~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_mount.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_sb.h"
 14 #include "xfs_mount.h"
 15 #include "xfs_inode.h"
 16 #include "xfs_dir2.h"
 17 #include "xfs_ialloc.h"
 18 #include "xfs_alloc.h"
 19 #include "xfs_rtalloc.h"
 20 #include "xfs_bmap.h"
 21 #include "xfs_trans.h"
 22 #include "xfs_trans_priv.h"
 23 #include "xfs_log.h"
 24 #include "xfs_log_priv.h"
 25 #include "xfs_error.h"
 26 #include "xfs_quota.h"
 27 #include "xfs_fsops.h"
 28 #include "xfs_icache.h"
 29 #include "xfs_sysfs.h"
 30 #include "xfs_rmap_btree.h"
 31 #include "xfs_refcount_btree.h"
 32 #include "xfs_reflink.h"
 33 #include "xfs_extent_busy.h"
 34 #include "xfs_health.h"
 35 #include "xfs_trace.h"
 36 #include "xfs_ag.h"
 37 #include "xfs_rtbitmap.h"
 38 #include "scrub/stats.h"
 39 
 40 static DEFINE_MUTEX(xfs_uuid_table_mutex);
 41 static int xfs_uuid_table_size;
 42 static uuid_t *xfs_uuid_table;
 43 
 44 void
 45 xfs_uuid_table_free(void)
 46 {
 47         if (xfs_uuid_table_size == 0)
 48                 return;
 49         kfree(xfs_uuid_table);
 50         xfs_uuid_table = NULL;
 51         xfs_uuid_table_size = 0;
 52 }
 53 
 54 /*
 55  * See if the UUID is unique among mounted XFS filesystems.
 56  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 57  */
 58 STATIC int
 59 xfs_uuid_mount(
 60         struct xfs_mount        *mp)
 61 {
 62         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 63         int                     hole, i;
 64 
 65         /* Publish UUID in struct super_block */
 66         super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
 67 
 68         if (xfs_has_nouuid(mp))
 69                 return 0;
 70 
 71         if (uuid_is_null(uuid)) {
 72                 xfs_warn(mp, "Filesystem has null UUID - can't mount");
 73                 return -EINVAL;
 74         }
 75 
 76         mutex_lock(&xfs_uuid_table_mutex);
 77         for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 78                 if (uuid_is_null(&xfs_uuid_table[i])) {
 79                         hole = i;
 80                         continue;
 81                 }
 82                 if (uuid_equal(uuid, &xfs_uuid_table[i]))
 83                         goto out_duplicate;
 84         }
 85 
 86         if (hole < 0) {
 87                 xfs_uuid_table = krealloc(xfs_uuid_table,
 88                         (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 89                         GFP_KERNEL | __GFP_NOFAIL);
 90                 hole = xfs_uuid_table_size++;
 91         }
 92         xfs_uuid_table[hole] = *uuid;
 93         mutex_unlock(&xfs_uuid_table_mutex);
 94 
 95         return 0;
 96 
 97  out_duplicate:
 98         mutex_unlock(&xfs_uuid_table_mutex);
 99         xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100         return -EINVAL;
101 }
102 
103 STATIC void
104 xfs_uuid_unmount(
105         struct xfs_mount        *mp)
106 {
107         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
108         int                     i;
109 
110         if (xfs_has_nouuid(mp))
111                 return;
112 
113         mutex_lock(&xfs_uuid_table_mutex);
114         for (i = 0; i < xfs_uuid_table_size; i++) {
115                 if (uuid_is_null(&xfs_uuid_table[i]))
116                         continue;
117                 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118                         continue;
119                 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120                 break;
121         }
122         ASSERT(i < xfs_uuid_table_size);
123         mutex_unlock(&xfs_uuid_table_mutex);
124 }
125 
126 /*
127  * Check size of device based on the (data/realtime) block count.
128  * Note: this check is used by the growfs code as well as mount.
129  */
130 int
131 xfs_sb_validate_fsb_count(
132         xfs_sb_t        *sbp,
133         uint64_t        nblocks)
134 {
135         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
136         ASSERT(sbp->sb_blocklog >= BBSHIFT);
137 
138         /* Limited by ULONG_MAX of page cache index */
139         if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
140                 return -EFBIG;
141         return 0;
142 }
143 
144 /*
145  * xfs_readsb
146  *
147  * Does the initial read of the superblock.
148  */
149 int
150 xfs_readsb(
151         struct xfs_mount *mp,
152         int             flags)
153 {
154         unsigned int    sector_size;
155         struct xfs_buf  *bp;
156         struct xfs_sb   *sbp = &mp->m_sb;
157         int             error;
158         int             loud = !(flags & XFS_MFSI_QUIET);
159         const struct xfs_buf_ops *buf_ops;
160 
161         ASSERT(mp->m_sb_bp == NULL);
162         ASSERT(mp->m_ddev_targp != NULL);
163 
164         /*
165          * For the initial read, we must guess at the sector
166          * size based on the block device.  It's enough to
167          * get the sb_sectsize out of the superblock and
168          * then reread with the proper length.
169          * We don't verify it yet, because it may not be complete.
170          */
171         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
172         buf_ops = NULL;
173 
174         /*
175          * Allocate a (locked) buffer to hold the superblock. This will be kept
176          * around at all times to optimize access to the superblock. Therefore,
177          * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
178          * elevated.
179          */
180 reread:
181         error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
182                                       BTOBB(sector_size), XBF_NO_IOACCT, &bp,
183                                       buf_ops);
184         if (error) {
185                 if (loud)
186                         xfs_warn(mp, "SB validate failed with error %d.", error);
187                 /* bad CRC means corrupted metadata */
188                 if (error == -EFSBADCRC)
189                         error = -EFSCORRUPTED;
190                 return error;
191         }
192 
193         /*
194          * Initialize the mount structure from the superblock.
