1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 #include "xfs_health.h" 33 34 /* 35 * Copy on Write of Shared Blocks 36 * 37 * XFS must preserve "the usual" file semantics even when two files share 38 * the same physical blocks. This means that a write to one file must not 39 * alter the blocks in a different file; the way that we'll do that is 40 * through the use of a copy-on-write mechanism. At a high level, that 41 * means that when we want to write to a shared block, we allocate a new 42 * block, write the data to the new block, and if that succeeds we map the 43 * new block into the file. 44 * 45 * XFS provides a "delayed allocation" mechanism that defers the allocation 46 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 47 * possible. This reduces fragmentation by enabling the filesystem to ask 48 * for bigger chunks less often, which is exactly what we want for CoW. 49 * 50 * The delalloc mechanism begins when the kernel wants to make a block 51 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 52 * create a delalloc mapping, which is a regular in-core extent, but without 53 * a real startblock. (For delalloc mappings, the startblock encodes both 54 * a flag that this is a delalloc mapping, and a worst-case estimate of how 55 * many blocks might be required to put the mapping into the BMBT.) delalloc 56 * mappings are a reservation against the free space in the filesystem; 57 * adjacent mappings can also be combined into fewer larger mappings. 58 * 59 * As an optimization, the CoW extent size hint (cowextsz) creates 60 * outsized aligned delalloc reservations in the hope of landing out of 61 * order nearby CoW writes in a single extent on disk, thereby reducing 62 * fragmentation and improving future performance. 63 * 64 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 65 * C: ------DDDDDDD--------- (CoW fork) 66 * 67 * When dirty pages are being written out (typically in writepage), the 68 * delalloc reservations are converted into unwritten mappings by 69 * allocating blocks and replacing the delalloc mapping with real ones. 70 * A delalloc mapping can be replaced by several unwritten ones if the 71 * free space is fragmented. 72 * 73 * D: --RRRRRRSSSRRRRRRRR--- 74 * C: ------UUUUUUU--------- 75 * 76 * We want to adapt the delalloc mechanism for copy-on-write, since the 77 * write paths are similar. The first two steps (creating the reservation 78 * and allocating the blocks) are exactly the same as delalloc except that 79 * the mappings must be stored in a separate CoW fork because we do not want 80 * to disturb the mapping in the data fork until we're sure that the write 81 * succeeded. IO completion in this case is the process of removing the old 82 * mapping from the data fork and moving the new mapping from the CoW fork to 83 * the data fork. This will be discussed shortly. 84 * 85 * For now, unaligned directio writes will be bounced back to the page cache. 86 * Block-aligned directio writes will use the same mechanism as buffered 87 * writes. 88 * 89 * Just prior to submitting the actual disk write requests, we convert 90 * the extents representing the range of the file actually being written 91 * (as opposed to extra pieces created for the cowextsize hint) to real 92 * extents. This will become important in the next step: 93 * 94 * D: --RRRRRRSSSRRRRRRRR--- 95 * C: ------UUrrUUU--------- 96 * 97 * CoW remapping must be done after the data block write completes, 98 * because we don't want to destroy the old data fork map until we're sure 99 * the new block has been written. Since the new mappings are kept in a 100 * separate fork, we can simply iterate these mappings to find the ones 101 * that cover the file blocks that we just CoW'd. For each extent, simply 102 * unmap the corresponding range in the data fork, map the new range into 103 * the data fork, and remove the extent from the CoW fork. Because of 104 * the presence of the cowextsize hint, however, we must be careful 105 * only to remap the blocks that we've actually written out -- we must 106 * never remap delalloc reservations nor CoW staging blocks that have 107 * yet to be written. This corresponds exactly to the real extents in 108 * the CoW fork: 109 * 110 * D: --RRRRRRrrSRRRRRRRR--- 111 * C: ------UU--UUU--------- 112 * 113 * Since the remapping operation can be applied to an arbitrary file 114 * range, we record the need for the remap step as a flag in the ioend 115 * instead of declaring a new IO type. This is required for direct io 116 * because we only have ioend for the whole dio, and we have to be able to 117 * remember the presence of unwritten blocks and CoW blocks with a single 118 * ioend structure. Better yet, the more ground we can cover with one 119 * ioend, the better. 120 */ 121 122 /* 123 * Given an AG extent, find the lowest-numbered run of shared blocks 124 * within that range and return the range in fbno/flen. If 125 * find_end_of_shared is true, return the longest contiguous extent of 126 * shared blocks. If there are no shared extents, fbno and flen will 127 * be set to NULLAGBLOCK and 0, respectively. 128 */ 129 static int 130 xfs_reflink_find_shared( 131 struct xfs_perag *pag, 132 struct xfs_trans *tp, 133 xfs_agblock_t agbno, 134 xfs_extlen_t aglen, 135 xfs_agblock_t *fbno, 136 xfs_extlen_t *flen, 137 bool find_end_of_shared) 138 { 139 struct xfs_buf *agbp; 140 struct xfs_btree_cur *cur; 141 int error; 142 143 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 144 if (error) 145 return error; 146 147 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 148 149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 150 find_end_of_shared); 151 152 xfs_btree_del_cursor(cur, error); 153 154 xfs_trans_brelse(tp, agbp); 155 return error; 156 } 157 158 /* 159 * Trim the mapping to the next block where there's a change in the 160 * shared/unshared status. More specifically, this means that we 161 * find the lowest-numbered extent of shared blocks that coincides with 162 * the given block mapping. If the shared extent overlaps the start of 163 * the mapping, trim the mapping to the end of the shared extent. If 164 * the shared region intersects the mapping, trim the mapping to the 165 * start of the shared extent. If there are no shared regions that 166 * overlap, just return the original extent. 