~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_log_recover.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_sb.h"
 14 #include "xfs_mount.h"
 15 #include "xfs_defer.h"
 16 #include "xfs_inode.h"
 17 #include "xfs_trans.h"
 18 #include "xfs_log.h"
 19 #include "xfs_log_priv.h"
 20 #include "xfs_log_recover.h"
 21 #include "xfs_trans_priv.h"
 22 #include "xfs_alloc.h"
 23 #include "xfs_ialloc.h"
 24 #include "xfs_trace.h"
 25 #include "xfs_icache.h"
 26 #include "xfs_error.h"
 27 #include "xfs_buf_item.h"
 28 #include "xfs_ag.h"
 29 #include "xfs_quota.h"
 30 #include "xfs_reflink.h"
 31 
 32 #define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
 33 
 34 STATIC int
 35 xlog_find_zeroed(
 36         struct xlog     *,
 37         xfs_daddr_t     *);
 38 STATIC int
 39 xlog_clear_stale_blocks(
 40         struct xlog     *,
 41         xfs_lsn_t);
 42 STATIC int
 43 xlog_do_recovery_pass(
 44         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
 45 
 46 /*
 47  * Sector aligned buffer routines for buffer create/read/write/access
 48  */
 49 
 50 /*
 51  * Verify the log-relative block number and length in basic blocks are valid for
 52  * an operation involving the given XFS log buffer. Returns true if the fields
 53  * are valid, false otherwise.
 54  */
 55 static inline bool
 56 xlog_verify_bno(
 57         struct xlog     *log,
 58         xfs_daddr_t     blk_no,
 59         int             bbcount)
 60 {
 61         if (blk_no < 0 || blk_no >= log->l_logBBsize)
 62                 return false;
 63         if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
 64                 return false;
 65         return true;
 66 }
 67 
 68 /*
 69  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
 70  * a range of nbblks basic blocks at any valid offset within the log.
 71  */
 72 static char *
 73 xlog_alloc_buffer(
 74         struct xlog     *log,
 75         int             nbblks)
 76 {
 77         /*
 78          * Pass log block 0 since we don't have an addr yet, buffer will be
 79          * verified on read.
 80          */
 81         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
 82                 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 83                         nbblks);
 84                 return NULL;
 85         }
 86 
 87         /*
 88          * We do log I/O in units of log sectors (a power-of-2 multiple of the
 89          * basic block size), so we round up the requested size to accommodate
 90          * the basic blocks required for complete log sectors.
 91          *
 92          * In addition, the buffer may be used for a non-sector-aligned block
 93          * offset, in which case an I/O of the requested size could extend
 94          * beyond the end of the buffer.  If the requested size is only 1 basic
 95          * block it will never straddle a sector boundary, so this won't be an
 96          * issue.  Nor will this be a problem if the log I/O is done in basic
 97          * blocks (sector size 1).  But otherwise we extend the buffer by one
 98          * extra log sector to ensure there's space to accommodate this
 99          * possibility.
100          */
101         if (nbblks > 1 && log->l_sectBBsize > 1)
102                 nbblks += log->l_sectBBsize;
103         nbblks = round_up(nbblks, log->l_sectBBsize);
104         return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
105 }
106 
107 /*
108  * Return the address of the start of the given block number's data
109  * in a log buffer.  The buffer covers a log sector-aligned region.
110  */
111 static inline unsigned int
112 xlog_align(
113         struct xlog     *log,
114         xfs_daddr_t     blk_no)
115 {
116         return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
117 }
118 
119 static int
120 xlog_do_io(
121         struct xlog             *log,
122         xfs_daddr_t             blk_no,
123         unsigned int            nbblks,
124         char                    *data,
125         enum req_op             op)
126 {
127         int                     error;
128 
129         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
130                 xfs_warn(log->l_mp,
131                          "Invalid log block/length (0x%llx, 0x%x) for buffer",
132                          blk_no, nbblks);
133                 return -EFSCORRUPTED;
134         }
135 
136         blk_no = round_down(blk_no, log->l_sectBBsize);
137         nbblks = round_up(nbblks, log->l_sectBBsize);
138         ASSERT(nbblks > 0);
139 
140         error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
141                         BBTOB(nbblks), data, op);
142         if (error && !xlog_is_shutdown(log)) {
143                 xfs_alert(log->l_mp,
144                           "log recovery %s I/O error at daddr 0x%llx len %d error %d",
145                           op == REQ_OP_WRITE ? "write" : "read",
146                           blk_no, nbblks, error);
147         }
148         return error;
149 }
150 
151 STATIC int
152 xlog_bread_noalign(
153         struct xlog     *log,
154         xfs_daddr_t     blk_no,
155         int             nbblks,
156         char            *data)
157 {
158         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
159 }
160 
161 STATIC int
162 xlog_bread(
163         struct xlog     *log,
164         xfs_daddr_t     blk_no,
165         int             nbblks,
166         char            *data,
167         char            **offset)
168 {
169         int             error;
170 
171         error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
172         if (!error)
173                 *offset = data + xlog_align(log, blk_no);
174         return error;
175 }
176 
177 STATIC int
178 xlog_bwrite(
179         struct xlog     *log,
180         xfs_daddr_t     blk_no,
181         int             nbblks,
182         char            *data)
183 {
184         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
185 }
186 
187 #ifdef DEBUG
188 /*
189  * dump debug superblock and log record information
190  */
191 STATIC void
192 xlog_header_check_dump(
193         xfs_mount_t             *mp,
194         xlog_rec_header_t       *head)
195 {
196         xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
197                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
198         xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
199                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
200 }
201 #else
202 #define xlog_header_check_dump(mp, head)
203 #endif
204 
205 /*
206  * check log record header for recovery
207  */
208 STATIC int
209 xlog_header_check_recover(
210         xfs_mount_t             *mp,
211         xlog_rec_header_t       *head)
212 {
213         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
214 
215         /*
216          * IRIX doesn't write the h_fmt field and leaves it zeroed
217          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
218          * a dirty log created in IRIX.
219          */
220         if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
221                 xfs_warn(mp,
222         "dirty log written in incompatible format - can't recover");
223                 xlog_header_check_dump(mp, head);
224                 return -EFSCORRUPTED;
225         }
226         if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
227                                            &head->h_fs_uuid))) {
228                 xfs_warn(mp,
229         "dirty log entry has mismatched uuid - can't recover");
230                 xlog_header_check_dump(mp, head);
231                 return -EFSCORRUPTED;
232         }
233         return 0;
234 }
235 
236 /*
237  * read the head block of the log and check the header
238  */
239 STATIC int
240 xlog_header_check_mount(
241         xfs_mount_t             *mp,
242         xlog_rec_header_t       *head)
243 {
244         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
245 
246         if (uuid_is_null(&head->h_fs_uuid)) {
247                 /*
248                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
249                  * h_fs_uuid is null, we assume this log was last mounted
250                  * by IRIX and continue.
251                  */
252                 xfs_warn(mp, "null uuid in log - IRIX style log");
253         } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
254                                                   &head->h_fs_uuid))) {
255                 xfs_warn(mp, "log has mismatched uuid - can't recover");
256                 xlog_header_check_dump(mp, head);
257                 return -EFSCORRUPTED;
258         }
259         return 0;
260 }
261 
262 /*
263  * This routine finds (to an approximation) the first block in the physical
264  * log which contains the given cycle.  It uses a binary search algorithm.
265  * Note that the algorithm can not be perfect because the disk will not
266  * necessarily be perfect.
267  */
268 STATIC int
269 xlog_find_cycle_start(
270         struct xlog     *log,
271         char            *buffer,
272         xfs_daddr_t     first_blk,
273         xfs_daddr_t     *last_blk,
274         uint            cycle)
275 {
276         char            *offset;
277         xfs_daddr_t     mid_blk;
278         xfs_daddr_t     end_blk;
279         uint            mid_cycle;
280         int             error;
281 
282         end_blk = *last_blk;
283         mid_blk = BLK_AVG(first_blk, end_blk);
284         while (mid_blk != first_blk && mid_blk != end_blk) {
285                 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
286                 if (error)
287                         return error;
288                 mid_cycle = xlog_get_cycle(offset);
289                 if (mid_cycle == cycle)
290                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
291                 else
292                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
293                 mid_blk = BLK_AVG(first_blk, end_blk);
294         }
295         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
296                (mid_blk == end_blk && mid_blk-1 == first_blk));
297 
298         *last_blk = end_blk;
299 
300         return 0;
301 }
302 
303 /*
304  * Check that a range of blocks does not contain stop_on_cycle_no.
305  * Fill in *new_blk with the block offset where such a block is
306  * found, or with -1 (an invalid block number) if there is no such
307  * block in the range.  The scan needs to occur from front to back
308  * and the pointer into the region must be updated since a later
309  * routine will need to perform another test.
310  */
311 STATIC int
312 xlog_find_verify_cycle(
313         struct xlog     *log,
314         xfs_daddr_t     start_blk,
315         int             nbblks,
316         uint            stop_on_cycle_no,
317         xfs_daddr_t     *new_blk)
318 {
319         xfs_daddr_t     i, j;
320         uint            cycle;
321         char            *buffer;
322         xfs_daddr_t     bufblks;
323         char            *buf = NULL;
324         int             error = 0;
325 
326         /*
327          * Greedily allocate a buffer big enough to handle the full
328          * range of basic blocks we'll be examining.  If that fails,
329          * try a smaller size.  We need to be able to read at least
330          * a log sector, or we're out of luck.
331          */
332         bufblks = roundup_pow_of_two(nbblks);
333         while (bufblks > log->l_logBBsize)
334                 bufblks >>= 1;
335         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
336                 bufblks >>= 1;
337                 if (bufblks < log->l_sectBBsize)
338                         return -ENOMEM;
339         }
340 
341         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
342                 int     bcount;
343 
344                 bcount = min(bufblks, (start_blk + nbblks - i));
345 
346                 error = xlog_bread(log, i, bcount, buffer, &buf);
347                 if (error)
348                         goto out;
349 
350                 for (j = 0; j < bcount; j++) {
351                         cycle = xlog_get_cycle(buf);
352                         if (cycle == stop_on_cycle_no) {
353                                 *new_blk = i+j;
354                                 goto out;
355                         }
356 
357                         buf += BBSIZE;
358                 }
359         }
360 
361         *new_blk = -1;
362 
363 out:
364         kvfree(buffer);
365         return error;
366 }
367 
368 static inline int
369 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
370 {
371         if (xfs_has_logv2(log->l_mp)) {
372                 int     h_size = be32_to_cpu(rh->h_size);
373 
374                 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
375                     h_size > XLOG_HEADER_CYCLE_SIZE)
376                         return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
377         }
378         return 1;
379 }
380 
381 /*
382  * Potentially backup over partial log record write.
383  *
384  * In the typical case, last_blk is the number of the block directly after
385  * a good log record.  Therefore, we subtract one to get the block number
386  * of the last block in the given buffer.  extra_bblks contains the number
387  * of blocks we would have read on a previous read.  This happens when the
388  * last log record is split over the end of the physical log.
389  *
390  * extra_bblks is the number of blocks potentially verified on a previous
391  * call to this routine.
392  */
393 STATIC int
394 xlog_find_verify_log_record(
395         struct xlog             *log,
396         xfs_daddr_t             start_blk,
397         xfs_daddr_t             *last_blk,
398         int                     extra_bblks)
399 {
400         xfs_daddr_t             i;
401         char                    *buffer;
402         char                    *offset = NULL;
403         xlog_rec_header_t       *head = NULL;
404         int                     error = 0;
405         int                     smallmem = 0;
406         int                     num_blks = *last_blk - start_blk;
407         int                     xhdrs;
408 
409         ASSERT(start_blk != 0 || *last_blk != start_blk);
410 
411         buffer = xlog_alloc_buffer(log, num_blks);
412         if (!buffer) {
413                 buffer = xlog_alloc_buffer(log, 1);
414                 if (!buffer)
415                         return -ENOMEM;
416                 smallmem = 1;
417         } else {
418                 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
419                 if (error)
420                         goto out;
421                 offset += ((num_blks - 1) << BBSHIFT);
422         }
423 
424         for (i = (*last_blk) - 1; i >= 0; i--) {
425                 if (i < start_blk) {
426                         /* valid log record not found */
427                         xfs_warn(log->l_mp,
428                 "Log inconsistent (didn't find previous header)");
429                         ASSERT(0);
430                         error = -EFSCORRUPTED;
431                         goto out;
432                 }
433 
434                 if (smallmem) {
435                         error = xlog_bread(log, i, 1, buffer, &offset);
436                         if (error)
437                                 goto out;
438                 }
439 
440                 head = (xlog_rec_header_t *)offset;
441 
442                 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
443                         break;
444 
445                 if (!smallmem)
446                         offset -= BBSIZE;
447         }
448 
449         /*
450          * We hit the beginning of the physical log & still no header.  Return
451          * to caller.  If caller can handle a return of -1, then this routine
452          * will be called again for the end of the physical log.
453          */
454         if (i == -1) {
455                 error = 1;
456                 goto out;
457         }
458 
459         /*
460          * We have the final block of the good log (the first block
461          * of the log record _before_ the head. So we check the uuid.
462          */
463         if ((error = xlog_header_check_mount(log->l_mp, head)))
464                 goto out;
465 
466         /*
467          * We may have found a log record header before we expected one.
468          * last_blk will be the 1st block # with a given cycle #.  We may end
469          * up reading an entire log record.  In this case, we don't want to
470          * reset last_blk.  Only when last_blk points in the middle of a log
471          * record do we update last_blk.
472          */
473         xhdrs = xlog_logrec_hblks(log, head);
474 
475         if (*last_blk - i + extra_bblks !=
476             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
477                 *last_blk = i;
478 
479 out:
480         kvfree(buffer);
481         return error;
482 }
483 
484 /*
485  * Head is defined to be the point of the log where the next log write
486  * could go.  This means that incomplete LR writes at the end are
487  * eliminated when calculating the head.  We aren't guaranteed that previous
488  * LR have complete transactions.  We only know that a cycle number of
489  * current cycle number -1 won't be present in the log if we start writing
490  * from our current block number.
491  *
492  * last_blk contains the block number of the first block with a given
493  * cycle number.
494  *
495  * Return: zero if normal, non-zero if error.