195          */
196         xfs_sb_from_disk(sbp, bp->b_addr);
197 
198         /*
199          * If we haven't validated the superblock, do so now before we try
200          * to check the sector size and reread the superblock appropriately.
201          */
202         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
203                 if (loud)
204                         xfs_warn(mp, "Invalid superblock magic number");
205                 error = -EINVAL;
206                 goto release_buf;
207         }
208 
209         /*
210          * We must be able to do sector-sized and sector-aligned IO.
211          */
212         if (sector_size > sbp->sb_sectsize) {
213                 if (loud)
214                         xfs_warn(mp, "device supports %u byte sectors (not %u)",
215                                 sector_size, sbp->sb_sectsize);
216                 error = -ENOSYS;
217                 goto release_buf;
218         }
219 
220         if (buf_ops == NULL) {
221                 /*
222                  * Re-read the superblock so the buffer is correctly sized,
223                  * and properly verified.
224                  */
225                 xfs_buf_relse(bp);
226                 sector_size = sbp->sb_sectsize;
227                 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
228                 goto reread;
229         }
230 
231         mp->m_features |= xfs_sb_version_to_features(sbp);
232         xfs_reinit_percpu_counters(mp);
233 
234         /*
235          * If logged xattrs are enabled after log recovery finishes, then set
236          * the opstate so that log recovery will work properly.
237          */
238         if (xfs_sb_version_haslogxattrs(&mp->m_sb))
239                 xfs_set_using_logged_xattrs(mp);
240 
241         /* no need to be quiet anymore, so reset the buf ops */
242         bp->b_ops = &xfs_sb_buf_ops;
243 
244         mp->m_sb_bp = bp;
245         xfs_buf_unlock(bp);
246         return 0;
247 
248 release_buf:
249         xfs_buf_relse(bp);
250         return error;
251 }
252 
253 /*
254  * If the sunit/swidth change would move the precomputed root inode value, we
255  * must reject the ondisk change because repair will stumble over that.
256  * However, we allow the mount to proceed because we never rejected this
257  * combination before.  Returns true to update the sb, false otherwise.
258  */
259 static inline int
260 xfs_check_new_dalign(
261         struct xfs_mount        *mp,
262         int                     new_dalign,
263         bool                    *update_sb)
264 {
265         struct xfs_sb           *sbp = &mp->m_sb;
266         xfs_ino_t               calc_ino;
267 
268         calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
269         trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
270 
271         if (sbp->sb_rootino == calc_ino) {
272                 *update_sb = true;
273                 return 0;
274         }
275 
276         xfs_warn(mp,
277 "Cannot change stripe alignment; would require moving root inode.");
278 
279         /*
280          * XXX: Next time we add a new incompat feature, this should start
281          * returning -EINVAL to fail the mount.  Until then, spit out a warning
282          * that we're ignoring the administrator's instructions.
283          */
284         xfs_warn(mp, "Skipping superblock stripe alignment update.");
285         *update_sb = false;
286         return 0;
287 }
288 
289 /*
290  * If we were provided with new sunit/swidth values as mount options, make sure
291  * that they pass basic alignment and superblock feature checks, and convert
292  * them into the same units (FSB) that everything else expects.  This step
293  * /must/ be done before computing the inode geometry.
294  */
295 STATIC int
296 xfs_validate_new_dalign(
297         struct xfs_mount        *mp)
298 {
299         if (mp->m_dalign == 0)
300                 return 0;
301 
302         /*
303          * If stripe unit and stripe width are not multiples
304          * of the fs blocksize turn off alignment.
305          */
306         if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
307             (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
308                 xfs_warn(mp,
309         "alignment check failed: sunit/swidth vs. blocksize(%d)",
310                         mp->m_sb.sb_blocksize);
311                 return -EINVAL;
312         }
313 
314         /*
315          * Convert the stripe unit and width to FSBs.
316          */
317         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
318         if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
319                 xfs_warn(mp,
320         "alignment check failed: sunit/swidth vs. agsize(%d)",
321                         mp->m_sb.sb_agblocks);
322                 return -EINVAL;
323         }
324 
325         if (!mp->m_dalign) {
326                 xfs_warn(mp,
327         "alignment check failed: sunit(%d) less than bsize(%d)",
328                         mp->m_dalign, mp->m_sb.sb_blocksize);
329                 return -EINVAL;
330         }
331 
332         mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
333 
334         if (!xfs_has_dalign(mp)) {
335                 xfs_warn(mp,
336 "cannot change alignment: superblock does not support data alignment");
337                 return -EINVAL;
338         }
339 
340         return 0;
341 }
342 
343 /* Update alignment values based on mount options and sb values. */
344 STATIC int
345 xfs_update_alignment(
346         struct xfs_mount        *mp)
347 {
348         struct xfs_sb           *sbp = &mp->m_sb;
349 
350         if (mp->m_dalign) {
351                 bool            update_sb;
352                 int             error;
353 
354                 if (sbp->sb_unit == mp->m_dalign &&
355                     sbp->sb_width == mp->m_swidth)
356                         return 0;
357 
358                 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
359                 if (error || !update_sb)
360                         return error;
361 
362                 sbp->sb_unit = mp->m_dalign;
363                 sbp->sb_width = mp->m_swidth;
364                 mp->m_update_sb = true;
365         } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
366                 mp->m_dalign = sbp->sb_unit;
367                 mp->m_swidth = sbp->sb_width;
368         }
369 
370         return 0;
371 }
372 
373 /*
374  * precalculate the low space thresholds for dynamic speculative preallocation.
375  */
376 void
377 xfs_set_low_space_thresholds(
378         struct xfs_mount        *mp)
379 {
380         uint64_t                dblocks = mp->m_sb.sb_dblocks;
381         uint64_t                rtexts = mp->m_sb.sb_rextents;
382         int                     i;
383 
384         do_div(dblocks, 100);
385         do_div(rtexts, 100);
386 
387         for (i = 0; i < XFS_LOWSP_MAX; i++) {
388                 mp->m_low_space[i] = dblocks * (i + 1);
389                 mp->m_low_rtexts[i] = rtexts * (i + 1);
390         }
391 }
392 
393 /*
394  * Check that the data (and log if separate) is an ok size.
