~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/asm-generic/tlb.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /* include/asm-generic/tlb.h
  3  *
  4  *      Generic TLB shootdown code
  5  *
  6  * Copyright 2001 Red Hat, Inc.
  7  * Based on code from mm/memory.c Copyright Linus Torvalds and others.
  8  *
  9  * Copyright 2011 Red Hat, Inc., Peter Zijlstra
 10  */
 11 #ifndef _ASM_GENERIC__TLB_H
 12 #define _ASM_GENERIC__TLB_H
 13 
 14 #include <linux/mmu_notifier.h>
 15 #include <linux/swap.h>
 16 #include <linux/hugetlb_inline.h>
 17 #include <asm/tlbflush.h>
 18 #include <asm/cacheflush.h>
 19 
 20 /*
 21  * Blindly accessing user memory from NMI context can be dangerous
 22  * if we're in the middle of switching the current user task or switching
 23  * the loaded mm.
 24  */
 25 #ifndef nmi_uaccess_okay
 26 # define nmi_uaccess_okay() true
 27 #endif
 28 
 29 #ifdef CONFIG_MMU
 30 
 31 /*
 32  * Generic MMU-gather implementation.
 33  *
 34  * The mmu_gather data structure is used by the mm code to implement the
 35  * correct and efficient ordering of freeing pages and TLB invalidations.
 36  *
 37  * This correct ordering is:
 38  *
 39  *  1) unhook page
 40  *  2) TLB invalidate page
 41  *  3) free page
 42  *
 43  * That is, we must never free a page before we have ensured there are no live
 44  * translations left to it. Otherwise it might be possible to observe (or
 45  * worse, change) the page content after it has been reused.
 46  *
 47  * The mmu_gather API consists of:
 48  *
 49  *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
 50  *
 51  *    start and finish a mmu_gather
 52  *
 53  *    Finish in particular will issue a (final) TLB invalidate and free
 54  *    all (remaining) queued pages.
 55  *
 56  *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
 57  *
 58  *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
 59  *    there's large holes between the VMAs.
 60  *
 61  *  - tlb_remove_table()
 62  *
 63  *    tlb_remove_table() is the basic primitive to free page-table directories
 64  *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
 65  *    tlb_remove_page() below, for when page directories are pages and have no
 66  *    additional constraints.
 67  *
 68  *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
 69  *
 70  *  - tlb_remove_page() / __tlb_remove_page()
 71  *  - tlb_remove_page_size() / __tlb_remove_page_size()
 72  *  - __tlb_remove_folio_pages()
 73  *
 74  *    __tlb_remove_page_size() is the basic primitive that queues a page for
 75  *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
 76  *    boolean indicating if the queue is (now) full and a call to
 77  *    tlb_flush_mmu() is required.
 78  *
 79  *    tlb_remove_page() and tlb_remove_page_size() imply the call to
 80  *    tlb_flush_mmu() when required and has no return value.
 81  *
 82  *    __tlb_remove_folio_pages() is similar to __tlb_remove_page(), however,
 83  *    instead of removing a single page, remove the given number of consecutive
 84  *    pages that are all part of the same (large) folio: just like calling
 85  *    __tlb_remove_page() on each page individually.
 86  *
 87  *  - tlb_change_page_size()
 88  *
 89  *    call before __tlb_remove_page*() to set the current page-size; implies a
 90  *    possible tlb_flush_mmu() call.
 91  *
 92  *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
 93  *
 94  *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
 95  *                              related state, like the range)
 96  *
 97  *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
 98  *                      whatever pages are still batched.
 99  *
100  *  - mmu_gather::fullmm
101  *
102  *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
103  *    the entire mm; this allows a number of optimizations.
104  *
105  *    - We can ignore tlb_{start,end}_vma(); because we don't
106  *      care about ranges. Everything will be shot down.
107  *
108  *    - (RISC) architectures that use ASIDs can cycle to a new ASID
109  *      and delay the invalidation until ASID space runs out.
