1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/uio.h> 19 #include <linux/mman.h> 20 #include <linux/sched/mm.h> 21 #include <linux/crc32.h> 22 #include <linux/task_io_accounting_ops.h> 23 #include <linux/fs_parser.h> 24 #include <linux/fs_context.h> 25 26 #include "zonefs.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 /* 32 * Get the name of a zone group directory. 33 */ 34 static const char *zonefs_zgroup_name(enum zonefs_ztype ztype) 35 { 36 switch (ztype) { 37 case ZONEFS_ZTYPE_CNV: 38 return "cnv"; 39 case ZONEFS_ZTYPE_SEQ: 40 return "seq"; 41 default: 42 WARN_ON_ONCE(1); 43 return "???"; 44 } 45 } 46 47 /* 48 * Manage the active zone count. 49 */ 50 static void zonefs_account_active(struct super_block *sb, 51 struct zonefs_zone *z) 52 { 53 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 54 55 if (zonefs_zone_is_cnv(z)) 56 return; 57 58 /* 59 * For zones that transitioned to the offline or readonly condition, 60 * we only need to clear the active state. 61 */ 62 if (z->z_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY)) 63 goto out; 64 65 /* 66 * If the zone is active, that is, if it is explicitly open or 67 * partially written, check if it was already accounted as active. 68 */ 69 if ((z->z_flags & ZONEFS_ZONE_OPEN) || 70 (z->z_wpoffset > 0 && z->z_wpoffset < z->z_capacity)) { 71 if (!(z->z_flags & ZONEFS_ZONE_ACTIVE)) { 72 z->z_flags |= ZONEFS_ZONE_ACTIVE; 73 atomic_inc(&sbi->s_active_seq_files); 74 } 75 return; 76 } 77 78 out: 79 /* The zone is not active. If it was, update the active count */ 80 if (z->z_flags & ZONEFS_ZONE_ACTIVE) { 81 z->z_flags &= ~ZONEFS_ZONE_ACTIVE; 82 atomic_dec(&sbi->s_active_seq_files); 83 } 84 } 85 86 /* 87 * Manage the active zone count. Called with zi->i_truncate_mutex held. 88 */ 89 void zonefs_inode_account_active(struct inode *inode) 90 { 91 lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex); 92 93 return zonefs_account_active(inode->i_sb, zonefs_inode_zone(inode)); 94 } 95 96 /* 97 * Execute a zone management operation. 98 */ 99 static int zonefs_zone_mgmt(struct super_block *sb, 100 struct zonefs_zone *z, enum req_op op) 101 { 102 int ret; 103 104 /* 105 * With ZNS drives, closing an explicitly open zone that has not been 106 * written will change the zone state to "closed", that is, the zone 107 * will remain active. Since this can then cause failure of explicit 108 * open operation on other zones if the drive active zone resources 109 * are exceeded, make sure that the zone does not remain active by 110 * resetting it. 111 */ 112 if (op == REQ_OP_ZONE_CLOSE && !z->z_wpoffset) 113 op = REQ_OP_ZONE_RESET; 114 115 trace_zonefs_zone_mgmt(sb, z, op); 116 ret = blkdev_zone_mgmt(sb->s_bdev, op, z->z_sector, 117 z->z_size >> SECTOR_SHIFT); 118 if (ret) { 119 zonefs_err(sb, 120 "Zone management operation %s at %llu failed %d\n", 121 blk_op_str(op), z->z_sector, ret); 122 return ret; 123 } 124 125 return 0; 126 } 127 128 int zonefs_inode_zone_mgmt(struct inode *inode, enum req_op op) 129 { 130 lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex); 131 132 return zonefs_zone_mgmt(inode->i_sb, zonefs_inode_zone(inode), op); 133 } 134 135 void zonefs_i_size_write(struct inode *inode, loff_t isize) 136 { 137 struct zonefs_zone *z = zonefs_inode_zone(inode); 138 139 i_size_write(inode, isize); 140 141 /* 142 * A full zone is no longer open/active and does not need 143 * explicit closing. 144 */ 145 if (isize >= z->z_capacity) { 146 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 147 148 if (z->z_flags & ZONEFS_ZONE_ACTIVE) 149 atomic_dec(&sbi->s_active_seq_files); 150 z->z_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE); 151 } 152 } 153 154 void zonefs_update_stats(struct inode *inode, loff_t new_isize) 155 { 156 struct super_block *sb = inode->i_sb; 157 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 158 loff_t old_isize = i_size_read(inode); 159 loff_t nr_blocks; 160 161 if (new_isize == old_isize) 162 return; 163 164 spin_lock(&sbi->s_lock); 165 166 /* 167 * This may be called for an update after an IO error. 168 * So beware of the values seen. 169 */ 170 if (new_isize < old_isize) { 171 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 172 if (sbi->s_used_blocks > nr_blocks) 173 sbi->s_used_blocks -= nr_blocks; 174 else 175 sbi->s_used_blocks = 0; 176 } else { 177 sbi->s_used_blocks += 178 (new_isize - old_isize) >> sb->s_blocksize_bits; 179 if (sbi->s_used_blocks > sbi->s_blocks) 180 sbi->s_used_blocks = sbi->s_blocks; 181 } 182 183 spin_unlock(&sbi->s_lock); 184 } 185 186 /* 187 * Check a zone condition. Return the amount of written (and still readable) 188 * data in the zone. 189 */ 190 static loff_t zonefs_check_zone_condition(struct super_block *sb, 191 struct zonefs_zone *z, 192 struct blk_zone *zone) 193 { 194 switch (zone->cond) { 195 case BLK_ZONE_COND_OFFLINE: 196 zonefs_warn(sb, "Zone %llu: offline zone\n", 197 z->z_sector); 198 z->z_flags |= ZONEFS_ZONE_OFFLINE; 199 return 0; 200 case BLK_ZONE_COND_READONLY: 201 /* 202 * The write pointer of read-only zones is invalid, so we cannot 203 * determine the zone wpoffset (inode size). We thus keep the 204 * zone wpoffset as is, which leads to an empty file 205 * (wpoffset == 0) on mount. For a runtime error, this keeps 206 * the inode size as it was when last updated so that the user 207 * can recover data. 208 */ 209 zonefs_warn(sb, "Zone %llu: read-only zone\n", 210 z->z_sector); 211 z->z_flags |= ZONEFS_ZONE_READONLY; 212 if (zonefs_zone_is_cnv(z)) 213 return z->z_capacity; 214 return z->z_wpoffset; 215 case BLK_ZONE_COND_FULL: 216 /* The write pointer of full zones is invalid. */ 217 return z->z_capacity; 218 default: 219 if (zonefs_zone_is_cnv(z)) 220 return z->z_capacity; 221 return (zone->wp - zone->start) << SECTOR_SHIFT; 222 } 223 } 224 225 /* 226 * Check a zone condition and adjust its inode access permissions for 227 * offline and readonly zones. 