395  */
396 STATIC int
397 xfs_check_sizes(
398         struct xfs_mount *mp)
399 {
400         struct xfs_buf  *bp;
401         xfs_daddr_t     d;
402         int             error;
403 
404         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
405         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
406                 xfs_warn(mp, "filesystem size mismatch detected");
407                 return -EFBIG;
408         }
409         error = xfs_buf_read_uncached(mp->m_ddev_targp,
410                                         d - XFS_FSS_TO_BB(mp, 1),
411                                         XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
412         if (error) {
413                 xfs_warn(mp, "last sector read failed");
414                 return error;
415         }
416         xfs_buf_relse(bp);
417 
418         if (mp->m_logdev_targp == mp->m_ddev_targp)
419                 return 0;
420 
421         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
422         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
423                 xfs_warn(mp, "log size mismatch detected");
424                 return -EFBIG;
425         }
426         error = xfs_buf_read_uncached(mp->m_logdev_targp,
427                                         d - XFS_FSB_TO_BB(mp, 1),
428                                         XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
429         if (error) {
430                 xfs_warn(mp, "log device read failed");
431                 return error;
432         }
433         xfs_buf_relse(bp);
434         return 0;
435 }
436 
437 /*
438  * Clear the quotaflags in memory and in the superblock.
439  */
440 int
441 xfs_mount_reset_sbqflags(
442         struct xfs_mount        *mp)
443 {
444         mp->m_qflags = 0;
445 
446         /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
447         if (mp->m_sb.sb_qflags == 0)
448                 return 0;
449         spin_lock(&mp->m_sb_lock);
450         mp->m_sb.sb_qflags = 0;
451         spin_unlock(&mp->m_sb_lock);
452 
453         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
454                 return 0;
455 
456         return xfs_sync_sb(mp, false);
457 }
458 
459 uint64_t
460 xfs_default_resblks(xfs_mount_t *mp)
461 {
462         uint64_t resblks;
463 
464         /*
465          * We default to 5% or 8192 fsbs of space reserved, whichever is
466          * smaller.  This is intended to cover concurrent allocation
467          * transactions when we initially hit enospc. These each require a 4
468          * block reservation. Hence by default we cover roughly 2000 concurrent
469          * allocation reservations.
470          */
471         resblks = mp->m_sb.sb_dblocks;
472         do_div(resblks, 20);
473         resblks = min_t(uint64_t, resblks, 8192);
474         return resblks;
475 }
476 
477 /* Ensure the summary counts are correct. */
478 STATIC int
479 xfs_check_summary_counts(
480         struct xfs_mount        *mp)
481 {
482         int                     error = 0;
483 
484         /*
485          * The AG0 superblock verifier rejects in-progress filesystems,
486          * so we should never see the flag set this far into mounting.
487          */
488         if (mp->m_sb.sb_inprogress) {
489                 xfs_err(mp, "sb_inprogress set after log recovery??");
490                 WARN_ON(1);
491                 return -EFSCORRUPTED;
492         }
493 
494         /*
495          * Now the log is mounted, we know if it was an unclean shutdown or
496          * not. If it was, with the first phase of recovery has completed, we
497          * have consistent AG blocks on disk. We have not recovered EFIs yet,
498          * but they are recovered transactionally in the second recovery phase
499          * later.
500          *
501          * If the log was clean when we mounted, we can check the summary
502          * counters.  If any of them are obviously incorrect, we can recompute
503          * them from the AGF headers in the next step.
504          */
505         if (xfs_is_clean(mp) &&
506             (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
507              !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
508              mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
509                 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
510 
511         /*
512          * We can safely re-initialise incore superblock counters from the
513          * per-ag data. These may not be correct if the filesystem was not
514          * cleanly unmounted, so we waited for recovery to finish before doing
515          * this.
516          *
517          * If the filesystem was cleanly unmounted or the previous check did
518          * not flag anything weird, then we can trust the values in the
519          * superblock to be correct and we don't need to do anything here.
520          * Otherwise, recalculate the summary counters.
521          */
522         if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
523             xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
524                 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
525                 if (error)
526                         return error;
527         }
528 
529         /*
530          * Older kernels misused sb_frextents to reflect both incore
531          * reservations made by running transactions and the actual count of
532          * free rt extents in the ondisk metadata.  Transactions committed
533          * during runtime can therefore contain a superblock update that
534          * undercounts the number of free rt extents tracked in the rt bitmap.
535          * A clean unmount record will have the correct frextents value since
536          * there can be no other transactions running at that point.
537          *
538          * If we're mounting the rt volume after recovering the log, recompute
539          * frextents from the rtbitmap file to fix the inconsistency.
540          */
541         if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
542                 error = xfs_rtalloc_reinit_frextents(mp);
543                 if (error)
544                         return error;
545         }
546 
547         return 0;
548 }
549 
550 static void
551 xfs_unmount_check(
552         struct xfs_mount        *mp)
553 {
554         if (xfs_is_shutdown(mp))
555                 return;
556 
557         if (percpu_counter_sum(&mp->m_ifree) >
558                         percpu_counter_sum(&mp->m_icount)) {
559                 xfs_alert(mp, "ifree/icount mismatch at unmount");
560                 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
561         }
562 }
563 
564 /*
565  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
566  * internal inode structures can be sitting in the CIL and AIL at this point,
567  * so we need to unpin them, write them back and/or reclaim them before unmount
568  * can proceed.  In other words, callers are required to have inactivated all
569  * inodes.
570  *
571  * An inode cluster that has been freed can have its buffer still pinned in
572  * memory because the transaction is still sitting in a iclog. The stale inodes
573  * on that buffer will be pinned to the buffer until the transaction hits the
574  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
575  * may never see the pinned buffer, so nothing will push out the iclog and
576  * unpin the buffer.
