1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved. 4 */ 5 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_shared.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_extent_busy.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_log.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trace.h" 19 #include "xfs_discard.h" 20 21 /* 22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to 23 * recover, so we don't allow failure here. Also, we allocate in a context that 24 * we don't want to be issuing transactions from, so we need to tell the 25 * allocation code this as well. 26 * 27 * We don't reserve any space for the ticket - we are going to steal whatever 28 * space we require from transactions as they commit. To ensure we reserve all 29 * the space required, we need to set the current reservation of the ticket to 30 * zero so that we know to steal the initial transaction overhead from the 31 * first transaction commit. 32 */ 33 static struct xlog_ticket * 34 xlog_cil_ticket_alloc( 35 struct xlog *log) 36 { 37 struct xlog_ticket *tic; 38 39 tic = xlog_ticket_alloc(log, 0, 1, 0); 40 41 /* 42 * set the current reservation to zero so we know to steal the basic 43 * transaction overhead reservation from the first transaction commit. 44 */ 45 tic->t_curr_res = 0; 46 tic->t_iclog_hdrs = 0; 47 return tic; 48 } 49 50 static inline void 51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil) 52 { 53 struct xlog *log = cil->xc_log; 54 55 atomic_set(&cil->xc_iclog_hdrs, 56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) / 57 (log->l_iclog_size - log->l_iclog_hsize))); 58 } 59 60 /* 61 * Check if the current log item was first committed in this sequence. 62 * We can't rely on just the log item being in the CIL, we have to check 63 * the recorded commit sequence number. 64 * 65 * Note: for this to be used in a non-racy manner, it has to be called with 66 * CIL flushing locked out. As a result, it should only be used during the 67 * transaction commit process when deciding what to format into the item. 68 */ 69 static bool 70 xlog_item_in_current_chkpt( 71 struct xfs_cil *cil, 72 struct xfs_log_item *lip) 73 { 74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 75 return false; 76 77 /* 78 * li_seq is written on the first commit of a log item to record the 79 * first checkpoint it is written to. Hence if it is different to the 80 * current sequence, we're in a new checkpoint. 81 */ 82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence); 83 } 84 85 bool 86 xfs_log_item_in_current_chkpt( 87 struct xfs_log_item *lip) 88 { 89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip); 90 } 91 92 /* 93 * Unavoidable forward declaration - xlog_cil_push_work() calls 94 * xlog_cil_ctx_alloc() itself. 95 */ 96 static void xlog_cil_push_work(struct work_struct *work); 97 98 static struct xfs_cil_ctx * 99 xlog_cil_ctx_alloc(void) 100 { 101 struct xfs_cil_ctx *ctx; 102 103 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 104 INIT_LIST_HEAD(&ctx->committing); 105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list); 106 INIT_LIST_HEAD(&ctx->log_items); 107 INIT_LIST_HEAD(&ctx->lv_chain); 108 INIT_WORK(&ctx->push_work, xlog_cil_push_work); 109 return ctx; 110 } 111 112 /* 113 * Aggregate the CIL per cpu structures into global counts, lists, etc and 114 * clear the percpu state ready for the next context to use. This is called 115 * from the push code with the context lock held exclusively, hence nothing else 116 * will be accessing or modifying the per-cpu counters. 117 */ 118 static void 119 xlog_cil_push_pcp_aggregate( 120 struct xfs_cil *cil, 121 struct xfs_cil_ctx *ctx) 122 { 123 struct xlog_cil_pcp *cilpcp; 124 int cpu; 125 126 for_each_cpu(cpu, &ctx->cil_pcpmask) { 127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 128 129 ctx->ticket->t_curr_res += cilpcp->space_reserved; 130 cilpcp->space_reserved = 0; 131 132 if (!list_empty(&cilpcp->busy_extents)) { 133 list_splice_init(&cilpcp->busy_extents, 134 &ctx->busy_extents.extent_list); 135 } 136 if (!list_empty(&cilpcp->log_items)) 137 list_splice_init(&cilpcp->log_items, &ctx->log_items); 138 139 /* 140 * We're in the middle of switching cil contexts. Reset the 141 * counter we use to detect when the current context is nearing 142 * full. 143 */ 144 cilpcp->space_used = 0; 145 } 146 } 147 148 /* 149 * Aggregate the CIL per-cpu space used counters into the global atomic value. 150 * This is called when the per-cpu counter aggregation will first pass the soft 151 * limit threshold so we can switch to atomic counter aggregation for accurate 152 * detection of hard limit traversal. 153 */ 154 static void 155 xlog_cil_insert_pcp_aggregate( 156 struct xfs_cil *cil, 157 struct xfs_cil_ctx *ctx) 158 { 159 struct xlog_cil_pcp *cilpcp; 160 int cpu; 161 int count = 0; 162 163 /* Trigger atomic updates then aggregate only for the first caller */ 164 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) 165 return; 166 167 /* 168 * We can race with other cpus setting cil_pcpmask. However, we've 169 * atomically cleared PCP_SPACE which forces other threads to add to 170 * the global space used count. cil_pcpmask is a superset of cilpcp 171 * structures that could have a nonzero space_used. 172 */ 173 for_each_cpu(cpu, &ctx->cil_pcpmask) { 174 int old, prev; 175 176 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 177 do { 178 old = cilpcp->space_used; 179 prev = cmpxchg(&cilpcp->space_used, old, 0); 180 } while (old != prev); 181 count += old; 182 } 183 atomic_add(count, &ctx->space_used); 184 } 185 186 static void 187 xlog_cil_ctx_switch( 188 struct xfs_cil *cil, 189 struct xfs_cil_ctx *ctx) 190 { 191 xlog_cil_set_iclog_hdr_count(cil); 192 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags); 193 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags); 194 ctx->sequence = ++cil->xc_current_sequence; 195 ctx->cil = cil; 196 cil->xc_ctx = ctx; 197 } 198 199 /* 200 * After the first stage of log recovery is done, we know where the head and 201 * tail of the log are. We need this log initialisation done before we can 202 * initialise the first CIL checkpoint context. 203 * 204 * Here we allocate a log ticket to track space usage during a CIL push. This 205 * ticket is passed to xlog_write() directly so that we don't slowly leak log 206 * space by failing to account for space used by log headers and additional 207 * region headers for split regions. 208 */ 209 void 210 xlog_cil_init_post_recovery( 211 struct xlog *log) 212 { 213 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log); 214 log->l_cilp->xc_ctx->sequence = 1; 215 xlog_cil_set_iclog_hdr_count(log->l_cilp); 216 } 217 218 static inline int 219 xlog_cil_iovec_space( 220 uint niovecs) 221 { 222 return round_up((sizeof(struct xfs_log_vec) + 223 niovecs * sizeof(struct xfs_log_iovec)), 224 sizeof(uint64_t)); 225 } 226 227 /* 228 * Allocate or pin log vector buffers for CIL insertion. 229 * 230 * The CIL currently uses disposable buffers for copying a snapshot of the 231 * modified items into the log during a push. The biggest problem with this is 232 * the requirement to allocate the disposable buffer during the commit if: 233 * a) does not exist; or 234 * b) it is too small 235 * 236 * If we do this allocation within xlog_cil_insert_format_items(), it is done 237 * under the xc_ctx_lock, which means that a CIL push cannot occur during 238 * the memory allocation. This means that we have a potential deadlock situation 239 * under low memory conditions when we have lots of dirty metadata pinned in 240 * the CIL and we need a CIL commit to occur to free memory. 241 * 242 * To avoid this, we need to move the memory allocation outside the 243 * xc_ctx_lock, but because the log vector buffers are disposable, that opens 244 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log 245 * vector buffers between the check and the formatting of the item into the 246 * log vector buffer within the xc_ctx_lock. 247 * 248 * Because the log vector buffer needs to be unchanged during the CIL push 249 * process, we cannot share the buffer between the transaction commit (which 250 * modifies the buffer) and the CIL push context that is writing the changes 251 * into the log. This means skipping preallocation of buffer space is 252 * unreliable, but we most definitely do not want to be allocating and freeing 253 * buffers unnecessarily during commits when overwrites can be done safely. 