228 */ 229 static void zonefs_inode_update_mode(struct inode *inode) 230 { 231 struct zonefs_zone *z = zonefs_inode_zone(inode); 232 233 if (z->z_flags & ZONEFS_ZONE_OFFLINE) { 234 /* Offline zones cannot be read nor written */ 235 inode->i_flags |= S_IMMUTABLE; 236 inode->i_mode &= ~0777; 237 } else if (z->z_flags & ZONEFS_ZONE_READONLY) { 238 /* Readonly zones cannot be written */ 239 inode->i_flags |= S_IMMUTABLE; 240 if (z->z_flags & ZONEFS_ZONE_INIT_MODE) 241 inode->i_mode &= ~0777; 242 else 243 inode->i_mode &= ~0222; 244 } 245 246 z->z_flags &= ~ZONEFS_ZONE_INIT_MODE; 247 z->z_mode = inode->i_mode; 248 } 249 250 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 251 void *data) 252 { 253 struct blk_zone *z = data; 254 255 *z = *zone; 256 return 0; 257 } 258 259 static void zonefs_handle_io_error(struct inode *inode, struct blk_zone *zone, 260 bool write) 261 { 262 struct zonefs_zone *z = zonefs_inode_zone(inode); 263 struct super_block *sb = inode->i_sb; 264 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 265 loff_t isize, data_size; 266 267 /* 268 * Check the zone condition: if the zone is not "bad" (offline or 269 * read-only), read errors are simply signaled to the IO issuer as long 270 * as there is no inconsistency between the inode size and the amount of 271 * data writen in the zone (data_size). 272 */ 273 data_size = zonefs_check_zone_condition(sb, z, zone); 274 isize = i_size_read(inode); 275 if (!(z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)) && 276 !write && isize == data_size) 277 return; 278 279 /* 280 * At this point, we detected either a bad zone or an inconsistency 281 * between the inode size and the amount of data written in the zone. 282 * For the latter case, the cause may be a write IO error or an external 283 * action on the device. Two error patterns exist: 284 * 1) The inode size is lower than the amount of data in the zone: 285 * a write operation partially failed and data was writen at the end 286 * of the file. This can happen in the case of a large direct IO 287 * needing several BIOs and/or write requests to be processed. 288 * 2) The inode size is larger than the amount of data in the zone: 289 * this can happen with a deferred write error with the use of the 290 * device side write cache after getting successful write IO 291 * completions. Other possibilities are (a) an external corruption, 292 * e.g. an application reset the zone directly, or (b) the device 293 * has a serious problem (e.g. firmware bug). 294 * 295 * In all cases, warn about inode size inconsistency and handle the 296 * IO error according to the zone condition and to the mount options. 297 */ 298 if (isize != data_size) 299 zonefs_warn(sb, 300 "inode %lu: invalid size %lld (should be %lld)\n", 301 inode->i_ino, isize, data_size); 302 303 /* 304 * First handle bad zones signaled by hardware. The mount options 305 * errors=zone-ro and errors=zone-offline result in changing the 306 * zone condition to read-only and offline respectively, as if the 307 * condition was signaled by the hardware. 308 */ 309 if ((z->z_flags & ZONEFS_ZONE_OFFLINE) || 310 (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)) { 311 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 312 inode->i_ino); 313 if (!(z->z_flags & ZONEFS_ZONE_OFFLINE)) 314 z->z_flags |= ZONEFS_ZONE_OFFLINE; 315 zonefs_inode_update_mode(inode); 316 data_size = 0; 317 } else if ((z->z_flags & ZONEFS_ZONE_READONLY) || 318 (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)) { 319 zonefs_warn(sb, "inode %lu: write access disabled\n", 320 inode->i_ino); 321 if (!(z->z_flags & ZONEFS_ZONE_READONLY)) 322 z->z_flags |= ZONEFS_ZONE_READONLY; 323 zonefs_inode_update_mode(inode); 324 data_size = isize; 325 } else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO && 326 data_size > isize) { 327 /* Do not expose garbage data */ 328 data_size = isize; 329 } 330 331 /* 332 * If the filesystem is mounted with the explicit-open mount option, we 333 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 334 * the read-only or offline condition, to avoid attempting an explicit 335 * close of the zone when the inode file is closed. 