167 */ 168 int 169 xfs_reflink_trim_around_shared( 170 struct xfs_inode *ip, 171 struct xfs_bmbt_irec *irec, 172 bool *shared) 173 { 174 struct xfs_mount *mp = ip->i_mount; 175 struct xfs_perag *pag; 176 xfs_agblock_t agbno; 177 xfs_extlen_t aglen; 178 xfs_agblock_t fbno; 179 xfs_extlen_t flen; 180 int error = 0; 181 182 /* Holes, unwritten, and delalloc extents cannot be shared */ 183 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 184 *shared = false; 185 return 0; 186 } 187 188 trace_xfs_reflink_trim_around_shared(ip, irec); 189 190 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 191 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 192 aglen = irec->br_blockcount; 193 194 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 195 true); 196 xfs_perag_put(pag); 197 if (error) 198 return error; 199 200 *shared = false; 201 if (fbno == NULLAGBLOCK) { 202 /* No shared blocks at all. */ 203 return 0; 204 } 205 206 if (fbno == agbno) { 207 /* 208 * The start of this extent is shared. Truncate the 209 * mapping at the end of the shared region so that a 210 * subsequent iteration starts at the start of the 211 * unshared region. 212 */ 213 irec->br_blockcount = flen; 214 *shared = true; 215 return 0; 216 } 217 218 /* 219 * There's a shared extent midway through this extent. 220 * Truncate the mapping at the start of the shared 221 * extent so that a subsequent iteration starts at the 222 * start of the shared region. 223 */ 224 irec->br_blockcount = fbno - agbno; 225 return 0; 226 } 227 228 int 229 xfs_bmap_trim_cow( 230 struct xfs_inode *ip, 231 struct xfs_bmbt_irec *imap, 232 bool *shared) 233 { 234 /* We can't update any real extents in always COW mode. */ 235 if (xfs_is_always_cow_inode(ip) && 236 !isnullstartblock(imap->br_startblock)) { 237 *shared = true; 238 return 0; 239 } 240 241 /* Trim the mapping to the nearest shared extent boundary. */ 242 return xfs_reflink_trim_around_shared(ip, imap, shared); 243 } 244 245 static int 246 xfs_reflink_convert_cow_locked( 247 struct xfs_inode *ip, 248 xfs_fileoff_t offset_fsb, 249 xfs_filblks_t count_fsb) 250 { 251 struct xfs_iext_cursor icur; 252 struct xfs_bmbt_irec got; 253 struct xfs_btree_cur *dummy_cur = NULL; 254 int dummy_logflags; 255 int error = 0; 256 257 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 258 return 0; 259 260 do { 261 if (got.br_startoff >= offset_fsb + count_fsb) 262 break; 263 if (got.br_state == XFS_EXT_NORM) 264 continue; 265 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 266 return -EIO; 267 268 xfs_trim_extent(&got, offset_fsb, count_fsb); 269 if (!got.br_blockcount) 270 continue; 271 272 got.br_state = XFS_EXT_NORM; 273 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 274 XFS_COW_FORK, &icur, &dummy_cur, &got, 275 &dummy_logflags); 276 if (error) 277 return error; 278 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 279 280 return error; 281 } 282 283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 284 int 285 xfs_reflink_convert_cow( 286 struct xfs_inode *ip, 287 xfs_off_t offset, 288 xfs_off_t count) 289 { 290 struct xfs_mount *mp = ip->i_mount; 291 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 292 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 293 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 294 int error; 295 296 ASSERT(count != 0); 297 298 xfs_ilock(ip, XFS_ILOCK_EXCL); 299 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 300 xfs_iunlock(ip, XFS_ILOCK_EXCL); 301 return error; 302 } 303 304 /* 305 * Find the extent that maps the given range in the COW fork. Even if the extent 306 * is not shared we might have a preallocation for it in the COW fork. If so we 307 * use it that rather than trigger a new allocation. 308 */ 309 static int 310 xfs_find_trim_cow_extent( 311 struct xfs_inode *ip, 312 struct xfs_bmbt_irec *imap, 313 struct xfs_bmbt_irec *cmap, 314 bool *shared, 315 bool *found) 316 { 317 xfs_fileoff_t offset_fsb = imap->br_startoff; 318 xfs_filblks_t count_fsb = imap->br_blockcount; 319 struct xfs_iext_cursor icur; 320 321 *found = false; 322 323 /* 324 * If we don't find an overlapping extent, trim the range we need to 325 * allocate to fit the hole we found. 326 */ 327 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 328 cmap->br_startoff = offset_fsb + count_fsb; 329 if (cmap->br_startoff > offset_fsb) { 330 xfs_trim_extent(imap, imap->br_startoff, 331 cmap->br_startoff - imap->br_startoff); 332 return xfs_bmap_trim_cow(ip, imap, shared); 333 } 334 335 *shared = true; 336 if (isnullstartblock(cmap->br_startblock)) { 337 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 338 return 0; 339 } 340 341 /* real extent found - no need to allocate */ 342 xfs_trim_extent(cmap, offset_fsb, count_fsb); 343 *found = true; 344 return 0; 345 } 346 347 static int 348 xfs_reflink_convert_unwritten( 349 struct xfs_inode *ip, 350 struct xfs_bmbt_irec *imap, 351 struct xfs_bmbt_irec *cmap, 352 bool convert_now) 353 { 354 xfs_fileoff_t offset_fsb = imap->br_startoff; 355 xfs_filblks_t count_fsb = imap->br_blockcount; 356 int error; 357 358 /* 359 * cmap might larger than imap due to cowextsize hint. 360 */ 361 xfs_trim_extent(cmap, offset_fsb, count_fsb); 362 363 /* 364 * COW fork extents are supposed to remain unwritten until we're ready 365 * to initiate a disk write. For direct I/O we are going to write the 366 * data and need the conversion, but for buffered writes we're done. 367 */ 368 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 369 return 0; 370 371 trace_xfs_reflink_convert_cow(ip, cmap); 372 373 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 374 if (!error) 375 cmap->br_state = XFS_EXT_NORM; 376 377 return error; 378 } 379 380 static int 381 xfs_reflink_fill_cow_hole( 382 struct xfs_inode *ip, 383 struct xfs_bmbt_irec *imap, 384 struct xfs_bmbt_irec *cmap, 385 bool *shared, 386 uint *lockmode, 387 bool convert_now) 388 { 389 struct xfs_mount *mp = ip->i_mount; 390 struct xfs_trans *tp; 391 xfs_filblks_t resaligned; 392 xfs_extlen_t resblks; 393 int nimaps; 394 int error; 395 bool found; 396 397 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 398 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 399 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 400 401 xfs_iunlock(ip, *lockmode); 402 *lockmode = 0; 403 404 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 405 false, &tp); 406 if (error) 407 return error; 408 409 *lockmode = XFS_ILOCK_EXCL; 410 411 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 412 if (error || !