254 * 255 * The simplest solution to this problem is to allocate a shadow buffer when a 256 * log item is committed for the second time, and then to only use this buffer 257 * if necessary. The buffer can remain attached to the log item until such time 258 * it is needed, and this is the buffer that is reallocated to match the size of 259 * the incoming modification. Then during the formatting of the item we can swap 260 * the active buffer with the new one if we can't reuse the existing buffer. We 261 * don't free the old buffer as it may be reused on the next modification if 262 * it's size is right, otherwise we'll free and reallocate it at that point. 263 * 264 * This function builds a vector for the changes in each log item in the 265 * transaction. It then works out the length of the buffer needed for each log 266 * item, allocates them and attaches the vector to the log item in preparation 267 * for the formatting step which occurs under the xc_ctx_lock. 268 * 269 * While this means the memory footprint goes up, it avoids the repeated 270 * alloc/free pattern that repeated modifications of an item would otherwise 271 * cause, and hence minimises the CPU overhead of such behaviour. 272 */ 273 static void 274 xlog_cil_alloc_shadow_bufs( 275 struct xlog *log, 276 struct xfs_trans *tp) 277 { 278 struct xfs_log_item *lip; 279 280 list_for_each_entry(lip, &tp->t_items, li_trans) { 281 struct xfs_log_vec *lv; 282 int niovecs = 0; 283 int nbytes = 0; 284 int buf_size; 285 bool ordered = false; 286 287 /* Skip items which aren't dirty in this transaction. */ 288 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 289 continue; 290 291 /* get number of vecs and size of data to be stored */ 292 lip->li_ops->iop_size(lip, &niovecs, &nbytes); 293 294 /* 295 * Ordered items need to be tracked but we do not wish to write 296 * them. We need a logvec to track the object, but we do not 297 * need an iovec or buffer to be allocated for copying data. 298 */ 299 if (niovecs == XFS_LOG_VEC_ORDERED) { 300 ordered = true; 301 niovecs = 0; 302 nbytes = 0; 303 } 304 305 /* 306 * We 64-bit align the length of each iovec so that the start of 307 * the next one is naturally aligned. We'll need to account for 308 * that slack space here. 309 * 310 * We also add the xlog_op_header to each region when 311 * formatting, but that's not accounted to the size of the item 312 * at this point. Hence we'll need an addition number of bytes 313 * for each vector to hold an opheader. 314 * 315 * Then round nbytes up to 64-bit alignment so that the initial 316 * buffer alignment is easy to calculate and verify. 317 */ 318 nbytes += niovecs * 319 (sizeof(uint64_t) + sizeof(struct xlog_op_header)); 320 nbytes = round_up(nbytes, sizeof(uint64_t)); 321 322 /* 323 * The data buffer needs to start 64-bit aligned, so round up 324 * that space to ensure we can align it appropriately and not 325 * overrun the buffer. 326 */ 327 buf_size = nbytes + xlog_cil_iovec_space(niovecs); 328 329 /* 330 * if we have no shadow buffer, or it is too small, we need to 331 * reallocate it. 332 */ 333 if (!lip->li_lv_shadow || 334 buf_size > lip->li_lv_shadow->lv_size) { 335 /* 336 * We free and allocate here as a realloc would copy 337 * unnecessary data. We don't use kvzalloc() for the 338 * same reason - we don't need to zero the data area in 339 * the buffer, only the log vector header and the iovec 340 * storage. 341 */ 342 kvfree(lip->li_lv_shadow); 343 lv = xlog_kvmalloc(buf_size); 344 345 memset(lv, 0, xlog_cil_iovec_space(niovecs)); 346 347 INIT_LIST_HEAD(&lv->lv_list); 348 lv->lv_item = lip; 349 lv->lv_size = buf_size; 350 if (ordered) 351 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 352 else 353 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1]; 354 lip->li_lv_shadow = lv; 355 } else { 356 /* same or smaller, optimise common overwrite case */ 357 lv = lip->li_lv_shadow; 358 if (ordered) 359 lv->lv_buf_len = XFS_LOG_VEC_ORDERED; 360 else 361 lv->lv_buf_len = 0; 362 lv->lv_bytes = 0; 363 } 364 365 /* Ensure the lv is set up according to ->iop_size */ 366 lv->lv_niovecs = niovecs; 367 368 /* The allocated data region lies beyond the iovec region */ 369 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs); 370 } 371 372 } 373 374 /* 375 * Prepare the log item for insertion into the CIL. Calculate the difference in 376 * log space it will consume, and if it is a new item pin it as well. 377 */ 378 STATIC void 379 xfs_cil_prepare_item( 380 struct xlog *log, 381 struct xfs_log_vec *lv, 382 struct xfs_log_vec *old_lv, 383 int *diff_len) 384 { 385 /* Account for the new LV being passed in */ 386 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 387 *diff_len += lv->lv_bytes; 388 389 /* 390 * If there is no old LV, this is the first time we've seen the item in 391 * this CIL context and so we need to pin it. If we are replacing the 392 * old_lv, then remove the space it accounts for and make it the shadow 393 * buffer for later freeing. In both cases we are now switching to the 394 * shadow buffer, so update the pointer to it appropriately. 395 */ 396 if (!old_lv) { 397 if (lv->lv_item->li_ops->iop_pin) 398 lv->lv_item->li_ops->iop_pin(lv->lv_item); 399 lv->lv_item->li_lv_shadow = NULL; 400 } else if (old_lv != lv) { 401 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED); 402 403 *diff_len -= old_lv->lv_bytes; 404 lv->lv_item->li_lv_shadow = old_lv; 405 } 406 407 /* attach new log vector to log item */ 408 lv->lv_item->li_lv = lv; 409 410 /* 411 * If this is the first time the item is being committed to the 412 * CIL, store the sequence number on the log item so we can 413 * tell in future commits whether this is the first checkpoint 414 * the item is being committed into. 415 */ 416 if (!lv->lv_item->li_seq) 417 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence; 418 } 419 420 /* 421 * Format log item into a flat buffers 422 * 423 * For delayed logging, we need to hold a formatted buffer containing all the 424 * changes on the log item. This enables us to relog the item in memory and 425 * write it out asynchronously without needing to relock the object that was 426 * modified at the time it gets written into the iclog. 427 * 428 * This function takes the prepared log vectors attached to each log item, and 429 * formats the changes into the log vector buffer. The buffer it uses is 430 * dependent on the current state of the vector in the CIL - the shadow lv is 431 * guaranteed to be large enough for the current modification, but we will only 432 * use that if we can't reuse the existing lv. If we can't reuse the existing 433 * lv, then simple swap it out for the shadow lv. We don't free it - that is 434 * done lazily either by th enext modification or the freeing of the log item. 435 * 436 * We don't set up region headers during this process; we simply copy the 437 * regions into the flat buffer. We can do this because we still have to do a 438 * formatting step to write the regions into the iclog buffer. Writing the 439 * ophdrs during the iclog write means that we can support splitting large 440 * regions across iclog boundares without needing a change in the format of the 441 * item/region encapsulation. 442 * 443 * Hence what we need to do now is change the rewrite the vector array to point 444 * to the copied region inside the buffer we just allocated. This allows us to 445 * format the regions into the iclog as though they are being formatted 446 * directly out of the objects themselves. 447 */ 448 static void 449 xlog_cil_insert_format_items( 450 struct xlog *log, 451 struct xfs_trans *tp, 452 int *diff_len) 453 { 454 struct xfs_log_item *lip; 455 456 /* Bail out if we didn't find a log item. */ 457 if (list_empty(&tp->t_items)) { 458 ASSERT(0); 459 return; 460 } 461 462 list_for_each_entry(lip, &tp->t_items, li_trans) { 463 struct xfs_log_vec *lv; 464 struct xfs_log_vec *old_lv = NULL; 465 struct xfs_log_vec *shadow; 466 bool ordered = false; 467 468 /* Skip items which aren't dirty in this transaction. */ 469 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 470 continue; 471 472 /* 473 * The formatting size information is already attached to 474 * the shadow lv on the log item. 475 */ 476 shadow = lip->li_lv_shadow; 477 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED) 478 ordered = true; 479 480 /* Skip items that do not have any vectors for writing */ 481 if (!shadow->lv_niovecs && !ordered) 482 continue; 483 484 /* compare to existing item size */ 485 old_lv = lip->li_lv; 486 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) { 487 /* same or smaller, optimise common overwrite case */ 488 lv = lip->li_lv; 489 490 if (ordered) 491 goto insert; 492 493 /* 494 * set the item up as though it is a new insertion so 495 * that the space reservation accounting is correct. 