336 */ 337 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 338 (z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE))) 339 z->z_flags &= ~ZONEFS_ZONE_OPEN; 340 341 /* 342 * If error=remount-ro was specified, any error result in remounting 343 * the volume as read-only. 344 */ 345 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 346 zonefs_warn(sb, "remounting filesystem read-only\n"); 347 sb->s_flags |= SB_RDONLY; 348 } 349 350 /* 351 * Update block usage stats and the inode size to prevent access to 352 * invalid data. 353 */ 354 zonefs_update_stats(inode, data_size); 355 zonefs_i_size_write(inode, data_size); 356 z->z_wpoffset = data_size; 357 zonefs_inode_account_active(inode); 358 } 359 360 /* 361 * When an file IO error occurs, check the file zone to see if there is a change 362 * in the zone condition (e.g. offline or read-only). For a failed write to a 363 * sequential zone, the zone write pointer position must also be checked to 364 * eventually correct the file size and zonefs inode write pointer offset 365 * (which can be out of sync with the drive due to partial write failures). 366 */ 367 void __zonefs_io_error(struct inode *inode, bool write) 368 { 369 struct zonefs_zone *z = zonefs_inode_zone(inode); 370 struct super_block *sb = inode->i_sb; 371 unsigned int noio_flag; 372 struct blk_zone zone; 373 int ret; 374 375 /* 376 * Conventional zone have no write pointer and cannot become read-only 377 * or offline. So simply fake a report for a single or aggregated zone 378 * and let zonefs_handle_io_error() correct the zone inode information 379 * according to the mount options. 380 */ 381 if (!zonefs_zone_is_seq(z)) { 382 zone.start = z->z_sector; 383 zone.len = z->z_size >> SECTOR_SHIFT; 384 zone.wp = zone.start + zone.len; 385 zone.type = BLK_ZONE_TYPE_CONVENTIONAL; 386 zone.cond = BLK_ZONE_COND_NOT_WP; 387 zone.capacity = zone.len; 388 goto handle_io_error; 389 } 390 391 /* 392 * Memory allocations in blkdev_report_zones() can trigger a memory 393 * reclaim which may in turn cause a recursion into zonefs as well as 394 * struct request allocations for the same device. The former case may 395 * end up in a deadlock on the inode truncate mutex, while the latter 396 * may prevent IO forward progress. Executing the report zones under 397 * the GFP_NOIO context avoids both problems. 398 */ 399 noio_flag = memalloc_noio_save(); 400 ret = blkdev_report_zones(sb->s_bdev, z->z_sector, 1, 401 zonefs_io_error_cb, &zone); 402 memalloc_noio_restore(noio_flag); 403 404 if (ret != 1) { 405 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 406 inode->i_ino, ret); 407 zonefs_warn(sb, "remounting filesystem read-only\n"); 408 sb->s_flags |= SB_RDONLY; 409 return; 410 } 411 412 handle_io_error: 413 zonefs_handle_io_error(inode, &zone, write); 414 } 415 416 static struct kmem_cache *zonefs_inode_cachep; 417 418 static struct inode *zonefs_alloc_inode(struct super_block *sb) 419 { 420 struct zonefs_inode_info *zi; 421 422 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 423 if (!zi) 424 return NULL; 425 426 inode_init_once(&zi->i_vnode); 427 mutex_init(&zi->i_truncate_mutex); 428 zi->i_wr_refcnt = 0; 429 430 return &zi->i_vnode; 431 } 432 433 static void zonefs_free_inode(struct inode *inode) 434 { 435 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 436 } 437 438 /* 439 * File system stat. 440 */ 441 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 442 { 443 struct super_block *sb = dentry->d_sb; 444 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 445 enum zonefs_ztype t; 446 447 buf->f_type = ZONEFS_MAGIC; 448 buf->f_bsize = sb->s_blocksize; 449 buf->f_namelen = ZONEFS_NAME_MAX; 450 451 spin_lock(&sbi->s_lock); 452 453 buf->f_blocks = sbi->s_blocks; 454 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 455 buf->f_bfree = 0; 456 else 457 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 458 buf->f_bavail = buf->f_bfree; 459 460 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 461 if (sbi->s_zgroup[t].g_nr_zones) 462 buf->f_files += sbi->s_zgroup[t].g_nr_zones + 1; 463 } 464 buf->f_ffree = 0; 465 466 spin_unlock(&sbi->s_lock); 467 468 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 469 470 return 0; 471 } 472 473 enum { 474 Opt_errors, Opt_explicit_open, 475 }; 476 477 struct zonefs_context { 478 unsigned long s_mount_opts; 479 }; 480 481 static const struct constant_table zonefs_param_errors[] = { 482 {"remount-ro", ZONEFS_MNTOPT_ERRORS_RO}, 483 {"zone-ro", ZONEFS_MNTOPT_ERRORS_ZRO}, 484 {"zone-offline", ZONEFS_MNTOPT_ERRORS_ZOL}, 485 {"repair", ZONEFS_MNTOPT_ERRORS_REPAIR}, 486 {} 487 }; 488 489 static const struct fs_parameter_spec zonefs_param_spec[] = { 490 fsparam_enum ("errors", Opt_errors, zonefs_param_errors), 491 fsparam_flag ("explicit-open", Opt_explicit_open), 492 {} 493 }; 494 495 static int zonefs_parse_param(struct fs_context *fc, struct fs_parameter *param) 496 { 497 struct zonefs_context *ctx = fc->fs_private; 498 struct fs_parse_result result; 499 int opt; 500 501 opt = fs_parse(fc, zonefs_param_spec, param, &result); 502 if (opt < 0) 503 return opt; 504 505 switch (opt) { 506 case Opt_errors: 507 ctx->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 508 ctx->s_mount_opts |= result.uint_32; 509 break; 510 case Opt_explicit_open: 511 ctx->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 512 break; 513 default: 514 return -EINVAL; 515 } 516 517 return 0; 518 } 519 520 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 521 { 522 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 523 524 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 525 seq_puts(seq, ",errors=remount-ro"); 526 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 527 seq_puts(seq, ",errors=zone-ro"); 528 