110  *
111  *  - mmu_gather::need_flush_all
112  *
113  *    A flag that can be set by the arch code if it wants to force
114  *    flush the entire TLB irrespective of the range. For instance
115  *    x86-PAE needs this when changing top-level entries.
116  *
117  * And allows the architecture to provide and implement tlb_flush():
118  *
119  * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
120  * use of:
121  *
122  *  - mmu_gather::start / mmu_gather::end
123  *
124  *    which provides the range that needs to be flushed to cover the pages to
125  *    be freed.
126  *
127  *  - mmu_gather::freed_tables
128  *
129  *    set when we freed page table pages
130  *
131  *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
132  *
133  *    returns the smallest TLB entry size unmapped in this range.
134  *
135  * If an architecture does not provide tlb_flush() a default implementation
136  * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
137  * specified, in which case we'll default to flush_tlb_mm().
138  *
139  * Additionally there are a few opt-in features:
140  *
141  *  MMU_GATHER_PAGE_SIZE
142  *
143  *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
144  *  changes the size and provides mmu_gather::page_size to tlb_flush().
145  *
146  *  This might be useful if your architecture has size specific TLB
147  *  invalidation instructions.
148  *
149  *  MMU_GATHER_TABLE_FREE
150  *
151  *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
152  *  for page directores (__p*_free_tlb()).
153  *
154  *  Useful if your architecture has non-page page directories.
155  *
156  *  When used, an architecture is expected to provide __tlb_remove_table()
157  *  which does the actual freeing of these pages.
158  *
159  *  MMU_GATHER_RCU_TABLE_FREE
160  *
161  *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
162  *  comment below).
163  *
164  *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
165  *  and therefore doesn't naturally serialize with software page-table walkers.
166  *
167  *  MMU_GATHER_NO_FLUSH_CACHE
168  *
169  *  Indicates the architecture has flush_cache_range() but it needs *NOT* be called
170  *  before unmapping a VMA.
171  *
172  *  NOTE: strictly speaking we shouldn't have this knob and instead rely on
173  *        flush_cache_range() being a NOP, except Sparc64 seems to be
174  *        different here.
175  *
176  *  MMU_GATHER_MERGE_VMAS
177  *
178  *  Indicates the architecture wants to merge ranges over VMAs; typical when
179  *  multiple range invalidates are more expensive than a full invalidate.
180  *
181  *  MMU_GATHER_NO_RANGE
182  *
183  *  Use this if your architecture lacks an efficient flush_tlb_range(). This
184  *  option implies MMU_GATHER_MERGE_VMAS above.
185  *
186  *  MMU_GATHER_NO_GATHER
187  *
188  *  If the option is set the mmu_gather will not track individual pages for
189  *  delayed page free anymore. A platform that enables the option needs to
190  *  provide its own implementation of the __tlb_remove_page_size() function to
191  *  free pages.
192  *
193  *  This is useful if your architecture already flushes TLB entries in the
194  *  various ptep_get_and_clear() functions.
195  */
196 
197 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
198 
199 struct mmu_table_batch {
200 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
201         struct rcu_head         rcu;
202 #endif
203         unsigned int            nr;
204         void                    *tables[];
205 };
206 
207 #define MAX_TABLE_BATCH         \
208         ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
209 
210 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
211 
212 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
213 
214 /*
215  * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
216  * page directories and we can use the normal page batching to free them.
217  */
218 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
219 
220 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
221 
222 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
223 /*
224  * This allows an architecture that does not use the linux page-tables for
225  * hardware to skip the TLBI when freeing page tables.
226  */
227 #ifndef tlb_needs_table_invalidate
228 #define tlb_needs_table_invalidate() (true)
229 #endif
230 
231 void tlb_remove_table_sync_one(void);
232 
233 #else
234 
235 #ifdef tlb_needs_table_invalidate
236 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
237 #endif
238 
239 static inline void tlb_remove_table_sync_one(void) { }
240 
241 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
242 
243 
244 #ifndef CONFIG_MMU_GATHER_NO_GATHER
245 /*
246  * If we can't allocate a page to make a big batch of page pointers
247  * to work on, then just handle a few from the on-stack structure.
