1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "scrub/stats.h" 39 40 static DEFINE_MUTEX(xfs_uuid_table_mutex); 41 static int xfs_uuid_table_size; 42 static uuid_t *xfs_uuid_table; 43 44 void 45 xfs_uuid_table_free(void) 46 { 47 if (xfs_uuid_table_size == 0) 48 return; 49 kfree(xfs_uuid_table); 50 xfs_uuid_table = NULL; 51 xfs_uuid_table_size = 0; 52 } 53 54 /* 55 * See if the UUID is unique among mounted XFS filesystems. 56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 57 */ 58 STATIC int 59 xfs_uuid_mount( 60 struct xfs_mount *mp) 61 { 62 uuid_t *uuid = &mp->m_sb.sb_uuid; 63 int hole, i; 64 65 /* Publish UUID in struct super_block */ 66 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 67 68 if (xfs_has_nouuid(mp)) 69 return 0; 70 71 if (uuid_is_null(uuid)) { 72 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 73 return -EINVAL; 74 } 75 76 mutex_lock(&xfs_uuid_table_mutex); 77 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 78 if (uuid_is_null(&xfs_uuid_table[i])) { 79 hole = i; 80 continue; 81 } 82 if (uuid_equal(uuid, &xfs_uuid_table[i])) 83 goto out_duplicate; 84 } 85 86 if (hole < 0) { 87 xfs_uuid_table = krealloc(xfs_uuid_table, 88 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 89 GFP_KERNEL | __GFP_NOFAIL); 90 hole = xfs_uuid_table_size++; 91 } 92 xfs_uuid_table[hole] = *uuid; 93 mutex_unlock(&xfs_uuid_table_mutex); 94 95 return 0; 96 97 out_duplicate: 98 mutex_unlock(&xfs_uuid_table_mutex); 99 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 100 return -EINVAL; 101 } 102 103 STATIC void 104 xfs_uuid_unmount( 105 struct xfs_mount *mp) 106 { 107 uuid_t *uuid = &mp->m_sb.sb_uuid; 108 int i; 109 110 if (xfs_has_nouuid(mp)) 111 return; 112 113 mutex_lock(&xfs_uuid_table_mutex); 114 for (i = 0; i < xfs_uuid_table_size; i++) { 115 if (uuid_is_null(&xfs_uuid_table[i])) 116 continue; 117 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 118 continue; 119 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 120 break; 121 } 122 ASSERT(i < xfs_uuid_table_size); 123 mutex_unlock(&xfs_uuid_table_mutex); 124 } 125 126 /* 127 * Check size of device based on the (data/realtime) block count. 128 * Note: this check is used by the growfs code as well as mount. 129 */ 130 int 131 xfs_sb_validate_fsb_count( 132 xfs_sb_t *sbp, 133 uint64_t nblocks) 134 { 135 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 136 ASSERT(sbp->sb_blocklog >= BBSHIFT); 137 138 /* Limited by ULONG_MAX of page cache index */ 139 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 140 return -EFBIG; 141 return 0; 142 } 143 144 /* 145 * xfs_readsb 146 * 147 * Does the initial read of the superblock. 148 */ 149 int 150 xfs_readsb( 151 struct xfs_mount *mp, 152 int flags) 153 { 154 unsigned int sector_size; 155 struct xfs_buf *bp; 156 struct xfs_sb *sbp = &mp->m_sb; 157 int error; 158 int loud = !(flags & XFS_MFSI_QUIET); 159 const struct xfs_buf_ops *buf_ops; 160 161 ASSERT(mp->m_sb_bp == NULL); 162 ASSERT(mp->m_ddev_targp != NULL); 163 164 /* 165 * For the initial read, we must guess at the sector 166 * size based on the block device. It's enough to 167 * get the sb_sectsize out of the superblock and 168 * then reread with the proper length. 169 * We don't verify it yet, because it may not be complete. 170 */ 171 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 172 buf_ops = NULL; 173 174 /* 175 * Allocate a (locked) buffer to hold the superblock. This will be kept 176 * around at all times to optimize access to the superblock. Therefore, 177 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 178 * elevated. 179 */ 180 reread: 181 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 182 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 183 buf_ops); 184 if (error) { 185 if (loud) 186 xfs_warn(mp, "SB validate failed with error %d.", error); 187 /* bad CRC means corrupted metadata */ 188 if (error == -EFSBADCRC) 189 error = -EFSCORRUPTED; 190 return error; 191 } 192 193 /* 194 * Initialize the mount structure from the superblock. 195 */ 196 xfs_sb_from_disk(sbp, bp->b_addr); 197 198 /* 199 * If we haven't validated the superblock, do so now before we try 200 * to check the sector size and reread the superblock appropriately. 201 */ 202 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 203 if (loud) 204 xfs_warn(mp, "Invalid superblock magic number"); 205 error = -EINVAL; 206 goto release_buf; 207 } 208 209 /* 210 * We must be able to do sector-sized and sector-aligned IO. 211 */ 212 if (sector_size > sbp->sb_sectsize) { 213 if (loud) 214 xfs_warn(mp, "device supports %u byte sectors (not %u)", 215 sector_size, sbp->sb_sectsize); 216 error = -ENOSYS; 217 goto release_buf; 218 } 219 220 if (buf_ops == NULL) { 221 /* 222 * Re-read the superblock so the buffer is correctly sized, 223 * and properly verified. 224 */ 225 xfs_buf_relse(bp); 226 sector_size = sbp->sb_sectsize; 227 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 228 goto reread; 229 } 230 231 mp->m_features |= xfs_sb_version_to_features(sbp); 232 xfs_reinit_percpu_counters(mp); 233 234 /* 235 * If logged xattrs are enabled after log recovery finishes, then set 236 * the opstate so that log recovery will work properly. 