*shared) 413 goto out_trans_cancel; 414 415 if (found) { 416 xfs_trans_cancel(tp); 417 goto convert; 418 } 419 420 /* Allocate the entire reservation as unwritten blocks. */ 421 nimaps = 1; 422 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 423 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 424 &nimaps); 425 if (error) 426 goto out_trans_cancel; 427 428 xfs_inode_set_cowblocks_tag(ip); 429 error = xfs_trans_commit(tp); 430 if (error) 431 return error; 432 433 convert: 434 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 435 436 out_trans_cancel: 437 xfs_trans_cancel(tp); 438 return error; 439 } 440 441 static int 442 xfs_reflink_fill_delalloc( 443 struct xfs_inode *ip, 444 struct xfs_bmbt_irec *imap, 445 struct xfs_bmbt_irec *cmap, 446 bool *shared, 447 uint *lockmode, 448 bool convert_now) 449 { 450 struct xfs_mount *mp = ip->i_mount; 451 struct xfs_trans *tp; 452 int nimaps; 453 int error; 454 bool found; 455 456 do { 457 xfs_iunlock(ip, *lockmode); 458 *lockmode = 0; 459 460 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 461 false, &tp); 462 if (error) 463 return error; 464 465 *lockmode = XFS_ILOCK_EXCL; 466 467 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 468 &found); 469 if (error || !*shared) 470 goto out_trans_cancel; 471 472 if (found) { 473 xfs_trans_cancel(tp); 474 break; 475 } 476 477 ASSERT(isnullstartblock(cmap->br_startblock) || 478 cmap->br_startblock == DELAYSTARTBLOCK); 479 480 /* 481 * Replace delalloc reservation with an unwritten extent. 482 */ 483 nimaps = 1; 484 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 485 cmap->br_blockcount, 486 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 487 cmap, &nimaps); 488 if (error) 489 goto out_trans_cancel; 490 491 xfs_inode_set_cowblocks_tag(ip); 492 error = xfs_trans_commit(tp); 493 if (error) 494 return error; 495 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 496 497 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 498 499 out_trans_cancel: 500 xfs_trans_cancel(tp); 501 return error; 502 } 503 504 /* Allocate all CoW reservations covering a range of blocks in a file. */ 505 int 506 xfs_reflink_allocate_cow( 507 struct xfs_inode *ip, 508 struct xfs_bmbt_irec *imap, 509 struct xfs_bmbt_irec *cmap, 510 bool *shared, 511 uint *lockmode, 512 bool convert_now) 513 { 514 int error; 515 bool found; 516 517 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 518 if (!ip->i_cowfp) { 519 ASSERT(!xfs_is_reflink_inode(ip)); 520 xfs_ifork_init_cow(ip); 521 } 522 523 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 524 if (error || !*shared) 525 return error; 526 527 /* CoW fork has a real extent */ 528 if (found) 529 return xfs_reflink_convert_unwritten(ip, imap, cmap, 530 convert_now); 531 532 /* 533 * CoW fork does not have an extent and data extent is shared. 534 * Allocate a real extent in the CoW fork. 535 */ 536 if (cmap->br_startoff > imap->br_startoff) 537 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 538 lockmode, convert_now); 539 540 /* 541 * CoW fork has a delalloc reservation. Replace it with a real extent. 542 * There may or may not be a data fork mapping. 543 */ 544 if (isnullstartblock(cmap->br_startblock) || 545 cmap->br_startblock == DELAYSTARTBLOCK) 546 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 547 lockmode, convert_now); 548 549 /* Shouldn't get here. */ 550 ASSERT(0); 551 return -EFSCORRUPTED; 552 } 553 554 /* 555 * Cancel CoW reservations for some block range of an inode. 556 * 557 * If cancel_real is true this function cancels all COW fork extents for the 558 * inode; if cancel_real is false, real extents are not cleared. 559 * 560 * Caller must have already joined the inode to the current transaction. The 561 * inode will be joined to the transaction returned to the caller. 562 */ 563 int 564 xfs_reflink_cancel_cow_blocks( 565 struct xfs_inode *ip, 566 struct xfs_trans **tpp, 567 xfs_fileoff_t offset_fsb, 568 xfs_fileoff_t end_fsb, 569 bool cancel_real) 570 { 571 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 572 struct xfs_bmbt_irec got, del; 573 struct xfs_iext_cursor icur; 574 int error = 0; 575 576 if (!xfs_inode_has_cow_data(ip)) 577 return 0; 578 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 579 return 0; 580 581 /* Walk backwards until we're out of the I/O range... */ 582 while (got.br_startoff + got.br_blockcount > offset_fsb) { 583 del = got; 584 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 585 586 /* Extent delete may have bumped ext forward */ 587 if (!del.br_blockcount) { 588 xfs_iext_prev(ifp, &icur); 589 goto next_extent; 590 } 591 592 trace_xfs_reflink_cancel_cow(ip, &del); 593 594 if (isnullstartblock(del.br_startblock)) { 595 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &got, 596 &del); 597 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 598 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 599 600 /* Free the CoW orphan record. */ 601 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 602 del.br_blockcount); 603 604 error = xfs_free_extent_later(*tpp, del.br_startblock, 605 del.br_blockcount, NULL, 606 XFS_AG_RESV_NONE, 0); 607 if (error) 608 break; 609 610 /* Roll the transaction */ 611 error = xfs_defer_finish(tpp); 612 if (error) 613 break; 614 615 /* Remove the mapping from the CoW fork. */ 616 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 617 618 /* Remove the quota reservation */ 619 xfs_quota_unreserve_blkres(ip, del.br_blockcount); 620 } else { 621 /* Didn't do anything, push cursor back. */ 622 xfs_iext_prev(ifp, &icur); 623 } 624 next_extent: 625 if (!xfs_iext_get_extent(ifp, &icur, &got)) 626 break; 627 } 628 629 /* clear tag if cow fork is emptied */ 630 if (!ifp->if_bytes) 631 xfs_inode_clear_cowblocks_tag(ip); 632 return error; 633 } 634 635 /* 636 * Cancel CoW reservations for some byte range of an inode. 637 * 638 * If cancel_real is true this function cancels all COW fork extents for the 639 * inode; if cancel_real is false, real extents are not cleared. 640 */ 641 int 642 xfs_reflink_cancel_cow_range( 643 struct xfs_inode *ip, 644 xfs_off_t offset, 645 xfs_off_t count, 646 bool cancel_real) 647 { 648 struct xfs_trans *tp; 649 xfs_fileoff_t offset_fsb; 650 xfs_fileoff_t end_fsb; 651 int error; 652 653 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 654 ASSERT(ip->i_cowfp); 655 656 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 657 if (count == NULLFILEOFF) 658 end_fsb = NULLFILEOFF; 659 else 660 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 661 662 /* Start a rolling transaction to remove the mappings */ 663 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 664 0, 0, 0, &tp); 665 if (error) 666 goto out; 667 668 xfs_ilock(ip, XFS_ILOCK_EXCL); 669 xfs_trans_ijoin(tp, ip, 0); 670 671 /* Scrape out the old CoW reservations */ 672 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 673 cancel_real); 674 if (error) 675 goto out_cancel; 676 677 error = xfs_trans_commit(tp); 678 679 xfs_iunlock(ip, XFS_ILOCK_EXCL); 680 return error; 681 682 out_cancel: 683 xfs_trans_cancel(tp); 684 xfs_iunlock(ip, XFS_ILOCK_EXCL); 685 out: 686 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 687 return error; 688 } 689 690 /* 691 * Remap part of the CoW fork into the data fork. 692 * 693 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 694 * into the data fork; this function will remap what it can (at the end of the 695 * range) and update @end_fsb appropriately. Each remap gets its own 696 * transaction because we can end up merging and splitting bmbt blocks for 697 * every remap operation and we'd like to keep the block reservation 698 * requirements as low as possible. 