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 529 seq_puts(seq, ",errors=zone-offline"); 530 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 531 seq_puts(seq, ",errors=repair"); 532 533 return 0; 534 } 535 536 static int zonefs_inode_setattr(struct mnt_idmap *idmap, 537 struct dentry *dentry, struct iattr *iattr) 538 { 539 struct inode *inode = d_inode(dentry); 540 int ret; 541 542 if (unlikely(IS_IMMUTABLE(inode))) 543 return -EPERM; 544 545 ret = setattr_prepare(&nop_mnt_idmap, dentry, iattr); 546 if (ret) 547 return ret; 548 549 /* 550 * Since files and directories cannot be created nor deleted, do not 551 * allow setting any write attributes on the sub-directories grouping 552 * files by zone type. 553 */ 554 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 555 (iattr->ia_mode & 0222)) 556 return -EPERM; 557 558 if (((iattr->ia_valid & ATTR_UID) && 559 !uid_eq(iattr->ia_uid, inode->i_uid)) || 560 ((iattr->ia_valid & ATTR_GID) && 561 !gid_eq(iattr->ia_gid, inode->i_gid))) { 562 ret = dquot_transfer(&nop_mnt_idmap, inode, iattr); 563 if (ret) 564 return ret; 565 } 566 567 if (iattr->ia_valid & ATTR_SIZE) { 568 ret = zonefs_file_truncate(inode, iattr->ia_size); 569 if (ret) 570 return ret; 571 } 572 573 setattr_copy(&nop_mnt_idmap, inode, iattr); 574 575 if (S_ISREG(inode->i_mode)) { 576 struct zonefs_zone *z = zonefs_inode_zone(inode); 577 578 z->z_mode = inode->i_mode; 579 z->z_uid = inode->i_uid; 580 z->z_gid = inode->i_gid; 581 } 582 583 return 0; 584 } 585 586 static const struct inode_operations zonefs_file_inode_operations = { 587 .setattr = zonefs_inode_setattr, 588 }; 589 590 static long zonefs_fname_to_fno(const struct qstr *fname) 591 { 592 const char *name = fname->name; 593 unsigned int len = fname->len; 594 long fno = 0, shift = 1; 595 const char *rname; 596 char c = *name; 597 unsigned int i; 598 599 /* 600 * File names are always a base-10 number string without any 601 * leading 0s. 602 */ 603 if (!isdigit(c)) 604 return -ENOENT; 605 606 if (len > 1 && c == '') 607 return -ENOENT; 608 609 if (len == 1) 610 return c - ''; 611 612 for (i = 0, rname = name + len - 1; i < len; i++, rname--) { 613 c = *rname; 614 if (!isdigit(c)) 615 return -ENOENT; 616 fno += (c - '') * shift; 617 shift *= 10; 618 } 619 620 return fno; 621 } 622 623 static struct inode *zonefs_get_file_inode(struct inode *dir, 624 struct dentry *dentry) 625 { 626 struct zonefs_zone_group *zgroup = dir->i_private; 627 struct super_block *sb = dir->i_sb; 628 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 629 struct zonefs_zone *z; 630 struct inode *inode; 631 ino_t ino; 632 long fno; 633 634 /* Get the file number from the file name */ 635 fno = zonefs_fname_to_fno(&dentry->d_name); 636 if (fno < 0) 637 return ERR_PTR(fno); 638 639 if (!zgroup->g_nr_zones || fno >= zgroup->g_nr_zones) 640 return ERR_PTR(-ENOENT); 641 642 z = &zgroup->g_zones[fno]; 643 ino = z->z_sector >> sbi->s_zone_sectors_shift; 644 inode = iget_locked(sb, ino); 645 if (!inode) 646 return ERR_PTR(-ENOMEM); 647 if (!(inode->i_state & I_NEW)) { 648 WARN_ON_ONCE(inode->i_private != z); 649 return inode; 650 } 651 652 inode->i_ino = ino; 653 inode->i_mode = z->z_mode; 654 inode_set_mtime_to_ts(inode, 655 inode_set_atime_to_ts(inode, inode_set_ctime_to_ts(inode, inode_get_ctime(dir)))); 656 inode->i_uid = z->z_uid; 657 inode->i_gid = z->z_gid; 658 inode->i_size = z->z_wpoffset; 659 inode->i_blocks = z->z_capacity >> SECTOR_SHIFT; 660 inode->i_private = z; 661 662 inode->i_op = &zonefs_file_inode_operations; 663 inode->i_fop = &zonefs_file_operations; 664 inode->i_mapping->a_ops = &zonefs_file_aops; 665 mapping_set_large_folios(inode->i_mapping); 666 667 /* Update the inode access rights depending on the zone condition */ 668 zonefs_inode_update_mode(inode); 669 670 unlock_new_inode(inode); 671 672 return inode; 673 } 674 675 static struct inode *zonefs_get_zgroup_inode(struct super_block *sb, 676 enum zonefs_ztype ztype) 677 { 678 struct inode *root = d_inode(sb->s_root); 679 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 680 struct inode *inode; 681 ino_t ino = bdev_nr_zones(sb->s_bdev) + ztype + 1; 682 683 inode = iget_locked(sb, ino); 684 if (!inode) 685 return ERR_PTR(-ENOMEM); 686 if (!(inode->i_state & I_NEW)) 687 return inode; 688 689 inode->i_ino = ino; 690 inode_init_owner(&nop_mnt_idmap, inode, root, S_IFDIR | 0555); 691 inode->i_size = sbi->s_zgroup[ztype].g_nr_zones; 692 inode_set_mtime_to_ts(inode, 693 inode_set_atime_to_ts(inode, inode_set_ctime_to_ts(inode, inode_get_ctime(root)))); 694 inode->i_private = &sbi->s_zgroup[ztype]; 695 set_nlink(inode, 2); 696 697 inode->i_op = &zonefs_dir_inode_operations; 698 inode->i_fop = &zonefs_dir_operations; 699 700 unlock_new_inode(inode); 701 702 return inode; 703 } 704 705 706 static struct inode *zonefs_get_dir_inode(struct inode *dir, 707 struct dentry *dentry) 708 { 709 struct super_block *sb = dir->i_sb; 710 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 711 const char *name = dentry->d_name.name; 712 enum zonefs_ztype ztype; 713 714 /* 715 * We only need to check for the "seq" directory and 716 * the "cnv" directory if we have conventional zones. 