496 */ 497 *diff_len -= lv->lv_bytes; 498 499 /* Ensure the lv is set up according to ->iop_size */ 500 lv->lv_niovecs = shadow->lv_niovecs; 501 502 /* reset the lv buffer information for new formatting */ 503 lv->lv_buf_len = 0; 504 lv->lv_bytes = 0; 505 lv->lv_buf = (char *)lv + 506 xlog_cil_iovec_space(lv->lv_niovecs); 507 } else { 508 /* switch to shadow buffer! */ 509 lv = shadow; 510 lv->lv_item = lip; 511 if (ordered) { 512 /* track as an ordered logvec */ 513 ASSERT(lip->li_lv == NULL); 514 goto insert; 515 } 516 } 517 518 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t))); 519 lip->li_ops->iop_format(lip, lv); 520 insert: 521 xfs_cil_prepare_item(log, lv, old_lv, diff_len); 522 } 523 } 524 525 /* 526 * The use of lockless waitqueue_active() requires that the caller has 527 * serialised itself against the wakeup call in xlog_cil_push_work(). That 528 * can be done by either holding the push lock or the context lock. 529 */ 530 static inline bool 531 xlog_cil_over_hard_limit( 532 struct xlog *log, 533 int32_t space_used) 534 { 535 if (waitqueue_active(&log->l_cilp->xc_push_wait)) 536 return true; 537 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log)) 538 return true; 539 return false; 540 } 541 542 /* 543 * Insert the log items into the CIL and calculate the difference in space 544 * consumed by the item. Add the space to the checkpoint ticket and calculate 545 * if the change requires additional log metadata. If it does, take that space 546 * as well. Remove the amount of space we added to the checkpoint ticket from 547 * the current transaction ticket so that the accounting works out correctly. 548 */ 549 static void 550 xlog_cil_insert_items( 551 struct xlog *log, 552 struct xfs_trans *tp, 553 uint32_t released_space) 554 { 555 struct xfs_cil *cil = log->l_cilp; 556 struct xfs_cil_ctx *ctx = cil->xc_ctx; 557 struct xfs_log_item *lip; 558 int len = 0; 559 int iovhdr_res = 0, split_res = 0, ctx_res = 0; 560 int space_used; 561 int order; 562 unsigned int cpu_nr; 563 struct xlog_cil_pcp *cilpcp; 564 565 ASSERT(tp); 566 567 /* 568 * We can do this safely because the context can't checkpoint until we 569 * are done so it doesn't matter exactly how we update the CIL. 570 */ 571 xlog_cil_insert_format_items(log, tp, &len); 572 573 /* 574 * Subtract the space released by intent cancelation from the space we 575 * consumed so that we remove it from the CIL space and add it back to 576 * the current transaction reservation context. 577 */ 578 len -= released_space; 579 580 /* 581 * Grab the per-cpu pointer for the CIL before we start any accounting. 582 * That ensures that we are running with pre-emption disabled and so we 583 * can't be scheduled away between split sample/update operations that 584 * are done without outside locking to serialise them. 585 */ 586 cpu_nr = get_cpu(); 587 cilpcp = this_cpu_ptr(cil->xc_pcp); 588 589 /* Tell the future push that there was work added by this CPU. */ 590 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask)) 591 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask); 592 593 /* 594 * We need to take the CIL checkpoint unit reservation on the first 595 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't 596 * unnecessarily do an atomic op in the fast path here. We can clear the 597 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that 598 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit. 599 */ 600 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) && 601 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 602 ctx_res = ctx->ticket->t_unit_res; 603 604 /* 605 * Check if we need to steal iclog headers. atomic_read() is not a 606 * locked atomic operation, so we can check the value before we do any 607 * real atomic ops in the fast path. If we've already taken the CIL unit 608 * reservation from this commit, we've already got one iclog header 609 * space reserved so we have to account for that otherwise we risk 610 * overrunning the reservation on this ticket. 611 * 612 * If the CIL is already at the hard limit, we might need more header 613 * space that originally reserved. So steal more header space from every 614 * commit that occurs once we are over the hard limit to ensure the CIL 615 * push won't run out of reservation space. 616 * 617 * This can steal more than we need, but that's OK. 618 * 619 * The cil->xc_ctx_lock provides the serialisation necessary for safely 620 * calling xlog_cil_over_hard_limit() in this context. 621 */ 622 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len; 623 if (atomic_read(&cil->xc_iclog_hdrs) > 0 || 624 xlog_cil_over_hard_limit(log, space_used)) { 625 split_res = log->l_iclog_hsize + 626 sizeof(struct xlog_op_header); 627 if (ctx_res) 628 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1); 629 else 630 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs; 631 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs); 632 } 633 cilpcp->space_reserved += ctx_res; 634 635 /* 636 * Accurately account when over the soft limit, otherwise fold the 637 * percpu count into the global count if over the per-cpu threshold. 638 */ 639 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) { 640 atomic_add(len, &ctx->space_used); 641 } else if (cilpcp->space_used + len > 642 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) { 643 space_used = atomic_add_return(cilpcp->space_used + len, 644 &ctx->space_used); 645 cilpcp->space_used = 0; 646 647 /* 648 * If we just transitioned over the soft limit, we need to 649 * transition to the global atomic counter. 650 */ 651 if (space_used >= XLOG_CIL_SPACE_LIMIT(log)) 652 xlog_cil_insert_pcp_aggregate(cil, ctx); 653 } else { 654 cilpcp->space_used += len; 655 } 656 /* attach the transaction to the CIL if it has any busy extents */ 657 if (!list_empty(&tp->t_busy)) 658 list_splice_init(&tp->t_busy, &cilpcp->busy_extents); 659 660 /* 661 * Now update the order of everything modified in the transaction 662 * and insert items into the CIL if they aren't already there. 663 * We do this here so we only need to take the CIL lock once during 664 * the transaction commit. 665 */ 666 order = atomic_inc_return(&ctx->order_id); 667 list_for_each_entry(lip, &tp->t_items, li_trans) { 668 /* Skip items which aren't dirty in this transaction. */ 669 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags)) 670 continue; 671 672 lip->li_order_id = order; 673 if (!list_empty(&lip->li_cil)) 674 continue; 675 list_add_tail(&lip->li_cil, &cilpcp->log_items); 676 } 677 put_cpu(); 678 679 /* 680 * If we've overrun the reservation, dump the tx details before we move 681 * the log items. Shutdown is imminent... 682 */ 683 tp->t_ticket->t_curr_res -= ctx_res + len; 684 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) { 685 xfs_warn(log->l_mp, "Transaction log reservation overrun:"); 686 xfs_warn(log->l_mp, 687 " log items: %d bytes (iov hdrs: %d bytes)", 688 len, iovhdr_res); 689 xfs_warn(log->l_mp, " split region headers: %d bytes", 690 split_res); 691 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res); 692 xlog_print_trans(tp); 693 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 694 } 695 } 696 697 static inline void 698 xlog_cil_ail_insert_batch( 699 struct xfs_ail *ailp, 700 struct xfs_ail_cursor *cur, 701 struct xfs_log_item **log_items, 702 int nr_items, 703 xfs_lsn_t commit_lsn) 704 { 705 int i; 706 707 spin_lock(&ailp->ail_lock); 708 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ 709 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); 710 711 for (i = 0; i < nr_items; i++) { 712 struct xfs_log_item *lip = log_items[i]; 713 714 if (lip->li_ops->iop_unpin) 715 lip->li_ops->iop_unpin(lip, 0); 716 } 717 } 718 719 /* 720 * Take the checkpoint's log vector chain of items and insert the attached log 721 * items into the AIL. This uses bulk insertion techniques to minimise AIL lock 722 * traffic. 723 * 724 * The AIL tracks log items via the start record LSN of the checkpoint, 725 * not the commit record LSN. This is because we can pipeline multiple 726 * checkpoints, and so the start record of checkpoint N+1 can be 727 * written before the commit record of checkpoint N. i.e: 728 * 729 * start N commit N 730 * +-------------+------------+----------------+ 731 * start N+1 commit N+1 732 * 733 * The tail of the log cannot be moved to the LSN of commit N when all 734 * the items of that checkpoint are written back, because then the 735 * start record for N+1 is no longer in the active portion of the log 736 * and recovery will fail/corrupt the filesystem. 737 * 738 * Hence when all the log items in checkpoint N are written back, the 739 * tail of the log most now only move as far forwards as the start LSN 740 * of checkpoint N+1. 