237 */ 238 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 239 xfs_set_using_logged_xattrs(mp); 240 241 /* no need to be quiet anymore, so reset the buf ops */ 242 bp->b_ops = &xfs_sb_buf_ops; 243 244 mp->m_sb_bp = bp; 245 xfs_buf_unlock(bp); 246 return 0; 247 248 release_buf: 249 xfs_buf_relse(bp); 250 return error; 251 } 252 253 /* 254 * If the sunit/swidth change would move the precomputed root inode value, we 255 * must reject the ondisk change because repair will stumble over that. 256 * However, we allow the mount to proceed because we never rejected this 257 * combination before. Returns true to update the sb, false otherwise. 258 */ 259 static inline int 260 xfs_check_new_dalign( 261 struct xfs_mount *mp, 262 int new_dalign, 263 bool *update_sb) 264 { 265 struct xfs_sb *sbp = &mp->m_sb; 266 xfs_ino_t calc_ino; 267 268 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 269 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 270 271 if (sbp->sb_rootino == calc_ino) { 272 *update_sb = true; 273 return 0; 274 } 275 276 xfs_warn(mp, 277 "Cannot change stripe alignment; would require moving root inode."); 278 279 /* 280 * XXX: Next time we add a new incompat feature, this should start 281 * returning -EINVAL to fail the mount. Until then, spit out a warning 282 * that we're ignoring the administrator's instructions. 283 */ 284 xfs_warn(mp, "Skipping superblock stripe alignment update."); 285 *update_sb = false; 286 return 0; 287 } 288 289 /* 290 * If we were provided with new sunit/swidth values as mount options, make sure 291 * that they pass basic alignment and superblock feature checks, and convert 292 * them into the same units (FSB) that everything else expects. This step 293 * /must/ be done before computing the inode geometry. 294 */ 295 STATIC int 296 xfs_validate_new_dalign( 297 struct xfs_mount *mp) 298 { 299 if (mp->m_dalign == 0) 300 return 0; 301 302 /* 303 * If stripe unit and stripe width are not multiples 304 * of the fs blocksize turn off alignment. 305 */ 306 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 307 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 308 xfs_warn(mp, 309 "alignment check failed: sunit/swidth vs. blocksize(%d)", 310 mp->m_sb.sb_blocksize); 311 return -EINVAL; 312 } 313 314 /* 315 * Convert the stripe unit and width to FSBs. 316 */ 317 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 318 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 319 xfs_warn(mp, 320 "alignment check failed: sunit/swidth vs. agsize(%d)", 321 mp->m_sb.sb_agblocks); 322 return -EINVAL; 323 } 324 325 if (!mp->m_dalign) { 326 xfs_warn(mp, 327 "alignment check failed: sunit(%d) less than bsize(%d)", 328 mp->m_dalign, mp->m_sb.sb_blocksize); 329 return -EINVAL; 330 } 331 332 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 333 334 if (!xfs_has_dalign(mp)) { 335 xfs_warn(mp, 336 "cannot change alignment: superblock does not support data alignment"); 337 return -EINVAL; 338 } 339 340 return 0; 341 } 342 343 /* Update alignment values based on mount options and sb values. */ 344 STATIC int 345 xfs_update_alignment( 346 struct xfs_mount *mp) 347 { 348 struct xfs_sb *sbp = &mp->m_sb; 349 350 if (mp->m_dalign) { 351 bool update_sb; 352 int error; 353 354 if (sbp->sb_unit == mp->m_dalign && 355 sbp->sb_width == mp->m_swidth) 356 return 0; 357 358 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 359 if (error || !update_sb) 360 return error; 361 362 sbp->sb_unit = mp->m_dalign; 363 sbp->sb_width = mp->m_swidth; 364 mp->m_update_sb = true; 365 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 366 mp->m_dalign = sbp->sb_unit; 367 mp->m_swidth = sbp->sb_width; 368 } 369 370 return 0; 371 } 372 373 /* 374 * precalculate the low space thresholds for dynamic speculative preallocation. 375 */ 376 void 377 xfs_set_low_space_thresholds( 378 struct xfs_mount *mp) 379 { 380 uint64_t dblocks = mp->m_sb.sb_dblocks; 381 uint64_t rtexts = mp->m_sb.sb_rextents; 382 int i; 383 384 do_div(dblocks, 100); 385 do_div(rtexts, 100); 386 387 for (i = 0; i < XFS_LOWSP_MAX; i++) { 388 mp->m_low_space[i] = dblocks * (i + 1); 389 mp->m_low_rtexts[i] = rtexts * (i + 1); 390 } 391 } 392 393 /* 394 * Check that the data (and log if separate) is an ok size. 395 */ 396 STATIC int 397 xfs_check_sizes( 398 struct xfs_mount *mp) 399 { 400 struct xfs_buf *bp; 401 xfs_daddr_t d; 402 int error; 403 404 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 405 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 406 xfs_warn(mp, "filesystem size mismatch detected"); 407 return -EFBIG; 408 } 409 error = xfs_buf_read_uncached(mp->m_ddev_targp, 410 d - XFS_FSS_TO_BB(mp, 1), 411 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 412 if (error) { 413 xfs_warn(mp, "last sector read failed"); 414 return error; 415 } 416 xfs_buf_relse(bp); 417 418 if (mp->m_logdev_targp == mp->m_ddev_targp) 419 return 0; 420 421 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 422 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 423 xfs_warn(mp, "log size mismatch detected"); 424 return -EFBIG; 425 } 426 error = xfs_buf_read_uncached(mp->m_logdev_targp, 427 d - XFS_FSB_TO_BB(mp, 1), 428 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 429 if (error) { 430 xfs_warn(mp, "log device read failed"); 431 return error; 432 } 433 xfs_buf_relse(bp); 434 return 0; 435 } 436 437 /* 438 * Clear the quotaflags in memory and in the superblock. 