577  *
578  * Hence we need to force the log to unpin everything first. However, log
579  * forces don't wait for the discards they issue to complete, so we have to
580  * explicitly wait for them to complete here as well.
581  *
582  * Then we can tell the world we are unmounting so that error handling knows
583  * that the filesystem is going away and we should error out anything that we
584  * have been retrying in the background.  This will prevent never-ending
585  * retries in AIL pushing from hanging the unmount.
586  *
587  * Finally, we can push the AIL to clean all the remaining dirty objects, then
588  * reclaim the remaining inodes that are still in memory at this point in time.
589  */
590 static void
591 xfs_unmount_flush_inodes(
592         struct xfs_mount        *mp)
593 {
594         xfs_log_force(mp, XFS_LOG_SYNC);
595         xfs_extent_busy_wait_all(mp);
596         flush_workqueue(xfs_discard_wq);
597 
598         set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
599 
600         xfs_ail_push_all_sync(mp->m_ail);
601         xfs_inodegc_stop(mp);
602         cancel_delayed_work_sync(&mp->m_reclaim_work);
603         xfs_reclaim_inodes(mp);
604         xfs_health_unmount(mp);
605 }
606 
607 static void
608 xfs_mount_setup_inode_geom(
609         struct xfs_mount        *mp)
610 {
611         struct xfs_ino_geometry *igeo = M_IGEO(mp);
612 
613         igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
614         ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
615 
616         xfs_ialloc_setup_geometry(mp);
617 }
618 
619 /* Compute maximum possible height for per-AG btree types for this fs. */
620 static inline void
621 xfs_agbtree_compute_maxlevels(
622         struct xfs_mount        *mp)
623 {
624         unsigned int            levels;
625 
626         levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
627         levels = max(levels, mp->m_rmap_maxlevels);
628         mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
629 }
630 
631 /*
632  * This function does the following on an initial mount of a file system:
633  *      - reads the superblock from disk and init the mount struct
634  *      - if we're a 32-bit kernel, do a size check on the superblock
635  *              so we don't mount terabyte filesystems
636  *      - init mount struct realtime fields
637  *      - allocate inode hash table for fs
638  *      - init directory manager
639  *      - perform recovery and init the log manager
640  */
641 int
642 xfs_mountfs(
643         struct xfs_mount        *mp)
644 {
645         struct xfs_sb           *sbp = &(mp->m_sb);
646         struct xfs_inode        *rip;
647         struct xfs_ino_geometry *igeo = M_IGEO(mp);
648         uint                    quotamount = 0;
649         uint                    quotaflags = 0;
650         int                     error = 0;
651 
652         xfs_sb_mount_common(mp, sbp);
653 
654         /*
655          * Check for a mismatched features2 values.  Older kernels read & wrote
656          * into the wrong sb offset for sb_features2 on some platforms due to
657          * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
658          * which made older superblock reading/writing routines swap it as a
659          * 64-bit value.
660          *
661          * For backwards compatibility, we make both slots equal.
662          *
663          * If we detect a mismatched field, we OR the set bits into the existing
664          * features2 field in case it has already been modified; we don't want
665          * to lose any features.  We then update the bad location with the ORed
666          * value so that older kernels will see any features2 flags. The
667          * superblock writeback code ensures the new sb_features2 is copied to
668          * sb_bad_features2 before it is logged or written to disk.
669          */
670         if (xfs_sb_has_mismatched_features2(sbp)) {
671                 xfs_warn(mp, "correcting sb_features alignment problem");
672                 sbp->sb_features2 |= sbp->sb_bad_features2;
673                 mp->m_update_sb = true;
674         }
675 
676 
677         /* always use v2 inodes by default now */
678         if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
679                 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
680                 mp->m_features |= XFS_FEAT_NLINK;
681                 mp->m_update_sb = true;
682         }
683 
684         /*
685          * If we were given new sunit/swidth options, do some basic validation
686          * checks and convert the incore dalign and swidth values to the
687          * same units (FSB) that everything else uses.  This /must/ happen
688          * before computing the inode geometry.
689          */
690         error = xfs_validate_new_dalign(mp);
691         if (error)
692                 goto out;
693 
694         xfs_alloc_compute_maxlevels(mp);
695         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
696         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
697         xfs_mount_setup_inode_geom(mp);
698         xfs_rmapbt_compute_maxlevels(mp);
699         xfs_refcountbt_compute_maxlevels(mp);
700 
701         xfs_agbtree_compute_maxlevels(mp);
702 
703         /*
704          * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
705          * is NOT aligned turn off m_dalign since allocator alignment is within
706          * an ag, therefore ag has to be aligned at stripe boundary.  Note that
707          * we must compute the free space and rmap btree geometry before doing
708          * this.
709          */
710         error = xfs_update_alignment(mp);
711         if (error)
712                 goto out;
713 
714         /* enable fail_at_unmount as default */
715         mp->m_fail_unmount = true;
716 
717         super_set_sysfs_name_id(mp->m_super);
718 
719         error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
720                                NULL, mp->m_super->s_id);
721         if (error)
722                 goto out;
723 
724         error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
725                                &mp->m_kobj, "stats");
726         if (error)
727                 goto out_remove_sysfs;
728 
729         xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
730 
731         error = xfs_error_sysfs_init(mp);
732         if (error)
733                 goto out_remove_scrub_stats;
734 
735         error = xfs_errortag_init(mp);
736         if (error)
737                 goto out_remove_error_sysfs;
738 
739         error = xfs_uuid_mount(mp);
740         if (error)
741                 goto out_remove_errortag;
742 
743         /*
744          * Update the preferred write size based on the information from the
745          * on-disk superblock.
746          */
747         mp->m_allocsize_log =
748                 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
749         mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
750 
751         /* set the low space thresholds for dynamic preallocation */
752         xfs_set_low_space_thresholds(mp);
753 
754         /*
755          * If enabled, sparse inode chunk alignment is expected to match the
756          * cluster size. Full inode chunk alignment must match the chunk size,
757          * but that is checked on sb read verification...
