size; 831 832 /* 833 * Short circuit the truncate case for zero length files. 834 */ 835 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) { 836 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME))) 837 return 0; 838 839 /* 840 * Use the regular setattr path to update the timestamps. 841 */ 842 iattr->ia_valid &= ~ATTR_SIZE; 843 return xfs_setattr_nonsize(idmap, dentry, ip, iattr); 844 } 845 846 /* 847 * Make sure that the dquots are attached to the inode. 848 */ 849 error = xfs_qm_dqattach(ip); 850 if (error) 851 return error; 852 853 /* 854 * Wait for all direct I/O to complete. 855 */ 856 inode_dio_wait(inode); 857 858 /* 859 * File data changes must be complete before we start the transaction to 860 * modify the inode. This needs to be done before joining the inode to 861 * the transaction because the inode cannot be unlocked once it is a 862 * part of the transaction. 863 * 864 * Start with zeroing any data beyond EOF that we may expose on file 865 * extension, or zeroing out the rest of the block on a downward 866 * truncate. 867 */ 868 if (newsize > oldsize) { 869 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize); 870 error = xfs_zero_range(ip, oldsize, newsize - oldsize, 871 &did_zeroing); 872 } else { 873 /* 874 * iomap won't detect a dirty page over an unwritten block (or a 875 * cow block over a hole) and subsequently skips zeroing the 876 * newly post-EOF portion of the page. Flush the new EOF to 877 * convert the block before the pagecache truncate. 878 */ 879 error = filemap_write_and_wait_range(inode->i_mapping, newsize, 880 newsize); 881 if (error) 882 return error; 883 error = xfs_truncate_page(ip, newsize, &did_zeroing); 884 } 885 886 if (error) 887 return error; 888 889 /* 890 * We've already locked out new page faults, so now we can safely remove 891 * pages from the page cache knowing they won't get refaulted until we 892 * drop the XFS_MMAP_EXCL lock after the extent manipulations are 893 * complete. The truncate_setsize() call also cleans partial EOF page 894 * PTEs on extending truncates and hence ensures sub-page block size 895 * filesystems are correctly handled, too. 896 * 897 * We have to do all the page cache truncate work outside the 898 * transaction context as the "lock" order is page lock->log space 899 * reservation as defined by extent allocation in the writeback path. 900 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but 901 * having already truncated the in-memory version of the file (i.e. made 902 * user visible changes). There's not much we can do about this, except 903 * to hope that the caller sees ENOMEM and retries the truncate 904 * operation. 905 * 906 * And we update in-core i_size and truncate page cache beyond newsize 907 * before writeback the [i_disk_size, newsize] range, so we're 908 * guaranteed not to write stale data past the new EOF on truncate down. 909 */ 910 truncate_setsize(inode, newsize); 911 912 /* 913 * We are going to log the inode size change in this transaction so 914 * any previous writes that are beyond the on disk EOF and the new 915 * EOF that have not been written out need to be written here. If we 916 * do not write the data out, we expose ourselves to the null files 917 * problem. Note that this includes any block zeroing we did above; 918 * otherwise those blocks may not be zeroed after a crash. 