439 */ 440 int 441 xfs_mount_reset_sbqflags( 442 struct xfs_mount *mp) 443 { 444 mp->m_qflags = 0; 445 446 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 447 if (mp->m_sb.sb_qflags == 0) 448 return 0; 449 spin_lock(&mp->m_sb_lock); 450 mp->m_sb.sb_qflags = 0; 451 spin_unlock(&mp->m_sb_lock); 452 453 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 454 return 0; 455 456 return xfs_sync_sb(mp, false); 457 } 458 459 uint64_t 460 xfs_default_resblks(xfs_mount_t *mp) 461 { 462 uint64_t resblks; 463 464 /* 465 * We default to 5% or 8192 fsbs of space reserved, whichever is 466 * smaller. This is intended to cover concurrent allocation 467 * transactions when we initially hit enospc. These each require a 4 468 * block reservation. Hence by default we cover roughly 2000 concurrent 469 * allocation reservations. 470 */ 471 resblks = mp->m_sb.sb_dblocks; 472 do_div(resblks, 20); 473 resblks = min_t(uint64_t, resblks, 8192); 474 return resblks; 475 } 476 477 /* Ensure the summary counts are correct. */ 478 STATIC int 479 xfs_check_summary_counts( 480 struct xfs_mount *mp) 481 { 482 int error = 0; 483 484 /* 485 * The AG0 superblock verifier rejects in-progress filesystems, 486 * so we should never see the flag set this far into mounting. 487 */ 488 if (mp->m_sb.sb_inprogress) { 489 xfs_err(mp, "sb_inprogress set after log recovery??"); 490 WARN_ON(1); 491 return -EFSCORRUPTED; 492 } 493 494 /* 495 * Now the log is mounted, we know if it was an unclean shutdown or 496 * not. If it was, with the first phase of recovery has completed, we 497 * have consistent AG blocks on disk. We have not recovered EFIs yet, 498 * but they are recovered transactionally in the second recovery phase 499 * later. 500 * 501 * If the log was clean when we mounted, we can check the summary 502 * counters. If any of them are obviously incorrect, we can recompute 503 * them from the AGF headers in the next step. 504 */ 505 if (xfs_is_clean(mp) && 506 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 507 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 508 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 509 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 510 511 /* 512 * We can safely re-initialise incore superblock counters from the 513 * per-ag data. These may not be correct if the filesystem was not 514 * cleanly unmounted, so we waited for recovery to finish before doing 515 * this. 516 * 517 * If the filesystem was cleanly unmounted or the previous check did 518 * not flag anything weird, then we can trust the values in the 519 * superblock to be correct and we don't need to do anything here. 520 * Otherwise, recalculate the summary counters. 521 */ 522 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 523 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 524 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 525 if (error) 526 return error; 527 } 528 529 /* 530 * Older kernels misused sb_frextents to reflect both incore 531 * reservations made by running transactions and the actual count of 532 * free rt extents in the ondisk metadata. Transactions committed 533 * during runtime can therefore contain a superblock update that 534 * undercounts the number of free rt extents tracked in the rt bitmap. 535 * A clean unmount record will have the correct frextents value since 536 * there can be no other transactions running at that point. 537 * 538 * If we're mounting the rt volume after recovering the log, recompute 539 * frextents from the rtbitmap file to fix the inconsistency. 540 */ 541 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 542 error = xfs_rtalloc_reinit_frextents(mp); 543 if (error) 544 return error; 545 } 546 547 return 0; 548 } 549 550 static void 551 xfs_unmount_check( 552 struct xfs_mount *mp) 553 { 554 if (xfs_is_shutdown(mp)) 555 return; 556 557 if (percpu_counter_sum(&mp->m_ifree) > 558 percpu_counter_sum(&mp->m_icount)) { 559 xfs_alert(mp, "ifree/icount mismatch at unmount"); 560 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 561 } 562 } 563 564 /* 565 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 566 * internal inode structures can be sitting in the CIL and AIL at this point, 567 * so we need to unpin them, write them back and/or reclaim them before unmount 568 * can proceed. In other words, callers are required to have inactivated all 569 * inodes. 570 * 571 * An inode cluster that has been freed can have its buffer still pinned in 572 * memory because the transaction is still sitting in a iclog. The stale inodes 573 * on that buffer will be pinned to the buffer until the transaction hits the 574 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 575 * may never see the pinned buffer, so nothing will push out the iclog and 576 * unpin the buffer. 577 * 578 * Hence we need to force the log to unpin everything first. However, log 579 * forces don't wait for the discards they issue to complete, so we have to 580 * explicitly wait for them to complete here as well. 581 * 582 * Then we can tell the world we are unmounting so that error handling knows 583 * that the filesystem is going away and we should error out anything that we 584 * have been retrying in the background. This will prevent never-ending 585 * retries in AIL pushing from hanging the unmount. 