717 */ 718 if (dentry->d_name.len != 3) 719 return ERR_PTR(-ENOENT); 720 721 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 722 if (sbi->s_zgroup[ztype].g_nr_zones && 723 memcmp(name, zonefs_zgroup_name(ztype), 3) == 0) 724 break; 725 } 726 if (ztype == ZONEFS_ZTYPE_MAX) 727 return ERR_PTR(-ENOENT); 728 729 return zonefs_get_zgroup_inode(sb, ztype); 730 } 731 732 static struct dentry *zonefs_lookup(struct inode *dir, struct dentry *dentry, 733 unsigned int flags) 734 { 735 struct inode *inode; 736 737 if (dentry->d_name.len > ZONEFS_NAME_MAX) 738 return ERR_PTR(-ENAMETOOLONG); 739 740 if (dir == d_inode(dir->i_sb->s_root)) 741 inode = zonefs_get_dir_inode(dir, dentry); 742 else 743 inode = zonefs_get_file_inode(dir, dentry); 744 745 return d_splice_alias(inode, dentry); 746 } 747 748 static int zonefs_readdir_root(struct file *file, struct dir_context *ctx) 749 { 750 struct inode *inode = file_inode(file); 751 struct super_block *sb = inode->i_sb; 752 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 753 enum zonefs_ztype ztype = ZONEFS_ZTYPE_CNV; 754 ino_t base_ino = bdev_nr_zones(sb->s_bdev) + 1; 755 756 if (ctx->pos >= inode->i_size) 757 return 0; 758 759 if (!dir_emit_dots(file, ctx)) 760 return 0; 761 762 if (ctx->pos == 2) { 763 if (!sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) 764 ztype = ZONEFS_ZTYPE_SEQ; 765 766 if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3, 767 base_ino + ztype, DT_DIR)) 768 return 0; 769 ctx->pos++; 770 } 771 772 if (ctx->pos == 3 && ztype != ZONEFS_ZTYPE_SEQ) { 773 ztype = ZONEFS_ZTYPE_SEQ; 774 if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3, 775 base_ino + ztype, DT_DIR)) 776 return 0; 777 ctx->pos++; 778 } 779 780 return 0; 781 } 782 783 static int zonefs_readdir_zgroup(struct file *file, 784 struct dir_context *ctx) 785 { 786 struct inode *inode = file_inode(file); 787 struct zonefs_zone_group *zgroup = inode->i_private; 788 struct super_block *sb = inode->i_sb; 789 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 790 struct zonefs_zone *z; 791 int fname_len; 792 char *fname; 793 ino_t ino; 794 int f; 795 796 /* 797 * The size of zone group directories is equal to the number 798 * of zone files in the group and does note include the "." and 799 * ".." entries. Hence the "+ 2" here. 800 */ 801 if (ctx->pos >= inode->i_size + 2) 802 return 0; 803 804 if (!dir_emit_dots(file, ctx)) 805 return 0; 806 807 fname = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 808 if (!fname) 809 return -ENOMEM; 810 811 for (f = ctx->pos - 2; f < zgroup->g_nr_zones; f++) { 812 z = &zgroup->g_zones[f]; 813 ino = z->z_sector >> sbi->s_zone_sectors_shift; 814 fname_len = snprintf(fname, ZONEFS_NAME_MAX - 1, "%u", f); 815 if (!dir_emit(ctx, fname, fname_len, ino, DT_REG)) 816 break; 817 ctx->pos++; 818 } 819 820 kfree(fname); 821 822 return 0; 823 } 824 825 static int zonefs_readdir(struct file *file, struct dir_context *ctx) 826 { 827 struct inode *inode = file_inode(file); 828 829 if (inode == d_inode(inode->i_sb->s_root)) 830 return zonefs_readdir_root(file, ctx); 831 832 return zonefs_readdir_zgroup(file, ctx); 833 } 834 835 const struct inode_operations zonefs_dir_inode_operations = { 836 .lookup = zonefs_lookup, 837 .setattr = zonefs_inode_setattr, 838 }; 839 840 const struct file_operations zonefs_dir_operations = { 841 .llseek = generic_file_llseek, 842 .read = generic_read_dir, 843 .iterate_shared = zonefs_readdir, 844 }; 845 846 struct zonefs_zone_data { 847 struct super_block *sb; 848 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 849 sector_t cnv_zone_start; 850 struct blk_zone *zones; 851 }; 852 853 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 854 void *data) 855 { 856 struct zonefs_zone_data *zd = data; 857 struct super_block *sb = zd->sb; 858 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 859 860 /* 861 * We do not care about the first zone: it contains the super block 862 * and not exposed as a file. 863 */ 864 if (!idx) 865 return 0; 866 867 /* 868 * Count the number of zones that will be exposed as files. 869 * For sequential zones, we always have as many files as zones. 870 * FOr conventional zones, the number of files depends on if we have 871 * conventional zones aggregation enabled. 872 */ 873 switch (zone->type) { 874 case BLK_ZONE_TYPE_CONVENTIONAL: 875 if (sbi->s_features & ZONEFS_F_AGGRCNV) { 876 /* One file per set of contiguous conventional zones */ 877 if (!(sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) || 878 zone->start != zd->cnv_zone_start) 879 sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++; 880 zd->cnv_zone_start = zone->start + zone->len; 881 } else { 882 /* One file per zone */ 883 sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++; 884 } 885 break; 886 case BLK_ZONE_TYPE_SEQWRITE_REQ: 887 case BLK_ZONE_TYPE_SEQWRITE_PREF: 888 sbi->s_zgroup[ZONEFS_ZTYPE_SEQ].g_nr_zones++; 889 break; 890 default: 891 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 892 zone->type); 893 return -EIO; 894 } 895 896 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 897 898 return 0; 899 } 900 901 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 902 { 903 struct block_device *bdev = zd->sb->s_bdev; 904 int ret; 905 906 zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone), 907 GFP_KERNEL); 908 if (!zd->zones) 909 return -ENOMEM; 910 911 /* Get zones information from the device */ 912 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 913 zonefs_get_zone_info_cb, zd); 914 if (ret < 0) { 915 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 916 return ret; 917 } 918 919 if (ret != bdev_nr_zones(bdev)) { 920 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 921 ret, bdev_nr_zones(bdev)); 922 return -EIO; 923 } 924 925 return 0; 926 } 927 928 static inline void zonefs_free_zone_info(struct zonefs_zone_data *zd) 929 { 930 kvfree(zd->zones); 931 } 932 933 /* 934 * Create a zone group and populate it with zone files. 