758          */
759         if (xfs_has_sparseinodes(mp) &&
760             mp->m_sb.sb_spino_align !=
761                         XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
762                 xfs_warn(mp,
763         "Sparse inode block alignment (%u) must match cluster size (%llu).",
764                          mp->m_sb.sb_spino_align,
765                          XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
766                 error = -EINVAL;
767                 goto out_remove_uuid;
768         }
769 
770         /*
771          * Check that the data (and log if separate) is an ok size.
772          */
773         error = xfs_check_sizes(mp);
774         if (error)
775                 goto out_remove_uuid;
776 
777         /*
778          * Initialize realtime fields in the mount structure
779          */
780         error = xfs_rtmount_init(mp);
781         if (error) {
782                 xfs_warn(mp, "RT mount failed");
783                 goto out_remove_uuid;
784         }
785 
786         /*
787          *  Copies the low order bits of the timestamp and the randomly
788          *  set "sequence" number out of a UUID.
789          */
790         mp->m_fixedfsid[0] =
791                 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
792                  get_unaligned_be16(&sbp->sb_uuid.b[4]);
793         mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
794 
795         error = xfs_da_mount(mp);
796         if (error) {
797                 xfs_warn(mp, "Failed dir/attr init: %d", error);
798                 goto out_remove_uuid;
799         }
800 
801         /*
802          * Initialize the precomputed transaction reservations values.
803          */
804         xfs_trans_init(mp);
805 
806         /*
807          * Allocate and initialize the per-ag data.
808          */
809         error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
810                         &mp->m_maxagi);
811         if (error) {
812                 xfs_warn(mp, "Failed per-ag init: %d", error);
813                 goto out_free_dir;
814         }
815 
816         if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
817                 xfs_warn(mp, "no log defined");
818                 error = -EFSCORRUPTED;
819                 goto out_free_perag;
820         }
821 
822         error = xfs_inodegc_register_shrinker(mp);
823         if (error)
824                 goto out_fail_wait;
825 
826         /*
827          * Log's mount-time initialization. The first part of recovery can place
828          * some items on the AIL, to be handled when recovery is finished or
829          * cancelled.
830          */
831         error = xfs_log_mount(mp, mp->m_logdev_targp,
832                               XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
833                               XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
834         if (error) {
835                 xfs_warn(mp, "log mount failed");
836                 goto out_inodegc_shrinker;
837         }
838 
839         /*
840          * If logged xattrs are still enabled after log recovery finishes, then
841          * they'll be available until unmount.  Otherwise, turn them off.
842          */
843         if (xfs_sb_version_haslogxattrs(&mp->m_sb))
844                 xfs_set_using_logged_xattrs(mp);
845         else
846                 xfs_clear_using_logged_xattrs(mp);
847 
848         /* Enable background inode inactivation workers. */
849         xfs_inodegc_start(mp);
850         xfs_blockgc_start(mp);
851 
852         /*
853          * Now that we've recovered any pending superblock feature bit
854          * additions, we can finish setting up the attr2 behaviour for the
855          * mount. The noattr2 option overrides the superblock flag, so only
856          * check the superblock feature flag if the mount option is not set.
857          */
858         if (xfs_has_noattr2(mp)) {
859                 mp->m_features &= ~XFS_FEAT_ATTR2;
860         } else if (!xfs_has_attr2(mp) &&
861                    (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
862                 mp->m_features |= XFS_FEAT_ATTR2;
863         }
864 
865         /*
866          * Get and sanity-check the root inode.
867          * Save the pointer to it in the mount structure.
868          */
869         error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
870                          XFS_ILOCK_EXCL, &rip);
871         if (error) {
872                 xfs_warn(mp,
873                         "Failed to read root inode 0x%llx, error %d",
874                         sbp->sb_rootino, -error);
875                 goto out_log_dealloc;
876         }
877 
878         ASSERT(rip != NULL);
879 
880         if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
881                 xfs_warn(mp, "corrupted root inode %llu: not a directory",
882                         (unsigned long long)rip->i_ino);
883                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
884                 error = -EFSCORRUPTED;
885                 goto out_rele_rip;
886         }
887         mp->m_rootip = rip;     /* save it */
888 
889         xfs_iunlock(rip, XFS_ILOCK_EXCL);
890 
891         /*
892          * Initialize realtime inode pointers in the mount structure
893          */
894         error = xfs_rtmount_inodes(mp);
895         if (error) {
896                 /*
897                  * Free up the root inode.
898                  */
899                 xfs_warn(mp, "failed to read RT inodes");
900                 goto out_rele_rip;
901         }
902 
903         /* Make sure the summary counts are ok. */
904         error = xfs_check_summary_counts(mp);
905         if (error)
906                 goto out_rtunmount;
907 
908         /*
909          * If this is a read-only mount defer the superblock updates until
910          * the next remount into writeable mode.  Otherwise we would never
911          * perform the update e.g. for the root filesystem.
912          */
913         if (mp->m_update_sb && !xfs_is_readonly(mp)) {
914                 error = xfs_sync_sb(mp, false);
915                 if (error) {
916                         xfs_warn(mp, "failed to write sb changes");
917                         goto out_rtunmount;
918                 }
919         }
920 
921         /*
922          * Initialise the XFS quota management subsystem for this mount
923          */
924         if (XFS_IS_QUOTA_ON(mp)) {
925                 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
926                 if (error)
927                         goto out_rtunmount;
928         } else {
929                 /*
930                  * If a file system had quotas running earlier, but decided to
931                  * mount without -o uquota/pquota/gquota options, revoke the
932                  * quotachecked license.
933                  */
934                 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
935                         xfs_notice(mp, "resetting quota flags");
936                         error = xfs_mount_reset_sbqflags(mp);
937                         if (error)
938                                 goto out_rtunmount;
939                 }
940         }
941 
942         /*
943          * Finish recovering the file system.  This part needed to be delayed
944          * until after the root and real-time bitmap inodes were consistently
945          * read in.  Temporarily create per-AG space reservations for metadata
946          * btree shape changes because space freeing transactions (for inode
947          * inactivation) require the per-AG reservation in lieu of reserving
948          * blocks.