699 */ 700 STATIC int 701 xfs_reflink_end_cow_extent( 702 struct xfs_inode *ip, 703 xfs_fileoff_t *offset_fsb, 704 xfs_fileoff_t end_fsb) 705 { 706 struct xfs_iext_cursor icur; 707 struct xfs_bmbt_irec got, del, data; 708 struct xfs_mount *mp = ip->i_mount; 709 struct xfs_trans *tp; 710 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 711 unsigned int resblks; 712 int nmaps; 713 int error; 714 715 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 716 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 717 XFS_TRANS_RESERVE, &tp); 718 if (error) 719 return error; 720 721 /* 722 * Lock the inode. We have to ijoin without automatic unlock because 723 * the lead transaction is the refcountbt record deletion; the data 724 * fork update follows as a deferred log item. 725 */ 726 xfs_ilock(ip, XFS_ILOCK_EXCL); 727 xfs_trans_ijoin(tp, ip, 0); 728 729 /* 730 * In case of racing, overlapping AIO writes no COW extents might be 731 * left by the time I/O completes for the loser of the race. In that 732 * case we are done. 733 */ 734 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 735 got.br_startoff >= end_fsb) { 736 *offset_fsb = end_fsb; 737 goto out_cancel; 738 } 739 740 /* 741 * Only remap real extents that contain data. With AIO, speculative 742 * preallocations can leak into the range we are called upon, and we 743 * need to skip them. Preserve @got for the eventual CoW fork 744 * deletion; from now on @del represents the mapping that we're 745 * actually remapping. 746 */ 747 while (!xfs_bmap_is_written_extent(&got)) { 748 if (!xfs_iext_next_extent(ifp, &icur, &got) || 749 got.br_startoff >= end_fsb) { 750 *offset_fsb = end_fsb; 751 goto out_cancel; 752 } 753 } 754 del = got; 755 xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); 756 757 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 758 XFS_IEXT_REFLINK_END_COW_CNT); 759 if (error) 760 goto out_cancel; 761 762 /* Grab the corresponding mapping in the data fork. */ 763 nmaps = 1; 764 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 765 &nmaps, 0); 766 if (error) 767 goto out_cancel; 768 769 /* We can only remap the smaller of the two extent sizes. */ 770 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 771 del.br_blockcount = data.br_blockcount; 772 773 trace_xfs_reflink_cow_remap_from(ip, &del); 774 trace_xfs_reflink_cow_remap_to(ip, &data); 775 776 if (xfs_bmap_is_real_extent(&data)) { 777 /* 778 * If the extent we're remapping is backed by storage (written 779 * or not), unmap the extent and drop its refcount. 780 */ 781 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); 782 xfs_refcount_decrease_extent(tp, &data); 783 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 784 -data.br_blockcount); 785 } else if (data.br_startblock == DELAYSTARTBLOCK) { 786 int done; 787 788 /* 789 * If the extent we're remapping is a delalloc reservation, 790 * we can use the regular bunmapi function to release the 791 * incore state. Dropping the delalloc reservation takes care 792 * of the quota reservation for us. 793 */ 794 error = xfs_bunmapi(NULL, ip, data.br_startoff, 795 data.br_blockcount, 0, 1, &done); 796 if (error) 797 goto out_cancel; 798 ASSERT(done); 799 } 800 801 /* Free the CoW orphan record. */ 802 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 803 804 /* Map the new blocks into the data fork. */ 805 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del); 806 807 /* Charge this new data fork mapping to the on-disk quota. */ 808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 809 (long)del.br_blockcount); 810 811 /* Remove the mapping from the CoW fork. */ 812 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 813 814 error = xfs_trans_commit(tp); 815 xfs_iunlock(ip, XFS_ILOCK_EXCL); 816 if (error) 817 return error; 818 819 /* Update the caller about how much progress we made. */ 820 *offset_fsb = del.br_startoff + del.br_blockcount; 821 return 0; 822 823 out_cancel: 824 xfs_trans_cancel(tp); 825 xfs_iunlock(ip, XFS_ILOCK_EXCL); 826 return error; 827 } 828 829 /* 830 * Remap parts of a file's data fork after a successful CoW. 831 */ 832 int 833 xfs_reflink_end_cow( 834 struct xfs_inode *ip, 835 xfs_off_t offset, 836 xfs_off_t count) 837 { 838 xfs_fileoff_t offset_fsb; 839 xfs_fileoff_t end_fsb; 840 int error = 0; 841 842 trace_xfs_reflink_end_cow(ip, offset, count); 843 844 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 845 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 846 847 /* 848 * Walk forwards until we've remapped the I/O range. The loop function 849 * repeatedly cycles the ILOCK to allocate one transaction per remapped 850 * extent. 851 * 852 * If we're being called by writeback then the pages will still 853 * have PageWriteback set, which prevents races with reflink remapping 854 * and truncate. Reflink remapping prevents races with writeback by 855 * taking the iolock and mmaplock before flushing the pages and 856 * remapping, which means there won't be any further writeback or page 857 * cache dirtying until the reflink completes. 858 * 859 * We should never have two threads issuing writeback for the same file 860 * region. There are also have post-eof checks in the writeback 861 * preparation code so that we don't bother writing out pages that are 862 * about to be truncated. 863 * 864 * If we're being called as part of directio write completion, the dio 865 * count is still elevated, which reflink and truncate will wait for. 866 * Reflink remapping takes the iolock and mmaplock and waits for 867 * pending dio to finish, which should prevent any directio until the 868 * remap completes. Multiple concurrent directio writes to the same 869 * region are handled by end_cow processing only occurring for the 870 * threads which succeed; the outcome of multiple overlapping direct 871 * writes is not well defined anyway. 