919 */ 920 if (did_zeroing || 921 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) { 922 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 923 ip->i_disk_size, newsize - 1); 924 if (error) 925 return error; 926 } 927 928 /* 929 * For realtime inode with more than one block rtextsize, we need the 930 * block reservation for bmap btree block allocations/splits that can 931 * happen since it could split the tail written extent and convert the 932 * right beyond EOF one to unwritten. 933 */ 934 if (xfs_inode_has_bigrtalloc(ip)) 935 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 936 937 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 938 0, 0, &tp); 939 if (error) 940 return error; 941 942 lock_flags |= XFS_ILOCK_EXCL; 943 xfs_ilock(ip, XFS_ILOCK_EXCL); 944 xfs_trans_ijoin(tp, ip, 0); 945 946 /* 947 * Only change the c/mtime if we are changing the size or we are 948 * explicitly asked to change it. This handles the semantic difference 949 * between truncate() and ftruncate() as implemented in the VFS. 950 * 951 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 952 * special case where we need to update the times despite not having 953 * these flags set. For all other operations the VFS set these flags 954 * explicitly if it wants a timestamp update. 955 */ 956 if (newsize != oldsize && 957 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) { 958 iattr->ia_ctime = iattr->ia_mtime = 959 current_time(inode); 960 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME; 961 } 962 963 /* 964 * The first thing we do is set the size to new_size permanently on 965 * disk. This way we don't have to worry about anyone ever being able 966 * to look at the data being freed even in the face of a crash. 967 * What we're getting around here is the case where we free a block, it 968 * is allocated to another file, it is written to, and then we crash. 969 * If the new data gets written to the file but the log buffers 970 * containing the free and reallocation don't, then we'd end up with 971 * garbage in the blocks being freed. As long as we make the new size 972 * permanent before actually freeing any blocks it doesn't matter if 973 * they get written to. 974 */ 975 ip->i_disk_size = newsize; 976 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 977 978 if (newsize <= oldsize) { 979 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize); 980 if (error) 981 goto out_trans_cancel; 982 983 /* 984 * Truncated "down", so we're removing references to old data 985 * here - if we delay flushing for a long time, we expose 986 * ourselves unduly to the notorious NULL files problem. So, 987 * we mark this inode and flush it when the file is closed, 988 * and do not wait the usual (long) time for writeout. 989 */ 990 xfs_iflags_set(ip, XFS_ITRUNCATED); 991 992 /* A truncate down always removes post-EOF blocks. */ 993 xfs_inode_clear_eofblocks_tag(ip); 994 } 995 996 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID))); 997 setattr_copy(idmap, inode, iattr); 998 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 999 1000 XFS_STATS_INC(mp, xs_ig_attrchg); 1001 1002 if (xfs_has_wsync(mp)) 1003 xfs_trans_set_sync(tp); 1004 1005 error = xfs_trans_commit(tp); 1006 out_unlock: 1007 if (lock_flags) 1008 xfs_iunlock(ip, lock_flags); 1009 return error; 1010 1011 out_trans_cancel: 1012 xfs_trans_cancel(tp); 1013 goto out_unlock; 1014 } 1015 1016 int 1017 xfs_vn_setattr_size( 1018 struct mnt_idmap *idmap, 1019 struct dentry *dentry, 1020 struct iattr *iattr) 1021 { 1022 struct xfs_inode *ip = XFS_I(d_inode(dentry)); 1023 int