586 * 587 * Finally, we can push the AIL to clean all the remaining dirty objects, then 588 * reclaim the remaining inodes that are still in memory at this point in time. 589 */ 590 static void 591 xfs_unmount_flush_inodes( 592 struct xfs_mount *mp) 593 { 594 xfs_log_force(mp, XFS_LOG_SYNC); 595 xfs_extent_busy_wait_all(mp); 596 flush_workqueue(xfs_discard_wq); 597 598 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 599 600 xfs_ail_push_all_sync(mp->m_ail); 601 xfs_inodegc_stop(mp); 602 cancel_delayed_work_sync(&mp->m_reclaim_work); 603 xfs_reclaim_inodes(mp); 604 xfs_health_unmount(mp); 605 } 606 607 static void 608 xfs_mount_setup_inode_geom( 609 struct xfs_mount *mp) 610 { 611 struct xfs_ino_geometry *igeo = M_IGEO(mp); 612 613 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 614 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 615 616 xfs_ialloc_setup_geometry(mp); 617 } 618 619 /* Compute maximum possible height for per-AG btree types for this fs. */ 620 static inline void 621 xfs_agbtree_compute_maxlevels( 622 struct xfs_mount *mp) 623 { 624 unsigned int levels; 625 626 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 627 levels = max(levels, mp->m_rmap_maxlevels); 628 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 629 } 630 631 /* 632 * This function does the following on an initial mount of a file system: 633 * - reads the superblock from disk and init the mount struct 634 * - if we're a 32-bit kernel, do a size check on the superblock 635 * so we don't mount terabyte filesystems 636 * - init mount struct realtime fields 637 * - allocate inode hash table for fs 638 * - init directory manager 639 * - perform recovery and init the log manager 640 */ 641 int 642 xfs_mountfs( 643 struct xfs_mount *mp) 644 { 645 struct xfs_sb *sbp = &(mp->m_sb); 646 struct xfs_inode *rip; 647 struct xfs_ino_geometry *igeo = M_IGEO(mp); 648 uint quotamount = 0; 649 uint quotaflags = 0; 650 int error = 0; 651 652 xfs_sb_mount_common(mp, sbp); 653 654 /* 655 * Check for a mismatched features2 values. Older kernels read & wrote 656 * into the wrong sb offset for sb_features2 on some platforms due to 657 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 658 * which made older superblock reading/writing routines swap it as a 659 * 64-bit value. 660 * 661 * For backwards compatibility, we make both slots equal. 662 * 663 * If we detect a mismatched field, we OR the set bits into the existing 664 * features2 field in case it has already been modified; we don't want 665 * to lose any features. We then update the bad location with the ORed 666 * value so that older kernels will see any features2 flags. The 667 * superblock writeback code ensures the new sb_features2 is copied to 668 * sb_bad_features2 before it is logged or written to disk. 669 */ 670 if (xfs_sb_has_mismatched_features2(sbp)) { 671 xfs_warn(mp, "correcting sb_features alignment problem"); 672 sbp->sb_features2 |= sbp->sb_bad_features2; 673 mp->m_update_sb = true; 674 } 675 676 677 /* always use v2 inodes by default now */ 678 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 679 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 680 mp->m_features |= XFS_FEAT_NLINK; 681 mp->m_update_sb = true; 682 } 683 684 /* 685 * If we were given new sunit/swidth options, do some basic validation 686 * checks and convert the incore dalign and swidth values to the 687 * same units (FSB) that everything else uses. This /must/ happen 688 * before computing the inode geometry. 689 */ 690 error = xfs_validate_new_dalign(mp); 691 if (error) 692 goto out; 693 694 xfs_alloc_compute_maxlevels(mp); 695 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 696 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 697 xfs_mount_setup_inode_geom(mp); 698 xfs_rmapbt_compute_maxlevels(mp); 699 xfs_refcountbt_compute_maxlevels(mp); 700 701 xfs_agbtree_compute_maxlevels(mp); 702 703 /* 704 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 705 * is NOT aligned turn off m_dalign since allocator alignment is within 706 * an ag, therefore ag has to be aligned at stripe boundary. Note that 707 * we must compute the free space and rmap btree geometry before doing 708 * this. 709 */ 710 error = xfs_update_alignment(mp); 711 if (error) 712 goto out; 713 714 /* enable fail_at_unmount as default */ 715 mp->m_fail_unmount = true; 716 717 super_set_sysfs_name_id(mp->m_super); 718 719 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 720 NULL, mp->m_super->s_id); 721 if (error) 722 goto out; 723 724 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 725 &mp->m_kobj, "stats"); 726 if (error) 727 goto out_remove_sysfs; 728 729 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 730 731 error = xfs_error_sysfs_init(mp); 732 if (error) 733 goto out_remove_scrub_stats; 734 735 error = xfs_errortag_init(mp); 736 if (error) 737 goto out_remove_error_sysfs; 738 739 error = xfs_uuid_mount(mp); 740 if (error) 741 goto out_remove_errortag; 742 743 /* 744 * Update the preferred write size based on the information from the 745 * on-disk superblock. 746 */ 747 mp->m_allocsize_log = 748 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 749 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 750 751 /* set the low space thresholds for dynamic preallocation */ 752 xfs_set_low_space_thresholds(mp); 753 754 /* 755 * If enabled, sparse inode chunk alignment is expected to match the 756 * cluster size. Full inode chunk alignment must match the chunk size, 757 * but that is checked on sb read verification... 