496  */
497 STATIC int
498 xlog_find_head(
499         struct xlog     *log,
500         xfs_daddr_t     *return_head_blk)
501 {
502         char            *buffer;
503         char            *offset;
504         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
505         int             num_scan_bblks;
506         uint            first_half_cycle, last_half_cycle;
507         uint            stop_on_cycle;
508         int             error, log_bbnum = log->l_logBBsize;
509 
510         /* Is the end of the log device zeroed? */
511         error = xlog_find_zeroed(log, &first_blk);
512         if (error < 0) {
513                 xfs_warn(log->l_mp, "empty log check failed");
514                 return error;
515         }
516         if (error == 1) {
517                 *return_head_blk = first_blk;
518 
519                 /* Is the whole lot zeroed? */
520                 if (!first_blk) {
521                         /* Linux XFS shouldn't generate totally zeroed logs -
522                          * mkfs etc write a dummy unmount record to a fresh
523                          * log so we can store the uuid in there
524                          */
525                         xfs_warn(log->l_mp, "totally zeroed log");
526                 }
527 
528                 return 0;
529         }
530 
531         first_blk = 0;                  /* get cycle # of 1st block */
532         buffer = xlog_alloc_buffer(log, 1);
533         if (!buffer)
534                 return -ENOMEM;
535 
536         error = xlog_bread(log, 0, 1, buffer, &offset);
537         if (error)
538                 goto out_free_buffer;
539 
540         first_half_cycle = xlog_get_cycle(offset);
541 
542         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
543         error = xlog_bread(log, last_blk, 1, buffer, &offset);
544         if (error)
545                 goto out_free_buffer;
546 
547         last_half_cycle = xlog_get_cycle(offset);
548         ASSERT(last_half_cycle != 0);
549 
550         /*
551          * If the 1st half cycle number is equal to the last half cycle number,
552          * then the entire log is stamped with the same cycle number.  In this
553          * case, head_blk can't be set to zero (which makes sense).  The below
554          * math doesn't work out properly with head_blk equal to zero.  Instead,
555          * we set it to log_bbnum which is an invalid block number, but this
556          * value makes the math correct.  If head_blk doesn't changed through
557          * all the tests below, *head_blk is set to zero at the very end rather
558          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
559          * in a circular file.
560          */
561         if (first_half_cycle == last_half_cycle) {
562                 /*
563                  * In this case we believe that the entire log should have
564                  * cycle number last_half_cycle.  We need to scan backwards
565                  * from the end verifying that there are no holes still
566                  * containing last_half_cycle - 1.  If we find such a hole,
567                  * then the start of that hole will be the new head.  The
568                  * simple case looks like
569                  *        x | x ... | x - 1 | x
570                  * Another case that fits this picture would be
571                  *        x | x + 1 | x ... | x
572                  * In this case the head really is somewhere at the end of the
573                  * log, as one of the latest writes at the beginning was
574                  * incomplete.
575                  * One more case is
576                  *        x | x + 1 | x ... | x - 1 | x
577                  * This is really the combination of the above two cases, and
578                  * the head has to end up at the start of the x-1 hole at the
579                  * end of the log.
580                  *
581                  * In the 256k log case, we will read from the beginning to the
582                  * end of the log and search for cycle numbers equal to x-1.
583                  * We don't worry about the x+1 blocks that we encounter,
584                  * because we know that they cannot be the head since the log
585                  * started with x.
586                  */
587                 head_blk = log_bbnum;
588                 stop_on_cycle = last_half_cycle - 1;
589         } else {
590                 /*
591                  * In this case we want to find the first block with cycle
592                  * number matching last_half_cycle.  We expect the log to be
593                  * some variation on
594                  *        x + 1 ... | x ... | x
595                  * The first block with cycle number x (last_half_cycle) will
596                  * be where the new head belongs.  First we do a binary search
597                  * for the first occurrence of last_half_cycle.  The binary
598                  * search may not be totally accurate, so then we scan back
599                  * from there looking for occurrences of last_half_cycle before
600                  * us.  If that backwards scan wraps around the beginning of
601                  * the log, then we look for occurrences of last_half_cycle - 1
602                  * at the end of the log.  The cases we're looking for look
603                  * like
604                  *                               v binary search stopped here
605                  *        x + 1 ... | x | x + 1 | x ... | x
606                  *                   ^ but we want to locate this spot
607                  * or
608                  *        <---------> less than scan distance
609                  *        x + 1 ... | x ... | x - 1 | x
610                  *                           ^ we want to locate this spot
611                  */
612                 stop_on_cycle = last_half_cycle;
613                 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
614                                 last_half_cycle);
615                 if (error)
616                         goto out_free_buffer;
617         }
618 
619         /*
620          * Now validate the answer.  Scan back some number of maximum possible
621          * blocks and make sure each one has the expected cycle number.  The
622          * maximum is determined by the total possible amount of buffering
623          * in the in-core log.  The following number can be made tighter if
624          * we actually look at the block size of the filesystem.
625          */
626         num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
627         if (head_blk >= num_scan_bblks) {
628                 /*
629                  * We are guaranteed that the entire check can be performed
630                  * in one buffer.
631                  */
632                 start_blk = head_blk - num_scan_bblks;
633                 if ((error = xlog_find_verify_cycle(log,
634                                                 start_blk, num_scan_bblks,
635                                                 stop_on_cycle, &new_blk)))
636                         goto out_free_buffer;
637                 if (new_blk != -1)
638                         head_blk = new_blk;
639         } else {                /* need to read 2 parts of log */
640                 /*
641                  * We are going to scan backwards in the log in two parts.
642                  * First we scan the physical end of the log.  In this part
643                  * of the log, we are looking for blocks with cycle number
644                  * last_half_cycle - 1.
645                  * If we find one, then we know that the log starts there, as
646                  * we've found a hole that didn't get written in going around
647                  * the end of the physical log.  The simple case for this is
648                  *        x + 1 ... | x ... | x - 1 | x
649                  *        <---------> less than scan distance
650                  * If all of the blocks at the end of the log have cycle number
651                  * last_half_cycle, then we check the blocks at the start of
652                  * the log looking for occurrences of last_half_cycle.  If we
653                  * find one, then our current estimate for the location of the
654                  * first occurrence of last_half_cycle is wrong and we move
655                  * back to the hole we've found.  This case looks like
656                  *        x + 1 ... | x | x + 1 | x ...
657                  *                               ^ binary search stopped here
658                  * Another case we need to handle that only occurs in 256k
659                  * logs is
660                  *        x + 1 ... | x ... | x+1 | x ...
661                  *                   ^ binary search stops here
662                  * In a 256k log, the scan at the end of the log will see the
663                  * x + 1 blocks.  We need to skip past those since that is
664                  * certainly not the head of the log.  By searching for
665                  * last_half_cycle-1 we accomplish that.
666                  */
667                 ASSERT(head_blk <= INT_MAX &&
668                         (xfs_daddr_t) num_scan_bblks >= head_blk);
669                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
670                 if ((error = xlog_find_verify_cycle(log, start_blk,
671                                         num_scan_bblks - (int)head_blk,
672                                         (stop_on_cycle - 1), &new_blk)))
673                         goto out_free_buffer;
674                 if (new_blk != -1) {
675                         head_blk = new_blk;
676                         goto validate_head;
677                 }
678 
679                 /*
680                  * Scan beginning of log now.  The last part of the physical
681                  * log is good.  This scan needs to verify that it doesn't find
682                  * the last_half_cycle.
683                  */
684                 start_blk = 0;
685                 ASSERT(head_blk <= INT_MAX);
686                 if ((error = xlog_find_verify_cycle(log,
687                                         start_blk, (int)head_blk,
688                                         stop_on_cycle, &new_blk)))
689                         goto out_free_buffer;
690                 if (new_blk != -1)
691                         head_blk = new_blk;
692         }
693 
694 validate_head:
695         /*
696          * Now we need to make sure head_blk is not pointing to a block in
697          * the middle of a log record.
698          */
699         num_scan_bblks = XLOG_REC_SHIFT(log);
700         if (head_blk >= num_scan_bblks) {
701                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
702 
703                 /* start ptr at last block ptr before head_blk */
704                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
705                 if (error == 1)
706                         error = -EIO;
707                 if (error)
708                         goto out_free_buffer;
709         } else {
710                 start_blk = 0;
711                 ASSERT(head_blk <= INT_MAX);
712                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
713                 if (error < 0)
714                         goto out_free_buffer;
715                 if (error == 1) {
716                         /* We hit the beginning of the log during our search */
717                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
718                         new_blk = log_bbnum;
719                         ASSERT(start_blk <= INT_MAX &&
720                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
721                         ASSERT(head_blk <= INT_MAX);
722                         error = xlog_find_verify_log_record(log, start_blk,
723                                                         &new_blk, (int)head_blk);
724                         if (error == 1)
725                                 error = -EIO;
726                         if (error)
727                                 goto out_free_buffer;
728                         if (new_blk != log_bbnum)
729                                 head_blk = new_blk;
730                 } else if (error)
731                         goto out_free_buffer;
732         }
733 
734         kvfree(buffer);
735         if (head_blk == log_bbnum)
736                 *return_head_blk = 0;
737         else
738                 *return_head_blk = head_blk;
739         /*
740          * When returning here, we have a good block number.  Bad block
741          * means that during a previous crash, we didn't have a clean break
742          * from cycle number N to cycle number N-1.  In this case, we need
743          * to find the first block with cycle number N-1.
744          */
745         return 0;
746 
747 out_free_buffer:
748         kvfree(buffer);
749         if (error)
750                 xfs_warn(log->l_mp, "failed to find log head");
751         return error;
752 }
753 
754 /*
755  * Seek backwards in the log for log record headers.
756  *
757  * Given a starting log block, walk backwards until we find the provided number
758  * of records or hit the provided tail block. The return value is the number of
759  * records encountered or a negative error code. The log block and buffer
760  * pointer of the last record seen are returned in rblk and rhead respectively.
761  */
762 STATIC int
763 xlog_rseek_logrec_hdr(
764         struct xlog             *log,
765         xfs_daddr_t             head_blk,
766         xfs_daddr_t             tail_blk,
767         int                     count,
768         char                    *buffer,
769         xfs_daddr_t             *rblk,
770         struct xlog_rec_header  **rhead,
771         bool                    *wrapped)
772 {
773         int                     i;
774         int                     error;
775         int                     found = 0;
776         char                    *offset = NULL;
777         xfs_daddr_t             end_blk;
778 
779         *wrapped = false;
780 
781         /*
782          * Walk backwards from the head block until we hit the tail or the first
783          * block in the log.
784          */
785         end_blk = head_blk > tail_blk ? tail_blk : 0;
786         for (i = (int) head_blk - 1; i >= end_blk; i--) {
787                 error = xlog_bread(log, i, 1, buffer, &offset);
788                 if (error)
789                         goto out_error;
790 
791                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
792                         *rblk = i;
793                         *rhead = (struct xlog_rec_header *) offset;
794                         if (++found == count)
795                                 break;
796                 }
797         }
798 
799         /*
800          * If we haven't hit the tail block or the log record header count,
801          * start looking again from the end of the physical log. Note that
802          * callers can pass head == tail if the tail is not yet known.
803          */
804         if (tail_blk >= head_blk && found != count) {
805                 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
806                         error = xlog_bread(log, i, 1, buffer, &offset);
807                         if (error)
808                                 goto out_error;
809 
810                         if (*(__be32 *)offset ==
811                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
812                                 *wrapped = true;
813                                 *rblk = i;
814                                 *rhead = (struct xlog_rec_header *) offset;
815                                 if (++found == count)
816                                         break;
817                         }
818                 }
819         }
820 
821         return found;
822 
823 out_error:
824         return error;
825 }
826 
827 /*
828  * Seek forward in the log for log record headers.
829  *
830  * Given head and tail blocks, walk forward from the tail block until we find
831  * the provided number of records or hit the head block. The return value is the
832  * number of records encountered or a negative error code. The log block and
833  * buffer pointer of the last record seen are returned in rblk and rhead
834  * respectively.
835  */
836 STATIC int
837 xlog_seek_logrec_hdr(
838         struct xlog             *log,
839         xfs_daddr_t             head_blk,
840         xfs_daddr_t             tail_blk,
841         int                     count,
842         char                    *buffer,
843         xfs_daddr_t             *rblk,
844         struct xlog_rec_header  **rhead,
845         bool                    *wrapped)
846 {
847         int                     i;
848         int                     error;
849         int                     found = 0;
850         char                    *offset = NULL;
851         xfs_daddr_t             end_blk;
852 
853         *wrapped = false;
854 
855         /*
856          * Walk forward from the tail block until we hit the head or the last
857          * block in the log.
858          */
859         end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
860         for (i = (int) tail_blk; i <= end_blk; i++) {
861                 error = xlog_bread(log, i, 1, buffer, &offset);
862                 if (error)
863                         goto out_error;
864 
865                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
866                         *rblk = i;
867                         *rhead = (struct xlog_rec_header *) offset;
868                         if (++found == count)
869                                 break;
870                 }
871         }
872 
873         /*
874          * If we haven't hit the head block or the log record header count,
875          * start looking again from the start of the physical log.
876          */
877         if (tail_blk > head_blk && found != count) {
878                 for (i = 0; i < (int) head_blk; i++) {
879                         error = xlog_bread(log, i, 1, buffer, &offset);
880                         if (error)
881                                 goto out_error;
882 
883                         if (*(__be32 *)offset ==
884                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
885                                 *wrapped = true;
886                                 *rblk = i;
887                                 *rhead = (struct xlog_rec_header *) offset;
888                                 if (++found == count)
889                                         break;
890                         }
891                 }
892         }
893 
894         return found;
895 
896 out_error:
897         return error;
898 }
899 
900 /*
901  * Calculate distance from head to tail (i.e., unused space in the log).
902  */
903 static inline int
904 xlog_tail_distance(
905         struct xlog     *log,
906         xfs_daddr_t     head_blk,
907         xfs_daddr_t     tail_blk)
908 {
909         if (head_blk < tail_blk)
910                 return tail_blk - head_blk;
911 
912         return tail_blk + (log->l_logBBsize - head_blk);
913 }
914 
915 /*
916  * Verify the log tail. This is particularly important when torn or incomplete
917  * writes have been detected near the front of the log and the head has been
918  * walked back accordingly.
919  *
920  * We also have to handle the case where the tail was pinned and the head
921  * blocked behind the tail right before a crash. If the tail had been pushed
922  * immediately prior to the crash and the subsequent checkpoint was only
923  * partially written, it's possible it overwrote the last referenced tail in the
924  * log with garbage. This is not a coherency problem because the tail must have
925  * been pushed before it can be overwritten, but appears as log corruption to
926  * recovery because we have no way to know the tail was updated if the
927  * subsequent checkpoint didn't write successfully.
928  *
929  * Therefore, CRC check the log from tail to head. If a failure occurs and the
930  * offending record is within max iclog bufs from the head, walk the tail
931  * forward and retry until a valid tail is found or corruption is detected out
932  * of the range of a possible overwrite.
933  */
934 STATIC int
935 xlog_verify_tail(
936         struct xlog             *log,
937         xfs_daddr_t             head_blk,
938         xfs_daddr_t             *tail_blk,
939         int                     hsize)
940 {
941         struct xlog_rec_header  *thead;
942         char                    *buffer;
943         xfs_daddr_t             first_bad;
944         int                     error = 0;
945         bool                    wrapped;
946         xfs_daddr_t             tmp_tail;
947         xfs_daddr_t             orig_tail = *tail_blk;
948 
949         buffer = xlog_alloc_buffer(log, 1);
950         if (!buffer)
951                 return -ENOMEM;
952 
953         /*
954          * Make sure the tail points to a record (returns positive count on
955          * success).