error; 1024 1025 trace_xfs_setattr(ip); 1026 1027 error = xfs_vn_change_ok(idmap, dentry, iattr); 1028 if (error) 1029 return error; 1030 return xfs_setattr_size(idmap, dentry, ip, iattr); 1031 } 1032 1033 STATIC int 1034 xfs_vn_setattr( 1035 struct mnt_idmap *idmap, 1036 struct dentry *dentry, 1037 struct iattr *iattr) 1038 { 1039 struct inode *inode = d_inode(dentry); 1040 struct xfs_inode *ip = XFS_I(inode); 1041 int error; 1042 1043 if (iattr->ia_valid & ATTR_SIZE) { 1044 uint iolock; 1045 1046 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 1047 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1048 1049 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 1050 if (error) { 1051 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1052 return error; 1053 } 1054 1055 error = xfs_vn_setattr_size(idmap, dentry, iattr); 1056 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 1057 } else { 1058 trace_xfs_setattr(ip); 1059 1060 error = xfs_vn_change_ok(idmap, dentry, iattr); 1061 if (!error) 1062 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr); 1063 } 1064 1065 return error; 1066 } 1067 1068 STATIC int 1069 xfs_vn_update_time( 1070 struct inode *inode, 1071 int flags) 1072 { 1073 struct xfs_inode *ip = XFS_I(inode); 1074 struct xfs_mount *mp = ip->i_mount; 1075 int log_flags = XFS_ILOG_TIMESTAMP; 1076 struct xfs_trans *tp; 1077 int error; 1078 struct timespec64 now; 1079 1080 trace_xfs_update_time(ip); 1081 1082 if (inode->i_sb->s_flags & SB_LAZYTIME) { 1083 if (!((flags & S_VERSION) && 1084 inode_maybe_inc_iversion(inode, false))) { 1085 generic_update_time(inode, flags); 1086 return 0; 1087 } 1088 1089 /* Capture the iversion update that just occurred */ 1090 log_flags |= XFS_ILOG_CORE; 1091 } 1092 1093 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 1094 if (error) 1095 return error; 1096 1097 xfs_ilock(ip, XFS_ILOCK_EXCL); 1098 if (flags & (S_CTIME|S_MTIME)) 1099 now = inode_set_ctime_current(inode); 1100 else 1101 now = current_time(inode); 1102 1103 if (flags & S_MTIME) 1104 inode_set_mtime_to_ts(inode, now); 1105 if (flags & S_ATIME) 1106 inode_set_atime_to_ts(inode, now); 1107 1108 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1109 xfs_trans_log_inode(tp, ip, log_flags); 1110 return xfs_trans_commit(tp); 1111 } 1112 1113 STATIC int 1114 xfs_vn_fiemap( 1115 struct inode *inode, 1116 struct fiemap_extent_info *fieinfo, 1117 u64 start, 1118 u64 length) 1119 { 1120 int error; 1121 1122 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED); 1123 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1124 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR; 1125 error = iomap_fiemap(inode, fieinfo, start, length, 1126 &xfs_xattr_iomap_ops); 1127 } else { 1128 error = iomap_fiemap(inode, fieinfo, start, length, 1129 &xfs_read_iomap_ops); 1130 } 1131 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED); 1132 1133 return error; 1134 } 1135 1136 STATIC int 1137 xfs_vn_tmpfile( 1138 struct mnt_idmap *idmap, 1139 struct inode *dir, 1140 struct file *file, 1141 umode_t mode) 1142 { 1143 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file); 1144 1145 return finish_open_simple(file, err); 1146 } 1147 1148 static const struct inode_operations xfs_inode_operations = { 1149 .get_inode_acl = xfs_get_acl, 1150 .set_acl = xfs_set_acl, 1151 .getattr = xfs_vn_getattr, 1152 .setattr = xfs_vn_setattr, 1153 .listxattr = xfs_vn_listxattr, 1154 .fiemap = xfs_vn_fiemap, 1155 .update_time = xfs_vn_update_time, 1156 .fileattr_get = xfs_fileattr_get, 1157 .fileattr_set = xfs_fileattr_set, 1158 }; 1159 1160 static const struct inode_operations xfs_dir_inode_operations = { 1161 .create = xfs_vn_create, 1162 .lookup = xfs_vn_lookup, 1163 .link = xfs_vn_link, 1164 .unlink = xfs_vn_unlink, 1165 .symlink = xfs_vn_symlink, 1166 .mkdir = xfs_vn_mkdir, 1167 /* 1168 * Yes, XFS uses the same method for rmdir and unlink. 