949          */
950         error = xfs_fs_reserve_ag_blocks(mp);
951         if (error && error == -ENOSPC)
952                 xfs_warn(mp,
953         "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
954         error = xfs_log_mount_finish(mp);
955         xfs_fs_unreserve_ag_blocks(mp);
956         if (error) {
957                 xfs_warn(mp, "log mount finish failed");
958                 goto out_rtunmount;
959         }
960 
961         /*
962          * Now the log is fully replayed, we can transition to full read-only
963          * mode for read-only mounts. This will sync all the metadata and clean
964          * the log so that the recovery we just performed does not have to be
965          * replayed again on the next mount.
966          *
967          * We use the same quiesce mechanism as the rw->ro remount, as they are
968          * semantically identical operations.
969          */
970         if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
971                 xfs_log_clean(mp);
972 
973         /*
974          * Complete the quota initialisation, post-log-replay component.
975          */
976         if (quotamount) {
977                 ASSERT(mp->m_qflags == 0);
978                 mp->m_qflags = quotaflags;
979 
980                 xfs_qm_mount_quotas(mp);
981         }
982 
983         /*
984          * Now we are mounted, reserve a small amount of unused space for
985          * privileged transactions. This is needed so that transaction
986          * space required for critical operations can dip into this pool
987          * when at ENOSPC. This is needed for operations like create with
988          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
989          * are not allowed to use this reserved space.
990          *
991          * This may drive us straight to ENOSPC on mount, but that implies
992          * we were already there on the last unmount. Warn if this occurs.
993          */
994         if (!xfs_is_readonly(mp)) {
995                 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
996                 if (error)
997                         xfs_warn(mp,
998         "Unable to allocate reserve blocks. Continuing without reserve pool.");
999 
1000                 /* Reserve AG blocks for future btree expansion. */
1001                 error = xfs_fs_reserve_ag_blocks(mp);
1002                 if (error && error != -ENOSPC)
1003                         goto out_agresv;
1004         }
1005 
1006         return 0;
1007 
1008  out_agresv:
1009         xfs_fs_unreserve_ag_blocks(mp);
1010         xfs_qm_unmount_quotas(mp);
1011  out_rtunmount:
1012         xfs_rtunmount_inodes(mp);
1013  out_rele_rip:
1014         xfs_irele(rip);
1015         /* Clean out dquots that might be in memory after quotacheck. */
1016         xfs_qm_unmount(mp);
1017 
1018         /*
1019          * Inactivate all inodes that might still be in memory after a log
1020          * intent recovery failure so that reclaim can free them.  Metadata
1021          * inodes and the root directory shouldn't need inactivation, but the
1022          * mount failed for some reason, so pull down all the state and flee.
1023          */
1024         xfs_inodegc_flush(mp);
1025 
1026         /*
1027          * Flush all inode reclamation work and flush the log.
1028          * We have to do this /after/ rtunmount and qm_unmount because those
1029          * two will have scheduled delayed reclaim for the rt/quota inodes.
1030          *
1031          * This is slightly different from the unmountfs call sequence
1032          * because we could be tearing down a partially set up mount.  In
1033          * particular, if log_mount_finish fails we bail out without calling
1034          * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035          * quota inodes.
1036          */
1037         xfs_unmount_flush_inodes(mp);
1038  out_log_dealloc:
1039         xfs_log_mount_cancel(mp);
1040  out_inodegc_shrinker:
1041         shrinker_free(mp->m_inodegc_shrinker);
1042  out_fail_wait:
1043         if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044                 xfs_buftarg_drain(mp->m_logdev_targp);
1045         xfs_buftarg_drain(mp->m_ddev_targp);
1046  out_free_perag:
1047         xfs_free_perag(mp);
1048  out_free_dir:
1049         xfs_da_unmount(mp);
1050  out_remove_uuid:
1051         xfs_uuid_unmount(mp);
1052  out_remove_errortag:
1053         xfs_errortag_del(mp);
1054  out_remove_error_sysfs:
1055         xfs_error_sysfs_del(mp);
1056  out_remove_scrub_stats:
1057         xchk_stats_unregister(mp->m_scrub_stats);
1058         xfs_sysfs_del(&mp->m_stats.xs_kobj);
1059  out_remove_sysfs:
1060         xfs_sysfs_del(&mp->m_kobj);
1061  out:
1062         return error;
1063 }
1064 
1065 /*
1066  * This flushes out the inodes,dquots and the superblock, unmounts the
1067  * log and makes sure that incore structures are freed.
1068  */
1069 void
1070 xfs_unmountfs(
1071         struct xfs_mount        *mp)
1072 {
1073         int                     error;
1074 
1075         /*
1076          * Perform all on-disk metadata updates required to inactivate inodes
1077          * that the VFS evicted earlier in the unmount process.  Freeing inodes
1078          * and discarding CoW fork preallocations can cause shape changes to
1079          * the free inode and refcount btrees, respectively, so we must finish
1080          * this before we discard the metadata space reservations.  Metadata
1081          * inodes and the root directory do not require inactivation.
1082          */
1083         xfs_inodegc_flush(mp);
1084 
1085         xfs_blockgc_stop(mp);
1086         xfs_fs_unreserve_ag_blocks(mp);
1087         xfs_qm_unmount_quotas(mp);
1088         xfs_rtunmount_inodes(mp);
1089         xfs_irele(mp->m_rootip);
1090 
1091         xfs_unmount_flush_inodes(mp);
1092 
1093         xfs_qm_unmount(mp);
1094 
1095         /*
1096          * Unreserve any blocks we have so that when we unmount we don't account
1097          * the reserved free space as used. This is really only necessary for
1098          * lazy superblock counting because it trusts the incore superblock
1099          * counters to be absolutely correct on clean unmount.