741 * 742 * If we are called with the aborted flag set, it is because a log write during 743 * a CIL checkpoint commit has failed. In this case, all the items in the 744 * checkpoint have already gone through iop_committed and iop_committing, which 745 * means that checkpoint commit abort handling is treated exactly the same as an 746 * iclog write error even though we haven't started any IO yet. Hence in this 747 * case all we need to do is iop_committed processing, followed by an 748 * iop_unpin(aborted) call. 749 * 750 * The AIL cursor is used to optimise the insert process. If commit_lsn is not 751 * at the end of the AIL, the insert cursor avoids the need to walk the AIL to 752 * find the insertion point on every xfs_log_item_batch_insert() call. This 753 * saves a lot of needless list walking and is a net win, even though it 754 * slightly increases that amount of AIL lock traffic to set it up and tear it 755 * down. 756 */ 757 static void 758 xlog_cil_ail_insert( 759 struct xfs_cil_ctx *ctx, 760 bool aborted) 761 { 762 #define LOG_ITEM_BATCH_SIZE 32 763 struct xfs_ail *ailp = ctx->cil->xc_log->l_ailp; 764 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE]; 765 struct xfs_log_vec *lv; 766 struct xfs_ail_cursor cur; 767 xfs_lsn_t old_head; 768 int i = 0; 769 770 /* 771 * Update the AIL head LSN with the commit record LSN of this 772 * checkpoint. As iclogs are always completed in order, this should 773 * always be the same (as iclogs can contain multiple commit records) or 774 * higher LSN than the current head. We do this before insertion of the 775 * items so that log space checks during insertion will reflect the 776 * space that this checkpoint has already consumed. We call 777 * xfs_ail_update_finish() so that tail space and space-based wakeups 778 * will be recalculated appropriately. 779 */ 780 ASSERT(XFS_LSN_CMP(ctx->commit_lsn, ailp->ail_head_lsn) >= 0 || 781 aborted); 782 spin_lock(&ailp->ail_lock); 783 xfs_trans_ail_cursor_last(ailp, &cur, ctx->start_lsn); 784 old_head = ailp->ail_head_lsn; 785 ailp->ail_head_lsn = ctx->commit_lsn; 786 /* xfs_ail_update_finish() drops the ail_lock */ 787 xfs_ail_update_finish(ailp, NULLCOMMITLSN); 788 789 /* 790 * We move the AIL head forwards to account for the space used in the 791 * log before we remove that space from the grant heads. This prevents a 792 * transient condition where reservation space appears to become 793 * available on return, only for it to disappear again immediately as 794 * the AIL head update accounts in the log tail space. 795 */ 796 smp_wmb(); /* paired with smp_rmb in xlog_grant_space_left */ 797 xlog_grant_return_space(ailp->ail_log, old_head, ailp->ail_head_lsn); 798 799 /* unpin all the log items */ 800 list_for_each_entry(lv, &ctx->lv_chain, lv_list) { 801 struct xfs_log_item *lip = lv->lv_item; 802 xfs_lsn_t item_lsn; 803 804 if (aborted) 805 set_bit(XFS_LI_ABORTED, &lip->li_flags); 806 807 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { 808 lip->li_ops->iop_release(lip); 809 continue; 810 } 811 812 if (lip->li_ops->iop_committed) 813 item_lsn = lip->li_ops->iop_committed(lip, 814 ctx->start_lsn); 815 else 816 item_lsn = ctx->start_lsn; 817 818 /* item_lsn of -1 means the item needs no further processing */ 819 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 820 continue; 821 822 /* 823 * if we are aborting the operation, no point in inserting the 824 * object into the AIL as we are in a shutdown situation. 825 */ 826 if (aborted) { 827 ASSERT(xlog_is_shutdown(ailp->ail_log)); 828 if (lip->li_ops->iop_unpin) 829 lip->li_ops->iop_unpin(lip, 1); 830 continue; 831 } 832 833 if (item_lsn != ctx->start_lsn) { 834 835 /* 836 * Not a bulk update option due to unusual item_lsn. 837 * Push into AIL immediately, rechecking the lsn once 838 * we have the ail lock. Then unpin the item. This does 839 * not affect the AIL cursor the bulk insert path is 840 * using. 841 */ 842 spin_lock(&ailp->ail_lock); 843 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) 844 xfs_trans_ail_update(ailp, lip, item_lsn); 845 else 846 spin_unlock(&ailp->ail_lock); 847 if (lip->li_ops->iop_unpin) 848 lip->li_ops->iop_unpin(lip, 0); 849 continue; 850 } 851 852 /* Item is a candidate for bulk AIL insert. */ 853 log_items[i++] = lv->lv_item; 854 if (i >= LOG_ITEM_BATCH_SIZE) { 855 xlog_cil_ail_insert_batch(ailp, &cur, log_items, 856 LOG_ITEM_BATCH_SIZE, ctx->start_lsn); 857 i = 0; 858 } 859 } 860 861 /* make sure we insert the remainder! */ 862 if (i) 863 xlog_cil_ail_insert_batch(ailp, &cur, log_items, i, 864 ctx->start_lsn); 865 866 spin_lock(&ailp->ail_lock); 867 xfs_trans_ail_cursor_done(&cur); 868 spin_unlock(&ailp->ail_lock); 869 } 870 871 static void 872 xlog_cil_free_logvec( 873 struct list_head *lv_chain) 874 { 875 struct xfs_log_vec *lv; 876 877 while (!list_empty(lv_chain)) { 878 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list); 879 list_del_init(&lv->lv_list); 880 kvfree(lv); 881 } 882 } 883 884 /* 885 * Mark all items committed and clear busy extents. We free the log vector 886 * chains in a separate pass so that we unpin the log items as quickly as 887 * possible. 888 */ 889 static void 890 xlog_cil_committed( 891 struct xfs_cil_ctx *ctx) 892 { 893 struct xfs_mount *mp = ctx->cil->xc_log->l_mp; 894 bool abort = xlog_is_shutdown(ctx->cil->xc_log); 895 896 /* 897 * If the I/O failed, we're aborting the commit and already shutdown. 898 * Wake any commit waiters before aborting the log items so we don't 899 * block async log pushers on callbacks. Async log pushers explicitly do 900 * not wait on log force completion because they may be holding locks 901 * required to unpin items. 902 */ 903 if (abort) { 904 spin_lock(&ctx->cil->xc_push_lock); 905 wake_up_all(&ctx->cil->xc_start_wait); 906 wake_up_all(&ctx->cil->xc_commit_wait); 907 spin_unlock(&ctx->cil->xc_push_lock); 908 } 909 910 xlog_cil_ail_insert(ctx, abort); 911 912 xfs_extent_busy_sort(&ctx->busy_extents.extent_list); 913 xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list, 914 xfs_has_discard(mp) && !abort); 915 916 spin_lock(&ctx->cil->xc_push_lock); 917 list_del(&ctx->committing); 918 spin_unlock(&ctx->cil->xc_push_lock); 919 920 xlog_cil_free_logvec(&ctx->lv_chain); 921 922 if (!list_empty(&ctx->busy_extents.extent_list)) { 923 ctx->busy_extents.mount = mp; 924 ctx->busy_extents.owner = ctx; 925 xfs_discard_extents(mp, &ctx->busy_extents); 926 return; 927 } 928 929 kfree(ctx); 930 } 931 932 void 933 xlog_cil_process_committed( 934 struct list_head *list) 935 { 936 struct xfs_cil_ctx *ctx; 937 938 while ((ctx = list_first_entry_or_null(list, 939 struct xfs_cil_ctx, iclog_entry))) { 940 list_del(&ctx->iclog_entry); 941 xlog_cil_committed(ctx); 942 } 943 } 944 945 /* 946 * Record the LSN of the iclog we were just granted space to start writing into. 947 * If the context doesn't have a start_lsn recorded, then this iclog will 948 * contain the start record for the checkpoint. Otherwise this write contains 949 * the commit record for the checkpoint. 950 */ 951 void 952 xlog_cil_set_ctx_write_state( 953 struct xfs_cil_ctx *ctx, 954 struct xlog_in_core *iclog) 955 { 956 struct xfs_cil *cil = ctx->cil; 957 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn); 958 959 ASSERT(!ctx->commit_lsn); 960 if (!ctx->start_lsn) { 961 spin_lock(&cil->xc_push_lock); 962 /* 963 * The LSN we need to pass to the log items on transaction 964 * commit is the LSN reported by the first log vector write, not 965 * the commit lsn. If we use the commit record lsn then we can 966 * move the grant write head beyond the tail LSN and overwrite 967 * it. 968 */ 969 ctx->start_lsn = lsn; 970 wake_up_all(&cil->xc_start_wait); 971 spin_unlock(&cil->xc_push_lock); 972 973 /* 974 * Make sure the metadata we are about to overwrite in the log 975 * has been flushed to stable storage before this iclog is 976 * issued. 977 */ 978 spin_lock(&cil->xc_log->l_icloglock); 979 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 980 spin_unlock(&cil->xc_log->l_icloglock); 981 return; 982 } 983 984 /* 985 * Take a reference to the iclog for the context so that we still hold 986 * it when xlog_write is done and has released it. This means the 987 * context controls when the iclog is released for IO. 988 */ 989 atomic_inc(&iclog->ic_refcnt); 990 991 /* 992 * xlog_state_get_iclog_space() guarantees there is enough space in the 993 * iclog for an entire commit record, so we can attach the context 994 * callbacks now. This needs to be done before we make the commit_lsn 995 * visible to waiters so that checkpoints with commit records in the 996 * same iclog order their IO completion callbacks in the same order that 997 * the commit records appear in the iclog. 