1169 * 1170 * There are some subtile differences deeper in the code, 1171 * but we use S_ISDIR to check for those. 1172 */ 1173 .rmdir = xfs_vn_unlink, 1174 .mknod = xfs_vn_mknod, 1175 .rename = xfs_vn_rename, 1176 .get_inode_acl = xfs_get_acl, 1177 .set_acl = xfs_set_acl, 1178 .getattr = xfs_vn_getattr, 1179 .setattr = xfs_vn_setattr, 1180 .listxattr = xfs_vn_listxattr, 1181 .update_time = xfs_vn_update_time, 1182 .tmpfile = xfs_vn_tmpfile, 1183 .fileattr_get = xfs_fileattr_get, 1184 .fileattr_set = xfs_fileattr_set, 1185 }; 1186 1187 static const struct inode_operations xfs_dir_ci_inode_operations = { 1188 .create = xfs_vn_create, 1189 .lookup = xfs_vn_ci_lookup, 1190 .link = xfs_vn_link, 1191 .unlink = xfs_vn_unlink, 1192 .symlink = xfs_vn_symlink, 1193 .mkdir = xfs_vn_mkdir, 1194 /* 1195 * Yes, XFS uses the same method for rmdir and unlink. 1196 * 1197 * There are some subtile differences deeper in the code, 1198 * but we use S_ISDIR to check for those. 1199 */ 1200 .rmdir = xfs_vn_unlink, 1201 .mknod = xfs_vn_mknod, 1202 .rename = xfs_vn_rename, 1203 .get_inode_acl = xfs_get_acl, 1204 .set_acl = xfs_set_acl, 1205 .getattr = xfs_vn_getattr, 1206 .setattr = xfs_vn_setattr, 1207 .listxattr = xfs_vn_listxattr, 1208 .update_time = xfs_vn_update_time, 1209 .tmpfile = xfs_vn_tmpfile, 1210 .fileattr_get = xfs_fileattr_get, 1211 .fileattr_set = xfs_fileattr_set, 1212 }; 1213 1214 static const struct inode_operations xfs_symlink_inode_operations = { 1215 .get_link = xfs_vn_get_link, 1216 .getattr = xfs_vn_getattr, 1217 .setattr = xfs_vn_setattr, 1218 .listxattr = xfs_vn_listxattr, 1219 .update_time = xfs_vn_update_time, 1220 }; 1221 1222 /* Figure out if this file actually supports DAX. */ 1223 static bool 1224 xfs_inode_supports_dax( 1225 struct xfs_inode *ip) 1226 { 1227 struct xfs_mount *mp = ip->i_mount; 1228 1229 /* Only supported on regular files. */ 1230 if (!S_ISREG(VFS_I(ip)->i_mode)) 1231 return false; 1232 1233 /* Block size must match page size */ 1234 if (mp->m_sb.sb_blocksize != PAGE_SIZE) 1235 return false; 1236 1237 /* Device has to support DAX too. */ 1238 return xfs_inode_buftarg(ip)->bt_daxdev != NULL; 1239 } 1240 1241 static bool 1242 xfs_inode_should_enable_dax( 1243 struct xfs_inode *ip) 1244 { 1245 if (!IS_ENABLED(CONFIG_FS_DAX)) 1246 return false; 1247 if (xfs_has_dax_never(ip->i_mount)) 1248 return false; 1249 if (!xfs_inode_supports_dax(ip)) 1250 return false; 1251 if (xfs_has_dax_always(ip->i_mount)) 1252 return true; 1253 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 1254 return true; 1255 return false; 1256 } 1257 1258 void 1259 xfs_diflags_to_iflags( 1260 struct xfs_inode *ip, 1261 bool init) 1262 { 1263 struct inode *inode = VFS_I(ip); 1264 unsigned int xflags = xfs_ip2xflags(ip); 1265 unsigned int flags = 0; 1266 1267 ASSERT(!