1100          *
1101          * We don't bother correcting this elsewhere for lazy superblock
1102          * counting because on mount of an unclean filesystem we reconstruct the
1103          * correct counter value and this is irrelevant.
1104          *
1105          * For non-lazy counter filesystems, this doesn't matter at all because
1106          * we only every apply deltas to the superblock and hence the incore
1107          * value does not matter....
1108          */
1109         error = xfs_reserve_blocks(mp, 0);
1110         if (error)
1111                 xfs_warn(mp, "Unable to free reserved block pool. "
1112                                 "Freespace may not be correct on next mount.");
1113         xfs_unmount_check(mp);
1114 
1115         /*
1116          * Indicate that it's ok to clear log incompat bits before cleaning
1117          * the log and writing the unmount record.
1118          */
1119         xfs_set_done_with_log_incompat(mp);
1120         xfs_log_unmount(mp);
1121         xfs_da_unmount(mp);
1122         xfs_uuid_unmount(mp);
1123 
1124 #if defined(DEBUG)
1125         xfs_errortag_clearall(mp);
1126 #endif
1127         shrinker_free(mp->m_inodegc_shrinker);
1128         xfs_free_perag(mp);
1129 
1130         xfs_errortag_del(mp);
1131         xfs_error_sysfs_del(mp);
1132         xchk_stats_unregister(mp->m_scrub_stats);
1133         xfs_sysfs_del(&mp->m_stats.xs_kobj);
1134         xfs_sysfs_del(&mp->m_kobj);
1135 }
1136 
1137 /*
1138  * Determine whether modifications can proceed. The caller specifies the minimum
1139  * freeze level for which modifications should not be allowed. This allows
1140  * certain operations to proceed while the freeze sequence is in progress, if
1141  * necessary.
1142  */
1143 bool
1144 xfs_fs_writable(
1145         struct xfs_mount        *mp,
1146         int                     level)
1147 {
1148         ASSERT(level > SB_UNFROZEN);
1149         if ((mp->m_super->s_writers.frozen >= level) ||
1150             xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1151                 return false;
1152 
1153         return true;
1154 }
1155 
1156 void
1157 xfs_add_freecounter(
1158         struct xfs_mount        *mp,
1159         struct percpu_counter   *counter,
1160         uint64_t                delta)
1161 {
1162         bool                    has_resv_pool = (counter == &mp->m_fdblocks);
1163         uint64_t                res_used;
1164 
1165         /*
1166          * If the reserve pool is depleted, put blocks back into it first.
1167          * Most of the time the pool is full.
1168          */
1169         if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1170                 percpu_counter_add(counter, delta);
1171                 return;
1172         }
1173 
1174         spin_lock(&mp->m_sb_lock);
1175         res_used = mp->m_resblks - mp->m_resblks_avail;
1176         if (res_used > delta) {
1177                 mp->m_resblks_avail += delta;
1178         } else {
1179                 delta -= res_used;
1180                 mp->m_resblks_avail = mp->m_resblks;
1181                 percpu_counter_add(counter, delta);
1182         }
1183         spin_unlock(&mp->m_sb_lock);
1184 }
1185 
1186 int
1187 xfs_dec_freecounter(
1188         struct xfs_mount        *mp,
1189         struct percpu_counter   *counter,
1190         uint64_t                delta,
1191         bool                    rsvd)
1192 {
1193         int64_t                 lcounter;
1194         uint64_t                set_aside = 0;
1195         s32                     batch;
1196         bool                    has_resv_pool;
1197 
1198         ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1199         has_resv_pool = (counter == &mp->m_fdblocks);
1200         if (rsvd)
1201                 ASSERT(has_resv_pool);
1202 
1203         /*
1204          * Taking blocks away, need to be more accurate the closer we
1205          * are to zero.
1206          *
1207          * If the counter has a value of less than 2 * max batch size,
1208          * then make everything serialise as we are real close to
1209          * ENOSPC.
1210          */
1211         if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1212                                      XFS_FDBLOCKS_BATCH) < 0)
1213                 batch = 1;
1214         else
1215                 batch = XFS_FDBLOCKS_BATCH;
1216 
1217         /*
1218          * Set aside allocbt blocks because these blocks are tracked as free
1219          * space but not available for allocation. Technically this means that a
1220          * single reservation cannot consume all remaining free space, but the
1221          * ratio of allocbt blocks to usable free blocks should be rather small.
1222          * The tradeoff without this is that filesystems that maintain high
1223          * perag block reservations can over reserve physical block availability
1224          * and fail physical allocation, which leads to much more serious
1225          * problems (i.e. transaction abort, pagecache discards, etc.) than
1226          * slightly premature -ENOSPC.
1227          */
1228         if (has_resv_pool)
1229                 set_aside = xfs_fdblocks_unavailable(mp);
1230         percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1231         if (__percpu_counter_compare(counter, set_aside,
1232                                      XFS_FDBLOCKS_BATCH) >= 0) {
1233                 /* we had space! */
1234                 return 0;
1235         }
1236 
1237         /*
1238          * lock up the sb for dipping into reserves before releasing the space
1239          * that took us to ENOSPC.
1240          */
1241         spin_lock(&mp->m_sb_lock);
1242         percpu_counter_add(counter, delta);
1243         if (!has_resv_pool || !rsvd)
1244                 goto fdblocks_enospc;
1245 
1246         lcounter = (long long)mp->m_resblks_avail - delta;
1247         if (lcounter >= 0) {
1248                 mp->m_resblks_avail = lcounter;
1249                 spin_unlock(&mp->m_sb_lock);
1250                 return 0;
1251         }
1252         xfs_warn_once(mp,
1253 "Reserve blocks depleted! Consider increasing reserve pool size.");
1254 
1255 fdblocks_enospc:
1256         spin_unlock(&mp->m_sb_lock);
1257         return -ENOSPC;
1258 }
1259 
1260 /*
1261  * Used to free the superblock along various error paths.