872 * 873 * It's possible that a buffered write and a direct write could collide 874 * here (the buffered write stumbles in after the dio flushes and 875 * invalidates the page cache and immediately queues writeback), but we 876 * have never supported this 100%. If either disk write succeeds the 877 * blocks will be remapped. 878 */ 879 while (end_fsb > offset_fsb && !error) 880 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 881 882 if (error) 883 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 884 return error; 885 } 886 887 /* 888 * Free all CoW staging blocks that are still referenced by the ondisk refcount 889 * metadata. The ondisk metadata does not track which inode created the 890 * staging extent, so callers must ensure that there are no cached inodes with 891 * live CoW staging extents. 892 */ 893 int 894 xfs_reflink_recover_cow( 895 struct xfs_mount *mp) 896 { 897 struct xfs_perag *pag; 898 xfs_agnumber_t agno; 899 int error = 0; 900 901 if (!xfs_has_reflink(mp)) 902 return 0; 903 904 for_each_perag(mp, agno, pag) { 905 error = xfs_refcount_recover_cow_leftovers(mp, pag); 906 if (error) { 907 xfs_perag_rele(pag); 908 break; 909 } 910 } 911 912 return error; 913 } 914 915 /* 916 * Reflinking (Block) Ranges of Two Files Together 917 * 918 * First, ensure that the reflink flag is set on both inodes. The flag is an 919 * optimization to avoid unnecessary refcount btree lookups in the write path. 920 * 921 * Now we can iteratively remap the range of extents (and holes) in src to the 922 * corresponding ranges in dest. Let drange and srange denote the ranges of 923 * logical blocks in dest and src touched by the reflink operation. 924 * 925 * While the length of drange is greater than zero, 926 * - Read src's bmbt at the start of srange ("imap") 927 * - If imap doesn't exist, make imap appear to start at the end of srange 928 * with zero length. 929 * - If imap starts before srange, advance imap to start at srange. 930 * - If imap goes beyond srange, truncate imap to end at the end of srange. 931 * - Punch (imap start - srange start + imap len) blocks from dest at 932 * offset (drange start). 933 * - If imap points to a real range of pblks, 934 * > Increase the refcount of the imap's pblks 935 * > Map imap's pblks into dest at the offset 936 * (drange start + imap start - srange start) 937 * - Advance drange and srange by (imap start - srange start + imap len) 938 * 939 * Finally, if the reflink made dest longer, update both the in-core and 940 * on-disk file sizes. 941 * 942 * ASCII Art Demonstration: 943 * 944 * Let's say we want to reflink this source file: 945 * 946 * ----SSSSSSS-SSSSS----SSSSSS (src file) 947 * <--------------------> 948 * 949 * into this destination file: 950 * 951 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 952 * <--------------------> 953 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 954 * Observe that the range has different logical offsets in either file. 955 * 956 * Consider that the first extent in the source file doesn't line up with our 957 * reflink range. Unmapping and remapping are separate operations, so we can 958 * unmap more blocks from the destination file than we remap. 959 * 960 * ----SSSSSSS-SSSSS----SSSSSS 961 * <-------> 962 * --DDDDD---------DDDDD--DDD 963 * <-------> 964 * 965 * Now remap the source extent into the destination file: 966 * 967 * ----SSSSSSS-SSSSS----SSSSSS 968 * <-------> 969 * --DDDDD--SSSSSSSDDDDD--DDD 970 * <-------> 971 * 972 * Do likewise with the second hole and extent in our range. Holes in the 973 * unmap range don't affect our operation. 974 * 975 * ----SSSSSSS-SSSSS----SSSSSS 976 * <----> 977 * --DDDDD--SSSSSSS-SSSSS-DDD 978 * <----> 979 * 980 * Finally, unmap and remap part of the third extent. This will increase the 981 * size of the destination file. 982 * 983 * ----SSSSSSS-SSSSS----SSSSSS 984 * <-----> 985 * --DDDDD--SSSSSSS-SSSSS----SSS 986 * <-----> 987 * 988 * Once we update the destination file's i_size, we're done. 989 */ 990 991 /* 992 * Ensure the reflink bit is set in both inodes. 993 */ 994 STATIC int 995 xfs_reflink_set_inode_flag( 996 struct xfs_inode *src, 997 struct xfs_inode *dest) 998 { 999 struct xfs_mount *mp = src->i_mount; 1000 int error; 1001 struct xfs_trans *tp; 1002 1003 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1004 return 0; 1005 1006 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1007 if (error) 1008 goto out_error; 1009 1010 /* Lock both files against IO */ 1011 if (src->i_ino == dest->i_ino) 1012 xfs_ilock(src, XFS_ILOCK_EXCL); 1013 else 1014 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1015 1016 if (!xfs_is_reflink_inode(src)) { 1017 trace_xfs_reflink_set_inode_flag(src); 1018 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1019 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1020 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1021 xfs_ifork_init_cow(src); 1022 } else 1023 xfs_iunlock(src, XFS_ILOCK_EXCL); 1024 1025 if (src->i_ino == dest->i_ino) 1026 goto commit_flags; 1027 1028 if (!xfs_is_reflink_inode(dest)) { 1029 trace_xfs_reflink_set_inode_flag(dest); 1030 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1031 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1032 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1033 xfs_ifork_init_cow(dest); 1034 } else 1035 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1036 1037 commit_flags: 1038 error = xfs_trans_commit(tp); 1039 if (error) 1040 goto out_error; 1041 return error; 1042 1043 out_error: 1044 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1045 return error; 1046 } 1047 1048 /* 1049 * Update destination inode size & cowextsize hint, if necessary. 1050 */ 1051 int 1052 xfs_reflink_update_dest( 1053 struct xfs_inode *dest, 1054 xfs_off_t newlen, 1055 xfs_extlen_t cowextsize, 1056 unsigned int remap_flags) 1057 { 1058 struct xfs_mount *mp = dest->i_mount; 1059 struct xfs_trans *tp; 1060 int error; 1061 1062 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1063 return 0; 1064 1065 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1066 if (error) 1067 goto out_error; 1068 1069 xfs_ilock(dest, XFS_ILOCK_EXCL); 1070 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1071 1072 if (newlen > i_size_read(VFS_I(dest))) { 1073 trace_xfs_reflink_update_inode_size(dest, newlen); 1074 i_size_write(VFS_I(dest), newlen); 1075 dest->i_disk_size = newlen; 1076 } 1077 1078 if (cowextsize) { 1079 dest->i_cowextsize = cowextsize; 1080 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1081 } 1082 1083 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1084 1085 error = xfs_trans_commit(tp); 1086 if (error) 1087 goto out_error; 1088 return error; 1089 1090 out_error: 1091 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1092 return error; 1093 } 1094 1095 /* 1096 * Do we have enough reserve in this AG to handle a reflink? The refcount 1097 * btree already reserved all the space it needs, but the rmap btree can grow 1098 * infinitely, so we won't allow more reflinks when the AG is down to the 1099 * btree reserves. 