248  */
249 #define MMU_GATHER_BUNDLE       8
250 
251 struct mmu_gather_batch {
252         struct mmu_gather_batch *next;
253         unsigned int            nr;
254         unsigned int            max;
255         struct encoded_page     *encoded_pages[];
256 };
257 
258 #define MAX_GATHER_BATCH        \
259         ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
260 
261 /*
262  * Limit the maximum number of mmu_gather batches to reduce a risk of soft
263  * lockups for non-preemptible kernels on huge machines when a lot of memory
264  * is zapped during unmapping.
265  * 10K pages freed at once should be safe even without a preemption point.
266  */
267 #define MAX_GATHER_BATCH_COUNT  (10000UL/MAX_GATHER_BATCH)
268 
269 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
270                 bool delay_rmap, int page_size);
271 bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
272                 unsigned int nr_pages, bool delay_rmap);
273 
274 #ifdef CONFIG_SMP
275 /*
276  * This both sets 'delayed_rmap', and returns true. It would be an inline
277  * function, except we define it before the 'struct mmu_gather'.
278  */
279 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
280 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
281 #endif
282 
283 #endif
284 
285 /*
286  * We have a no-op version of the rmap removal that doesn't
287  * delay anything. That is used on S390, which flushes remote
288  * TLBs synchronously, and on UP, which doesn't have any
289  * remote TLBs to flush and is not preemptible due to this
290  * all happening under the page table lock.
291  */
292 #ifndef tlb_delay_rmap
293 #define tlb_delay_rmap(tlb) (false)
294 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
295 #endif
296 
297 /*
298  * struct mmu_gather is an opaque type used by the mm code for passing around
299  * any data needed by arch specific code for tlb_remove_page.
300  */
301 struct mmu_gather {
302         struct mm_struct        *mm;
303 
304 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
305         struct mmu_table_batch  *batch;
306 #endif
307 
308         unsigned long           start;
309         unsigned long           end;
310         /*
311          * we are in the middle of an operation to clear
312          * a full mm and can make some optimizations
313          */
314         unsigned int            fullmm : 1;
315 
316         /*
317          * we have performed an operation which
318          * requires a complete flush of the tlb
319          */
320         unsigned int            need_flush_all : 1;
321 
322         /*
323          * we have removed page directories
324          */
325         unsigned int            freed_tables : 1;
326 
327         /*
328          * Do we have pending delayed rmap removals?
329          */
330         unsigned int            delayed_rmap : 1;
331 
332         /*
333          * at which levels have we cleared entries?
334          */
335         unsigned int            cleared_ptes : 1;
336         unsigned int            cleared_pmds : 1;
337         unsigned int            cleared_puds : 1;
338         unsigned int            cleared_p4ds : 1;
339 
340         /*
341          * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
342          */
343         unsigned int            vma_exec : 1;
344         unsigned int            vma_huge : 1;
345         unsigned int            vma_pfn  : 1;
346 
347         unsigned int            batch_count;
348 
349 #ifndef CONFIG_MMU_GATHER_NO_GATHER
350         struct mmu_gather_batch *active;
351         struct mmu_gather_batch local;
352         struct page             *__pages[MMU_GATHER_BUNDLE];
353 
354 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
355         unsigned int page_size;
356 #endif
357 #endif
358 };
359 
360 void tlb_flush_mmu(struct mmu_gather *tlb);
361 
362 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
363                                       unsigned long address,
364                                       unsigned int range_size)
365 {
366         tlb->start = min(tlb->start, address);
367         tlb->end = max(tlb->end, address + range_size);
368 }
369 
370 static inline void __tlb_reset_range(struct mmu_gather *tlb)
371 {
372         if (tlb->fullmm) {
373                 tlb->start = tlb->end = ~0;
374         } else {
375                 tlb->start = TASK_SIZE;
376                 tlb->end = 0;
377         }
378         tlb->freed_tables = 0;
379         tlb->cleared_ptes = 0;
380         tlb->cleared_pmds = 0;
381         tlb->cleared_puds = 0;
382         tlb->cleared_p4ds = 0;
383         /*
384          * Do not reset mmu_gather::vma_* fields here, we do not
385          * call into tlb_start_vma() again to set them if there is an
386          * intermediate flush.