758 */ 759 if (xfs_has_sparseinodes(mp) && 760 mp->m_sb.sb_spino_align != 761 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 762 xfs_warn(mp, 763 "Sparse inode block alignment (%u) must match cluster size (%llu).", 764 mp->m_sb.sb_spino_align, 765 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 766 error = -EINVAL; 767 goto out_remove_uuid; 768 } 769 770 /* 771 * Check that the data (and log if separate) is an ok size. 772 */ 773 error = xfs_check_sizes(mp); 774 if (error) 775 goto out_remove_uuid; 776 777 /* 778 * Initialize realtime fields in the mount structure 779 */ 780 error = xfs_rtmount_init(mp); 781 if (error) { 782 xfs_warn(mp, "RT mount failed"); 783 goto out_remove_uuid; 784 } 785 786 /* 787 * Copies the low order bits of the timestamp and the randomly 788 * set "sequence" number out of a UUID. 789 */ 790 mp->m_fixedfsid[0] = 791 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 792 get_unaligned_be16(&sbp->sb_uuid.b[4]); 793 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 794 795 error = xfs_da_mount(mp); 796 if (error) { 797 xfs_warn(mp, "Failed dir/attr init: %d", error); 798 goto out_remove_uuid; 799 } 800 801 /* 802 * Initialize the precomputed transaction reservations values. 803 */ 804 xfs_trans_init(mp); 805 806 /* 807 * Allocate and initialize the per-ag data. 808 */ 809 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, 810 &mp->m_maxagi); 811 if (error) { 812 xfs_warn(mp, "Failed per-ag init: %d", error); 813 goto out_free_dir; 814 } 815 816 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 817 xfs_warn(mp, "no log defined"); 818 error = -EFSCORRUPTED; 819 goto out_free_perag; 820 } 821 822 error = xfs_inodegc_register_shrinker(mp); 823 if (error) 824 goto out_fail_wait; 825 826 /* 827 * Log's mount-time initialization. The first part of recovery can place 828 * some items on the AIL, to be handled when recovery is finished or 829 * cancelled. 830 */ 831 error = xfs_log_mount(mp, mp->m_logdev_targp, 832 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 833 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 834 if (error) { 835 xfs_warn(mp, "log mount failed"); 836 goto out_inodegc_shrinker; 837 } 838 839 /* 840 * If logged xattrs are still enabled after log recovery finishes, then 841 * they'll be available until unmount. Otherwise, turn them off. 842 */ 843 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 844 xfs_set_using_logged_xattrs(mp); 845 else 846 xfs_clear_using_logged_xattrs(mp); 847 848 /* Enable background inode inactivation workers. */ 849 xfs_inodegc_start(mp); 850 xfs_blockgc_start(mp); 851 852 /* 853 * Now that we've recovered any pending superblock feature bit 854 * additions, we can finish setting up the attr2 behaviour for the 855 * mount. The noattr2 option overrides the superblock flag, so only 856 * check the superblock feature flag if the mount option is not set. 857 */ 858 if (xfs_has_noattr2(mp)) { 859 mp->m_features &= ~XFS_FEAT_ATTR2; 860 } else if (!xfs_has_attr2(mp) && 861 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 862 mp->m_features |= XFS_FEAT_ATTR2; 863 } 864 865 /* 866 * Get and sanity-check the root inode. 867 * Save the pointer to it in the mount structure. 868 */ 869 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 870 XFS_ILOCK_EXCL, &rip); 871 if (error) { 872 xfs_warn(mp, 873 "Failed to read root inode 0x%llx, error %d", 874 sbp->sb_rootino, -error); 875 goto out_log_dealloc; 876 } 877 878 ASSERT(rip != NULL); 879 880 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 881 xfs_warn(mp, "corrupted root inode %llu: not a directory", 882 (unsigned long long)rip->i_ino); 883 xfs_iunlock(rip, XFS_ILOCK_EXCL); 884 error = -EFSCORRUPTED; 885 goto out_rele_rip; 886 } 887 mp->m_rootip = rip; /* save it */ 888 889 xfs_iunlock(rip, XFS_ILOCK_EXCL); 890 891 /* 892 * Initialize realtime inode pointers in the mount structure 893 */ 894 error = xfs_rtmount_inodes(mp); 895 if (error) { 896 /* 897 * Free up the root inode. 898 */ 899 xfs_warn(mp, "failed to read RT inodes"); 900 goto out_rele_rip; 901 } 902 903 /* Make sure the summary counts are ok. */ 904 error = xfs_check_summary_counts(mp); 905 if (error) 906 goto out_rtunmount; 907 908 /* 909 * If this is a read-only mount defer the superblock updates until 910 * the next remount into writeable mode. Otherwise we would never 911 * perform the update e.g. for the root filesystem. 912 */ 913 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 914 error = xfs_sync_sb(mp, false); 915 if (error) { 916 xfs_warn(mp, "failed to write sb changes"); 917 goto out_rtunmount; 918 } 919 } 920 921 /* 922 * Initialise the XFS quota management subsystem for this mount 923 */ 924 if (XFS_IS_QUOTA_ON(mp)) { 925 error = xfs_qm_newmount(mp, "amount, "aflags); 926 if (error) 927 goto out_rtunmount; 928 } else { 929 /* 930 * If a file system had quotas running earlier, but decided to 931 * mount without -o uquota/pquota/gquota options, revoke the 932 * quotachecked license. 