1100 */ 1101 static int 1102 xfs_reflink_ag_has_free_space( 1103 struct xfs_mount *mp, 1104 xfs_agnumber_t agno) 1105 { 1106 struct xfs_perag *pag; 1107 int error = 0; 1108 1109 if (!xfs_has_rmapbt(mp)) 1110 return 0; 1111 1112 pag = xfs_perag_get(mp, agno); 1113 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1114 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1115 error = -ENOSPC; 1116 xfs_perag_put(pag); 1117 return error; 1118 } 1119 1120 /* 1121 * Remap the given extent into the file. The dmap blockcount will be set to 1122 * the number of blocks that were actually remapped. 1123 */ 1124 STATIC int 1125 xfs_reflink_remap_extent( 1126 struct xfs_inode *ip, 1127 struct xfs_bmbt_irec *dmap, 1128 xfs_off_t new_isize) 1129 { 1130 struct xfs_bmbt_irec smap; 1131 struct xfs_mount *mp = ip->i_mount; 1132 struct xfs_trans *tp; 1133 xfs_off_t newlen; 1134 int64_t qdelta = 0; 1135 unsigned int resblks; 1136 bool quota_reserved = true; 1137 bool smap_real; 1138 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1139 int iext_delta = 0; 1140 int nimaps; 1141 int error; 1142 1143 /* 1144 * Start a rolling transaction to switch the mappings. 1145 * 1146 * Adding a written extent to the extent map can cause a bmbt split, 1147 * and removing a mapped extent from the extent can cause a bmbt split. 1148 * The two operations cannot both cause a split since they operate on 1149 * the same index in the bmap btree, so we only need a reservation for 1150 * one bmbt split if either thing is happening. However, we haven't 1151 * locked the inode yet, so we reserve assuming this is the case. 1152 * 1153 * The first allocation call tries to reserve enough space to handle 1154 * mapping dmap into a sparse part of the file plus the bmbt split. We 1155 * haven't locked the inode or read the existing mapping yet, so we do 1156 * not know for sure that we need the space. This should succeed most 1157 * of the time. 1158 * 1159 * If the first attempt fails, try again but reserving only enough 1160 * space to handle a bmbt split. This is the hard minimum requirement, 1161 * and we revisit quota reservations later when we know more about what 1162 * we're remapping. 1163 */ 1164 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1165 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1166 resblks + dmap->br_blockcount, 0, false, &tp); 1167 if (error == -EDQUOT || error == -ENOSPC) { 1168 quota_reserved = false; 1169 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1170 resblks, 0, false, &tp); 1171 } 1172 if (error) 1173 goto out; 1174 1175 /* 1176 * Read what's currently mapped in the destination file into smap. 1177 * If smap isn't a hole, we will have to remove it before we can add 1178 * dmap to the destination file. 1179 */ 1180 nimaps = 1; 1181 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1182 &smap, &nimaps, 0); 1183 if (error) 1184 goto out_cancel; 1185 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1186 smap_real = xfs_bmap_is_real_extent(&smap); 1187 1188 /* 1189 * We can only remap as many blocks as the smaller of the two extent 1190 * maps, because we can only remap one extent at a time. 1191 */ 1192 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1193 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1194 1195 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1196 1197 /* 1198 * Two extents mapped to the same physical block must not have 1199 * different states; that's filesystem corruption. Move on to the next 1200 * extent if they're both holes or both the same physical extent. 1201 */ 1202 if (dmap->br_startblock == smap.br_startblock) { 1203 if (dmap->br_state != smap.br_state) { 1204 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1205 error = -EFSCORRUPTED; 1206 } 1207 goto out_cancel; 1208 } 1209 1210 /* If both extents are unwritten, leave them alone. */ 1211 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1212 smap.br_state == XFS_EXT_UNWRITTEN) 1213 goto out_cancel; 1214 1215 /* No reflinking if the AG of the dest mapping is low on space. */ 1216 if (dmap_written) { 1217 error = xfs_reflink_ag_has_free_space(mp, 1218 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1219 if (error) 1220 goto out_cancel; 1221 } 1222 1223 /* 1224 * Increase quota reservation if we think the quota block counter for 1225 * this file could increase. 1226 * 1227 * If we are mapping a written extent into the file, we need to have 1228 * enough quota block count reservation to handle the blocks in that 1229 * extent. We log only the delta to the quota block counts, so if the 1230 * extent we're unmapping also has blocks allocated to it, we don't 1231 * need a quota reservation for the extent itself. 1232 * 1233 * Note that if we're replacing a delalloc reservation with a written 1234 * extent, we have to take the full quota reservation because removing 1235 * the delalloc reservation gives the block count back to the quota 1236 * count. This is suboptimal, but the VFS flushed the dest range 1237 * before we started. That should have removed all the delalloc 1238 * reservations, but we code defensively. 1239 * 1240 * xfs_trans_alloc_inode above already tried to grab an even larger 1241 * quota reservation, and kicked off a blockgc scan if it couldn't. 1242 * If we can't get a potentially smaller quota reservation now, we're 1243 * done. 1244 */ 1245 if (!quota_reserved && !smap_real && dmap_written) { 1246 error = xfs_trans_reserve_quota_nblks(tp, ip, 1247 dmap->br_blockcount, 0, false); 1248 if (error) 1249 goto out_cancel; 1250 } 1251 1252 if (smap_real) 1253 ++iext_delta; 1254 1255 if (dmap_written) 1256 ++iext_delta; 1257 1258 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, iext_delta); 1259 if (error) 1260 goto out_cancel; 1261 1262 if (smap_real) { 1263 /* 1264 * If the extent we're unmapping is backed by storage (written 1265 * or not), unmap the extent and drop its refcount. 