935 */ 936 static int zonefs_init_zgroup(struct super_block *sb, 937 struct zonefs_zone_data *zd, 938 enum zonefs_ztype ztype) 939 { 940 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 941 struct zonefs_zone_group *zgroup = &sbi->s_zgroup[ztype]; 942 struct blk_zone *zone, *next, *end; 943 struct zonefs_zone *z; 944 unsigned int n = 0; 945 int ret; 946 947 /* Allocate the zone group. If it is empty, we have nothing to do. */ 948 if (!zgroup->g_nr_zones) 949 return 0; 950 951 zgroup->g_zones = kvcalloc(zgroup->g_nr_zones, 952 sizeof(struct zonefs_zone), GFP_KERNEL); 953 if (!zgroup->g_zones) 954 return -ENOMEM; 955 956 /* 957 * Initialize the zone groups using the device zone information. 958 * We always skip the first zone as it contains the super block 959 * and is not use to back a file. 960 */ 961 end = zd->zones + bdev_nr_zones(sb->s_bdev); 962 for (zone = &zd->zones[1]; zone < end; zone = next) { 963 964 next = zone + 1; 965 if (zonefs_zone_type(zone) != ztype) 966 continue; 967 968 if (WARN_ON_ONCE(n >= zgroup->g_nr_zones)) 969 return -EINVAL; 970 971 /* 972 * For conventional zones, contiguous zones can be aggregated 973 * together to form larger files. Note that this overwrites the 974 * length of the first zone of the set of contiguous zones 975 * aggregated together. If one offline or read-only zone is 976 * found, assume that all zones aggregated have the same 977 * condition. 978 */ 979 if (ztype == ZONEFS_ZTYPE_CNV && 980 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 981 for (; next < end; next++) { 982 if (zonefs_zone_type(next) != ztype) 983 break; 984 zone->len += next->len; 985 zone->capacity += next->capacity; 986 if (next->cond == BLK_ZONE_COND_READONLY && 987 zone->cond != BLK_ZONE_COND_OFFLINE) 988 zone->cond = BLK_ZONE_COND_READONLY; 989 else if (next->cond == BLK_ZONE_COND_OFFLINE) 990 zone->cond = BLK_ZONE_COND_OFFLINE; 991 } 992 } 993 994 z = &zgroup->g_zones[n]; 995 if (ztype == ZONEFS_ZTYPE_CNV) 996 z->z_flags |= ZONEFS_ZONE_CNV; 997 z->z_sector = zone->start; 998 z->z_size = zone->len << SECTOR_SHIFT; 999 if (z->z_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT && 1000 !(sbi->s_features & ZONEFS_F_AGGRCNV)) { 1001 zonefs_err(sb, 1002 "Invalid zone size %llu (device zone sectors %llu)\n", 1003 z->z_size, 1004 bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT); 1005 return -EINVAL; 1006 } 1007 1008 z->z_capacity = min_t(loff_t, MAX_LFS_FILESIZE, 1009 zone->capacity << SECTOR_SHIFT); 1010 z->z_wpoffset = zonefs_check_zone_condition(sb, z, zone); 1011 1012 z->z_mode = S_IFREG | sbi->s_perm; 1013 z->z_uid = sbi->s_uid; 1014 z->z_gid = sbi->s_gid; 1015 1016 /* 1017 * Let zonefs_inode_update_mode() know that we will need 1018 * special initialization of the inode mode the first time 1019 * it is accessed. 1020 */ 1021 z->z_flags |= ZONEFS_ZONE_INIT_MODE; 1022 1023 sb->s_maxbytes = max(z->z_capacity, sb->s_maxbytes); 1024 sbi->s_blocks += z->z_capacity >> sb->s_blocksize_bits; 1025 sbi->s_used_blocks += z->z_wpoffset >> sb->s_blocksize_bits; 1026 1027 /* 1028 * For sequential zones, make sure that any open zone is closed 1029 * first to ensure that the initial number of open zones is 0, 1030 * in sync with the open zone accounting done when the mount 1031 * option ZONEFS_MNTOPT_EXPLICIT_OPEN is used. 1032 */ 1033 if (ztype == ZONEFS_ZTYPE_SEQ && 1034 (zone->cond == BLK_ZONE_COND_IMP_OPEN || 1035 zone->cond == BLK_ZONE_COND_EXP_OPEN)) { 1036 ret = zonefs_zone_mgmt(sb, z, REQ_OP_ZONE_CLOSE); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 zonefs_account_active(sb, z); 1042 1043 n++; 1044 } 1045 1046 if (WARN_ON_ONCE(n != zgroup->g_nr_zones)) 1047 return -EINVAL; 1048 1049 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1050 zonefs_zgroup_name(ztype), 1051 zgroup->g_nr_zones, 1052 str_plural(zgroup->g_nr_zones)); 1053 1054 return 0; 1055 } 1056 1057 static void zonefs_free_zgroups(struct super_block *sb) 1058 { 1059 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1060 enum zonefs_ztype ztype; 1061 1062 if (!sbi) 1063 return; 1064 1065 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 1066 kvfree(sbi->s_zgroup[ztype].g_zones); 1067 sbi->s_zgroup[ztype].g_zones = NULL; 1068 } 1069 } 1070 1071 /* 1072 * Create a zone group and populate it with zone files. 1073 */ 1074 static int zonefs_init_zgroups(struct super_block *sb) 1075 { 1076 struct zonefs_zone_data zd; 1077 enum zonefs_ztype ztype; 1078 int ret; 1079 1080 /* First get the device zone information */ 1081 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1082 zd.sb = sb; 1083 ret = zonefs_get_zone_info(&zd); 1084 if (ret) 1085 goto cleanup; 1086 1087 /* Allocate and initialize the zone groups */ 1088 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 1089 ret = zonefs_init_zgroup(sb, &zd, ztype); 1090 if (ret) { 1091 zonefs_info(sb, 1092 "Zone group \"%s\" initialization failed\n", 1093 zonefs_zgroup_name(ztype)); 1094 break; 1095 } 1096 } 1097 1098 cleanup: 1099 zonefs_free_zone_info(&zd); 1100 if (ret) 1101 zonefs_free_zgroups(sb); 1102 1103 return ret; 1104 } 1105 1106 /* 1107 * Read super block information from the device. 