998 */ 999 spin_lock(&cil->xc_log->l_icloglock); 1000 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks); 1001 spin_unlock(&cil->xc_log->l_icloglock); 1002 1003 /* 1004 * Now we can record the commit LSN and wake anyone waiting for this 1005 * sequence to have the ordered commit record assigned to a physical 1006 * location in the log. 1007 */ 1008 spin_lock(&cil->xc_push_lock); 1009 ctx->commit_iclog = iclog; 1010 ctx->commit_lsn = lsn; 1011 wake_up_all(&cil->xc_commit_wait); 1012 spin_unlock(&cil->xc_push_lock); 1013 } 1014 1015 1016 /* 1017 * Ensure that the order of log writes follows checkpoint sequence order. This 1018 * relies on the context LSN being zero until the log write has guaranteed the 1019 * LSN that the log write will start at via xlog_state_get_iclog_space(). 1020 */ 1021 enum _record_type { 1022 _START_RECORD, 1023 _COMMIT_RECORD, 1024 }; 1025 1026 static int 1027 xlog_cil_order_write( 1028 struct xfs_cil *cil, 1029 xfs_csn_t sequence, 1030 enum _record_type record) 1031 { 1032 struct xfs_cil_ctx *ctx; 1033 1034 restart: 1035 spin_lock(&cil->xc_push_lock); 1036 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1037 /* 1038 * Avoid getting stuck in this loop because we were woken by the 1039 * shutdown, but then went back to sleep once already in the 1040 * shutdown state. 1041 */ 1042 if (xlog_is_shutdown(cil->xc_log)) { 1043 spin_unlock(&cil->xc_push_lock); 1044 return -EIO; 1045 } 1046 1047 /* 1048 * Higher sequences will wait for this one so skip them. 1049 * Don't wait for our own sequence, either. 1050 */ 1051 if (ctx->sequence >= sequence) 1052 continue; 1053 1054 /* Wait until the LSN for the record has been recorded. */ 1055 switch (record) { 1056 case _START_RECORD: 1057 if (!ctx->start_lsn) { 1058 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock); 1059 goto restart; 1060 } 1061 break; 1062 case _COMMIT_RECORD: 1063 if (!ctx->commit_lsn) { 1064 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1065 goto restart; 1066 } 1067 break; 1068 } 1069 } 1070 spin_unlock(&cil->xc_push_lock); 1071 return 0; 1072 } 1073 1074 /* 1075 * Write out the log vector change now attached to the CIL context. This will 1076 * write a start record that needs to be strictly ordered in ascending CIL 1077 * sequence order so that log recovery will always use in-order start LSNs when 1078 * replaying checkpoints. 1079 */ 1080 static int 1081 xlog_cil_write_chain( 1082 struct xfs_cil_ctx *ctx, 1083 uint32_t chain_len) 1084 { 1085 struct xlog *log = ctx->cil->xc_log; 1086 int error; 1087 1088 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD); 1089 if (error) 1090 return error; 1091 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len); 1092 } 1093 1094 /* 1095 * Write out the commit record of a checkpoint transaction to close off a 1096 * running log write. These commit records are strictly ordered in ascending CIL 1097 * sequence order so that log recovery will always replay the checkpoints in the 1098 * correct order. 1099 */ 1100 static int 1101 xlog_cil_write_commit_record( 1102 struct xfs_cil_ctx *ctx) 1103 { 1104 struct xlog *log = ctx->cil->xc_log; 1105 struct xlog_op_header ophdr = { 1106 .oh_clientid = XFS_TRANSACTION, 1107 .oh_tid = cpu_to_be32(ctx->ticket->t_tid), 1108 .oh_flags = XLOG_COMMIT_TRANS, 1109 }; 1110 struct xfs_log_iovec reg = { 1111 .i_addr = &ophdr, 1112 .i_len = sizeof(struct xlog_op_header), 1113 .i_type = XLOG_REG_TYPE_COMMIT, 1114 }; 1115 struct xfs_log_vec vec = { 1116 .lv_niovecs = 1, 1117 .lv_iovecp = ®, 1118 }; 1119 int error; 1120 LIST_HEAD(lv_chain); 1121 list_add(&vec.lv_list, &lv_chain); 1122 1123 if (xlog_is_shutdown(log)) 1124 return -EIO; 1125 1126 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD); 1127 if (error) 1128 return error; 1129 1130 /* account for space used by record data */ 1131 ctx->ticket->t_curr_res -= reg.i_len; 1132 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len); 1133 if (error) 1134 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 1135 return error; 1136 } 1137 1138 struct xlog_cil_trans_hdr { 1139 struct xlog_op_header oph[2]; 1140 struct xfs_trans_header thdr; 1141 struct xfs_log_iovec lhdr[2]; 1142 }; 1143 1144 /* 1145 * Build a checkpoint transaction header to begin the journal transaction. We 1146 * need to account for the space used by the transaction header here as it is 1147 * not accounted for in xlog_write(). 1148 * 1149 * This is the only place we write a transaction header, so we also build the 1150 * log opheaders that indicate the start of a log transaction and wrap the 1151 * transaction header. We keep the start record in it's own log vector rather 1152 * than compacting them into a single region as this ends up making the logic 1153 * in xlog_write() for handling empty opheaders for start, commit and unmount 1154 * records much simpler. 1155 */ 1156 static void 1157 xlog_cil_build_trans_hdr( 1158 struct xfs_cil_ctx *ctx, 1159 struct xlog_cil_trans_hdr *hdr, 1160 struct xfs_log_vec *lvhdr, 1161 int num_iovecs) 1162 { 1163 struct xlog_ticket *tic = ctx->ticket; 1164 __be32 tid = cpu_to_be32(tic->t_tid); 1165 1166 memset(hdr, 0, sizeof(*hdr)); 1167 1168 /* Log start record */ 1169 hdr->oph[0].oh_tid = tid; 1170 hdr->oph[0].oh_clientid = XFS_TRANSACTION; 1171 hdr->oph[0].oh_flags = XLOG_START_TRANS; 1172 1173 /* log iovec region pointer */ 1174 hdr->lhdr[0].i_addr = &hdr->oph[0]; 1175 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header); 1176 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER; 1177 1178 /* log opheader */ 1179 hdr->oph[1].oh_tid = tid; 1180 hdr->oph[1].oh_clientid = XFS_TRANSACTION; 1181 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header)); 1182 1183 /* transaction header in host byte order format */ 1184 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC; 1185 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT; 1186 hdr->thdr.th_tid = tic->t_tid; 1187 hdr->thdr.th_num_items = num_iovecs; 1188 1189 /* log iovec region pointer */ 1190 hdr->lhdr[1].i_addr = &hdr->oph[1]; 1191 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) + 1192 sizeof(struct xfs_trans_header); 1193 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR; 1194 1195 lvhdr->lv_niovecs = 2; 1196 lvhdr->lv_iovecp = &hdr->lhdr[0]; 1197 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len; 1198 1199 tic->t_curr_res -= lvhdr->lv_bytes; 1200 } 1201 1202 /* 1203 * CIL item reordering compare function. We want to order in ascending ID order, 1204 * but we want to leave items with the same ID in the order they were added to 1205 * the list. This is important for operations like reflink where we log 4 order 1206 * dependent intents in a single transaction when we overwrite an existing 1207 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop), 1208 * CUI (inc), BUI(remap)... 1209 */ 1210 static int 1211 xlog_cil_order_cmp( 1212 void *priv, 1213 const struct list_head *a, 1214 const struct list_head *b) 1215 { 1216 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list); 1217 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list); 1218 1219 return l1->lv_order_id > l2->lv_order_id; 1220 } 1221 1222 /* 1223 * Pull all the log vectors off the items in the CIL, and remove the items from 1224 * the CIL. We don't need the CIL lock here because it's only needed on the 1225 * transaction commit side which is currently locked out by the flush lock. 1226 * 1227 * If a log item is marked with a whiteout, we do not need to write it to the 1228 * journal and so we just move them to the whiteout list for the caller to 1229 * dispose of appropriately. 1230 */ 1231 static void 1232 xlog_cil_build_lv_chain( 1233 struct xfs_cil_ctx *ctx, 1234 struct list_head *whiteouts, 1235 uint32_t *num_iovecs, 1236 uint32_t *num_bytes) 1237 { 1238 while (!list_empty(&ctx->log_items)) { 1239 struct xfs_log_item *item; 1240 struct xfs_log_vec *lv; 1241 1242 item = list_first_entry(&ctx->log_items, 1243 struct xfs_log_item, li_cil); 1244 1245 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) { 1246 list_move(&item->li_cil, whiteouts); 1247 trace_xfs_cil_whiteout_skip(item); 1248 continue; 1249 } 1250 1251 lv = item->li_lv; 1252 lv->lv_order_id = item->li_order_id; 1253 1254 /* we don't write ordered log vectors */ 1255 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) 1256 *num_bytes += lv->lv_bytes; 1257 *num_iovecs += lv->lv_niovecs; 1258 list_add_tail(&lv->lv_list, &ctx->lv_chain); 1259 1260 list_del_init(&item->li_cil); 1261 item->li_order_id = 0; 1262 item->li_lv = NULL; 1263 } 1264 } 1265 1266 static void 1267 xlog_cil_cleanup_whiteouts( 1268 struct list_head *whiteouts) 1269 { 1270 while (!list_empty(whiteouts)) { 1271 struct xfs_log_item *item = list_first_entry(whiteouts, 1272 struct xfs_log_item, li_cil); 1273 list_del_init(&item->li_cil); 1274 trace_xfs_cil_whiteout_unpin(item); 1275 item->li_ops->iop_unpin(item, 1); 1276 } 1277 } 1278 1279 /* 1280 * Push the Committed Item List to the log. 1281 * 1282 * If the current sequence is the same as xc_push_seq we need to do a flush. If 1283 * xc_push_seq is less than the current sequence, then it has already been 1284 * flushed and we don't need to do anything - the caller will wait for it to 1285 * complete if necessary. 