1266 */ 1267 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap); 1268 xfs_refcount_decrease_extent(tp, &smap); 1269 qdelta -= smap.br_blockcount; 1270 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1271 int done; 1272 1273 /* 1274 * If the extent we're unmapping is a delalloc reservation, 1275 * we can use the regular bunmapi function to release the 1276 * incore state. Dropping the delalloc reservation takes care 1277 * of the quota reservation for us. 1278 */ 1279 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1280 smap.br_blockcount, 0, 1, &done); 1281 if (error) 1282 goto out_cancel; 1283 ASSERT(done); 1284 } 1285 1286 /* 1287 * If the extent we're sharing is backed by written storage, increase 1288 * its refcount and map it into the file. 1289 */ 1290 if (dmap_written) { 1291 xfs_refcount_increase_extent(tp, dmap); 1292 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap); 1293 qdelta += dmap->br_blockcount; 1294 } 1295 1296 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1297 1298 /* Update dest isize if needed. */ 1299 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1300 newlen = min_t(xfs_off_t, newlen, new_isize); 1301 if (newlen > i_size_read(VFS_I(ip))) { 1302 trace_xfs_reflink_update_inode_size(ip, newlen); 1303 i_size_write(VFS_I(ip), newlen); 1304 ip->i_disk_size = newlen; 1305 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1306 } 1307 1308 /* Commit everything and unlock. */ 1309 error = xfs_trans_commit(tp); 1310 goto out_unlock; 1311 1312 out_cancel: 1313 xfs_trans_cancel(tp); 1314 out_unlock: 1315 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1316 out: 1317 if (error) 1318 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1319 return error; 1320 } 1321 1322 /* Remap a range of one file to the other. */ 1323 int 1324 xfs_reflink_remap_blocks( 1325 struct xfs_inode *src, 1326 loff_t pos_in, 1327 struct xfs_inode *dest, 1328 loff_t pos_out, 1329 loff_t remap_len, 1330 loff_t *remapped) 1331 { 1332 struct xfs_bmbt_irec imap; 1333 struct xfs_mount *mp = src->i_mount; 1334 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1335 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1336 xfs_filblks_t len; 1337 xfs_filblks_t remapped_len = 0; 1338 xfs_off_t new_isize = pos_out + remap_len; 1339 int nimaps; 1340 int error = 0; 1341 1342 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1343 XFS_MAX_FILEOFF); 1344 1345 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1346 1347 while (len > 0) { 1348 unsigned int lock_mode; 1349 1350 /* Read extent from the source file */ 1351 nimaps = 1; 1352 lock_mode = xfs_ilock_data_map_shared(src); 1353 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1354 xfs_iunlock(src, lock_mode); 1355 if (error) 1356 break; 1357 /* 1358 * The caller supposedly flushed all dirty pages in the source 1359 * file range, which means that writeback should have allocated 1360 * or deleted all delalloc reservations in that range. If we 1361 * find one, that's a good sign that something is seriously 1362 * wrong here. 1363 */ 1364 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1365 if (imap.br_startblock == DELAYSTARTBLOCK) { 1366 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1367 xfs_bmap_mark_sick(src, XFS_DATA_FORK); 1368 error = -EFSCORRUPTED; 1369 break; 1370 } 1371 1372 trace_xfs_reflink_remap_extent_src(src, &imap); 1373 1374 /* Remap into the destination file at the given offset. */ 1375 imap.br_startoff = destoff; 1376 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1377 if (error) 1378 break; 1379 1380 if (fatal_signal_pending(current)) { 1381 error = -EINTR; 1382 break; 1383 } 1384 1385 /* Advance drange/srange */ 1386 srcoff += imap.br_blockcount; 1387 destoff += imap.br_blockcount; 1388 len -= imap.br_blockcount; 1389 remapped_len += imap.br_blockcount; 1390 cond_resched(); 1391 } 1392 1393 if (error) 1394 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1395 *remapped = min_t(loff_t, remap_len, 1396 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1397 return error; 1398 } 1399 1400 /* 1401 * If we're reflinking to a point past the destination file's EOF, we must 1402 * zero any speculative post-EOF preallocations that sit between the old EOF 1403 * and the destination file offset. 1404 */ 1405 static int 1406 xfs_reflink_zero_posteof( 1407 struct xfs_inode *ip, 1408 loff_t pos) 1409 { 1410 loff_t isize = i_size_read(VFS_I(ip)); 1411 1412 if (pos <= isize) 1413 return 0; 1414 1415 trace_xfs_zero_eof(ip, isize, pos - isize); 1416 return xfs_zero_range(ip, isize, pos - isize, NULL); 1417 } 1418 1419 /* 1420 * Prepare two files for range cloning. Upon a successful return both inodes 1421 * will have the iolock and mmaplock held, the page cache of the out file will 1422 * be truncated, and any leases on the out file will have been broken. This 1423 * function borrows heavily from xfs_file_aio_write_checks. 1424 * 1425 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1426 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1427 * EOF block in the source dedupe range because it's not a complete block match, 1428 * hence can introduce a corruption into the file that has it's block replaced. 1429 * 1430 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1431 * "block aligned" for the purposes of cloning entire files. However, if the 1432 * source file range includes the EOF block and it lands within the existing EOF 1433 * of the destination file, then we can expose stale data from beyond the source 1434 * file EOF in the destination file. 1435 * 1436 * XFS doesn't support partial block sharing, so in both cases we have check 1437 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1438 * down to the previous whole block and ignore the partial EOF block. While this 1439 * means we can't dedupe the last block of a file, this is an acceptible 1440 * tradeoff for simplicity on implementation. 