1262  */
1263 void
1264 xfs_freesb(
1265         struct xfs_mount        *mp)
1266 {
1267         struct xfs_buf          *bp = mp->m_sb_bp;
1268 
1269         xfs_buf_lock(bp);
1270         mp->m_sb_bp = NULL;
1271         xfs_buf_relse(bp);
1272 }
1273 
1274 /*
1275  * If the underlying (data/log/rt) device is readonly, there are some
1276  * operations that cannot proceed.
1277  */
1278 int
1279 xfs_dev_is_read_only(
1280         struct xfs_mount        *mp,
1281         char                    *message)
1282 {
1283         if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1284             xfs_readonly_buftarg(mp->m_logdev_targp) ||
1285             (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1286                 xfs_notice(mp, "%s required on read-only device.", message);
1287                 xfs_notice(mp, "write access unavailable, cannot proceed.");
1288                 return -EROFS;
1289         }
1290         return 0;
1291 }
1292 
1293 /* Force the summary counters to be recalculated at next mount. */
1294 void
1295 xfs_force_summary_recalc(
1296         struct xfs_mount        *mp)
1297 {
1298         if (!xfs_has_lazysbcount(mp))
1299                 return;
1300 
1301         xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1302 }
1303 
1304 /*
1305  * Enable a log incompat feature flag in the primary superblock.  The caller
1306  * cannot have any other transactions in progress.
1307  */
1308 int
1309 xfs_add_incompat_log_feature(
1310         struct xfs_mount        *mp,
1311         uint32_t                feature)
1312 {
1313         struct xfs_dsb          *dsb;
1314         int                     error;
1315 
1316         ASSERT(hweight32(feature) == 1);
1317         ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1318 
1319         /*
1320          * Force the log to disk and kick the background AIL thread to reduce
1321          * the chances that the bwrite will stall waiting for the AIL to unpin
1322          * the primary superblock buffer.  This isn't a data integrity
1323          * operation, so we don't need a synchronous push.
1324          */
1325         error = xfs_log_force(mp, XFS_LOG_SYNC);
1326         if (error)
1327                 return error;
1328         xfs_ail_push_all(mp->m_ail);
1329 
1330         /*
1331          * Lock the primary superblock buffer to serialize all callers that
1332          * are trying to set feature bits.
1333          */
1334         xfs_buf_lock(mp->m_sb_bp);
1335         xfs_buf_hold(mp->m_sb_bp);
1336 
1337         if (xfs_is_shutdown(mp)) {
1338                 error = -EIO;
1339                 goto rele;
1340         }
1341 
1342         if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1343                 goto rele;
1344 
1345         /*
1346          * Write the primary superblock to disk immediately, because we need
1347          * the log_incompat bit to be set in the primary super now to protect
1348          * the log items that we're going to commit later.
1349          */
1350         dsb = mp->m_sb_bp->b_addr;
1351         xfs_sb_to_disk(dsb, &mp->m_sb);
1352         dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1353         error = xfs_bwrite(mp->m_sb_bp);
1354         if (error)
1355                 goto shutdown;
1356 
1357         /*
1358          * Add the feature bits to the incore superblock before we unlock the
1359          * buffer.
1360          */
1361         xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1362         xfs_buf_relse(mp->m_sb_bp);
1363 
1364         /* Log the superblock to disk. */
1365         return xfs_sync_sb(mp, false);
1366 shutdown:
1367         xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1368 rele:
1369         xfs_buf_relse(mp->m_sb_bp);
1370         return error;
1371 }
1372 
1373 /*
1374  * Clear all the log incompat flags from the superblock.
1375  *
1376  * The caller cannot be in a transaction, must ensure that the log does not
1377  * contain any log items protected by any log incompat bit, and must ensure
1378  * that there are no other threads that depend on the state of the log incompat
1379  * feature flags in the primary super.
1380  *
1381  * Returns true if the superblock is dirty.
1382  */
1383 bool
1384 xfs_clear_incompat_log_features(
1385         struct xfs_mount        *mp)
1386 {
1387         bool                    ret = false;
1388 
1389         if (!xfs_has_crc(mp) ||
1390             !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1391                                 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1392             xfs_is_shutdown(mp) ||
1393             !xfs_is_done_with_log_incompat(mp))
1394                 return false;
1395 
1396         /*
1397          * Update the incore superblock.  We synchronize on the primary super
1398          * buffer lock to be consistent with the add function, though at least
1399          * in theory this shouldn't be necessary.
1400          */
1401         xfs_buf_lock(mp->m_sb_bp);
1402         xfs_buf_hold(mp->m_sb_bp);
1403 
1404         if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1405                                 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1406                 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1407                 ret = true;
1408         }
1409 
1410         xfs_buf_relse(mp->m_sb_bp);
1411         return ret;
1412 }
1413 
1414 /*
1415  * Update the in-core delayed block counter.
1416  *
1417  * We prefer to update the counter without having to take a spinlock for every
1418  * counter update (i.e. batching).  Each change to delayed allocation
1419  * reservations can change can easily exceed the default percpu counter
1420  * batching, so we use a larger batch factor here.
1421  *
1422  * Note that we don't currently have any callers requiring fast summation
1423  * (e.g. percpu_counter_read) so we can use a big batch value here.
1424  */
1425 #define XFS_DELALLOC_BATCH      (4096)
1426 void
1427 xfs_mod_delalloc(
1428         struct xfs_inode        *ip,
1429         int64_t                 data_delta,
1430         int64_t                 ind_delta)
1431 {
1432         struct xfs_mount        *mp = ip->i_mount;
1433 
1434         if (XFS_IS_REALTIME_INODE(ip)) {
1435                 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1436                                 xfs_rtb_to_rtx(mp, data_delta),
1437                                 XFS_DELALLOC_BATCH);
1438                 if (!ind_delta)
1439                         return;
1440                 data_delta = 0;
1441         }
1442         percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1443                         XFS_DELALLOC_BATCH);
1444 }
1445 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php