387          */
388 }
389 
390 #ifdef CONFIG_MMU_GATHER_NO_RANGE
391 
392 #if defined(tlb_flush)
393 #error MMU_GATHER_NO_RANGE relies on default tlb_flush()
394 #endif
395 
396 /*
397  * When an architecture does not have efficient means of range flushing TLBs
398  * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
399  * range small. We equally don't have to worry about page granularity or other
400  * things.
401  *
402  * All we need to do is issue a full flush for any !0 range.
403  */
404 static inline void tlb_flush(struct mmu_gather *tlb)
405 {
406         if (tlb->end)
407                 flush_tlb_mm(tlb->mm);
408 }
409 
410 #else /* CONFIG_MMU_GATHER_NO_RANGE */
411 
412 #ifndef tlb_flush
413 /*
414  * When an architecture does not provide its own tlb_flush() implementation
415  * but does have a reasonably efficient flush_vma_range() implementation
416  * use that.
417  */
418 static inline void tlb_flush(struct mmu_gather *tlb)
419 {
420         if (tlb->fullmm || tlb->need_flush_all) {
421                 flush_tlb_mm(tlb->mm);
422         } else if (tlb->end) {
423                 struct vm_area_struct vma = {
424                         .vm_mm = tlb->mm,
425                         .vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
426                                     (tlb->vma_huge ? VM_HUGETLB : 0),
427                 };
428 
429                 flush_tlb_range(&vma, tlb->start, tlb->end);
430         }
431 }
432 #endif
433 
434 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
435 
436 static inline void
437 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
438 {
439         /*
440          * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
441          * mips-4k) flush only large pages.
442          *
443          * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
444          * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
445          * range.
446          *
447          * We rely on tlb_end_vma() to issue a flush, such that when we reset
448          * these values the batch is empty.
449          */
450         tlb->vma_huge = is_vm_hugetlb_page(vma);
451         tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
452         tlb->vma_pfn  = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
453 }
454 
455 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
456 {
457         /*
458          * Anything calling __tlb_adjust_range() also sets at least one of
459          * these bits.
460          */
461         if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
462               tlb->cleared_puds || tlb->cleared_p4ds))
463                 return;
464 
465         tlb_flush(tlb);
466         __tlb_reset_range(tlb);
467 }
468 
469 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
470                                         struct page *page, int page_size)
471 {
472         if (__tlb_remove_page_size(tlb, page, false, page_size))
473                 tlb_flush_mmu(tlb);
474 }
475 
476 static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb,
477                 struct page *page, bool delay_rmap)
478 {
479         return __tlb_remove_page_size(tlb, page, delay_rmap, PAGE_SIZE);
480 }
481 
482 /* tlb_remove_page
483  *      Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
484  *      required.