956          */
957         error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
958                         &tmp_tail, &thead, &wrapped);
959         if (error < 0)
960                 goto out;
961         if (*tail_blk != tmp_tail)
962                 *tail_blk = tmp_tail;
963 
964         /*
965          * Run a CRC check from the tail to the head. We can't just check
966          * MAX_ICLOGS records past the tail because the tail may point to stale
967          * blocks cleared during the search for the head/tail. These blocks are
968          * overwritten with zero-length records and thus record count is not a
969          * reliable indicator of the iclog state before a crash.
970          */
971         first_bad = 0;
972         error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
973                                       XLOG_RECOVER_CRCPASS, &first_bad);
974         while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
975                 int     tail_distance;
976 
977                 /*
978                  * Is corruption within range of the head? If so, retry from
979                  * the next record. Otherwise return an error.
980                  */
981                 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
982                 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
983                         break;
984 
985                 /* skip to the next record; returns positive count on success */
986                 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
987                                 buffer, &tmp_tail, &thead, &wrapped);
988                 if (error < 0)
989                         goto out;
990 
991                 *tail_blk = tmp_tail;
992                 first_bad = 0;
993                 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
994                                               XLOG_RECOVER_CRCPASS, &first_bad);
995         }
996 
997         if (!error && *tail_blk != orig_tail)
998                 xfs_warn(log->l_mp,
999                 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000                          orig_tail, *tail_blk);
1001 out:
1002         kvfree(buffer);
1003         return error;
1004 }
1005 
1006 /*
1007  * Detect and trim torn writes from the head of the log.
1008  *
1009  * Storage without sector atomicity guarantees can result in torn writes in the
1010  * log in the event of a crash. Our only means to detect this scenario is via
1011  * CRC verification. While we can't always be certain that CRC verification
1012  * failure is due to a torn write vs. an unrelated corruption, we do know that
1013  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015  * the log and treat failures in this range as torn writes as a matter of
1016  * policy. In the event of CRC failure, the head is walked back to the last good
1017  * record in the log and the tail is updated from that record and verified.
1018  */
1019 STATIC int
1020 xlog_verify_head(
1021         struct xlog             *log,
1022         xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1023         xfs_daddr_t             *tail_blk,      /* out: tail block */
1024         char                    *buffer,
1025         xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1026         struct xlog_rec_header  **rhead,        /* ptr to last record */
1027         bool                    *wrapped)       /* last rec. wraps phys. log */
1028 {
1029         struct xlog_rec_header  *tmp_rhead;
1030         char                    *tmp_buffer;
1031         xfs_daddr_t             first_bad;
1032         xfs_daddr_t             tmp_rhead_blk;
1033         int                     found;
1034         int                     error;
1035         bool                    tmp_wrapped;
1036 
1037         /*
1038          * Check the head of the log for torn writes. Search backwards from the
1039          * head until we hit the tail or the maximum number of log record I/Os
1040          * that could have been in flight at one time. Use a temporary buffer so
1041          * we don't trash the rhead/buffer pointers from the caller.
1042          */
1043         tmp_buffer = xlog_alloc_buffer(log, 1);
1044         if (!tmp_buffer)
1045                 return -ENOMEM;
1046         error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047                                       XLOG_MAX_ICLOGS, tmp_buffer,
1048                                       &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049         kvfree(tmp_buffer);
1050         if (error < 0)
1051                 return error;
1052 
1053         /*
1054          * Now run a CRC verification pass over the records starting at the
1055          * block found above to the current head. If a CRC failure occurs, the
1056          * log block of the first bad record is saved in first_bad.
1057          */
1058         error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059                                       XLOG_RECOVER_CRCPASS, &first_bad);
1060         if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061                 /*
1062                  * We've hit a potential torn write. Reset the error and warn
1063                  * about it.
1064                  */
1065                 error = 0;
1066                 xfs_warn(log->l_mp,
1067 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068                          first_bad, *head_blk);
1069 
1070                 /*
1071                  * Get the header block and buffer pointer for the last good
1072                  * record before the bad record.
1073                  *
1074                  * Note that xlog_find_tail() clears the blocks at the new head
1075                  * (i.e., the records with invalid CRC) if the cycle number
1076                  * matches the current cycle.
1077                  */
1078                 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1079                                 buffer, rhead_blk, rhead, wrapped);
1080                 if (found < 0)
1081                         return found;
1082                 if (found == 0)         /* XXX: right thing to do here? */
1083                         return -EIO;
1084 
1085                 /*
1086                  * Reset the head block to the starting block of the first bad
1087                  * log record and set the tail block based on the last good
1088                  * record.
1089                  *
1090                  * Bail out if the updated head/tail match as this indicates
1091                  * possible corruption outside of the acceptable
1092                  * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093                  */
1094                 *head_blk = first_bad;
1095                 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096                 if (*head_blk == *tail_blk) {
1097                         ASSERT(0);
1098                         return 0;
1099                 }
1100         }
1101         if (error)
1102                 return error;
1103 
1104         return xlog_verify_tail(log, *head_blk, tail_blk,
1105                                 be32_to_cpu((*rhead)->h_size));
1106 }
1107 
1108 /*
1109  * We need to make sure we handle log wrapping properly, so we can't use the
1110  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111  * log.
1112  *
1113  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114  * operation here and cast it back to a 64 bit daddr on return.
1115  */
1116 static inline xfs_daddr_t
1117 xlog_wrap_logbno(
1118         struct xlog             *log,
1119         xfs_daddr_t             bno)
1120 {
1121         int                     mod;
1122 
1123         div_s64_rem(bno, log->l_logBBsize, &mod);
1124         return mod;
1125 }
1126 
1127 /*
1128  * Check whether the head of the log points to an unmount record. In other
1129  * words, determine whether the log is clean. If so, update the in-core state
1130  * appropriately.
1131  */
1132 static int
1133 xlog_check_unmount_rec(
1134         struct xlog             *log,
1135         xfs_daddr_t             *head_blk,
1136         xfs_daddr_t             *tail_blk,
1137         struct xlog_rec_header  *rhead,
1138         xfs_daddr_t             rhead_blk,
1139         char                    *buffer,
1140         bool                    *clean)
1141 {
1142         struct xlog_op_header   *op_head;
1143         xfs_daddr_t             umount_data_blk;
1144         xfs_daddr_t             after_umount_blk;
1145         int                     hblks;
1146         int                     error;
1147         char                    *offset;
1148 
1149         *clean = false;
1150 
1151         /*
1152          * Look for unmount record. If we find it, then we know there was a
1153          * clean unmount. Since 'i' could be the last block in the physical
1154          * log, we convert to a log block before comparing to the head_blk.
1155          *
1156          * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157          * below. We won't want to clear the unmount record if there is one, so
1158          * we pass the lsn of the unmount record rather than the block after it.
1159          */
1160         hblks = xlog_logrec_hblks(log, rhead);
1161         after_umount_blk = xlog_wrap_logbno(log,
1162                         rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163 
1164         if (*head_blk == after_umount_blk &&
1165             be32_to_cpu(rhead->h_num_logops) == 1) {
1166                 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1167                 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1168                 if (error)
1169                         return error;
1170 
1171                 op_head = (struct xlog_op_header *)offset;
1172                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173                         /*
1174                          * Set tail and last sync so that newly written log
1175                          * records will point recovery to after the current
1176                          * unmount record.
1177                          */
1178                         xlog_assign_atomic_lsn(&log->l_tail_lsn,
1179                                         log->l_curr_cycle, after_umount_blk);
1180                         log->l_ailp->ail_head_lsn =
1181                                         atomic64_read(&log->l_tail_lsn);
1182                         *tail_blk = after_umount_blk;
1183 
1184                         *clean = true;
1185                 }
1186         }
1187 
1188         return 0;
1189 }
1190 
1191 static void
1192 xlog_set_state(
1193         struct xlog             *log,
1194         xfs_daddr_t             head_blk,
1195         struct xlog_rec_header  *rhead,
1196         xfs_daddr_t             rhead_blk,
1197         bool                    bump_cycle)
1198 {
1199         /*
1200          * Reset log values according to the state of the log when we
1201          * crashed.  In the case where head_blk == 0, we bump curr_cycle
1202          * one because the next write starts a new cycle rather than
1203          * continuing the cycle of the last good log record.  At this
1204          * point we have guaranteed that all partial log records have been
1205          * accounted for.  Therefore, we know that the last good log record
1206          * written was complete and ended exactly on the end boundary
1207          * of the physical log.
1208          */
1209         log->l_prev_block = rhead_blk;
1210         log->l_curr_block = (int)head_blk;
1211         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212         if (bump_cycle)
1213                 log->l_curr_cycle++;
1214         atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215         log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn);
1216 }
1217 
1218 /*
1219  * Find the sync block number or the tail of the log.
1220  *
1221  * This will be the block number of the last record to have its
1222  * associated buffers synced to disk.  Every log record header has
1223  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1224  * to get a sync block number.  The only concern is to figure out which
1225  * log record header to believe.
1226  *
1227  * The following algorithm uses the log record header with the largest
1228  * lsn.  The entire log record does not need to be valid.  We only care
1229  * that the header is valid.
1230  *
1231  * We could speed up search by using current head_blk buffer, but it is not
1232  * available.
1233  */
1234 STATIC int
1235 xlog_find_tail(
1236         struct xlog             *log,
1237         xfs_daddr_t             *head_blk,
1238         xfs_daddr_t             *tail_blk)
1239 {
1240         xlog_rec_header_t       *rhead;
1241         char                    *offset = NULL;
1242         char                    *buffer;
1243         int                     error;
1244         xfs_daddr_t             rhead_blk;
1245         xfs_lsn_t               tail_lsn;
1246         bool                    wrapped = false;
1247         bool                    clean = false;
1248 
1249         /*
1250          * Find previous log record
1251          */
1252         if ((error = xlog_find_head(log, head_blk)))
1253                 return error;
1254         ASSERT(*head_blk < INT_MAX);
1255 
1256         buffer = xlog_alloc_buffer(log, 1);
1257         if (!buffer)
1258                 return -ENOMEM;
1259         if (*head_blk == 0) {                           /* special case */
1260                 error = xlog_bread(log, 0, 1, buffer, &offset);
1261                 if (error)
1262                         goto done;
1263 
1264                 if (xlog_get_cycle(offset) == 0) {
1265                         *tail_blk = 0;
1266                         /* leave all other log inited values alone */
1267                         goto done;
1268                 }
1269         }
1270 
1271         /*
1272          * Search backwards through the log looking for the log record header
1273          * block. This wraps all the way back around to the head so something is
1274          * seriously wrong if we can't find it.
1275          */
1276         error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1277                                       &rhead_blk, &rhead, &wrapped);
1278         if (error < 0)
1279                 goto done;
1280         if (!error) {
1281                 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1282                 error = -EFSCORRUPTED;
1283                 goto done;
1284         }
1285         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1286 
1287         /*
1288          * Set the log state based on the current head record.
1289          */
1290         xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1291         tail_lsn = atomic64_read(&log->l_tail_lsn);
1292 
1293         /*
1294          * Look for an unmount record at the head of the log. This sets the log
1295          * state to determine whether recovery is necessary.
1296          */
1297         error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1298                                        rhead_blk, buffer, &clean);
1299         if (error)
1300                 goto done;
1301 
1302         /*
1303          * Verify the log head if the log is not clean (e.g., we have anything
1304          * but an unmount record at the head). This uses CRC verification to
1305          * detect and trim torn writes. If discovered, CRC failures are
1306          * considered torn writes and the log head is trimmed accordingly.
1307          *
1308          * Note that we can only run CRC verification when the log is dirty
1309          * because there's no guarantee that the log data behind an unmount
1310          * record is compatible with the current architecture.
1311          */
1312         if (!clean) {
1313                 xfs_daddr_t     orig_head = *head_blk;
1314 
1315                 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1316                                          &rhead_blk, &rhead, &wrapped);
1317                 if (error)
1318                         goto done;
1319 
1320                 /* update in-core state again if the head changed */
1321                 if (*head_blk != orig_head) {
1322                         xlog_set_state(log, *head_blk, rhead, rhead_blk,
1323                                        wrapped);
1324                         tail_lsn = atomic64_read(&log->l_tail_lsn);
1325                         error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1326                                                        rhead, rhead_blk, buffer,
1327                                                        &clean);
1328                         if (error)
1329                                 goto done;
1330                 }
1331         }
1332 
1333         /*
1334          * Note that the unmount was clean. If the unmount was not clean, we
1335          * need to know this to rebuild the superblock counters from the perag
1336          * headers if we have a filesystem using non-persistent counters.
1337          */
1338         if (clean)
1339                 set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
1340 
1341         /*
1342          * Make sure that there are no blocks in front of the head
1343          * with the same cycle number as the head.  This can happen
1344          * because we allow multiple outstanding log writes concurrently,
1345          * and the later writes might make it out before earlier ones.
1346          *
1347          * We use the lsn from before modifying it so that we'll never
1348          * overwrite the unmount record after a clean unmount.
1349          *
1350          * Do this only if we are going to recover the filesystem
1351          *
1352          * NOTE: This used to say "if (!readonly)"
1353          * However on Linux, we can & do recover a read-only filesystem.
1354          * We only skip recovery if NORECOVERY is specified on mount,
1355          * in which case we would not be here.
1356          *
1357          * But... if the -device- itself is readonly, just skip this.
1358          * We can't recover this device anyway, so it won't matter.
1359          */
1360         if (!xfs_readonly_buftarg(log->l_targ))
1361                 error = xlog_clear_stale_blocks(log, tail_lsn);
1362 
1363 done:
1364         kvfree(buffer);
1365 
1366         if (error)
1367                 xfs_warn(log->l_mp, "failed to locate log tail");
1368         return error;
1369 }
1370 
1371 /*
1372  * Is the log zeroed at all?
1373  *
1374  * The last binary search should be changed to perform an X block read
1375  * once X becomes small enough.  You can then search linearly through
1376  * the X blocks.  This will cut down on the number of reads we need to do.
1377  *
1378  * If the log is partially zeroed, this routine will pass back the blkno
1379  * of the first block with cycle number 0.  It won't have a complete LR
1380  * preceding it.