1441 * 1442 * For cloning, we want to share the partial EOF block if it is also the new EOF 1443 * block of the destination file. If the partial EOF block lies inside the 1444 * existing destination EOF, then we have to abort the clone to avoid exposing 1445 * stale data in the destination file. Hence we reject these clone attempts with 1446 * -EINVAL in this case. 1447 */ 1448 int 1449 xfs_reflink_remap_prep( 1450 struct file *file_in, 1451 loff_t pos_in, 1452 struct file *file_out, 1453 loff_t pos_out, 1454 loff_t *len, 1455 unsigned int remap_flags) 1456 { 1457 struct inode *inode_in = file_inode(file_in); 1458 struct xfs_inode *src = XFS_I(inode_in); 1459 struct inode *inode_out = file_inode(file_out); 1460 struct xfs_inode *dest = XFS_I(inode_out); 1461 int ret; 1462 1463 /* Lock both files against IO */ 1464 ret = xfs_ilock2_io_mmap(src, dest); 1465 if (ret) 1466 return ret; 1467 1468 /* Check file eligibility and prepare for block sharing. */ 1469 ret = -EINVAL; 1470 /* Don't reflink realtime inodes */ 1471 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1472 goto out_unlock; 1473 1474 /* Don't share DAX file data with non-DAX file. */ 1475 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1476 goto out_unlock; 1477 1478 if (!IS_DAX(inode_in)) 1479 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1480 pos_out, len, remap_flags); 1481 else 1482 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1483 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1484 if (ret || *len == 0) 1485 goto out_unlock; 1486 1487 /* Attach dquots to dest inode before changing block map */ 1488 ret = xfs_qm_dqattach(dest); 1489 if (ret) 1490 goto out_unlock; 1491 1492 /* 1493 * Zero existing post-eof speculative preallocations in the destination 1494 * file. 1495 */ 1496 ret = xfs_reflink_zero_posteof(dest, pos_out); 1497 if (ret) 1498 goto out_unlock; 1499 1500 /* Set flags and remap blocks. */ 1501 ret = xfs_reflink_set_inode_flag(src, dest); 1502 if (ret) 1503 goto out_unlock; 1504 1505 /* 1506 * If pos_out > EOF, we may have dirtied blocks between EOF and 1507 * pos_out. In that case, we need to extend the flush and unmap to cover 1508 * from EOF to the end of the copy length. 1509 */ 1510 if (pos_out > XFS_ISIZE(dest)) { 1511 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1512 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1513 } else { 1514 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1515 } 1516 if (ret) 1517 goto out_unlock; 1518 1519 xfs_iflags_set(src, XFS_IREMAPPING); 1520 if (inode_in != inode_out) 1521 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1522 1523 return 0; 1524 out_unlock: 1525 xfs_iunlock2_io_mmap(src, dest); 1526 return ret; 1527 } 1528 1529 /* Does this inode need the reflink flag? */ 1530 int 1531 xfs_reflink_inode_has_shared_extents( 1532 struct xfs_trans *tp, 1533 struct xfs_inode *ip, 1534 bool *has_shared) 1535 { 1536 struct xfs_bmbt_irec got; 1537 struct xfs_mount *mp = ip->i_mount; 1538 struct xfs_ifork *ifp; 1539 struct xfs_iext_cursor icur; 1540 bool found; 1541 int error; 1542 1543 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1544 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1545 if (error) 1546 return error; 1547 1548 *has_shared = false; 1549 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1550 while (found) { 1551 struct xfs_perag *pag; 1552 xfs_agblock_t agbno; 1553 xfs_extlen_t aglen; 1554 xfs_agblock_t rbno; 1555 xfs_extlen_t rlen; 1556 1557 if (isnullstartblock(got.br_startblock) || 1558 got.br_state != XFS_EXT_NORM) 1559 goto next; 1560 1561 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1562 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1563 aglen = got.br_blockcount; 1564 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1565 &rbno, &rlen, false); 1566 xfs_perag_put(pag); 1567 if (error) 1568 return error; 1569 1570 /* Is there still a shared block here? */ 1571 if (rbno != NULLAGBLOCK) { 1572 *has_shared = true; 1573 return 0; 1574 } 1575 next: 1576 found = xfs_iext_next_extent(ifp, &icur, &got); 1577 } 1578 1579 return 0; 1580 } 1581 1582 /* 1583 * Clear the inode reflink flag if there are no shared extents. 1584 * 1585 * The caller is responsible for joining the inode to the transaction passed in. 1586 * The inode will be joined to the transaction that is returned to the caller. 1587 */ 1588 int 1589 xfs_reflink_clear_inode_flag( 1590 struct xfs_inode *ip, 1591 struct xfs_trans **tpp) 1592 { 1593 bool needs_flag; 1594 int error = 0; 1595 1596 ASSERT(xfs_is_reflink_inode(ip)); 1597 1598 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1599 if (error || needs_flag) 1600 return error; 1601 1602 /* 1603 * We didn't find any shared blocks so turn off the reflink flag. 1604 * First, get rid of any leftover CoW mappings. 1605 */ 1606 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1607 true); 1608 if (error) 1609 return error; 1610 1611 /* Clear the inode flag. */ 1612 trace_xfs_reflink_unset_inode_flag(ip); 1613 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1614 xfs_inode_clear_cowblocks_tag(ip); 1615 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1616 1617 return error; 1618 } 1619 1620 /* 1621 * Clear the inode reflink flag if there are no shared extents and the size 1622 * hasn't changed. 1623 */ 1624 STATIC int 1625 xfs_reflink_try_clear_inode_flag( 1626 struct xfs_inode *ip) 1627 { 1628 struct xfs_mount *mp = ip->i_mount; 1629 struct xfs_trans *tp; 1630 int error = 0; 1631 1632 /* Start a rolling transaction to remove the mappings */ 1633 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1634 if (error) 1635 return error; 1636 1637 xfs_ilock(ip, XFS_ILOCK_EXCL); 1638 xfs_trans_ijoin(tp, ip, 0); 1639 1640 error = xfs_reflink_clear_inode_flag(ip, &tp); 1641 if (error) 1642 goto cancel; 1643 1644 error = xfs_trans_commit(tp); 1645 if (error) 1646 goto out; 1647 1648 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1649 return 0; 1650 cancel: 1651 xfs_trans_cancel(tp); 1652 out: 1653 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1654 return error; 1655 } 1656 1657 /* 1658 * Pre-COW all shared blocks within a given byte range of a file and turn off 1659 * the reflink flag if we unshare all of the file's blocks. 1660 */ 1661 int 1662 xfs_reflink_unshare( 1663 struct xfs_inode *ip, 1664 xfs_off_t offset, 1665 xfs_off_t len) 1666 { 1667 struct inode *inode = VFS_I(ip); 1668 int error; 1669 1670 if (!xfs_is_reflink_inode(ip)) 1671 return 0; 1672 1673 trace_xfs_reflink_unshare(ip, offset, len); 1674 1675 inode_dio_wait(inode); 1676 1677 if (IS_DAX(inode)) 1678 error = dax_file_unshare(inode, offset, len, 1679 &xfs_dax_write_iomap_ops); 1680 else 1681 error = iomap_file_unshare(inode, offset, len, 1682 &xfs_buffered_write_iomap_ops); 1683 if (error) 1684 goto out; 1685 1686 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1687 offset + len - 1); 1688 if (error) 1689 goto out; 1690 1691 /* Turn off the reflink flag if possible. */ 1692 error = xfs_reflink_try_clear_inode_flag(ip); 1693 if (error) 1694 goto out; 1695 return 0; 1696 1697 out: 1698 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1699 return error; 1700 } 1701
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.