485  */
486 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
487 {
488         return tlb_remove_page_size(tlb, page, PAGE_SIZE);
489 }
490 
491 static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, void *pt)
492 {
493         tlb_remove_table(tlb, pt);
494 }
495 
496 /* Like tlb_remove_ptdesc, but for page-like page directories. */
497 static inline void tlb_remove_page_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt)
498 {
499         tlb_remove_page(tlb, ptdesc_page(pt));
500 }
501 
502 static inline void tlb_change_page_size(struct mmu_gather *tlb,
503                                                      unsigned int page_size)
504 {
505 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
506         if (tlb->page_size && tlb->page_size != page_size) {
507                 if (!tlb->fullmm && !tlb->need_flush_all)
508                         tlb_flush_mmu(tlb);
509         }
510 
511         tlb->page_size = page_size;
512 #endif
513 }
514 
515 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
516 {
517         if (tlb->cleared_ptes)
518                 return PAGE_SHIFT;
519         if (tlb->cleared_pmds)
520                 return PMD_SHIFT;
521         if (tlb->cleared_puds)
522                 return PUD_SHIFT;
523         if (tlb->cleared_p4ds)
524                 return P4D_SHIFT;
525 
526         return PAGE_SHIFT;
527 }
528 
529 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
530 {
531         return 1UL << tlb_get_unmap_shift(tlb);
532 }
533 
534 /*
535  * In the case of tlb vma handling, we can optimise these away in the
536  * case where we're doing a full MM flush.  When we're doing a munmap,
537  * the vmas are adjusted to only cover the region to be torn down.
538  */
539 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
540 {
541         if (tlb->fullmm)
542                 return;
543 
544         tlb_update_vma_flags(tlb, vma);
545 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
546         flush_cache_range(vma, vma->vm_start, vma->vm_end);
547 #endif
548 }
549 
550 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
551 {
552         if (tlb->fullmm)
553                 return;
554 
555         /*
556          * VM_PFNMAP is more fragile because the core mm will not track the
557          * page mapcount -- there might not be page-frames for these PFNs after
558          * all. Force flush TLBs for such ranges to avoid munmap() vs
559          * unmap_mapping_range() races.
560          */
561         if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) {
562                 /*
563                  * Do a TLB flush and reset the range at VMA boundaries; this avoids
564                  * the ranges growing with the unused space between consecutive VMAs.
565                  */
566                 tlb_flush_mmu_tlbonly(tlb);
567         }
568 }
569 
570 /*
571  * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
572  * and set corresponding cleared_*.
573  */
574 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
575                                      unsigned long address, unsigned long size)
576 {
577         __tlb_adjust_range(tlb, address, size);
578         tlb->cleared_ptes = 1;
579 }
580 
581 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
582                                      unsigned long address, unsigned long size)
583 {
584         __tlb_adjust_range(tlb, address, size);
585         tlb->cleared_pmds = 1;
586 }
587 
588 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
589                                      unsigned long address, unsigned long size)
590 {
591         __tlb_adjust_range(tlb, address, size);
592         tlb->cleared_puds = 1;
593 }
594 
595 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
596                                      unsigned long address, unsigned long size)
597 {
598         __tlb_adjust_range(tlb, address, size);
599         tlb->cleared_p4ds = 1;
600 }
601 
602 #ifndef __tlb_remove_tlb_entry
603 static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
604 {
605 }
606 #endif
607 
608 /**
609  * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
610  *
611  * Record the fact that pte's were really unmapped by updating the range,
612  * so we can later optimise away the tlb invalidate.   This helps when
613  * userspace is unmapping already-unmapped pages, which happens quite a lot.
614  */
615 #define tlb_remove_tlb_entry(tlb, ptep, address)                \
616         do {                                                    \
617                 tlb_flush_pte_range(tlb, address, PAGE_SIZE);   \
618                 __tlb_remove_tlb_entry(tlb, ptep, address);     \
619         } while (0)
620 
621 /**
622  * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for
623  *                          later tlb invalidation.
624  *
625  * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple
626  * consecutive ptes instead of only a single one.