1381  *
1382  * Return:
1383  *      0  => the log is completely written to
1384  *      1 => use *blk_no as the first block of the log
1385  *      <0 => error has occurred
1386  */
1387 STATIC int
1388 xlog_find_zeroed(
1389         struct xlog     *log,
1390         xfs_daddr_t     *blk_no)
1391 {
1392         char            *buffer;
1393         char            *offset;
1394         uint            first_cycle, last_cycle;
1395         xfs_daddr_t     new_blk, last_blk, start_blk;
1396         xfs_daddr_t     num_scan_bblks;
1397         int             error, log_bbnum = log->l_logBBsize;
1398         int             ret = 1;
1399 
1400         *blk_no = 0;
1401 
1402         /* check totally zeroed log */
1403         buffer = xlog_alloc_buffer(log, 1);
1404         if (!buffer)
1405                 return -ENOMEM;
1406         error = xlog_bread(log, 0, 1, buffer, &offset);
1407         if (error)
1408                 goto out_free_buffer;
1409 
1410         first_cycle = xlog_get_cycle(offset);
1411         if (first_cycle == 0) {         /* completely zeroed log */
1412                 *blk_no = 0;
1413                 goto out_free_buffer;
1414         }
1415 
1416         /* check partially zeroed log */
1417         error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1418         if (error)
1419                 goto out_free_buffer;
1420 
1421         last_cycle = xlog_get_cycle(offset);
1422         if (last_cycle != 0) {          /* log completely written to */
1423                 ret = 0;
1424                 goto out_free_buffer;
1425         }
1426 
1427         /* we have a partially zeroed log */
1428         last_blk = log_bbnum-1;
1429         error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1430         if (error)
1431                 goto out_free_buffer;
1432 
1433         /*
1434          * Validate the answer.  Because there is no way to guarantee that
1435          * the entire log is made up of log records which are the same size,
1436          * we scan over the defined maximum blocks.  At this point, the maximum
1437          * is not chosen to mean anything special.   XXXmiken
1438          */
1439         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1440         ASSERT(num_scan_bblks <= INT_MAX);
1441 
1442         if (last_blk < num_scan_bblks)
1443                 num_scan_bblks = last_blk;
1444         start_blk = last_blk - num_scan_bblks;
1445 
1446         /*
1447          * We search for any instances of cycle number 0 that occur before
1448          * our current estimate of the head.  What we're trying to detect is
1449          *        1 ... | 0 | 1 | 0...
1450          *                       ^ binary search ends here
1451          */
1452         if ((error = xlog_find_verify_cycle(log, start_blk,
1453                                          (int)num_scan_bblks, 0, &new_blk)))
1454                 goto out_free_buffer;
1455         if (new_blk != -1)
1456                 last_blk = new_blk;
1457 
1458         /*
1459          * Potentially backup over partial log record write.  We don't need
1460          * to search the end of the log because we know it is zero.
1461          */
1462         error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1463         if (error == 1)
1464                 error = -EIO;
1465         if (error)
1466                 goto out_free_buffer;
1467 
1468         *blk_no = last_blk;
1469 out_free_buffer:
1470         kvfree(buffer);
1471         if (error)
1472                 return error;
1473         return ret;
1474 }
1475 
1476 /*
1477  * These are simple subroutines used by xlog_clear_stale_blocks() below
1478  * to initialize a buffer full of empty log record headers and write
1479  * them into the log.
1480  */
1481 STATIC void
1482 xlog_add_record(
1483         struct xlog             *log,
1484         char                    *buf,
1485         int                     cycle,
1486         int                     block,
1487         int                     tail_cycle,
1488         int                     tail_block)
1489 {
1490         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1491 
1492         memset(buf, 0, BBSIZE);
1493         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1494         recp->h_cycle = cpu_to_be32(cycle);
1495         recp->h_version = cpu_to_be32(
1496                         xfs_has_logv2(log->l_mp) ? 2 : 1);
1497         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1498         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1499         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1500         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1501 }
1502 
1503 STATIC int
1504 xlog_write_log_records(
1505         struct xlog     *log,
1506         int             cycle,
1507         int             start_block,
1508         int             blocks,
1509         int             tail_cycle,
1510         int             tail_block)
1511 {
1512         char            *offset;
1513         char            *buffer;
1514         int             balign, ealign;
1515         int             sectbb = log->l_sectBBsize;
1516         int             end_block = start_block + blocks;
1517         int             bufblks;
1518         int             error = 0;
1519         int             i, j = 0;
1520 
1521         /*
1522          * Greedily allocate a buffer big enough to handle the full
1523          * range of basic blocks to be written.  If that fails, try
1524          * a smaller size.  We need to be able to write at least a
1525          * log sector, or we're out of luck.
1526          */
1527         bufblks = roundup_pow_of_two(blocks);
1528         while (bufblks > log->l_logBBsize)
1529                 bufblks >>= 1;
1530         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1531                 bufblks >>= 1;
1532                 if (bufblks < sectbb)
1533                         return -ENOMEM;
1534         }
1535 
1536         /* We may need to do a read at the start to fill in part of
1537          * the buffer in the starting sector not covered by the first
1538          * write below.
1539          */
1540         balign = round_down(start_block, sectbb);
1541         if (balign != start_block) {
1542                 error = xlog_bread_noalign(log, start_block, 1, buffer);
1543                 if (error)
1544                         goto out_free_buffer;
1545 
1546                 j = start_block - balign;
1547         }
1548 
1549         for (i = start_block; i < end_block; i += bufblks) {
1550                 int             bcount, endcount;
1551 
1552                 bcount = min(bufblks, end_block - start_block);
1553                 endcount = bcount - j;
1554 
1555                 /* We may need to do a read at the end to fill in part of
1556                  * the buffer in the final sector not covered by the write.
1557                  * If this is the same sector as the above read, skip it.
1558                  */
1559                 ealign = round_down(end_block, sectbb);
1560                 if (j == 0 && (start_block + endcount > ealign)) {
1561                         error = xlog_bread_noalign(log, ealign, sectbb,
1562                                         buffer + BBTOB(ealign - start_block));
1563                         if (error)
1564                                 break;
1565 
1566                 }
1567 
1568                 offset = buffer + xlog_align(log, start_block);
1569                 for (; j < endcount; j++) {
1570                         xlog_add_record(log, offset, cycle, i+j,
1571                                         tail_cycle, tail_block);
1572                         offset += BBSIZE;
1573                 }
1574                 error = xlog_bwrite(log, start_block, endcount, buffer);
1575                 if (error)
1576                         break;
1577                 start_block += endcount;
1578                 j = 0;
1579         }
1580 
1581 out_free_buffer:
1582         kvfree(buffer);
1583         return error;
1584 }
1585 
1586 /*
1587  * This routine is called to blow away any incomplete log writes out
1588  * in front of the log head.  We do this so that we won't become confused
1589  * if we come up, write only a little bit more, and then crash again.
1590  * If we leave the partial log records out there, this situation could
1591  * cause us to think those partial writes are valid blocks since they
1592  * have the current cycle number.  We get rid of them by overwriting them
1593  * with empty log records with the old cycle number rather than the
1594  * current one.
1595  *
1596  * The tail lsn is passed in rather than taken from
1597  * the log so that we will not write over the unmount record after a
1598  * clean unmount in a 512 block log.  Doing so would leave the log without
1599  * any valid log records in it until a new one was written.  If we crashed
1600  * during that time we would not be able to recover.
1601  */
1602 STATIC int
1603 xlog_clear_stale_blocks(
1604         struct xlog     *log,
1605         xfs_lsn_t       tail_lsn)
1606 {
1607         int             tail_cycle, head_cycle;
1608         int             tail_block, head_block;
1609         int             tail_distance, max_distance;
1610         int             distance;
1611         int             error;
1612 
1613         tail_cycle = CYCLE_LSN(tail_lsn);
1614         tail_block = BLOCK_LSN(tail_lsn);
1615         head_cycle = log->l_curr_cycle;
1616         head_block = log->l_curr_block;
1617 
1618         /*
1619          * Figure out the distance between the new head of the log
1620          * and the tail.  We want to write over any blocks beyond the
1621          * head that we may have written just before the crash, but
1622          * we don't want to overwrite the tail of the log.
1623          */
1624         if (head_cycle == tail_cycle) {
1625                 /*
1626                  * The tail is behind the head in the physical log,
1627                  * so the distance from the head to the tail is the
1628                  * distance from the head to the end of the log plus
1629                  * the distance from the beginning of the log to the
1630                  * tail.
1631                  */
1632                 if (XFS_IS_CORRUPT(log->l_mp,
1633                                    head_block < tail_block ||
1634                                    head_block >= log->l_logBBsize))
1635                         return -EFSCORRUPTED;
1636                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1637         } else {
1638                 /*
1639                  * The head is behind the tail in the physical log,
1640                  * so the distance from the head to the tail is just
1641                  * the tail block minus the head block.
1642                  */
1643                 if (XFS_IS_CORRUPT(log->l_mp,
1644                                    head_block >= tail_block ||
1645                                    head_cycle != tail_cycle + 1))
1646                         return -EFSCORRUPTED;
1647                 tail_distance = tail_block - head_block;
1648         }
1649 
1650         /*
1651          * If the head is right up against the tail, we can't clear
1652          * anything.
1653          */
1654         if (tail_distance <= 0) {
1655                 ASSERT(tail_distance == 0);
1656                 return 0;
1657         }
1658 
1659         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1660         /*
1661          * Take the smaller of the maximum amount of outstanding I/O
1662          * we could have and the distance to the tail to clear out.
1663          * We take the smaller so that we don't overwrite the tail and
1664          * we don't waste all day writing from the head to the tail
1665          * for no reason.
1666          */
1667         max_distance = min(max_distance, tail_distance);
1668 
1669         if ((head_block + max_distance) <= log->l_logBBsize) {
1670                 /*
1671                  * We can stomp all the blocks we need to without
1672                  * wrapping around the end of the log.  Just do it
1673                  * in a single write.  Use the cycle number of the
1674                  * current cycle minus one so that the log will look like:
1675                  *     n ... | n - 1 ...
1676                  */
1677                 error = xlog_write_log_records(log, (head_cycle - 1),
1678                                 head_block, max_distance, tail_cycle,
1679                                 tail_block);
1680                 if (error)
1681                         return error;
1682         } else {
1683                 /*
1684                  * We need to wrap around the end of the physical log in
1685                  * order to clear all the blocks.  Do it in two separate
1686                  * I/Os.  The first write should be from the head to the
1687                  * end of the physical log, and it should use the current
1688                  * cycle number minus one just like above.
1689                  */
1690                 distance = log->l_logBBsize - head_block;
1691                 error = xlog_write_log_records(log, (head_cycle - 1),
1692                                 head_block, distance, tail_cycle,
1693                                 tail_block);
1694 
1695                 if (error)
1696                         return error;
1697 
1698                 /*
1699                  * Now write the blocks at the start of the physical log.
1700                  * This writes the remainder of the blocks we want to clear.
1701                  * It uses the current cycle number since we're now on the
1702                  * same cycle as the head so that we get:
1703                  *    n ... n ... | n - 1 ...
1704                  *    ^^^^^ blocks we're writing
1705                  */
1706                 distance = max_distance - (log->l_logBBsize - head_block);
1707                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1708                                 tail_cycle, tail_block);
1709                 if (error)
1710                         return error;
1711         }
1712 
1713         return 0;
1714 }
1715 
1716 /*
1717  * Release the recovered intent item in the AIL that matches the given intent
1718  * type and intent id.
1719  */
1720 void
1721 xlog_recover_release_intent(
1722         struct xlog                     *log,
1723         unsigned short                  intent_type,
1724         uint64_t                        intent_id)
1725 {
1726         struct xfs_defer_pending        *dfp, *n;
1727 
1728         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1729                 struct xfs_log_item     *lip = dfp->dfp_intent;
1730 
1731                 if (lip->li_type != intent_type)
1732                         continue;
1733                 if (!lip->li_ops->iop_match(lip, intent_id))
1734                         continue;
1735 
1736                 ASSERT(xlog_item_is_intent(lip));
1737 
1738                 xfs_defer_cancel_recovery(log->l_mp, dfp);
1739         }
1740 }
1741 
1742 int
1743 xlog_recover_iget(
1744         struct xfs_mount        *mp,
1745         xfs_ino_t               ino,
1746         struct xfs_inode        **ipp)
1747 {
1748         int                     error;
1749 
1750         error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1751         if (error)
1752                 return error;
1753 
1754         error = xfs_qm_dqattach(*ipp);
1755         if (error) {
1756                 xfs_irele(*ipp);
1757                 return error;
1758         }
1759 
1760         if (VFS_I(*ipp)->i_nlink == 0)
1761                 xfs_iflags_set(*ipp, XFS_IRECOVERY);
1762 
1763         return 0;
1764 }
1765 
1766 /*
1767  * Get an inode so that we can recover a log operation.
1768  *
1769  * Log intent items that target inodes effectively contain a file handle.
1770  * Check that the generation number matches the intent item like we do for
1771  * other file handles.  Log intent items defined after this validation weakness
1772  * was identified must use this function.
1773  */
1774 int
1775 xlog_recover_iget_handle(
1776         struct xfs_mount        *mp,
1777         xfs_ino_t               ino,
1778         uint32_t                gen,
1779         struct xfs_inode        **ipp)
1780 {
1781         struct xfs_inode        *ip;
1782         int                     error;
1783 
1784         error = xlog_recover_iget(mp, ino, &ip);
1785         if (error)
1786                 return error;
1787 
1788         if (VFS_I(ip)->i_generation != gen) {
1789                 xfs_irele(ip);
1790                 return -EFSCORRUPTED;
1791         }
1792 
1793         *ipp = ip;
1794         return 0;
1795 }
1796 
1797 /******************************************************************************
1798  *
1799  *              Log recover routines
1800  *
1801  ******************************************************************************
1802  */
1803 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1804         &xlog_buf_item_ops,
1805         &xlog_inode_item_ops,
1806         &xlog_dquot_item_ops,
1807         &xlog_quotaoff_item_ops,
1808         &xlog_icreate_item_ops,
1809         &xlog_efi_item_ops,
1810         &xlog_efd_item_ops,
1811         &xlog_rui_item_ops,
1812         &xlog_rud_item_ops,
1813         &xlog_cui_item_ops,
1814         &xlog_cud_item_ops,
1815         &xlog_bui_item_ops,
1816         &xlog_bud_item_ops,
1817         &xlog_attri_item_ops,
1818         &xlog_attrd_item_ops,
1819         &xlog_xmi_item_ops,
1820         &xlog_xmd_item_ops,
1821 };
1822 
1823 static const struct xlog_recover_item_ops *
1824 xlog_find_item_ops(
1825         struct xlog_recover_item                *item)
1826 {
1827         unsigned int                            i;
1828 
1829         for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1830                 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1831                         return xlog_recover_item_ops[i];
1832 
1833         return NULL;
1834 }
1835 
1836 /*
1837  * Sort the log items in the transaction.
1838  *
1839  * The ordering constraints are defined by the inode allocation and unlink
1840  * behaviour. The rules are:
1841  *
1842  *      1. Every item is only logged once in a given transaction. Hence it
1843  *         represents the last logged state of the item. Hence ordering is
1844  *         dependent on the order in which operations need to be performed so
1845  *         required initial conditions are always met.