933 */ 934 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 935 xfs_notice(mp, "resetting quota flags"); 936 error = xfs_mount_reset_sbqflags(mp); 937 if (error) 938 goto out_rtunmount; 939 } 940 } 941 942 /* 943 * Finish recovering the file system. This part needed to be delayed 944 * until after the root and real-time bitmap inodes were consistently 945 * read in. Temporarily create per-AG space reservations for metadata 946 * btree shape changes because space freeing transactions (for inode 947 * inactivation) require the per-AG reservation in lieu of reserving 948 * blocks. 949 */ 950 error = xfs_fs_reserve_ag_blocks(mp); 951 if (error && error == -ENOSPC) 952 xfs_warn(mp, 953 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 954 error = xfs_log_mount_finish(mp); 955 xfs_fs_unreserve_ag_blocks(mp); 956 if (error) { 957 xfs_warn(mp, "log mount finish failed"); 958 goto out_rtunmount; 959 } 960 961 /* 962 * Now the log is fully replayed, we can transition to full read-only 963 * mode for read-only mounts. This will sync all the metadata and clean 964 * the log so that the recovery we just performed does not have to be 965 * replayed again on the next mount. 966 * 967 * We use the same quiesce mechanism as the rw->ro remount, as they are 968 * semantically identical operations. 969 */ 970 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 971 xfs_log_clean(mp); 972 973 /* 974 * Complete the quota initialisation, post-log-replay component. 975 */ 976 if (quotamount) { 977 ASSERT(mp->m_qflags == 0); 978 mp->m_qflags = quotaflags; 979 980 xfs_qm_mount_quotas(mp); 981 } 982 983 /* 984 * Now we are mounted, reserve a small amount of unused space for 985 * privileged transactions. This is needed so that transaction 986 * space required for critical operations can dip into this pool 987 * when at ENOSPC. This is needed for operations like create with 988 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 989 * are not allowed to use this reserved space. 990 * 991 * This may drive us straight to ENOSPC on mount, but that implies 992 * we were already there on the last unmount. Warn if this occurs. 993 */ 994 if (!xfs_is_readonly(mp)) { 995 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp)); 996 if (error) 997 xfs_warn(mp, 998 "Unable to allocate reserve blocks. Continuing without reserve pool."); 999 1000 /* Reserve AG blocks for future btree expansion. */ 1001 error = xfs_fs_reserve_ag_blocks(mp); 1002 if (error && error != -ENOSPC) 1003 goto out_agresv; 1004 } 1005 1006 return 0; 1007 1008 out_agresv: 1009 xfs_fs_unreserve_ag_blocks(mp); 1010 xfs_qm_unmount_quotas(mp); 1011 out_rtunmount: 1012 xfs_rtunmount_inodes(mp); 1013 out_rele_rip: 1014 xfs_irele(rip); 1015 /* Clean out dquots that might be in memory after quotacheck. */ 1016 xfs_qm_unmount(mp); 1017 1018 /* 1019 * Inactivate all inodes that might still be in memory after a log 1020 * intent recovery failure so that reclaim can free them. Metadata 1021 * inodes and the root directory shouldn't need inactivation, but the 1022 * mount failed for some reason, so pull down all the state and flee. 1023 */ 1024 xfs_inodegc_flush(mp); 1025 1026 /* 1027 * Flush all inode reclamation work and flush the log. 1028 * We have to do this /after/ rtunmount and qm_unmount because those 1029 * two will have scheduled delayed reclaim for the rt/quota inodes. 1030 * 1031 * This is slightly different from the unmountfs call sequence 1032 * because we could be tearing down a partially set up mount. In 1033 * particular, if log_mount_finish fails we bail out without calling 1034 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1035 * quota inodes. 1036 */ 1037 xfs_unmount_flush_inodes(mp); 1038 out_log_dealloc: 1039 xfs_log_mount_cancel(mp); 1040 out_inodegc_shrinker: 1041 shrinker_free(mp->m_inodegc_shrinker); 1042 out_fail_wait: 1043 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1044 xfs_buftarg_drain(mp->m_logdev_targp); 1045 xfs_buftarg_drain(mp->m_ddev_targp); 1046 out_free_perag: 1047 xfs_free_perag(mp); 1048 out_free_dir: 1049 xfs_da_unmount(mp); 1050 out_remove_uuid: 1051 xfs_uuid_unmount(mp); 1052 out_remove_errortag: 1053 xfs_errortag_del(mp); 1054 out_remove_error_sysfs: 1055 xfs_error_sysfs_del(mp); 1056 out_remove_scrub_stats: 1057 xchk_stats_unregister(mp->m_scrub_stats); 1058 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1059 out_remove_sysfs: 1060 xfs_sysfs_del(&mp->m_kobj); 1061 out: 1062 return error; 1063 } 1064 1065 /* 1066 * This flushes out the inodes,dquots and the superblock, unmounts the 1067 * log and makes sure that incore structures are freed. 1068 */ 1069 void 1070 xfs_unmountfs( 1071 struct xfs_mount *mp) 1072 { 1073 int error; 1074 1075 /* 1076 * Perform all on-disk metadata updates required to inactivate inodes 1077 * that the VFS evicted earlier in the unmount process. Freeing inodes 1078 * and discarding CoW fork preallocations can cause shape changes to 1079 * the free inode and refcount btrees, respectively, so we must finish 1080 * this before we discard the metadata space reservations. Metadata 1081 * inodes and the root directory do not require inactivation. 1082 */ 1083 xfs_inodegc_flush(mp); 1084 1085 xfs_blockgc_stop(mp); 1086 xfs_fs_unreserve_ag_blocks(mp); 1087 xfs_qm_unmount_quotas(mp); 1088 xfs_rtunmount_inodes(mp); 1089 xfs_irele(mp->m_rootip); 1090 1091 xfs_unmount_flush_inodes(mp); 1092 1093 xfs_qm_unmount(mp); 1094 1095 /* 1096 * Unreserve any blocks we have so that when we unmount we don't account 1097 * the reserved free space as used. This is really only necessary for 1098 * lazy superblock counting because it trusts the incore superblock 1099 * counters to be absolutely correct on clean unmount. 