1108 */ 1109 static int zonefs_read_super(struct super_block *sb) 1110 { 1111 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1112 struct zonefs_super *super; 1113 u32 crc, stored_crc; 1114 struct page *page; 1115 struct bio_vec bio_vec; 1116 struct bio bio; 1117 int ret; 1118 1119 page = alloc_page(GFP_KERNEL); 1120 if (!page) 1121 return -ENOMEM; 1122 1123 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1124 bio.bi_iter.bi_sector = 0; 1125 __bio_add_page(&bio, page, PAGE_SIZE, 0); 1126 1127 ret = submit_bio_wait(&bio); 1128 if (ret) 1129 goto free_page; 1130 1131 super = page_address(page); 1132 1133 ret = -EINVAL; 1134 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1135 goto free_page; 1136 1137 stored_crc = le32_to_cpu(super->s_crc); 1138 super->s_crc = 0; 1139 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1140 if (crc != stored_crc) { 1141 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1142 crc, stored_crc); 1143 goto free_page; 1144 } 1145 1146 sbi->s_features = le64_to_cpu(super->s_features); 1147 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1148 zonefs_err(sb, "Unknown features set 0x%llx\n", 1149 sbi->s_features); 1150 goto free_page; 1151 } 1152 1153 if (sbi->s_features & ZONEFS_F_UID) { 1154 sbi->s_uid = make_kuid(current_user_ns(), 1155 le32_to_cpu(super->s_uid)); 1156 if (!uid_valid(sbi->s_uid)) { 1157 zonefs_err(sb, "Invalid UID feature\n"); 1158 goto free_page; 1159 } 1160 } 1161 1162 if (sbi->s_features & ZONEFS_F_GID) { 1163 sbi->s_gid = make_kgid(current_user_ns(), 1164 le32_to_cpu(super->s_gid)); 1165 if (!gid_valid(sbi->s_gid)) { 1166 zonefs_err(sb, "Invalid GID feature\n"); 1167 goto free_page; 1168 } 1169 } 1170 1171 if (sbi->s_features & ZONEFS_F_PERM) 1172 sbi->s_perm = le32_to_cpu(super->s_perm); 1173 1174 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1175 zonefs_err(sb, "Reserved area is being used\n"); 1176 goto free_page; 1177 } 1178 1179 import_uuid(&sbi->s_uuid, super->s_uuid); 1180 ret = 0; 1181 1182 free_page: 1183 __free_page(page); 1184 1185 return ret; 1186 } 1187 1188 static const struct super_operations zonefs_sops = { 1189 .alloc_inode = zonefs_alloc_inode, 1190 .free_inode = zonefs_free_inode, 1191 .statfs = zonefs_statfs, 1192 .show_options = zonefs_show_options, 1193 }; 1194 1195 static int zonefs_get_zgroup_inodes(struct super_block *sb) 1196 { 1197 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1198 struct inode *dir_inode; 1199 enum zonefs_ztype ztype; 1200 1201 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 1202 if (!sbi->s_zgroup[ztype].g_nr_zones) 1203 continue; 1204 1205 dir_inode = zonefs_get_zgroup_inode(sb, ztype); 1206 if (IS_ERR(dir_inode)) 1207 return PTR_ERR(dir_inode); 1208 1209 sbi->s_zgroup[ztype].g_inode = dir_inode; 1210 } 1211 1212 return 0; 1213 } 1214 1215 static void zonefs_release_zgroup_inodes(struct super_block *sb) 1216 { 1217 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1218 enum zonefs_ztype ztype; 1219 1220 if (!sbi) 1221 return; 1222 1223 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 1224 if (sbi->s_zgroup[ztype].g_inode) { 1225 iput(sbi->s_zgroup[ztype].g_inode); 1226 sbi->s_zgroup[ztype].g_inode = NULL; 1227 } 1228 } 1229 } 1230 1231 /* 1232 * Check that the device is zoned. If it is, get the list of zones and create 1233 * sub-directories and files according to the device zone configuration and 1234 * format options. 1235 */ 1236 static int zonefs_fill_super(struct super_block *sb, struct fs_context *fc) 1237 { 1238 struct zonefs_sb_info *sbi; 1239 struct zonefs_context *ctx = fc->fs_private; 1240 struct inode *inode; 1241 enum zonefs_ztype ztype; 1242 int ret; 1243 1244 if (!bdev_is_zoned(sb->s_bdev)) { 1245 zonefs_err(sb, "Not a zoned block device\n"); 1246 return -EINVAL; 1247 } 1248 1249 /* 1250 * Initialize super block information: the maximum file size is updated 1251 * when the zone files are created so that the format option 1252 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1253 * beyond the zone size is taken into account. 1254 */ 1255 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1256 if (!sbi) 1257 return -ENOMEM; 1258 1259 spin_lock_init(&sbi->s_lock); 1260 sb->s_fs_info = sbi; 1261 sb->s_magic = ZONEFS_MAGIC; 1262 sb->s_maxbytes = 0; 1263 sb->s_op = &zonefs_sops; 1264 sb->s_time_gran = 1; 1265 1266 /* 1267 * The block size is set to the device zone write granularity to ensure 1268 * that write operations are always aligned according to the device 1269 * interface constraints. 