1846  *
1847  *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1848  *         there's nothing to replay from them so we can simply cull them
1849  *         from the transaction. However, we can't do that until after we've
1850  *         replayed all the other items because they may be dependent on the
1851  *         cancelled buffer and replaying the cancelled buffer can remove it
1852  *         form the cancelled buffer table. Hence they have tobe done last.
1853  *
1854  *      3. Inode allocation buffers must be replayed before inode items that
1855  *         read the buffer and replay changes into it. For filesystems using the
1856  *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1857  *         treated the same as inode allocation buffers as they create and
1858  *         initialise the buffers directly.
1859  *
1860  *      4. Inode unlink buffers must be replayed after inode items are replayed.
1861  *         This ensures that inodes are completely flushed to the inode buffer
1862  *         in a "free" state before we remove the unlinked inode list pointer.
1863  *
1864  * Hence the ordering needs to be inode allocation buffers first, inode items
1865  * second, inode unlink buffers third and cancelled buffers last.
1866  *
1867  * But there's a problem with that - we can't tell an inode allocation buffer
1868  * apart from a regular buffer, so we can't separate them. We can, however,
1869  * tell an inode unlink buffer from the others, and so we can separate them out
1870  * from all the other buffers and move them to last.
1871  *
1872  * Hence, 4 lists, in order from head to tail:
1873  *      - buffer_list for all buffers except cancelled/inode unlink buffers
1874  *      - item_list for all non-buffer items
1875  *      - inode_buffer_list for inode unlink buffers
1876  *      - cancel_list for the cancelled buffers
1877  *
1878  * Note that we add objects to the tail of the lists so that first-to-last
1879  * ordering is preserved within the lists. Adding objects to the head of the
1880  * list means when we traverse from the head we walk them in last-to-first
1881  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1882  * but for all other items there may be specific ordering that we need to
1883  * preserve.
1884  */
1885 STATIC int
1886 xlog_recover_reorder_trans(
1887         struct xlog             *log,
1888         struct xlog_recover     *trans,
1889         int                     pass)
1890 {
1891         struct xlog_recover_item *item, *n;
1892         int                     error = 0;
1893         LIST_HEAD(sort_list);
1894         LIST_HEAD(cancel_list);
1895         LIST_HEAD(buffer_list);
1896         LIST_HEAD(inode_buffer_list);
1897         LIST_HEAD(item_list);
1898 
1899         list_splice_init(&trans->r_itemq, &sort_list);
1900         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1901                 enum xlog_recover_reorder       fate = XLOG_REORDER_ITEM_LIST;
1902 
1903                 item->ri_ops = xlog_find_item_ops(item);
1904                 if (!item->ri_ops) {
1905                         xfs_warn(log->l_mp,
1906                                 "%s: unrecognized type of log operation (%d)",
1907                                 __func__, ITEM_TYPE(item));
1908                         ASSERT(0);
1909                         /*
1910                          * return the remaining items back to the transaction
1911                          * item list so they can be freed in caller.
1912                          */
1913                         if (!list_empty(&sort_list))
1914                                 list_splice_init(&sort_list, &trans->r_itemq);
1915                         error = -EFSCORRUPTED;
1916                         break;
1917                 }
1918 
1919                 if (item->ri_ops->reorder)
1920                         fate = item->ri_ops->reorder(item);
1921 
1922                 switch (fate) {
1923                 case XLOG_REORDER_BUFFER_LIST:
1924                         list_move_tail(&item->ri_list, &buffer_list);
1925                         break;
1926                 case XLOG_REORDER_CANCEL_LIST:
1927                         trace_xfs_log_recover_item_reorder_head(log,
1928                                         trans, item, pass);
1929                         list_move(&item->ri_list, &cancel_list);
1930                         break;
1931                 case XLOG_REORDER_INODE_BUFFER_LIST:
1932                         list_move(&item->ri_list, &inode_buffer_list);
1933                         break;
1934                 case XLOG_REORDER_ITEM_LIST:
1935                         trace_xfs_log_recover_item_reorder_tail(log,
1936                                                         trans, item, pass);
1937                         list_move_tail(&item->ri_list, &item_list);
1938                         break;
1939                 }
1940         }
1941 
1942         ASSERT(list_empty(&sort_list));
1943         if (!list_empty(&buffer_list))
1944                 list_splice(&buffer_list, &trans->r_itemq);
1945         if (!list_empty(&item_list))
1946                 list_splice_tail(&item_list, &trans->r_itemq);
1947         if (!list_empty(&inode_buffer_list))
1948                 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1949         if (!list_empty(&cancel_list))
1950                 list_splice_tail(&cancel_list, &trans->r_itemq);
1951         return error;
1952 }
1953 
1954 void
1955 xlog_buf_readahead(
1956         struct xlog             *log,
1957         xfs_daddr_t             blkno,
1958         uint                    len,
1959         const struct xfs_buf_ops *ops)
1960 {
1961         if (!xlog_is_buffer_cancelled(log, blkno, len))
1962                 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1963 }
1964 
1965 /*
1966  * Create a deferred work structure for resuming and tracking the progress of a
1967  * log intent item that was found during recovery.
1968  */
1969 void
1970 xlog_recover_intent_item(
1971         struct xlog                     *log,
1972         struct xfs_log_item             *lip,
1973         xfs_lsn_t                       lsn,
1974         const struct xfs_defer_op_type  *ops)
1975 {
1976         ASSERT(xlog_item_is_intent(lip));
1977 
1978         xfs_defer_start_recovery(lip, &log->r_dfops, ops);
1979 
1980         /*
1981          * Insert the intent into the AIL directly and drop one reference so
1982          * that finishing or canceling the work will drop the other.
1983          */
1984         xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1985         lip->li_ops->iop_unpin(lip, 0);
1986 }
1987 
1988 STATIC int
1989 xlog_recover_items_pass2(
1990         struct xlog                     *log,
1991         struct xlog_recover             *trans,
1992         struct list_head                *buffer_list,
1993         struct list_head                *item_list)
1994 {
1995         struct xlog_recover_item        *item;
1996         int                             error = 0;
1997 
1998         list_for_each_entry(item, item_list, ri_list) {
1999                 trace_xfs_log_recover_item_recover(log, trans, item,
2000                                 XLOG_RECOVER_PASS2);
2001 
2002                 if (item->ri_ops->commit_pass2)
2003                         error = item->ri_ops->commit_pass2(log, buffer_list,
2004                                         item, trans->r_lsn);
2005                 if (error)
2006                         return error;
2007         }
2008 
2009         return error;
2010 }
2011 
2012 /*
2013  * Perform the transaction.
2014  *
2015  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2016  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2017  */
2018 STATIC int
2019 xlog_recover_commit_trans(
2020         struct xlog             *log,
2021         struct xlog_recover     *trans,
2022         int                     pass,
2023         struct list_head        *buffer_list)
2024 {
2025         int                             error = 0;
2026         int                             items_queued = 0;
2027         struct xlog_recover_item        *item;
2028         struct xlog_recover_item        *next;
2029         LIST_HEAD                       (ra_list);
2030         LIST_HEAD                       (done_list);
2031 
2032         #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2033 
2034         hlist_del_init(&trans->r_list);
2035 
2036         error = xlog_recover_reorder_trans(log, trans, pass);
2037         if (error)
2038                 return error;
2039 
2040         list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2041                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2042 
2043                 switch (pass) {
2044                 case XLOG_RECOVER_PASS1:
2045                         if (item->ri_ops->commit_pass1)
2046                                 error = item->ri_ops->commit_pass1(log, item);
2047                         break;
2048                 case XLOG_RECOVER_PASS2:
2049                         if (item->ri_ops->ra_pass2)
2050                                 item->ri_ops->ra_pass2(log, item);
2051                         list_move_tail(&item->ri_list, &ra_list);
2052                         items_queued++;
2053                         if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2054                                 error = xlog_recover_items_pass2(log, trans,
2055                                                 buffer_list, &ra_list);
2056                                 list_splice_tail_init(&ra_list, &done_list);
2057                                 items_queued = 0;
2058                         }
2059 
2060                         break;
2061                 default:
2062                         ASSERT(0);
2063                 }
2064 
2065                 if (error)
2066                         goto out;
2067         }
2068 
2069 out:
2070         if (!list_empty(&ra_list)) {
2071                 if (!error)
2072                         error = xlog_recover_items_pass2(log, trans,
2073                                         buffer_list, &ra_list);
2074                 list_splice_tail_init(&ra_list, &done_list);
2075         }
2076 
2077         if (!list_empty(&done_list))
2078                 list_splice_init(&done_list, &trans->r_itemq);
2079 
2080         return error;
2081 }
2082 
2083 STATIC void
2084 xlog_recover_add_item(
2085         struct list_head        *head)
2086 {
2087         struct xlog_recover_item *item;
2088 
2089         item = kzalloc(sizeof(struct xlog_recover_item),
2090                         GFP_KERNEL | __GFP_NOFAIL);
2091         INIT_LIST_HEAD(&item->ri_list);
2092         list_add_tail(&item->ri_list, head);
2093 }
2094 
2095 STATIC int
2096 xlog_recover_add_to_cont_trans(
2097         struct xlog             *log,
2098         struct xlog_recover     *trans,
2099         char                    *dp,
2100         int                     len)
2101 {
2102         struct xlog_recover_item *item;
2103         char                    *ptr, *old_ptr;
2104         int                     old_len;
2105 
2106         /*
2107          * If the transaction is empty, the header was split across this and the
2108          * previous record. Copy the rest of the header.
2109          */
2110         if (list_empty(&trans->r_itemq)) {
2111                 ASSERT(len <= sizeof(struct xfs_trans_header));
2112                 if (len > sizeof(struct xfs_trans_header)) {
2113                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
2114                         return -EFSCORRUPTED;
2115                 }
2116 
2117                 xlog_recover_add_item(&trans->r_itemq);
2118                 ptr = (char *)&trans->r_theader +
2119                                 sizeof(struct xfs_trans_header) - len;
2120                 memcpy(ptr, dp, len);
2121                 return 0;
2122         }
2123 
2124         /* take the tail entry */
2125         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2126                           ri_list);
2127 
2128         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2129         old_len = item->ri_buf[item->ri_cnt-1].i_len;
2130 
2131         ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
2132         if (!ptr)
2133                 return -ENOMEM;
2134         memcpy(&ptr[old_len], dp, len);
2135         item->ri_buf[item->ri_cnt-1].i_len += len;
2136         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2137         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2138         return 0;
2139 }
2140 
2141 /*
2142  * The next region to add is the start of a new region.  It could be
2143  * a whole region or it could be the first part of a new region.  Because
2144  * of this, the assumption here is that the type and size fields of all
2145  * format structures fit into the first 32 bits of the structure.
2146  *
2147  * This works because all regions must be 32 bit aligned.  Therefore, we
2148  * either have both fields or we have neither field.  In the case we have
2149  * neither field, the data part of the region is zero length.  We only have
2150  * a log_op_header and can throw away the header since a new one will appear
2151  * later.  If we have at least 4 bytes, then we can determine how many regions
2152  * will appear in the current log item.
2153  */
2154 STATIC int
2155 xlog_recover_add_to_trans(
2156         struct xlog             *log,
2157         struct xlog_recover     *trans,
2158         char                    *dp,
2159         int                     len)
2160 {
2161         struct xfs_inode_log_format     *in_f;                  /* any will do */
2162         struct xlog_recover_item *item;
2163         char                    *ptr;
2164 
2165         if (!len)
2166                 return 0;
2167         if (list_empty(&trans->r_itemq)) {
2168                 /* we need to catch log corruptions here */
2169                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2170                         xfs_warn(log->l_mp, "%s: bad header magic number",
2171                                 __func__);
2172                         ASSERT(0);
2173                         return -EFSCORRUPTED;
2174                 }
2175 
2176                 if (len > sizeof(struct xfs_trans_header)) {
2177                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
2178                         ASSERT(0);
2179                         return -EFSCORRUPTED;
2180                 }
2181 
2182                 /*
2183                  * The transaction header can be arbitrarily split across op
2184                  * records. If we don't have the whole thing here, copy what we
2185                  * do have and handle the rest in the next record.
2186                  */
2187                 if (len == sizeof(struct xfs_trans_header))
2188                         xlog_recover_add_item(&trans->r_itemq);
2189                 memcpy(&trans->r_theader, dp, len);
2190                 return 0;
2191         }
2192 
2193         ptr = xlog_kvmalloc(len);
2194         memcpy(ptr, dp, len);
2195         in_f = (struct xfs_inode_log_format *)ptr;
2196 
2197         /* take the tail entry */
2198         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2199                           ri_list);
2200         if (item->ri_total != 0 &&
2201              item->ri_total == item->ri_cnt) {
2202                 /* tail item is in use, get a new one */
2203                 xlog_recover_add_item(&trans->r_itemq);
2204                 item = list_entry(trans->r_itemq.prev,
2205                                         struct xlog_recover_item, ri_list);
2206         }
2207 
2208         if (item->ri_total == 0) {              /* first region to be added */
2209                 if (in_f->ilf_size == 0 ||
2210                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2211                         xfs_warn(log->l_mp,
2212                 "bad number of regions (%d) in inode log format",
2213                                   in_f->ilf_size);
2214                         ASSERT(0);
2215                         kvfree(ptr);
2216                         return -EFSCORRUPTED;
2217                 }
2218 
2219                 item->ri_total = in_f->ilf_size;
2220                 item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2221                                 GFP_KERNEL | __GFP_NOFAIL);
2222         }
2223 
2224         if (item->ri_total <= item->ri_cnt) {
2225                 xfs_warn(log->l_mp,
2226         "log item region count (%d) overflowed size (%d)",
2227                                 item->ri_cnt, item->ri_total);
2228                 ASSERT(0);
2229                 kvfree(ptr);
2230                 return -EFSCORRUPTED;
2231         }
2232 
2233         /* Description region is ri_buf[0] */
2234         item->ri_buf[item->ri_cnt].i_addr = ptr;
2235         item->ri_buf[item->ri_cnt].i_len  = len;
2236         item->ri_cnt++;
2237         trace_xfs_log_recover_item_add(log, trans, item, 0);
2238         return 0;
2239 }
2240 
2241 /*
2242  * Free up any resources allocated by the transaction
2243  *
2244  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2245  */
2246 STATIC void
2247 xlog_recover_free_trans(
2248         struct xlog_recover     *trans)
2249 {
2250         struct xlog_recover_item *item, *n;
2251         int                     i;
2252 
2253         hlist_del_init(&trans->r_list);
2254 
2255         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2256                 /* Free the regions in the item. */
2257                 list_del(&item->ri_list);
2258                 for (i = 0; i < item->ri_cnt; i++)
2259                         kvfree(item->ri_buf[i].i_addr);
2260                 /* Free the item itself */
2261                 kfree(item->ri_buf);
2262                 kfree(item);
2263         }
2264         /* Free the transaction recover structure */
2265         kfree(trans);
2266 }
2267 
2268 /*
2269  * On error or completion, trans is freed.