1100 * 1101 * We don't bother correcting this elsewhere for lazy superblock 1102 * counting because on mount of an unclean filesystem we reconstruct the 1103 * correct counter value and this is irrelevant. 1104 * 1105 * For non-lazy counter filesystems, this doesn't matter at all because 1106 * we only every apply deltas to the superblock and hence the incore 1107 * value does not matter.... 1108 */ 1109 error = xfs_reserve_blocks(mp, 0); 1110 if (error) 1111 xfs_warn(mp, "Unable to free reserved block pool. " 1112 "Freespace may not be correct on next mount."); 1113 xfs_unmount_check(mp); 1114 1115 /* 1116 * Indicate that it's ok to clear log incompat bits before cleaning 1117 * the log and writing the unmount record. 1118 */ 1119 xfs_set_done_with_log_incompat(mp); 1120 xfs_log_unmount(mp); 1121 xfs_da_unmount(mp); 1122 xfs_uuid_unmount(mp); 1123 1124 #if defined(DEBUG) 1125 xfs_errortag_clearall(mp); 1126 #endif 1127 shrinker_free(mp->m_inodegc_shrinker); 1128 xfs_free_perag(mp); 1129 1130 xfs_errortag_del(mp); 1131 xfs_error_sysfs_del(mp); 1132 xchk_stats_unregister(mp->m_scrub_stats); 1133 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1134 xfs_sysfs_del(&mp->m_kobj); 1135 } 1136 1137 /* 1138 * Determine whether modifications can proceed. The caller specifies the minimum 1139 * freeze level for which modifications should not be allowed. This allows 1140 * certain operations to proceed while the freeze sequence is in progress, if 1141 * necessary. 1142 */ 1143 bool 1144 xfs_fs_writable( 1145 struct xfs_mount *mp, 1146 int level) 1147 { 1148 ASSERT(level > SB_UNFROZEN); 1149 if ((mp->m_super->s_writers.frozen >= level) || 1150 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1151 return false; 1152 1153 return true; 1154 } 1155 1156 void 1157 xfs_add_freecounter( 1158 struct xfs_mount *mp, 1159 struct percpu_counter *counter, 1160 uint64_t delta) 1161 { 1162 bool has_resv_pool = (counter == &mp->m_fdblocks); 1163 uint64_t res_used; 1164 1165 /* 1166 * If the reserve pool is depleted, put blocks back into it first. 1167 * Most of the time the pool is full. 1168 */ 1169 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) { 1170 percpu_counter_add(counter, delta); 1171 return; 1172 } 1173 1174 spin_lock(&mp->m_sb_lock); 1175 res_used = mp->m_resblks - mp->m_resblks_avail; 1176 if (res_used > delta) { 1177 mp->m_resblks_avail += delta; 1178 } else { 1179 delta -= res_used; 1180 mp->m_resblks_avail = mp->m_resblks; 1181 percpu_counter_add(counter, delta); 1182 } 1183 spin_unlock(&mp->m_sb_lock); 1184 } 1185 1186 int 1187 xfs_dec_freecounter( 1188 struct xfs_mount *mp, 1189 struct percpu_counter *counter, 1190 uint64_t delta, 1191 bool rsvd) 1192 { 1193 int64_t lcounter; 1194 uint64_t set_aside = 0; 1195 s32 batch; 1196 bool has_resv_pool; 1197 1198 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1199 has_resv_pool = (counter == &mp->m_fdblocks); 1200 if (rsvd) 1201 ASSERT(has_resv_pool); 1202 1203 /* 1204 * Taking blocks away, need to be more accurate the closer we 1205 * are to zero. 1206 * 1207 * If the counter has a value of less than 2 * max batch size, 1208 * then make everything serialise as we are real close to 1209 * ENOSPC. 1210 */ 1211 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1212 XFS_FDBLOCKS_BATCH) < 0) 1213 batch = 1; 1214 else 1215 batch = XFS_FDBLOCKS_BATCH; 1216 1217 /* 1218 * Set aside allocbt blocks because these blocks are tracked as free 1219 * space but not available for allocation. Technically this means that a 1220 * single reservation cannot consume all remaining free space, but the 1221 * ratio of allocbt blocks to usable free blocks should be rather small. 1222 * The tradeoff without this is that filesystems that maintain high 1223 * perag block reservations can over reserve physical block availability 1224 * and fail physical allocation, which leads to much more serious 1225 * problems (i.e. transaction abort, pagecache discards, etc.) than 1226 * slightly premature -ENOSPC. 1227 */ 1228 if (has_resv_pool) 1229 set_aside = xfs_fdblocks_unavailable(mp); 1230 percpu_counter_add_batch(counter, -((int64_t)delta), batch); 1231 if (__percpu_counter_compare(counter, set_aside, 1232 XFS_FDBLOCKS_BATCH) >= 0) { 1233 /* we had space! */ 1234 return 0; 1235 } 1236 1237 /* 1238 * lock up the sb for dipping into reserves before releasing the space 1239 * that took us to ENOSPC. 1240 */ 1241 spin_lock(&mp->m_sb_lock); 1242 percpu_counter_add(counter, delta); 1243 if (!has_resv_pool || !rsvd) 1244 goto fdblocks_enospc; 1245 1246 lcounter = (long long)mp->m_resblks_avail - delta; 1247 if (lcounter >= 0) { 1248 mp->m_resblks_avail = lcounter; 1249 spin_unlock(&mp->m_sb_lock); 1250 return 0; 1251 } 1252 xfs_warn_once(mp, 1253 "Reserve blocks depleted! Consider increasing reserve pool size."); 1254 1255 fdblocks_enospc: 1256 spin_unlock(&mp->m_sb_lock); 1257 return -ENOSPC; 1258 } 1259 1260 /* 1261 * Used to free the superblock along various error paths. 