1286 * 1287 * xc_push_seq is checked unlocked against the sequence number for a match. 1288 * Hence we can allow log forces to run racily and not issue pushes for the 1289 * same sequence twice. If we get a race between multiple pushes for the same 1290 * sequence they will block on the first one and then abort, hence avoiding 1291 * needless pushes. 1292 * 1293 * This runs from a workqueue so it does not inherent any specific memory 1294 * allocation context. However, we do not want to block on memory reclaim 1295 * recursing back into the filesystem because this push may have been triggered 1296 * by memory reclaim itself. Hence we really need to run under full GFP_NOFS 1297 * contraints here. 1298 */ 1299 static void 1300 xlog_cil_push_work( 1301 struct work_struct *work) 1302 { 1303 unsigned int nofs_flags = memalloc_nofs_save(); 1304 struct xfs_cil_ctx *ctx = 1305 container_of(work, struct xfs_cil_ctx, push_work); 1306 struct xfs_cil *cil = ctx->cil; 1307 struct xlog *log = cil->xc_log; 1308 struct xfs_cil_ctx *new_ctx; 1309 int num_iovecs = 0; 1310 int num_bytes = 0; 1311 int error = 0; 1312 struct xlog_cil_trans_hdr thdr; 1313 struct xfs_log_vec lvhdr = {}; 1314 xfs_csn_t push_seq; 1315 bool push_commit_stable; 1316 LIST_HEAD (whiteouts); 1317 struct xlog_ticket *ticket; 1318 1319 new_ctx = xlog_cil_ctx_alloc(); 1320 new_ctx->ticket = xlog_cil_ticket_alloc(log); 1321 1322 down_write(&cil->xc_ctx_lock); 1323 1324 spin_lock(&cil->xc_push_lock); 1325 push_seq = cil->xc_push_seq; 1326 ASSERT(push_seq <= ctx->sequence); 1327 push_commit_stable = cil->xc_push_commit_stable; 1328 cil->xc_push_commit_stable = false; 1329 1330 /* 1331 * As we are about to switch to a new, empty CIL context, we no longer 1332 * need to throttle tasks on CIL space overruns. Wake any waiters that 1333 * the hard push throttle may have caught so they can start committing 1334 * to the new context. The ctx->xc_push_lock provides the serialisation 1335 * necessary for safely using the lockless waitqueue_active() check in 1336 * this context. 1337 */ 1338 if (waitqueue_active(&cil->xc_push_wait)) 1339 wake_up_all(&cil->xc_push_wait); 1340 1341 xlog_cil_push_pcp_aggregate(cil, ctx); 1342 1343 /* 1344 * Check if we've anything to push. If there is nothing, then we don't 1345 * move on to a new sequence number and so we have to be able to push 1346 * this sequence again later. 1347 */ 1348 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1349 cil->xc_push_seq = 0; 1350 spin_unlock(&cil->xc_push_lock); 1351 goto out_skip; 1352 } 1353 1354 1355 /* check for a previously pushed sequence */ 1356 if (push_seq < ctx->sequence) { 1357 spin_unlock(&cil->xc_push_lock); 1358 goto out_skip; 1359 } 1360 1361 /* 1362 * We are now going to push this context, so add it to the committing 1363 * list before we do anything else. This ensures that anyone waiting on 1364 * this push can easily detect the difference between a "push in 1365 * progress" and "CIL is empty, nothing to do". 1366 * 1367 * IOWs, a wait loop can now check for: 1368 * the current sequence not being found on the committing list; 1369 * an empty CIL; and 1370 * an unchanged sequence number 1371 * to detect a push that had nothing to do and therefore does not need 1372 * waiting on. If the CIL is not empty, we get put on the committing 1373 * list before emptying the CIL and bumping the sequence number. Hence 1374 * an empty CIL and an unchanged sequence number means we jumped out 1375 * above after doing nothing. 1376 * 1377 * Hence the waiter will either find the commit sequence on the 1378 * committing list or the sequence number will be unchanged and the CIL 1379 * still dirty. In that latter case, the push has not yet started, and 1380 * so the waiter will have to continue trying to check the CIL 1381 * committing list until it is found. In extreme cases of delay, the 1382 * sequence may fully commit between the attempts the wait makes to wait 1383 * on the commit sequence. 1384 */ 1385 list_add(&ctx->committing, &cil->xc_committing); 1386 spin_unlock(&cil->xc_push_lock); 1387 1388 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes); 1389 1390 /* 1391 * Switch the contexts so we can drop the context lock and move out 1392 * of a shared context. We can't just go straight to the commit record, 1393 * though - we need to synchronise with previous and future commits so 1394 * that the commit records are correctly ordered in the log to ensure 1395 * that we process items during log IO completion in the correct order. 1396 * 1397 * For example, if we get an EFI in one checkpoint and the EFD in the 1398 * next (e.g. due to log forces), we do not want the checkpoint with 1399 * the EFD to be committed before the checkpoint with the EFI. Hence 1400 * we must strictly order the commit records of the checkpoints so 1401 * that: a) the checkpoint callbacks are attached to the iclogs in the 1402 * correct order; and b) the checkpoints are replayed in correct order 1403 * in log recovery. 1404 * 1405 * Hence we need to add this context to the committing context list so 1406 * that higher sequences will wait for us to write out a commit record 1407 * before they do. 1408 * 1409 * xfs_log_force_seq requires us to mirror the new sequence into the cil 1410 * structure atomically with the addition of this sequence to the 1411 * committing list. This also ensures that we can do unlocked checks 1412 * against the current sequence in log forces without risking 1413 * deferencing a freed context pointer. 1414 */ 1415 spin_lock(&cil->xc_push_lock); 1416 xlog_cil_ctx_switch(cil, new_ctx); 1417 spin_unlock(&cil->xc_push_lock); 1418 up_write(&cil->xc_ctx_lock); 1419 1420 /* 1421 * Sort the log vector chain before we add the transaction headers. 1422 * This ensures we always have the transaction headers at the start 1423 * of the chain. 1424 */ 1425 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp); 1426 1427 /* 1428 * Build a checkpoint transaction header and write it to the log to 1429 * begin the transaction. We need to account for the space used by the 1430 * transaction header here as it is not accounted for in xlog_write(). 1431 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so 1432 * it gets written into the iclog first. 1433 */ 1434 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs); 1435 num_bytes += lvhdr.lv_bytes; 1436 list_add(&lvhdr.lv_list, &ctx->lv_chain); 1437 1438 /* 1439 * Take the lvhdr back off the lv_chain immediately after calling 1440 * xlog_cil_write_chain() as it should not be passed to log IO 1441 * completion. 1442 */ 1443 error = xlog_cil_write_chain(ctx, num_bytes); 1444 list_del(&lvhdr.lv_list); 1445 if (error) 1446 goto out_abort_free_ticket; 1447 1448 error = xlog_cil_write_commit_record(ctx); 1449 if (error) 1450 goto out_abort_free_ticket; 1451 1452 /* 1453 * Grab the ticket from the ctx so we can ungrant it after releasing the 1454 * commit_iclog. The ctx may be freed by the time we return from 1455 * releasing the commit_iclog (i.e. checkpoint has been completed and 1456 * callback run) so we can't reference the ctx after the call to 1457 * xlog_state_release_iclog(). 1458 */ 1459 ticket = ctx->ticket; 1460 1461 /* 1462 * If the checkpoint spans multiple iclogs, wait for all previous iclogs 1463 * to complete before we submit the commit_iclog. We can't use state 1464 * checks for this - ACTIVE can be either a past completed iclog or a 1465 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a 1466 * past or future iclog awaiting IO or ordered IO completion to be run. 1467 * In the latter case, if it's a future iclog and we wait on it, the we 1468 * will hang because it won't get processed through to ic_force_wait 1469 * wakeup until this commit_iclog is written to disk. Hence we use the 1470 * iclog header lsn and compare it to the commit lsn to determine if we 1471 * need to wait on iclogs or not. 1472 */ 1473 spin_lock(&log->l_icloglock); 1474 if (ctx->start_lsn != ctx->commit_lsn) { 1475 xfs_lsn_t plsn; 1476 1477 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn); 1478 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) { 1479 /* 1480 * Waiting on ic_force_wait orders the completion of 1481 * iclogs older than ic_prev. Hence we only need to wait 1482 * on the most recent older iclog here. 1483 */ 1484 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev); 1485 spin_lock(&log->l_icloglock); 1486 } 1487 1488 /* 1489 * We need to issue a pre-flush so that the ordering for this 1490 * checkpoint is correctly preserved down to stable storage. 