2270  */
2271 STATIC int
2272 xlog_recovery_process_trans(
2273         struct xlog             *log,
2274         struct xlog_recover     *trans,
2275         char                    *dp,
2276         unsigned int            len,
2277         unsigned int            flags,
2278         int                     pass,
2279         struct list_head        *buffer_list)
2280 {
2281         int                     error = 0;
2282         bool                    freeit = false;
2283 
2284         /* mask off ophdr transaction container flags */
2285         flags &= ~XLOG_END_TRANS;
2286         if (flags & XLOG_WAS_CONT_TRANS)
2287                 flags &= ~XLOG_CONTINUE_TRANS;
2288 
2289         /*
2290          * Callees must not free the trans structure. We'll decide if we need to
2291          * free it or not based on the operation being done and it's result.
2292          */
2293         switch (flags) {
2294         /* expected flag values */
2295         case 0:
2296         case XLOG_CONTINUE_TRANS:
2297                 error = xlog_recover_add_to_trans(log, trans, dp, len);
2298                 break;
2299         case XLOG_WAS_CONT_TRANS:
2300                 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2301                 break;
2302         case XLOG_COMMIT_TRANS:
2303                 error = xlog_recover_commit_trans(log, trans, pass,
2304                                                   buffer_list);
2305                 /* success or fail, we are now done with this transaction. */
2306                 freeit = true;
2307                 break;
2308 
2309         /* unexpected flag values */
2310         case XLOG_UNMOUNT_TRANS:
2311                 /* just skip trans */
2312                 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2313                 freeit = true;
2314                 break;
2315         case XLOG_START_TRANS:
2316         default:
2317                 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2318                 ASSERT(0);
2319                 error = -EFSCORRUPTED;
2320                 break;
2321         }
2322         if (error || freeit)
2323                 xlog_recover_free_trans(trans);
2324         return error;
2325 }
2326 
2327 /*
2328  * Lookup the transaction recovery structure associated with the ID in the
2329  * current ophdr. If the transaction doesn't exist and the start flag is set in
2330  * the ophdr, then allocate a new transaction for future ID matches to find.
2331  * Either way, return what we found during the lookup - an existing transaction
2332  * or nothing.
2333  */
2334 STATIC struct xlog_recover *
2335 xlog_recover_ophdr_to_trans(
2336         struct hlist_head       rhash[],
2337         struct xlog_rec_header  *rhead,
2338         struct xlog_op_header   *ohead)
2339 {
2340         struct xlog_recover     *trans;
2341         xlog_tid_t              tid;
2342         struct hlist_head       *rhp;
2343 
2344         tid = be32_to_cpu(ohead->oh_tid);
2345         rhp = &rhash[XLOG_RHASH(tid)];
2346         hlist_for_each_entry(trans, rhp, r_list) {
2347                 if (trans->r_log_tid == tid)
2348                         return trans;
2349         }
2350 
2351         /*
2352          * skip over non-start transaction headers - we could be
2353          * processing slack space before the next transaction starts
2354          */
2355         if (!(ohead->oh_flags & XLOG_START_TRANS))
2356                 return NULL;
2357 
2358         ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2359 
2360         /*
2361          * This is a new transaction so allocate a new recovery container to
2362          * hold the recovery ops that will follow.
2363          */
2364         trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2365         trans->r_log_tid = tid;
2366         trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2367         INIT_LIST_HEAD(&trans->r_itemq);
2368         INIT_HLIST_NODE(&trans->r_list);
2369         hlist_add_head(&trans->r_list, rhp);
2370 
2371         /*
2372          * Nothing more to do for this ophdr. Items to be added to this new
2373          * transaction will be in subsequent ophdr containers.
2374          */
2375         return NULL;
2376 }
2377 
2378 STATIC int
2379 xlog_recover_process_ophdr(
2380         struct xlog             *log,
2381         struct hlist_head       rhash[],
2382         struct xlog_rec_header  *rhead,
2383         struct xlog_op_header   *ohead,
2384         char                    *dp,
2385         char                    *end,
2386         int                     pass,
2387         struct list_head        *buffer_list)
2388 {
2389         struct xlog_recover     *trans;
2390         unsigned int            len;
2391         int                     error;
2392 
2393         /* Do we understand who wrote this op? */
2394         if (ohead->oh_clientid != XFS_TRANSACTION &&
2395             ohead->oh_clientid != XFS_LOG) {
2396                 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2397                         __func__, ohead->oh_clientid);
2398                 ASSERT(0);
2399                 return -EFSCORRUPTED;
2400         }
2401 
2402         /*
2403          * Check the ophdr contains all the data it is supposed to contain.
2404          */
2405         len = be32_to_cpu(ohead->oh_len);
2406         if (dp + len > end) {
2407                 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2408                 WARN_ON(1);
2409                 return -EFSCORRUPTED;
2410         }
2411 
2412         trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2413         if (!trans) {
2414                 /* nothing to do, so skip over this ophdr */
2415                 return 0;
2416         }
2417 
2418         /*
2419          * The recovered buffer queue is drained only once we know that all
2420          * recovery items for the current LSN have been processed. This is
2421          * required because:
2422          *
2423          * - Buffer write submission updates the metadata LSN of the buffer.
2424          * - Log recovery skips items with a metadata LSN >= the current LSN of
2425          *   the recovery item.
2426          * - Separate recovery items against the same metadata buffer can share
2427          *   a current LSN. I.e., consider that the LSN of a recovery item is
2428          *   defined as the starting LSN of the first record in which its
2429          *   transaction appears, that a record can hold multiple transactions,
2430          *   and/or that a transaction can span multiple records.
2431          *
2432          * In other words, we are allowed to submit a buffer from log recovery
2433          * once per current LSN. Otherwise, we may incorrectly skip recovery
2434          * items and cause corruption.
2435          *
2436          * We don't know up front whether buffers are updated multiple times per
2437          * LSN. Therefore, track the current LSN of each commit log record as it
2438          * is processed and drain the queue when it changes. Use commit records
2439          * because they are ordered correctly by the logging code.
2440          */
2441         if (log->l_recovery_lsn != trans->r_lsn &&
2442             ohead->oh_flags & XLOG_COMMIT_TRANS) {
2443                 error = xfs_buf_delwri_submit(buffer_list);
2444                 if (error)
2445                         return error;
2446                 log->l_recovery_lsn = trans->r_lsn;
2447         }
2448 
2449         return xlog_recovery_process_trans(log, trans, dp, len,
2450                                            ohead->oh_flags, pass, buffer_list);
2451 }
2452 
2453 /*
2454  * There are two valid states of the r_state field.  0 indicates that the
2455  * transaction structure is in a normal state.  We have either seen the
2456  * start of the transaction or the last operation we added was not a partial
2457  * operation.  If the last operation we added to the transaction was a
2458  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2459  *
2460  * NOTE: skip LRs with 0 data length.
2461  */
2462 STATIC int
2463 xlog_recover_process_data(
2464         struct xlog             *log,
2465         struct hlist_head       rhash[],
2466         struct xlog_rec_header  *rhead,
2467         char                    *dp,
2468         int                     pass,
2469         struct list_head        *buffer_list)
2470 {
2471         struct xlog_op_header   *ohead;
2472         char                    *end;
2473         int                     num_logops;
2474         int                     error;
2475 
2476         end = dp + be32_to_cpu(rhead->h_len);
2477         num_logops = be32_to_cpu(rhead->h_num_logops);
2478 
2479         /* check the log format matches our own - else we can't recover */
2480         if (xlog_header_check_recover(log->l_mp, rhead))
2481                 return -EIO;
2482 
2483         trace_xfs_log_recover_record(log, rhead, pass);
2484         while ((dp < end) && num_logops) {
2485 
2486                 ohead = (struct xlog_op_header *)dp;
2487                 dp += sizeof(*ohead);
2488                 if (dp > end) {
2489                         xfs_warn(log->l_mp, "%s: op header overrun", __func__);
2490                         return -EFSCORRUPTED;
2491                 }
2492 
2493                 /* errors will abort recovery */
2494                 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2495                                                    dp, end, pass, buffer_list);
2496                 if (error)
2497                         return error;
2498 
2499                 dp += be32_to_cpu(ohead->oh_len);
2500                 num_logops--;
2501         }
2502         return 0;
2503 }
2504 
2505 /* Take all the collected deferred ops and finish them in order. */
2506 static int
2507 xlog_finish_defer_ops(
2508         struct xfs_mount        *mp,
2509         struct list_head        *capture_list)
2510 {
2511         struct xfs_defer_capture *dfc, *next;
2512         struct xfs_trans        *tp;
2513         int                     error = 0;
2514 
2515         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2516                 struct xfs_trans_res    resv;
2517                 struct xfs_defer_resources dres;
2518 
2519                 /*
2520                  * Create a new transaction reservation from the captured
2521                  * information.  Set logcount to 1 to force the new transaction
2522                  * to regrant every roll so that we can make forward progress
2523                  * in recovery no matter how full the log might be.
2524                  */
2525                 resv.tr_logres = dfc->dfc_logres;
2526                 resv.tr_logcount = 1;
2527                 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2528 
2529                 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2530                                 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2531                 if (error) {
2532                         xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2533                         return error;
2534                 }
2535 
2536                 /*
2537                  * Transfer to this new transaction all the dfops we captured
2538                  * from recovering a single intent item.
2539                  */
2540                 list_del_init(&dfc->dfc_list);
2541                 xfs_defer_ops_continue(dfc, tp, &dres);
2542                 error = xfs_trans_commit(tp);
2543                 xfs_defer_resources_rele(&dres);
2544                 if (error)
2545                         return error;
2546         }
2547 
2548         ASSERT(list_empty(capture_list));
2549         return 0;
2550 }
2551 
2552 /* Release all the captured defer ops and capture structures in this list. */
2553 static void
2554 xlog_abort_defer_ops(
2555         struct xfs_mount                *mp,
2556         struct list_head                *capture_list)
2557 {
2558         struct xfs_defer_capture        *dfc;
2559         struct xfs_defer_capture        *next;
2560 
2561         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2562                 list_del_init(&dfc->dfc_list);
2563                 xfs_defer_ops_capture_abort(mp, dfc);
2564         }
2565 }
2566 
2567 /*
2568  * When this is called, all of the log intent items which did not have
2569  * corresponding log done items should be in the AIL.  What we do now is update
2570  * the data structures associated with each one.
2571  *
2572  * Since we process the log intent items in normal transactions, they will be
2573  * removed at some point after the commit.  This prevents us from just walking
2574  * down the list processing each one.  We'll use a flag in the intent item to
2575  * skip those that we've already processed and use the AIL iteration mechanism's
2576  * generation count to try to speed this up at least a bit.
2577  *
2578  * When we start, we know that the intents are the only things in the AIL. As we
2579  * process them, however, other items are added to the AIL. Hence we know we
2580  * have started recovery on all the pending intents when we find an non-intent
2581  * item in the AIL.
2582  */
2583 STATIC int
2584 xlog_recover_process_intents(
2585         struct xlog                     *log)
2586 {
2587         LIST_HEAD(capture_list);
2588         struct xfs_defer_pending        *dfp, *n;
2589         int                             error = 0;
2590 #if defined(DEBUG) || defined(XFS_WARN)
2591         xfs_lsn_t                       last_lsn;
2592 
2593         last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2594 #endif
2595 
2596         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2597                 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2598 
2599                 /*
2600                  * We should never see a redo item with a LSN higher than
2601                  * the last transaction we found in the log at the start
2602                  * of recovery.
2603                  */
2604                 ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2605 
2606                 /*
2607                  * NOTE: If your intent processing routine can create more
2608                  * deferred ops, you /must/ attach them to the capture list in
2609                  * the recover routine or else those subsequent intents will be
2610                  * replayed in the wrong order!
2611                  *
2612                  * The recovery function can free the log item, so we must not
2613                  * access dfp->dfp_intent after it returns.  It must dispose of
2614                  * @dfp if it returns 0.
2615                  */
2616                 error = xfs_defer_finish_recovery(log->l_mp, dfp,
2617                                 &capture_list);
2618                 if (error)
2619                         break;
2620         }
2621         if (error)
2622                 goto err;
2623 
2624         error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2625         if (error)
2626                 goto err;
2627 
2628         return 0;
2629 err:
2630         xlog_abort_defer_ops(log->l_mp, &capture_list);
2631         return error;
2632 }
2633 
2634 /*
2635  * A cancel occurs when the mount has failed and we're bailing out.  Release all
2636  * pending log intent items that we haven't started recovery on so they don't
2637  * pin the AIL.
2638  */
2639 STATIC void
2640 xlog_recover_cancel_intents(
2641         struct xlog                     *log)
2642 {
2643         struct xfs_defer_pending        *dfp, *n;
2644 
2645         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2646                 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2647 
2648                 xfs_defer_cancel_recovery(log->l_mp, dfp);
2649         }
2650 }
2651 
2652 /*
2653  * Transfer ownership of the recovered pending work to the recovery transaction
2654  * and try to finish the work.  If there is more work to be done, the dfp will
2655  * remain attached to the transaction.  If not, the dfp is freed.
2656  */
2657 int
2658 xlog_recover_finish_intent(
2659         struct xfs_trans                *tp,
2660         struct xfs_defer_pending        *dfp)
2661 {
2662         int                             error;
2663 
2664         list_move(&dfp->dfp_list, &tp->t_dfops);
2665         error = xfs_defer_finish_one(tp, dfp);
2666         if (error == -EAGAIN)
2667                 return 0;
2668         return error;
2669 }
2670 
2671 /*
2672  * This routine performs a transaction to null out a bad inode pointer
2673  * in an agi unlinked inode hash bucket.