1270 */ 1271 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1272 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1273 sbi->s_uid = GLOBAL_ROOT_UID; 1274 sbi->s_gid = GLOBAL_ROOT_GID; 1275 sbi->s_perm = 0640; 1276 sbi->s_mount_opts = ctx->s_mount_opts; 1277 1278 atomic_set(&sbi->s_wro_seq_files, 0); 1279 sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev); 1280 atomic_set(&sbi->s_active_seq_files, 0); 1281 sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev); 1282 1283 ret = zonefs_read_super(sb); 1284 if (ret) 1285 return ret; 1286 1287 zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev)); 1288 1289 if (!sbi->s_max_wro_seq_files && 1290 !sbi->s_max_active_seq_files && 1291 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1292 zonefs_info(sb, 1293 "No open and active zone limits. Ignoring explicit_open mount option\n"); 1294 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1295 } 1296 1297 /* Initialize the zone groups */ 1298 ret = zonefs_init_zgroups(sb); 1299 if (ret) 1300 goto cleanup; 1301 1302 /* Create the root directory inode */ 1303 ret = -ENOMEM; 1304 inode = new_inode(sb); 1305 if (!inode) 1306 goto cleanup; 1307 1308 inode->i_ino = bdev_nr_zones(sb->s_bdev); 1309 inode->i_mode = S_IFDIR | 0555; 1310 simple_inode_init_ts(inode); 1311 inode->i_op = &zonefs_dir_inode_operations; 1312 inode->i_fop = &zonefs_dir_operations; 1313 inode->i_size = 2; 1314 set_nlink(inode, 2); 1315 for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) { 1316 if (sbi->s_zgroup[ztype].g_nr_zones) { 1317 inc_nlink(inode); 1318 inode->i_size++; 1319 } 1320 } 1321 1322 sb->s_root = d_make_root(inode); 1323 if (!sb->s_root) 1324 goto cleanup; 1325 1326 /* 1327 * Take a reference on the zone groups directory inodes 1328 * to keep them in the inode cache. 1329 */ 1330 ret = zonefs_get_zgroup_inodes(sb); 1331 if (ret) 1332 goto cleanup; 1333 1334 ret = zonefs_sysfs_register(sb); 1335 if (ret) 1336 goto cleanup; 1337 1338 return 0; 1339 1340 cleanup: 1341 zonefs_release_zgroup_inodes(sb); 1342 zonefs_free_zgroups(sb); 1343 1344 return ret; 1345 } 1346 1347 static void zonefs_kill_super(struct super_block *sb) 1348 { 1349 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1350 1351 /* Release the reference on the zone group directory inodes */ 1352 zonefs_release_zgroup_inodes(sb); 1353 1354 kill_block_super(sb); 1355 1356 zonefs_sysfs_unregister(sb); 1357 zonefs_free_zgroups(sb); 1358 kfree(sbi); 1359 } 1360 1361 static void zonefs_free_fc(struct fs_context *fc) 1362 { 1363 struct zonefs_context *ctx = fc->fs_private; 1364 1365 kfree(ctx); 1366 } 1367 1368 static int zonefs_get_tree(struct fs_context *fc) 1369 { 1370 return get_tree_bdev(fc, zonefs_fill_super); 1371 } 1372 1373 static int zonefs_reconfigure(struct fs_context *fc) 1374 { 1375 struct zonefs_context *ctx = fc->fs_private; 1376 struct super_block *sb = fc->root->d_sb; 1377 struct zonefs_sb_info *sbi = sb->s_fs_info; 1378 1379 sync_filesystem(fc->root->d_sb); 1380 /* Copy new options from ctx into sbi. */ 1381 sbi->s_mount_opts = ctx->s_mount_opts; 1382 1383 return 0; 1384 } 1385 1386 static const struct fs_context_operations zonefs_context_ops = { 1387 .parse_param = zonefs_parse_param, 1388 .get_tree = zonefs_get_tree, 1389 .reconfigure = zonefs_reconfigure, 1390 .free = zonefs_free_fc, 1391 }; 1392 1393 /* 1394 * Set up the filesystem mount context. 1395 */ 1396 static int zonefs_init_fs_context(struct fs_context *fc) 1397 { 1398 struct zonefs_context *ctx; 1399 1400 ctx = kzalloc(sizeof(struct zonefs_context), GFP_KERNEL); 1401 if (!ctx) 1402 return -ENOMEM; 1403 ctx->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1404 fc->ops = &zonefs_context_ops; 1405 fc->fs_private = ctx; 1406 1407 return 0; 1408 } 1409 1410 /* 1411 * File system definition and registration. 1412 */ 1413 static struct file_system_type zonefs_type = { 1414 .owner = THIS_MODULE, 1415 .name = "zonefs", 1416 .kill_sb = zonefs_kill_super, 1417 .fs_flags = FS_REQUIRES_DEV, 1418 .init_fs_context = zonefs_init_fs_context, 1419 .parameters = zonefs_param_spec, 1420 }; 1421 1422 static int __init zonefs_init_inodecache(void) 1423 { 1424 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1425 sizeof(struct zonefs_inode_info), 0, 1426 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1427 NULL); 1428 if (zonefs_inode_cachep == NULL) 1429 return -ENOMEM; 1430 return 0; 1431 } 1432 1433 static void zonefs_destroy_inodecache(void) 1434 { 1435 /* 1436 * Make sure all delayed rcu free inodes are flushed before we 1437 * destroy the inode cache. 1438 */ 1439 rcu_barrier(); 1440 kmem_cache_destroy(zonefs_inode_cachep); 1441 } 1442 1443 static int __init zonefs_init(void) 1444 { 1445 int ret; 1446 1447 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1448 1449 ret = zonefs_init_inodecache(); 1450 if (ret) 1451 return ret; 1452 1453 ret = zonefs_sysfs_init(); 1454 if (ret) 1455 goto destroy_inodecache; 1456 1457 ret = register_filesystem(&zonefs_type); 1458 if (ret) 1459 goto sysfs_exit; 1460 1461 return 0; 1462 1463 sysfs_exit: 1464 zonefs_sysfs_exit(); 1465 destroy_inodecache: 1466 zonefs_destroy_inodecache(); 1467 1468 return ret; 1469 } 1470 1471 static void __exit zonefs_exit(void) 1472 { 1473 unregister_filesystem(&zonefs_type); 1474 zonefs_sysfs_exit(); 1475 zonefs_destroy_inodecache(); 1476 } 1477 1478 MODULE_AUTHOR("Damien Le Moal"); 1479 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1480 MODULE_LICENSE("GPL"); 1481 MODULE_ALIAS_FS("zonefs"); 1482 module_init(zonefs_init); 1483 module_exit(zonefs_exit); 1484
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.