1491 */ 1492 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH; 1493 } 1494 1495 /* 1496 * The commit iclog must be written to stable storage to guarantee 1497 * journal IO vs metadata writeback IO is correctly ordered on stable 1498 * storage. 1499 * 1500 * If the push caller needs the commit to be immediately stable and the 1501 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it 1502 * will be written when released, switch it's state to WANT_SYNC right 1503 * now. 1504 */ 1505 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA; 1506 if (push_commit_stable && 1507 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE) 1508 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0); 1509 ticket = ctx->ticket; 1510 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1511 1512 /* Not safe to reference ctx now! */ 1513 1514 spin_unlock(&log->l_icloglock); 1515 xlog_cil_cleanup_whiteouts(&whiteouts); 1516 xfs_log_ticket_ungrant(log, ticket); 1517 memalloc_nofs_restore(nofs_flags); 1518 return; 1519 1520 out_skip: 1521 up_write(&cil->xc_ctx_lock); 1522 xfs_log_ticket_put(new_ctx->ticket); 1523 kfree(new_ctx); 1524 memalloc_nofs_restore(nofs_flags); 1525 return; 1526 1527 out_abort_free_ticket: 1528 ASSERT(xlog_is_shutdown(log)); 1529 xlog_cil_cleanup_whiteouts(&whiteouts); 1530 if (!ctx->commit_iclog) { 1531 xfs_log_ticket_ungrant(log, ctx->ticket); 1532 xlog_cil_committed(ctx); 1533 memalloc_nofs_restore(nofs_flags); 1534 return; 1535 } 1536 spin_lock(&log->l_icloglock); 1537 ticket = ctx->ticket; 1538 xlog_state_release_iclog(log, ctx->commit_iclog, ticket); 1539 /* Not safe to reference ctx now! */ 1540 spin_unlock(&log->l_icloglock); 1541 xfs_log_ticket_ungrant(log, ticket); 1542 memalloc_nofs_restore(nofs_flags); 1543 } 1544 1545 /* 1546 * We need to push CIL every so often so we don't cache more than we can fit in 1547 * the log. The limit really is that a checkpoint can't be more than half the 1548 * log (the current checkpoint is not allowed to overwrite the previous 1549 * checkpoint), but commit latency and memory usage limit this to a smaller 1550 * size. 1551 */ 1552 static void 1553 xlog_cil_push_background( 1554 struct xlog *log) 1555 { 1556 struct xfs_cil *cil = log->l_cilp; 1557 int space_used = atomic_read(&cil->xc_ctx->space_used); 1558 1559 /* 1560 * The cil won't be empty because we are called while holding the 1561 * context lock so whatever we added to the CIL will still be there. 1562 */ 1563 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1564 1565 /* 1566 * We are done if: 1567 * - we haven't used up all the space available yet; or 1568 * - we've already queued up a push; and 1569 * - we're not over the hard limit; and 1570 * - nothing has been over the hard limit. 1571 * 1572 * If so, we don't need to take the push lock as there's nothing to do. 1573 */ 1574 if (space_used < XLOG_CIL_SPACE_LIMIT(log) || 1575 (cil->xc_push_seq == cil->xc_current_sequence && 1576 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) && 1577 !waitqueue_active(&cil->xc_push_wait))) { 1578 up_read(&cil->xc_ctx_lock); 1579 return; 1580 } 1581 1582 spin_lock(&cil->xc_push_lock); 1583 if (cil->xc_push_seq < cil->xc_current_sequence) { 1584 cil->xc_push_seq = cil->xc_current_sequence; 1585 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1586 } 1587 1588 /* 1589 * Drop the context lock now, we can't hold that if we need to sleep 1590 * because we are over the blocking threshold. The push_lock is still 1591 * held, so blocking threshold sleep/wakeup is still correctly 1592 * serialised here. 1593 */ 1594 up_read(&cil->xc_ctx_lock); 1595 1596 /* 1597 * If we are well over the space limit, throttle the work that is being 1598 * done until the push work on this context has begun. Enforce the hard 1599 * throttle on all transaction commits once it has been activated, even 1600 * if the committing transactions have resulted in the space usage 1601 * dipping back down under the hard limit. 1602 * 1603 * The ctx->xc_push_lock provides the serialisation necessary for safely 1604 * calling xlog_cil_over_hard_limit() in this context. 1605 */ 1606 if (xlog_cil_over_hard_limit(log, space_used)) { 1607 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket); 1608 ASSERT(space_used < log->l_logsize); 1609 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock); 1610 return; 1611 } 1612 1613 spin_unlock(&cil->xc_push_lock); 1614 1615 } 1616 1617 /* 1618 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence 1619 * number that is passed. When it returns, the work will be queued for 1620 * @push_seq, but it won't be completed. 1621 * 1622 * If the caller is performing a synchronous force, we will flush the workqueue 1623 * to get previously queued work moving to minimise the wait time they will 1624 * undergo waiting for all outstanding pushes to complete. The caller is 1625 * expected to do the required waiting for push_seq to complete. 1626 * 1627 * If the caller is performing an async push, we need to ensure that the 1628 * checkpoint is fully flushed out of the iclogs when we finish the push. If we 1629 * don't do this, then the commit record may remain sitting in memory in an 1630 * ACTIVE iclog. This then requires another full log force to push to disk, 1631 * which defeats the purpose of having an async, non-blocking CIL force 1632 * mechanism. Hence in this case we need to pass a flag to the push work to 1633 * indicate it needs to flush the commit record itself. 1634 */ 1635 static void 1636 xlog_cil_push_now( 1637 struct xlog *log, 1638 xfs_lsn_t push_seq, 1639 bool async) 1640 { 1641 struct xfs_cil *cil = log->l_cilp; 1642 1643 if (!cil) 1644 return; 1645 1646 ASSERT(push_seq && push_seq <= cil->xc_current_sequence); 1647 1648 /* start on any pending background push to minimise wait time on it */ 1649 if (!async) 1650 flush_workqueue(cil->xc_push_wq); 1651 1652 spin_lock(&cil->xc_push_lock); 1653 1654 /* 1655 * If this is an async flush request, we always need to set the 1656 * xc_push_commit_stable flag even if something else has already queued 1657 * a push. The flush caller is asking for the CIL to be on stable 1658 * storage when the next push completes, so regardless of who has queued 1659 * the push, the flush requires stable semantics from it. 1660 */ 1661 cil->xc_push_commit_stable = async; 1662 1663 /* 1664 * If the CIL is empty or we've already pushed the sequence then 1665 * there's no more work that we need to do. 1666 */ 1667 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) || 1668 push_seq <= cil->xc_push_seq) { 1669 spin_unlock(&cil->xc_push_lock); 1670 return; 1671 } 1672 1673 cil->xc_push_seq = push_seq; 1674 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work); 1675 spin_unlock(&cil->xc_push_lock); 1676 } 1677 1678 bool 1679 xlog_cil_empty( 1680 struct xlog *log) 1681 { 1682 struct xfs_cil *cil = log->l_cilp; 1683 bool empty = false; 1684 1685 spin_lock(&cil->xc_push_lock); 1686 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) 1687 empty = true; 1688 spin_unlock(&cil->xc_push_lock); 1689 return empty; 1690 } 1691 1692 /* 1693 * If there are intent done items in this transaction and the related intent was 1694 * committed in the current (same) CIL checkpoint, we don't need to write either 1695 * the intent or intent done item to the journal as the change will be 1696 * journalled atomically within this checkpoint. As we cannot remove items from 1697 * the CIL here, mark the related intent with a whiteout so that the CIL push 1698 * can remove it rather than writing it to the journal. Then remove the intent 1699 * done item from the current transaction and release it so it doesn't get put 1700 * into the CIL at all. 1701 */ 1702 static uint32_t 1703 xlog_cil_process_intents( 1704 struct xfs_cil *cil, 1705 struct xfs_trans *tp) 1706 { 1707 struct xfs_log_item *lip, *ilip, *next; 1708 uint32_t len = 0; 1709 1710 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1711 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE)) 1712 continue; 1713 1714 ilip = lip->li_ops->iop_intent(lip); 1715 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip)) 1716 continue; 1717 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags); 1718 trace_xfs_cil_whiteout_mark(ilip); 1719 len += ilip->li_lv->lv_bytes; 1720 kvfree(ilip->li_lv); 1721 ilip->li_lv = NULL; 1722 1723 xfs_trans_del_item(lip); 1724 lip->li_ops->iop_release(lip); 1725 } 1726 return len; 1727 } 1728 1729 /* 1730 * Commit a transaction with the given vector to the Committed Item List. 1731 * 1732 * To do this, we need to format the item, pin it in memory if required and 1733 * account for the space used by the transaction. Once we have done that we 1734 * need to release the unused reservation for the transaction, attach the 1735 * transaction to the checkpoint context so we carry the busy extents through 1736 * to checkpoint completion, and then unlock all the items in the transaction. 