2674  */
2675 STATIC void
2676 xlog_recover_clear_agi_bucket(
2677         struct xfs_perag        *pag,
2678         int                     bucket)
2679 {
2680         struct xfs_mount        *mp = pag->pag_mount;
2681         struct xfs_trans        *tp;
2682         struct xfs_agi          *agi;
2683         struct xfs_buf          *agibp;
2684         int                     offset;
2685         int                     error;
2686 
2687         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2688         if (error)
2689                 goto out_error;
2690 
2691         error = xfs_read_agi(pag, tp, 0, &agibp);
2692         if (error)
2693                 goto out_abort;
2694 
2695         agi = agibp->b_addr;
2696         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2697         offset = offsetof(xfs_agi_t, agi_unlinked) +
2698                  (sizeof(xfs_agino_t) * bucket);
2699         xfs_trans_log_buf(tp, agibp, offset,
2700                           (offset + sizeof(xfs_agino_t) - 1));
2701 
2702         error = xfs_trans_commit(tp);
2703         if (error)
2704                 goto out_error;
2705         return;
2706 
2707 out_abort:
2708         xfs_trans_cancel(tp);
2709 out_error:
2710         xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2711                         pag->pag_agno);
2712         return;
2713 }
2714 
2715 static int
2716 xlog_recover_iunlink_bucket(
2717         struct xfs_perag        *pag,
2718         struct xfs_agi          *agi,
2719         int                     bucket)
2720 {
2721         struct xfs_mount        *mp = pag->pag_mount;
2722         struct xfs_inode        *prev_ip = NULL;
2723         struct xfs_inode        *ip;
2724         xfs_agino_t             prev_agino, agino;
2725         int                     error = 0;
2726 
2727         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2728         while (agino != NULLAGINO) {
2729                 error = xfs_iget(mp, NULL,
2730                                 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
2731                                 0, 0, &ip);
2732                 if (error)
2733                         break;
2734 
2735                 ASSERT(VFS_I(ip)->i_nlink == 0);
2736                 ASSERT(VFS_I(ip)->i_mode != 0);
2737                 xfs_iflags_clear(ip, XFS_IRECOVERY);
2738                 agino = ip->i_next_unlinked;
2739 
2740                 if (prev_ip) {
2741                         ip->i_prev_unlinked = prev_agino;
2742                         xfs_irele(prev_ip);
2743 
2744                         /*
2745                          * Ensure the inode is removed from the unlinked list
2746                          * before we continue so that it won't race with
2747                          * building the in-memory list here. This could be
2748                          * serialised with the agibp lock, but that just
2749                          * serialises via lockstepping and it's much simpler
2750                          * just to flush the inodegc queue and wait for it to
2751                          * complete.
2752                          */
2753                         error = xfs_inodegc_flush(mp);
2754                         if (error)
2755                                 break;
2756                 }
2757 
2758                 prev_agino = agino;
2759                 prev_ip = ip;
2760         }
2761 
2762         if (prev_ip) {
2763                 int     error2;
2764 
2765                 ip->i_prev_unlinked = prev_agino;
2766                 xfs_irele(prev_ip);
2767 
2768                 error2 = xfs_inodegc_flush(mp);
2769                 if (error2 && !error)
2770                         return error2;
2771         }
2772         return error;
2773 }
2774 
2775 /*
2776  * Recover AGI unlinked lists
2777  *
2778  * This is called during recovery to process any inodes which we unlinked but
2779  * not freed when the system crashed.  These inodes will be on the lists in the
2780  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2781  * any inodes found on the lists. Each inode is removed from the lists when it
2782  * has been fully truncated and is freed. The freeing of the inode and its
2783  * removal from the list must be atomic.
2784  *
2785  * If everything we touch in the agi processing loop is already in memory, this
2786  * loop can hold the cpu for a long time. It runs without lock contention,
2787  * memory allocation contention, the need wait for IO, etc, and so will run
2788  * until we either run out of inodes to process, run low on memory or we run out
2789  * of log space.
2790  *
2791  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2792  * and can prevent other filesystem work (such as CIL pushes) from running. This
2793  * can lead to deadlocks if the recovery process runs out of log reservation
2794  * space. Hence we need to yield the CPU when there is other kernel work
2795  * scheduled on this CPU to ensure other scheduled work can run without undue
2796  * latency.
2797  */
2798 static void
2799 xlog_recover_iunlink_ag(
2800         struct xfs_perag        *pag)
2801 {
2802         struct xfs_agi          *agi;
2803         struct xfs_buf          *agibp;
2804         int                     bucket;
2805         int                     error;
2806 
2807         error = xfs_read_agi(pag, NULL, 0, &agibp);
2808         if (error) {
2809                 /*
2810                  * AGI is b0rked. Don't process it.
2811                  *
2812                  * We should probably mark the filesystem as corrupt after we've
2813                  * recovered all the ag's we can....
2814                  */
2815                 return;
2816         }
2817 
2818         /*
2819          * Unlock the buffer so that it can be acquired in the normal course of
2820          * the transaction to truncate and free each inode.  Because we are not
2821          * racing with anyone else here for the AGI buffer, we don't even need
2822          * to hold it locked to read the initial unlinked bucket entries out of
2823          * the buffer. We keep buffer reference though, so that it stays pinned
2824          * in memory while we need the buffer.
2825          */
2826         agi = agibp->b_addr;
2827         xfs_buf_unlock(agibp);
2828 
2829         for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2830                 error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2831                 if (error) {
2832                         /*
2833                          * Bucket is unrecoverable, so only a repair scan can
2834                          * free the remaining unlinked inodes. Just empty the
2835                          * bucket and remaining inodes on it unreferenced and
2836                          * unfreeable.
2837                          */
2838                         xlog_recover_clear_agi_bucket(pag, bucket);
2839                 }
2840         }
2841 
2842         xfs_buf_rele(agibp);
2843 }
2844 
2845 static void
2846 xlog_recover_process_iunlinks(
2847         struct xlog     *log)
2848 {
2849         struct xfs_perag        *pag;
2850         xfs_agnumber_t          agno;
2851 
2852         for_each_perag(log->l_mp, agno, pag)
2853                 xlog_recover_iunlink_ag(pag);
2854 }
2855 
2856 STATIC void
2857 xlog_unpack_data(
2858         struct xlog_rec_header  *rhead,
2859         char                    *dp,
2860         struct xlog             *log)
2861 {
2862         int                     i, j, k;
2863 
2864         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2865                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2866                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2867                 dp += BBSIZE;
2868         }
2869 
2870         if (xfs_has_logv2(log->l_mp)) {
2871                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2872                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2873                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2874                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2875                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2876                         dp += BBSIZE;
2877                 }
2878         }
2879 }
2880 
2881 /*
2882  * CRC check, unpack and process a log record.
2883  */
2884 STATIC int
2885 xlog_recover_process(
2886         struct xlog             *log,
2887         struct hlist_head       rhash[],
2888         struct xlog_rec_header  *rhead,
2889         char                    *dp,
2890         int                     pass,
2891         struct list_head        *buffer_list)
2892 {
2893         __le32                  old_crc = rhead->h_crc;
2894         __le32                  crc;
2895 
2896         crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2897 
2898         /*
2899          * Nothing else to do if this is a CRC verification pass. Just return
2900          * if this a record with a non-zero crc. Unfortunately, mkfs always
2901          * sets old_crc to 0 so we must consider this valid even on v5 supers.
2902          * Otherwise, return EFSBADCRC on failure so the callers up the stack
2903          * know precisely what failed.
2904          */
2905         if (pass == XLOG_RECOVER_CRCPASS) {
2906                 if (old_crc && crc != old_crc)
2907                         return -EFSBADCRC;
2908                 return 0;
2909         }
2910 
2911         /*
2912          * We're in the normal recovery path. Issue a warning if and only if the
2913          * CRC in the header is non-zero. This is an advisory warning and the
2914          * zero CRC check prevents warnings from being emitted when upgrading
2915          * the kernel from one that does not add CRCs by default.
2916          */
2917         if (crc != old_crc) {
2918                 if (old_crc || xfs_has_crc(log->l_mp)) {
2919                         xfs_alert(log->l_mp,
2920                 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2921                                         le32_to_cpu(old_crc),
2922                                         le32_to_cpu(crc));
2923                         xfs_hex_dump(dp, 32);
2924                 }
2925 
2926                 /*
2927                  * If the filesystem is CRC enabled, this mismatch becomes a
2928                  * fatal log corruption failure.
2929                  */
2930                 if (xfs_has_crc(log->l_mp)) {
2931                         XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2932                         return -EFSCORRUPTED;
2933                 }
2934         }
2935 
2936         xlog_unpack_data(rhead, dp, log);
2937 
2938         return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2939                                          buffer_list);
2940 }
2941 
2942 STATIC int
2943 xlog_valid_rec_header(
2944         struct xlog             *log,
2945         struct xlog_rec_header  *rhead,
2946         xfs_daddr_t             blkno,
2947         int                     bufsize)
2948 {
2949         int                     hlen;
2950 
2951         if (XFS_IS_CORRUPT(log->l_mp,
2952                            rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2953                 return -EFSCORRUPTED;
2954         if (XFS_IS_CORRUPT(log->l_mp,
2955                            (!rhead->h_version ||
2956                            (be32_to_cpu(rhead->h_version) &
2957                             (~XLOG_VERSION_OKBITS))))) {
2958                 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2959                         __func__, be32_to_cpu(rhead->h_version));
2960                 return -EFSCORRUPTED;
2961         }
2962 
2963         /*
2964          * LR body must have data (or it wouldn't have been written)
2965          * and h_len must not be greater than LR buffer size.
2966          */
2967         hlen = be32_to_cpu(rhead->h_len);
2968         if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2969                 return -EFSCORRUPTED;
2970 
2971         if (XFS_IS_CORRUPT(log->l_mp,
2972                            blkno > log->l_logBBsize || blkno > INT_MAX))
2973                 return -EFSCORRUPTED;
2974         return 0;
2975 }
2976 
2977 /*
2978  * Read the log from tail to head and process the log records found.
2979  * Handle the two cases where the tail and head are in the same cycle
2980  * and where the active portion of the log wraps around the end of
2981  * the physical log separately.  The pass parameter is passed through
2982  * to the routines called to process the data and is not looked at
2983  * here.
2984  */
2985 STATIC int
2986 xlog_do_recovery_pass(
2987         struct xlog             *log,
2988         xfs_daddr_t             head_blk,
2989         xfs_daddr_t             tail_blk,
2990         int                     pass,
2991         xfs_daddr_t             *first_bad)     /* out: first bad log rec */
2992 {
2993         xlog_rec_header_t       *rhead;
2994         xfs_daddr_t             blk_no, rblk_no;
2995         xfs_daddr_t             rhead_blk;
2996         char                    *offset;
2997         char                    *hbp, *dbp;
2998         int                     error = 0, h_size, h_len;
2999         int                     error2 = 0;
3000         int                     bblks, split_bblks;
3001         int                     hblks = 1, split_hblks, wrapped_hblks;
3002         int                     i;
3003         struct hlist_head       rhash[XLOG_RHASH_SIZE];
3004         LIST_HEAD               (buffer_list);
3005 
3006         ASSERT(head_blk != tail_blk);
3007         blk_no = rhead_blk = tail_blk;
3008 
3009         for (i = 0; i < XLOG_RHASH_SIZE; i++)
3010                 INIT_HLIST_HEAD(&rhash[i]);
3011 
3012         hbp = xlog_alloc_buffer(log, hblks);
3013         if (!hbp)
3014                 return -ENOMEM;
3015 
3016         /*
3017          * Read the header of the tail block and get the iclog buffer size from
3018          * h_size.  Use this to tell how many sectors make up the log header.
3019          */
3020         if (xfs_has_logv2(log->l_mp)) {
3021                 /*
3022                  * When using variable length iclogs, read first sector of
3023                  * iclog header and extract the header size from it.  Get a
3024                  * new hbp that is the correct size.
3025                  */
3026                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3027                 if (error)
3028                         goto bread_err1;
3029 
3030                 rhead = (xlog_rec_header_t *)offset;
3031 
3032                 /*
3033                  * xfsprogs has a bug where record length is based on lsunit but
3034                  * h_size (iclog size) is hardcoded to 32k. Now that we
3035                  * unconditionally CRC verify the unmount record, this means the
3036                  * log buffer can be too small for the record and cause an
3037                  * overrun.
3038                  *
3039                  * Detect this condition here. Use lsunit for the buffer size as
3040                  * long as this looks like the mkfs case. Otherwise, return an
3041                  * error to avoid a buffer overrun.
3042                  */
3043                 h_size = be32_to_cpu(rhead->h_size);
3044                 h_len = be32_to_cpu(rhead->h_len);
3045                 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3046                     rhead->h_num_logops == cpu_to_be32(1)) {
3047                         xfs_warn(log->l_mp,
3048                 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
3049                                  h_size, log->l_mp->m_logbsize);
3050                         h_size = log->l_mp->m_logbsize;
3051                 }
3052 
3053                 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3054                 if (error)
3055                         goto bread_err1;
3056 
3057                 /*
3058                  * This open codes xlog_logrec_hblks so that we can reuse the
3059                  * fixed up h_size value calculated above.  Without that we'd
3060                  * still allocate the buffer based on the incorrect on-disk
3061                  * size.
3062                  */
3063                 if (h_size > XLOG_HEADER_CYCLE_SIZE &&
3064                     (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) {
3065                         hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
3066                         if (hblks > 1) {
3067                                 kvfree(hbp);
3068                                 hbp = xlog_alloc_buffer(log, hblks);
3069                                 if (!hbp)
3070                                         return -ENOMEM;
3071                         }
3072                 }
3073         } else {
3074                 ASSERT(log->l_sectBBsize == 1);
3075                 h_size = XLOG_BIG_RECORD_BSIZE;
3076         }
3077 
3078         dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3079         if (!dbp) {
3080                 kvfree(hbp);
3081                 return -ENOMEM;
3082         }
3083 
3084         memset(rhash, 0, sizeof(rhash));
3085         if (tail_blk > head_blk) {
3086                 /*
3087                  * Perform recovery around the end of the physical log.
3088                  * When the head is not on the same cycle number as the tail,
3089                  * we can't do a sequential recovery.
3090                  */
3091                 while (blk_no < log->l_logBBsize) {
3092                         /*
3093                          * Check for header wrapping around physical end-of-log
3094                          */
3095                         offset = hbp;
3096                         split_hblks = 0;
3097                         wrapped_hblks = 0;
3098                         if (blk_no + hblks <= log->l_logBBsize) {
3099                                 /* Read header in one read */
3100                                 error = xlog_bread(log, blk_no, hblks, hbp,
3101                                                    &offset);
3102                                 if (error)
3103                                         goto bread_err2;
3104                         } else {
3105                                 /* This LR is split across physical log end */
3106                                 if (blk_no != log->l_logBBsize) {
3107                                         /* some data before physical log end */
3108                                         ASSERT(blk_no <= INT_MAX);
3109                                         split_hblks = log->l_logBBsize - (int)blk_no;
3110                                         ASSERT(split_hblks > 0);
3111                                         error = xlog_bread(log, blk_no,
3112                                                            split_hblks, hbp,
3113                                                            &offset);
3114                                         if (error)
3115                                                 goto bread_err2;
3116                                 }
3117 
3118                                 /*
3119                                  * Note: this black magic still works with
3120                                  * large sector sizes (non-512) only because:
3121                                  * - we increased the buffer size originally
3122                                  *   by 1 sector giving us enough extra space
3123                                  *   for the second read;
3124                                  * - the log start is guaranteed to be sector
3125                                  *   aligned;
3126                                  * - we read the log end (LR header start)
3127                                  *   _first_, then the log start (LR header end)
3128                                  *   - order is important.