1262 */ 1263 void 1264 xfs_freesb( 1265 struct xfs_mount *mp) 1266 { 1267 struct xfs_buf *bp = mp->m_sb_bp; 1268 1269 xfs_buf_lock(bp); 1270 mp->m_sb_bp = NULL; 1271 xfs_buf_relse(bp); 1272 } 1273 1274 /* 1275 * If the underlying (data/log/rt) device is readonly, there are some 1276 * operations that cannot proceed. 1277 */ 1278 int 1279 xfs_dev_is_read_only( 1280 struct xfs_mount *mp, 1281 char *message) 1282 { 1283 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1284 xfs_readonly_buftarg(mp->m_logdev_targp) || 1285 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1286 xfs_notice(mp, "%s required on read-only device.", message); 1287 xfs_notice(mp, "write access unavailable, cannot proceed."); 1288 return -EROFS; 1289 } 1290 return 0; 1291 } 1292 1293 /* Force the summary counters to be recalculated at next mount. */ 1294 void 1295 xfs_force_summary_recalc( 1296 struct xfs_mount *mp) 1297 { 1298 if (!xfs_has_lazysbcount(mp)) 1299 return; 1300 1301 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1302 } 1303 1304 /* 1305 * Enable a log incompat feature flag in the primary superblock. The caller 1306 * cannot have any other transactions in progress. 1307 */ 1308 int 1309 xfs_add_incompat_log_feature( 1310 struct xfs_mount *mp, 1311 uint32_t feature) 1312 { 1313 struct xfs_dsb *dsb; 1314 int error; 1315 1316 ASSERT(hweight32(feature) == 1); 1317 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1318 1319 /* 1320 * Force the log to disk and kick the background AIL thread to reduce 1321 * the chances that the bwrite will stall waiting for the AIL to unpin 1322 * the primary superblock buffer. This isn't a data integrity 1323 * operation, so we don't need a synchronous push. 1324 */ 1325 error = xfs_log_force(mp, XFS_LOG_SYNC); 1326 if (error) 1327 return error; 1328 xfs_ail_push_all(mp->m_ail); 1329 1330 /* 1331 * Lock the primary superblock buffer to serialize all callers that 1332 * are trying to set feature bits. 1333 */ 1334 xfs_buf_lock(mp->m_sb_bp); 1335 xfs_buf_hold(mp->m_sb_bp); 1336 1337 if (xfs_is_shutdown(mp)) { 1338 error = -EIO; 1339 goto rele; 1340 } 1341 1342 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1343 goto rele; 1344 1345 /* 1346 * Write the primary superblock to disk immediately, because we need 1347 * the log_incompat bit to be set in the primary super now to protect 1348 * the log items that we're going to commit later. 1349 */ 1350 dsb = mp->m_sb_bp->b_addr; 1351 xfs_sb_to_disk(dsb, &mp->m_sb); 1352 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1353 error = xfs_bwrite(mp->m_sb_bp); 1354 if (error) 1355 goto shutdown; 1356 1357 /* 1358 * Add the feature bits to the incore superblock before we unlock the 1359 * buffer. 1360 */ 1361 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1362 xfs_buf_relse(mp->m_sb_bp); 1363 1364 /* Log the superblock to disk. */ 1365 return xfs_sync_sb(mp, false); 1366 shutdown: 1367 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1368 rele: 1369 xfs_buf_relse(mp->m_sb_bp); 1370 return error; 1371 } 1372 1373 /* 1374 * Clear all the log incompat flags from the superblock. 1375 * 1376 * The caller cannot be in a transaction, must ensure that the log does not 1377 * contain any log items protected by any log incompat bit, and must ensure 1378 * that there are no other threads that depend on the state of the log incompat 1379 * feature flags in the primary super. 1380 * 1381 * Returns true if the superblock is dirty. 1382 */ 1383 bool 1384 xfs_clear_incompat_log_features( 1385 struct xfs_mount *mp) 1386 { 1387 bool ret = false; 1388 1389 if (!xfs_has_crc(mp) || 1390 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1391 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1392 xfs_is_shutdown(mp) || 1393 !xfs_is_done_with_log_incompat(mp)) 1394 return false; 1395 1396 /* 1397 * Update the incore superblock. We synchronize on the primary super 1398 * buffer lock to be consistent with the add function, though at least 1399 * in theory this shouldn't be necessary. 1400 */ 1401 xfs_buf_lock(mp->m_sb_bp); 1402 xfs_buf_hold(mp->m_sb_bp); 1403 1404 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1405 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1406 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1407 ret = true; 1408 } 1409 1410 xfs_buf_relse(mp->m_sb_bp); 1411 return ret; 1412 } 1413 1414 /* 1415 * Update the in-core delayed block counter. 1416 * 1417 * We prefer to update the counter without having to take a spinlock for every 1418 * counter update (i.e. batching). Each change to delayed allocation 1419 * reservations can change can easily exceed the default percpu counter 1420 * batching, so we use a larger batch factor here. 1421 * 1422 * Note that we don't currently have any callers requiring fast summation 1423 * (e.g. percpu_counter_read) so we can use a big batch value here. 1424 */ 1425 #define XFS_DELALLOC_BATCH (4096) 1426 void 1427 xfs_mod_delalloc( 1428 struct xfs_inode *ip, 1429 int64_t data_delta, 1430 int64_t ind_delta) 1431 { 1432 struct xfs_mount *mp = ip->i_mount; 1433 1434 if (XFS_IS_REALTIME_INODE(ip)) { 1435 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1436 xfs_rtb_to_rtx(mp, data_delta), 1437 XFS_DELALLOC_BATCH); 1438 if (!ind_delta) 1439 return; 1440 data_delta = 0; 1441 } 1442 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1443 XFS_DELALLOC_BATCH); 1444 } 1445
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.