627  */
628 static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb,
629                 pte_t *ptep, unsigned int nr, unsigned long address)
630 {
631         tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr);
632         for (;;) {
633                 __tlb_remove_tlb_entry(tlb, ptep, address);
634                 if (--nr == 0)
635                         break;
636                 ptep++;
637                 address += PAGE_SIZE;
638         }
639 }
640 
641 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)        \
642         do {                                                    \
643                 unsigned long _sz = huge_page_size(h);          \
644                 if (_sz >= P4D_SIZE)                            \
645                         tlb_flush_p4d_range(tlb, address, _sz); \
646                 else if (_sz >= PUD_SIZE)                       \
647                         tlb_flush_pud_range(tlb, address, _sz); \
648                 else if (_sz >= PMD_SIZE)                       \
649                         tlb_flush_pmd_range(tlb, address, _sz); \
650                 else                                            \
651                         tlb_flush_pte_range(tlb, address, _sz); \
652                 __tlb_remove_tlb_entry(tlb, ptep, address);     \
653         } while (0)
654 
655 /**
656  * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
657  * This is a nop so far, because only x86 needs it.
658  */
659 #ifndef __tlb_remove_pmd_tlb_entry
660 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
661 #endif
662 
663 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)                    \
664         do {                                                            \
665                 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);      \
666                 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address);         \
667         } while (0)
668 
669 /**
670  * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
671  * invalidation. This is a nop so far, because only x86 needs it.
672  */
673 #ifndef __tlb_remove_pud_tlb_entry
674 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
675 #endif
676 
677 #define tlb_remove_pud_tlb_entry(tlb, pudp, address)                    \
678         do {                                                            \
679                 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);      \
680                 __tlb_remove_pud_tlb_entry(tlb, pudp, address);         \
681         } while (0)
682 
683 /*
684  * For things like page tables caches (ie caching addresses "inside" the
685  * page tables, like x86 does), for legacy reasons, flushing an
686  * individual page had better flush the page table caches behind it. This
687  * is definitely how x86 works, for example. And if you have an
688  * architected non-legacy page table cache (which I'm not aware of
689  * anybody actually doing), you're going to have some architecturally
690  * explicit flushing for that, likely *separate* from a regular TLB entry
691  * flush, and thus you'd need more than just some range expansion..
692  *
693  * So if we ever find an architecture
694  * that would want something that odd, I think it is up to that
695  * architecture to do its own odd thing, not cause pain for others
696  * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
697  *
698  * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
699  */
700 
701 #ifndef pte_free_tlb
702 #define pte_free_tlb(tlb, ptep, address)                        \
703         do {                                                    \
704                 tlb_flush_pmd_range(tlb, address, PAGE_SIZE);   \
705                 tlb->freed_tables = 1;                          \
706                 __pte_free_tlb(tlb, ptep, address);             \
707         } while (0)
708 #endif
709 
710 #ifndef pmd_free_tlb
711 #define pmd_free_tlb(tlb, pmdp, address)                        \
712         do {                                                    \
713                 tlb_flush_pud_range(tlb, address, PAGE_SIZE);   \
714                 tlb->freed_tables = 1;                          \
715                 __pmd_free_tlb(tlb, pmdp, address);             \
716         } while (0)
717 #endif
718 
719 #ifndef pud_free_tlb
720 #define pud_free_tlb(tlb, pudp, address)                        \
721         do {                                                    \
722                 tlb_flush_p4d_range(tlb, address, PAGE_SIZE);   \
723                 tlb->freed_tables = 1;                          \
724                 __pud_free_tlb(tlb, pudp, address);             \
725         } while (0)
726 #endif
727 
728 #ifndef p4d_free_tlb
729 #define p4d_free_tlb(tlb, pudp, address)                        \
730         do {                                                    \
731                 __tlb_adjust_range(tlb, address, PAGE_SIZE);    \
732                 tlb->freed_tables = 1;                          \
733                 __p4d_free_tlb(tlb, pudp, address);             \
734         } while (0)
735 #endif
736 
737 #ifndef pte_needs_flush
738 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
739 {
740         return true;
741 }
742 #endif
743 
744 #ifndef huge_pmd_needs_flush
745 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
746 {
747         return true;
748 }
749 #endif
750 
751 #endif /* CONFIG_MMU */
752 
753 #endif /* _ASM_GENERIC__TLB_H */
754 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php