3129                                  */
3130                                 wrapped_hblks = hblks - split_hblks;
3131                                 error = xlog_bread_noalign(log, 0,
3132                                                 wrapped_hblks,
3133                                                 offset + BBTOB(split_hblks));
3134                                 if (error)
3135                                         goto bread_err2;
3136                         }
3137                         rhead = (xlog_rec_header_t *)offset;
3138                         error = xlog_valid_rec_header(log, rhead,
3139                                         split_hblks ? blk_no : 0, h_size);
3140                         if (error)
3141                                 goto bread_err2;
3142 
3143                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3144                         blk_no += hblks;
3145 
3146                         /*
3147                          * Read the log record data in multiple reads if it
3148                          * wraps around the end of the log. Note that if the
3149                          * header already wrapped, blk_no could point past the
3150                          * end of the log. The record data is contiguous in
3151                          * that case.
3152                          */
3153                         if (blk_no + bblks <= log->l_logBBsize ||
3154                             blk_no >= log->l_logBBsize) {
3155                                 rblk_no = xlog_wrap_logbno(log, blk_no);
3156                                 error = xlog_bread(log, rblk_no, bblks, dbp,
3157                                                    &offset);
3158                                 if (error)
3159                                         goto bread_err2;
3160                         } else {
3161                                 /* This log record is split across the
3162                                  * physical end of log */
3163                                 offset = dbp;
3164                                 split_bblks = 0;
3165                                 if (blk_no != log->l_logBBsize) {
3166                                         /* some data is before the physical
3167                                          * end of log */
3168                                         ASSERT(!wrapped_hblks);
3169                                         ASSERT(blk_no <= INT_MAX);
3170                                         split_bblks =
3171                                                 log->l_logBBsize - (int)blk_no;
3172                                         ASSERT(split_bblks > 0);
3173                                         error = xlog_bread(log, blk_no,
3174                                                         split_bblks, dbp,
3175                                                         &offset);
3176                                         if (error)
3177                                                 goto bread_err2;
3178                                 }
3179 
3180                                 /*
3181                                  * Note: this black magic still works with
3182                                  * large sector sizes (non-512) only because:
3183                                  * - we increased the buffer size originally
3184                                  *   by 1 sector giving us enough extra space
3185                                  *   for the second read;
3186                                  * - the log start is guaranteed to be sector
3187                                  *   aligned;
3188                                  * - we read the log end (LR header start)
3189                                  *   _first_, then the log start (LR header end)
3190                                  *   - order is important.
3191                                  */
3192                                 error = xlog_bread_noalign(log, 0,
3193                                                 bblks - split_bblks,
3194                                                 offset + BBTOB(split_bblks));
3195                                 if (error)
3196                                         goto bread_err2;
3197                         }
3198 
3199                         error = xlog_recover_process(log, rhash, rhead, offset,
3200                                                      pass, &buffer_list);
3201                         if (error)
3202                                 goto bread_err2;
3203 
3204                         blk_no += bblks;
3205                         rhead_blk = blk_no;
3206                 }
3207 
3208                 ASSERT(blk_no >= log->l_logBBsize);
3209                 blk_no -= log->l_logBBsize;
3210                 rhead_blk = blk_no;
3211         }
3212 
3213         /* read first part of physical log */
3214         while (blk_no < head_blk) {
3215                 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3216                 if (error)
3217                         goto bread_err2;
3218 
3219                 rhead = (xlog_rec_header_t *)offset;
3220                 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3221                 if (error)
3222                         goto bread_err2;
3223 
3224                 /* blocks in data section */
3225                 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3226                 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3227                                    &offset);
3228                 if (error)
3229                         goto bread_err2;
3230 
3231                 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3232                                              &buffer_list);
3233                 if (error)
3234                         goto bread_err2;
3235 
3236                 blk_no += bblks + hblks;
3237                 rhead_blk = blk_no;
3238         }
3239 
3240  bread_err2:
3241         kvfree(dbp);
3242  bread_err1:
3243         kvfree(hbp);
3244 
3245         /*
3246          * Submit buffers that have been dirtied by the last record recovered.
3247          */
3248         if (!list_empty(&buffer_list)) {
3249                 if (error) {
3250                         /*
3251                          * If there has been an item recovery error then we
3252                          * cannot allow partial checkpoint writeback to
3253                          * occur.  We might have multiple checkpoints with the
3254                          * same start LSN in this buffer list, and partial
3255                          * writeback of a checkpoint in this situation can
3256                          * prevent future recovery of all the changes in the
3257                          * checkpoints at this start LSN.
3258                          *
3259                          * Note: Shutting down the filesystem will result in the
3260                          * delwri submission marking all the buffers stale,
3261                          * completing them and cleaning up _XBF_LOGRECOVERY
3262                          * state without doing any IO.
3263                          */
3264                         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3265                 }
3266                 error2 = xfs_buf_delwri_submit(&buffer_list);
3267         }
3268 
3269         if (error && first_bad)
3270                 *first_bad = rhead_blk;
3271 
3272         /*
3273          * Transactions are freed at commit time but transactions without commit
3274          * records on disk are never committed. Free any that may be left in the
3275          * hash table.
3276          */
3277         for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3278                 struct hlist_node       *tmp;
3279                 struct xlog_recover     *trans;
3280 
3281                 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3282                         xlog_recover_free_trans(trans);
3283         }
3284 
3285         return error ? error : error2;
3286 }
3287 
3288 /*
3289  * Do the recovery of the log.  We actually do this in two phases.
3290  * The two passes are necessary in order to implement the function
3291  * of cancelling a record written into the log.  The first pass
3292  * determines those things which have been cancelled, and the
3293  * second pass replays log items normally except for those which
3294  * have been cancelled.  The handling of the replay and cancellations
3295  * takes place in the log item type specific routines.
3296  *
3297  * The table of items which have cancel records in the log is allocated
3298  * and freed at this level, since only here do we know when all of
3299  * the log recovery has been completed.
3300  */
3301 STATIC int
3302 xlog_do_log_recovery(
3303         struct xlog     *log,
3304         xfs_daddr_t     head_blk,
3305         xfs_daddr_t     tail_blk)
3306 {
3307         int             error;
3308 
3309         ASSERT(head_blk != tail_blk);
3310 
3311         /*
3312          * First do a pass to find all of the cancelled buf log items.
3313          * Store them in the buf_cancel_table for use in the second pass.
3314          */
3315         error = xlog_alloc_buf_cancel_table(log);
3316         if (error)
3317                 return error;
3318 
3319         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3320                                       XLOG_RECOVER_PASS1, NULL);
3321         if (error != 0)
3322                 goto out_cancel;
3323 
3324         /*
3325          * Then do a second pass to actually recover the items in the log.
3326          * When it is complete free the table of buf cancel items.
3327          */
3328         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3329                                       XLOG_RECOVER_PASS2, NULL);
3330         if (!error)
3331                 xlog_check_buf_cancel_table(log);
3332 out_cancel:
3333         xlog_free_buf_cancel_table(log);
3334         return error;
3335 }
3336 
3337 /*
3338  * Do the actual recovery
3339  */
3340 STATIC int
3341 xlog_do_recover(
3342         struct xlog             *log,
3343         xfs_daddr_t             head_blk,
3344         xfs_daddr_t             tail_blk)
3345 {
3346         struct xfs_mount        *mp = log->l_mp;
3347         struct xfs_buf          *bp = mp->m_sb_bp;
3348         struct xfs_sb           *sbp = &mp->m_sb;
3349         int                     error;
3350 
3351         trace_xfs_log_recover(log, head_blk, tail_blk);
3352 
3353         /*
3354          * First replay the images in the log.
3355          */
3356         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3357         if (error)
3358                 return error;
3359 
3360         if (xlog_is_shutdown(log))
3361                 return -EIO;
3362 
3363         /*
3364          * We now update the tail_lsn since much of the recovery has completed
3365          * and there may be space available to use.  If there were no extent or
3366          * iunlinks, we can free up the entire log.  This was set in
3367          * xlog_find_tail to be the lsn of the last known good LR on disk.  If
3368          * there are extent frees or iunlinks they will have some entries in the
3369          * AIL; so we look at the AIL to determine how to set the tail_lsn.
3370          */
3371         xfs_ail_assign_tail_lsn(log->l_ailp);
3372 
3373         /*
3374          * Now that we've finished replaying all buffer and inode updates,
3375          * re-read the superblock and reverify it.
3376          */
3377         xfs_buf_lock(bp);
3378         xfs_buf_hold(bp);
3379         error = _xfs_buf_read(bp, XBF_READ);
3380         if (error) {
3381                 if (!xlog_is_shutdown(log)) {
3382                         xfs_buf_ioerror_alert(bp, __this_address);
3383                         ASSERT(0);
3384                 }
3385                 xfs_buf_relse(bp);
3386                 return error;
3387         }
3388 
3389         /* Convert superblock from on-disk format */
3390         xfs_sb_from_disk(sbp, bp->b_addr);
3391         xfs_buf_relse(bp);
3392 
3393         /* re-initialise in-core superblock and geometry structures */
3394         mp->m_features |= xfs_sb_version_to_features(sbp);
3395         xfs_reinit_percpu_counters(mp);
3396         error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks,
3397                         &mp->m_maxagi);
3398         if (error) {
3399                 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3400                 return error;
3401         }
3402         mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3403 
3404         /* Normal transactions can now occur */
3405         clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3406         return 0;
3407 }
3408 
3409 /*
3410  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3411  *
3412  * Return error or zero.
3413  */
3414 int
3415 xlog_recover(
3416         struct xlog     *log)
3417 {
3418         xfs_daddr_t     head_blk, tail_blk;
3419         int             error;
3420 
3421         /* find the tail of the log */
3422         error = xlog_find_tail(log, &head_blk, &tail_blk);
3423         if (error)
3424                 return error;
3425 
3426         /*
3427          * The superblock was read before the log was available and thus the LSN
3428          * could not be verified. Check the superblock LSN against the current
3429          * LSN now that it's known.
3430          */
3431         if (xfs_has_crc(log->l_mp) &&
3432             !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3433                 return -EINVAL;
3434 
3435         if (tail_blk != head_blk) {
3436                 /* There used to be a comment here:
3437                  *
3438                  * disallow recovery on read-only mounts.  note -- mount
3439                  * checks for ENOSPC and turns it into an intelligent
3440                  * error message.
3441                  * ...but this is no longer true.  Now, unless you specify
3442                  * NORECOVERY (in which case this function would never be
3443                  * called), we just go ahead and recover.  We do this all
3444                  * under the vfs layer, so we can get away with it unless
3445                  * the device itself is read-only, in which case we fail.
3446                  */
3447                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3448                         return error;
3449                 }
3450 
3451                 /*
3452                  * Version 5 superblock log feature mask validation. We know the
3453                  * log is dirty so check if there are any unknown log features
3454                  * in what we need to recover. If there are unknown features
3455                  * (e.g. unsupported transactions, then simply reject the
3456                  * attempt at recovery before touching anything.
3457                  */
3458                 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3459                     xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3460                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3461                         xfs_warn(log->l_mp,
3462 "Superblock has unknown incompatible log features (0x%x) enabled.",
3463                                 (log->l_mp->m_sb.sb_features_log_incompat &
3464                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3465                         xfs_warn(log->l_mp,
3466 "The log can not be fully and/or safely recovered by this kernel.");
3467                         xfs_warn(log->l_mp,
3468 "Please recover the log on a kernel that supports the unknown features.");
3469                         return -EINVAL;
3470                 }
3471 
3472                 /*
3473                  * Delay log recovery if the debug hook is set. This is debug
3474                  * instrumentation to coordinate simulation of I/O failures with
3475                  * log recovery.
3476                  */
3477                 if (xfs_globals.log_recovery_delay) {
3478                         xfs_notice(log->l_mp,
3479                                 "Delaying log recovery for %d seconds.",
3480                                 xfs_globals.log_recovery_delay);
3481                         msleep(xfs_globals.log_recovery_delay * 1000);
3482                 }
3483 
3484                 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3485                                 log->l_mp->m_logname ? log->l_mp->m_logname
3486                                                      : "internal");
3487 
3488                 error = xlog_do_recover(log, head_blk, tail_blk);
3489                 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3490         }
3491         return error;
3492 }
3493 
3494 /*
3495  * In the first part of recovery we replay inodes and buffers and build up the
3496  * list of intents which need to be processed. Here we process the intents and
3497  * clean up the on disk unlinked inode lists. This is separated from the first
3498  * part of recovery so that the root and real-time bitmap inodes can be read in
3499  * from disk in between the two stages.  This is necessary so that we can free
3500  * space in the real-time portion of the file system.
3501  *
3502  * We run this whole process under GFP_NOFS allocation context. We do a
3503  * combination of non-transactional and transactional work, yet we really don't
3504  * want to recurse into the filesystem from direct reclaim during any of this
3505  * processing. This allows all the recovery code run here not to care about the
3506  * memory allocation context it is running in.
3507  */
3508 int
3509 xlog_recover_finish(
3510         struct xlog     *log)
3511 {
3512         unsigned int    nofs_flags = memalloc_nofs_save();
3513         int             error;
3514 
3515         error = xlog_recover_process_intents(log);
3516         if (error) {
3517                 /*
3518                  * Cancel all the unprocessed intent items now so that we don't
3519                  * leave them pinned in the AIL.  This can cause the AIL to
3520                  * livelock on the pinned item if anyone tries to push the AIL
3521                  * (inode reclaim does this) before we get around to
3522                  * xfs_log_mount_cancel.
3523                  */
3524                 xlog_recover_cancel_intents(log);
3525                 xfs_alert(log->l_mp, "Failed to recover intents");
3526                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3527                 goto out_error;
3528         }
3529 
3530         /*
3531          * Sync the log to get all the intents out of the AIL.  This isn't
3532          * absolutely necessary, but it helps in case the unlink transactions
3533          * would have problems pushing the intents out of the way.
3534          */
3535         xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3536 
3537         xlog_recover_process_iunlinks(log);
3538 
3539         /*
3540          * Recover any CoW staging blocks that are still referenced by the
3541          * ondisk refcount metadata.  During mount there cannot be any live
3542          * staging extents as we have not permitted any user modifications.
3543          * Therefore, it is safe to free them all right now, even on a
3544          * read-only mount.
3545          */
3546         error = xfs_reflink_recover_cow(log->l_mp);
3547         if (error) {
3548                 xfs_alert(log->l_mp,
3549         "Failed to recover leftover CoW staging extents, err %d.",
3550                                 error);
3551                 /*
3552                  * If we get an error here, make sure the log is shut down
3553                  * but return zero so that any log items committed since the
3554                  * end of intents processing can be pushed through the CIL
3555                  * and AIL.
3556                  */
3557                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3558                 error = 0;
3559                 goto out_error;
3560         }
3561 
3562 out_error:
3563         memalloc_nofs_restore(nofs_flags);
3564         return error;
3565 }
3566 
3567 void
3568 xlog_recover_cancel(
3569         struct xlog     *log)
3570 {
3571         if (xlog_recovery_needed(log))
3572                 xlog_recover_cancel_intents(log);
3573 }
3574 
3575 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php