(IS_DAX(inode) && init)); 1268 1269 if (xflags & FS_XFLAG_IMMUTABLE) 1270 flags |= S_IMMUTABLE; 1271 if (xflags & FS_XFLAG_APPEND) 1272 flags |= S_APPEND; 1273 if (xflags & FS_XFLAG_SYNC) 1274 flags |= S_SYNC; 1275 if (xflags & FS_XFLAG_NOATIME) 1276 flags |= S_NOATIME; 1277 if (init && xfs_inode_should_enable_dax(ip)) 1278 flags |= S_DAX; 1279 1280 /* 1281 * S_DAX can only be set during inode initialization and is never set by 1282 * the VFS, so we cannot mask off S_DAX in i_flags. 1283 */ 1284 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME); 1285 inode->i_flags |= flags; 1286 } 1287 1288 /* 1289 * Initialize the Linux inode. 1290 * 1291 * When reading existing inodes from disk this is called directly from xfs_iget, 1292 * when creating a new inode it is called from xfs_init_new_inode after setting 1293 * up the inode. These callers have different criteria for clearing XFS_INEW, so 1294 * leave it up to the caller to deal with unlocking the inode appropriately. 1295 */ 1296 void 1297 xfs_setup_inode( 1298 struct xfs_inode *ip) 1299 { 1300 struct inode *inode = &ip->i_vnode; 1301 gfp_t gfp_mask; 1302 1303 inode->i_ino = ip->i_ino; 1304 inode->i_state |= I_NEW; 1305 1306 inode_sb_list_add(inode); 1307 /* make the inode look hashed for the writeback code */ 1308 inode_fake_hash(inode); 1309 1310 i_size_write(inode, ip->i_disk_size); 1311 xfs_diflags_to_iflags(ip, true); 1312 1313 if (S_ISDIR(inode->i_mode)) { 1314 /* 1315 * We set the i_rwsem class here to avoid potential races with 1316 * lockdep_annotate_inode_mutex_key() reinitialising the lock 1317 * after a filehandle lookup has already found the inode in 1318 * cache before it has been unlocked via unlock_new_inode(). 1319 */ 1320 lockdep_set_class(&inode->i_rwsem, 1321 &inode->i_sb->s_type->i_mutex_dir_key); 1322 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class); 1323 } else { 1324 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class); 1325 } 1326 1327 /* 1328 * Ensure all page cache allocations are done from GFP_NOFS context to 1329 * prevent direct reclaim recursion back into the filesystem and blowing 1330 * stacks or deadlocking. 1331 */ 1332 gfp_mask = mapping_gfp_mask(inode->i_mapping); 1333 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS))); 1334 1335 /* 1336 * For real-time inodes update the stable write flags to that of the RT 1337 * device instead of the data device. 1338 */ 1339 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip)) 1340 xfs_update_stable_writes(ip); 1341 1342 /* 1343 * If there is no attribute fork no ACL can exist on this inode, 1344 * and it can't have any file capabilities attached to it either. 1345 */ 1346 if (!xfs_inode_has_attr_fork(ip)) { 1347 inode_has_no_xattr(inode); 1348 cache_no_acl(inode); 1349 } 1350 } 1351 1352 void 1353 xfs_setup_iops( 1354 struct xfs_inode *ip) 1355 { 1356 struct inode *inode = &ip->i_vnode; 1357 1358 switch (inode->i_mode & S_IFMT) { 1359 case S_IFREG: 1360 inode->i_op = &xfs_inode_operations; 1361 inode->i_fop = &xfs_file_operations; 1362 if (IS_DAX(inode)) 1363 inode->i_mapping->a_ops = &xfs_dax_aops; 1364 else 1365 inode->i_mapping->a_ops = &xfs_address_space_operations; 1366 break; 1367 case S_IFDIR: 1368 if (xfs_has_asciici(XFS_M(inode->i_sb))) 1369 inode->i_op = &xfs_dir_ci_inode_operations; 1370 else 1371 inode->i_op = &xfs_dir_inode_operations; 1372 inode->i_fop = &xfs_dir_file_operations; 1373 break; 1374 case S_IFLNK: 1375 inode->i_op = &xfs_symlink_inode_operations; 1376 break; 1377 default: 1378 inode->i_op = &xfs_inode_operations; 1379 init_special_inode(inode, inode->i_mode, inode->i_rdev); 1380 break; 1381 } 1382 } 1383
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.