1737 * 1738 * Called with the context lock already held in read mode to lock out 1739 * background commit, returns without it held once background commits are 1740 * allowed again. 1741 */ 1742 void 1743 xlog_cil_commit( 1744 struct xlog *log, 1745 struct xfs_trans *tp, 1746 xfs_csn_t *commit_seq, 1747 bool regrant) 1748 { 1749 struct xfs_cil *cil = log->l_cilp; 1750 struct xfs_log_item *lip, *next; 1751 uint32_t released_space = 0; 1752 1753 /* 1754 * Do all necessary memory allocation before we lock the CIL. 1755 * This ensures the allocation does not deadlock with a CIL 1756 * push in memory reclaim (e.g. from kswapd). 1757 */ 1758 xlog_cil_alloc_shadow_bufs(log, tp); 1759 1760 /* lock out background commit */ 1761 down_read(&cil->xc_ctx_lock); 1762 1763 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE) 1764 released_space = xlog_cil_process_intents(cil, tp); 1765 1766 xlog_cil_insert_items(log, tp, released_space); 1767 1768 if (regrant && !xlog_is_shutdown(log)) 1769 xfs_log_ticket_regrant(log, tp->t_ticket); 1770 else 1771 xfs_log_ticket_ungrant(log, tp->t_ticket); 1772 tp->t_ticket = NULL; 1773 xfs_trans_unreserve_and_mod_sb(tp); 1774 1775 /* 1776 * Once all the items of the transaction have been copied to the CIL, 1777 * the items can be unlocked and possibly freed. 1778 * 1779 * This needs to be done before we drop the CIL context lock because we 1780 * have to update state in the log items and unlock them before they go 1781 * to disk. If we don't, then the CIL checkpoint can race with us and 1782 * we can run checkpoint completion before we've updated and unlocked 1783 * the log items. This affects (at least) processing of stale buffers, 1784 * inodes and EFIs. 1785 */ 1786 trace_xfs_trans_commit_items(tp, _RET_IP_); 1787 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { 1788 xfs_trans_del_item(lip); 1789 if (lip->li_ops->iop_committing) 1790 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence); 1791 } 1792 if (commit_seq) 1793 *commit_seq = cil->xc_ctx->sequence; 1794 1795 /* xlog_cil_push_background() releases cil->xc_ctx_lock */ 1796 xlog_cil_push_background(log); 1797 } 1798 1799 /* 1800 * Flush the CIL to stable storage but don't wait for it to complete. This 1801 * requires the CIL push to ensure the commit record for the push hits the disk, 1802 * but otherwise is no different to a push done from a log force. 1803 */ 1804 void 1805 xlog_cil_flush( 1806 struct xlog *log) 1807 { 1808 xfs_csn_t seq = log->l_cilp->xc_current_sequence; 1809 1810 trace_xfs_log_force(log->l_mp, seq, _RET_IP_); 1811 xlog_cil_push_now(log, seq, true); 1812 1813 /* 1814 * If the CIL is empty, make sure that any previous checkpoint that may 1815 * still be in an active iclog is pushed to stable storage. 1816 */ 1817 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags)) 1818 xfs_log_force(log->l_mp, 0); 1819 } 1820 1821 /* 1822 * Conditionally push the CIL based on the sequence passed in. 1823 * 1824 * We only need to push if we haven't already pushed the sequence number given. 1825 * Hence the only time we will trigger a push here is if the push sequence is 1826 * the same as the current context. 1827 * 1828 * We return the current commit lsn to allow the callers to determine if a 1829 * iclog flush is necessary following this call. 1830 */ 1831 xfs_lsn_t 1832 xlog_cil_force_seq( 1833 struct xlog *log, 1834 xfs_csn_t sequence) 1835 { 1836 struct xfs_cil *cil = log->l_cilp; 1837 struct xfs_cil_ctx *ctx; 1838 xfs_lsn_t commit_lsn = NULLCOMMITLSN; 1839 1840 ASSERT(sequence <= cil->xc_current_sequence); 1841 1842 if (!sequence) 1843 sequence = cil->xc_current_sequence; 1844 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_); 1845 1846 /* 1847 * check to see if we need to force out the current context. 1848 * xlog_cil_push() handles racing pushes for the same sequence, 1849 * so no need to deal with it here. 1850 */ 1851 restart: 1852 xlog_cil_push_now(log, sequence, false); 1853 1854 /* 1855 * See if we can find a previous sequence still committing. 1856 * We need to wait for all previous sequence commits to complete 1857 * before allowing the force of push_seq to go ahead. Hence block 1858 * on commits for those as well. 1859 */ 1860 spin_lock(&cil->xc_push_lock); 1861 list_for_each_entry(ctx, &cil->xc_committing, committing) { 1862 /* 1863 * Avoid getting stuck in this loop because we were woken by the 1864 * shutdown, but then went back to sleep once already in the 1865 * shutdown state. 1866 */ 1867 if (xlog_is_shutdown(log)) 1868 goto out_shutdown; 1869 if (ctx->sequence > sequence) 1870 continue; 1871 if (!ctx->commit_lsn) { 1872 /* 1873 * It is still being pushed! Wait for the push to 1874 * complete, then start again from the beginning. 1875 */ 1876 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 1877 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock); 1878 goto restart; 1879 } 1880 if (ctx->sequence != sequence) 1881 continue; 1882 /* found it! */ 1883 commit_lsn = ctx->commit_lsn; 1884 } 1885 1886 /* 1887 * The call to xlog_cil_push_now() executes the push in the background. 1888 * Hence by the time we have got here it our sequence may not have been 1889 * pushed yet. This is true if the current sequence still matches the 1890 * push sequence after the above wait loop and the CIL still contains 1891 * dirty objects. This is guaranteed by the push code first adding the 1892 * context to the committing list before emptying the CIL. 1893 * 1894 * Hence if we don't find the context in the committing list and the 1895 * current sequence number is unchanged then the CIL contents are 1896 * significant. If the CIL is empty, if means there was nothing to push 1897 * and that means there is nothing to wait for. If the CIL is not empty, 1898 * it means we haven't yet started the push, because if it had started 1899 * we would have found the context on the committing list. 1900 */ 1901 if (sequence == cil->xc_current_sequence && 1902 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) { 1903 spin_unlock(&cil->xc_push_lock); 1904 goto restart; 1905 } 1906 1907 spin_unlock(&cil->xc_push_lock); 1908 return commit_lsn; 1909 1910 /* 1911 * We detected a shutdown in progress. We need to trigger the log force 1912 * to pass through it's iclog state machine error handling, even though 1913 * we are already in a shutdown state. Hence we can't return 1914 * NULLCOMMITLSN here as that has special meaning to log forces (i.e. 1915 * LSN is already stable), so we return a zero LSN instead. 1916 */ 1917 out_shutdown: 1918 spin_unlock(&cil->xc_push_lock); 1919 return 0; 1920 } 1921 1922 /* 1923 * Perform initial CIL structure initialisation. 1924 */ 1925 int 1926 xlog_cil_init( 1927 struct xlog *log) 1928 { 1929 struct xfs_cil *cil; 1930 struct xfs_cil_ctx *ctx; 1931 struct xlog_cil_pcp *cilpcp; 1932 int cpu; 1933 1934 cil = kzalloc(sizeof(*cil), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1935 if (!cil) 1936 return -ENOMEM; 1937 /* 1938 * Limit the CIL pipeline depth to 4 concurrent works to bound the 1939 * concurrency the log spinlocks will be exposed to. 1940 */ 1941 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s", 1942 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND), 1943 4, log->l_mp->m_super->s_id); 1944 if (!cil->xc_push_wq) 1945 goto out_destroy_cil; 1946 1947 cil->xc_log = log; 1948 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp); 1949 if (!cil->xc_pcp) 1950 goto out_destroy_wq; 1951 1952 for_each_possible_cpu(cpu) { 1953 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu); 1954 INIT_LIST_HEAD(&cilpcp->busy_extents); 1955 INIT_LIST_HEAD(&cilpcp->log_items); 1956 } 1957 1958 INIT_LIST_HEAD(&cil->xc_committing); 1959 spin_lock_init(&cil->xc_push_lock); 1960 init_waitqueue_head(&cil->xc_push_wait); 1961 init_rwsem(&cil->xc_ctx_lock); 1962 init_waitqueue_head(&cil->xc_start_wait); 1963 init_waitqueue_head(&cil->xc_commit_wait); 1964 log->l_cilp = cil; 1965 1966 ctx = xlog_cil_ctx_alloc(); 1967 xlog_cil_ctx_switch(cil, ctx); 1968 return 0; 1969 1970 out_destroy_wq: 1971 destroy_workqueue(cil->xc_push_wq); 1972 out_destroy_cil: 1973 kfree(cil); 1974 return -ENOMEM; 1975 } 1976 1977 void 1978 xlog_cil_destroy( 1979 struct xlog *log) 1980 { 1981 struct xfs_cil *cil = log->l_cilp; 1982 1983 if (cil->xc_ctx) { 1984 if (cil->xc_ctx->ticket) 1985 xfs_log_ticket_put(cil->xc_ctx->ticket); 1986 kfree(cil->xc_ctx); 1987 } 1988 1989 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)); 1990 free_percpu(cil->xc_pcp); 1991 destroy_workqueue(cil->xc_push_wq); 1992 kfree(cil); 1993 } 1994 1995
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.