~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/crypto/aead.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  * AEAD: Authenticated Encryption with Associated Data
  4  * 
  5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
  6  */
  7 
  8 #ifndef _CRYPTO_AEAD_H
  9 #define _CRYPTO_AEAD_H
 10 
 11 #include <linux/atomic.h>
 12 #include <linux/container_of.h>
 13 #include <linux/crypto.h>
 14 #include <linux/slab.h>
 15 #include <linux/types.h>
 16 
 17 /**
 18  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
 19  *
 20  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
 21  * (listed as type "aead" in /proc/crypto)
 22  *
 23  * The most prominent examples for this type of encryption is GCM and CCM.
 24  * However, the kernel supports other types of AEAD ciphers which are defined
 25  * with the following cipher string:
 26  *
 27  *      authenc(keyed message digest, block cipher)
 28  *
 29  * For example: authenc(hmac(sha256), cbc(aes))
 30  *
 31  * The example code provided for the symmetric key cipher operation applies
 32  * here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
 33  * pendants discussed in the following. In addition, for the AEAD operation,
 34  * the aead_request_set_ad function must be used to set the pointer to the
 35  * associated data memory location before performing the encryption or
 36  * decryption operation. Another deviation from the asynchronous block cipher
 37  * operation is that the caller should explicitly check for -EBADMSG of the
 38  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
 39  * a breach in the integrity of the message. In essence, that -EBADMSG error
 40  * code is the key bonus an AEAD cipher has over "standard" block chaining
 41  * modes.
 42  *
 43  * Memory Structure:
 44  *
 45  * The source scatterlist must contain the concatenation of
 46  * associated data || plaintext or ciphertext.
 47  *
 48  * The destination scatterlist has the same layout, except that the plaintext
 49  * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
 50  * during encryption (resp. decryption). The authentication tag is generated
 51  * during the encryption operation and appended to the ciphertext. During
 52  * decryption, the authentication tag is consumed along with the ciphertext and
 53  * used to verify the integrity of the plaintext and the associated data.
 54  *
 55  * In-place encryption/decryption is enabled by using the same scatterlist
 56  * pointer for both the source and destination.
 57  *
 58  * Even in the out-of-place case, space must be reserved in the destination for
 59  * the associated data, even though it won't be written to.  This makes the
 60  * in-place and out-of-place cases more consistent.  It is permissible for the
 61  * "destination" associated data to alias the "source" associated data.
 62  *
 63  * As with the other scatterlist crypto APIs, zero-length scatterlist elements
 64  * are not allowed in the used part of the scatterlist.  Thus, if there is no
 65  * associated data, the first element must point to the plaintext/ciphertext.
 66  *
 67  * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
 68  * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
 69  * of the associated data buffer must contain a second copy of the IV.  This is
 70  * in addition to the copy passed to aead_request_set_crypt().  These two IV
 71  * copies must not differ; different implementations of the same algorithm may
 72  * behave differently in that case.  Note that the algorithm might not actually
 73  * treat the IV as associated data; nevertheless the length passed to
 74  * aead_request_set_ad() must include it.
 75  */
 76 
 77 struct crypto_aead;
 78 struct scatterlist;
 79 
 80 /**
 81  *      struct aead_request - AEAD request
 82  *      @base: Common attributes for async crypto requests
 83  *      @assoclen: Length in bytes of associated data for authentication
 84  *      @cryptlen: Length of data to be encrypted or decrypted
 85  *      @iv: Initialisation vector
 86  *      @src: Source data
 87  *      @dst: Destination data
 88  *      @__ctx: Start of private context data
 89  */
 90 struct aead_request {
 91         struct crypto_async_request base;
 92 
 93         unsigned int assoclen;
 94         unsigned int cryptlen;
 95 
 96         u8 *iv;
 97 
 98         struct scatterlist *src;
 99         struct scatterlist *dst;
100 
101         void *__ctx[] CRYPTO_MINALIGN_ATTR;
102 };
103 
104 /**
105  * struct aead_alg - AEAD cipher definition
106  * @maxauthsize: Set the maximum authentication tag size supported by the
107  *               transformation. A transformation may support smaller tag sizes.
108  *               As the authentication tag is a message digest to ensure the
109  *               integrity of the encrypted data, a consumer typically wants the
110  *               largest authentication tag possible as defined by this
111  *               variable.
112  * @setauthsize: Set authentication size for the AEAD transformation. This
113  *               function is used to specify the consumer requested size of the
114  *               authentication tag to be either generated by the transformation
115  *               during encryption or the size of the authentication tag to be
116  *               supplied during the decryption operation. This function is also
117  *               responsible for checking the authentication tag size for
118  *               validity.
119  * @setkey: see struct skcipher_alg
120  * @encrypt: see struct skcipher_alg
121  * @decrypt: see struct skcipher_alg
122  * @ivsize: see struct skcipher_alg
123  * @chunksize: see struct skcipher_alg
124  * @init: Initialize the cryptographic transformation object. This function
125  *        is used to initialize the cryptographic transformation object.
126  *        This function is called only once at the instantiation time, right
127  *        after the transformation context was allocated. In case the
128  *        cryptographic hardware has some special requirements which need to
129  *        be handled by software, this function shall check for the precise
130  *        requirement of the transformation and put any software fallbacks
131  *        in place.
132  * @exit: Deinitialize the cryptographic transformation object. This is a
133  *        counterpart to @init, used to remove various changes set in
134  *        @init.
135  * @base: Definition of a generic crypto cipher algorithm.
136  *
137  * All fields except @ivsize is mandatory and must be filled.
138  */
139 struct aead_alg {
140         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
141                       unsigned int keylen);
142         int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
143         int (*encrypt)(struct aead_request *req);
144         int (*decrypt)(struct aead_request *req);
145         int (*init)(struct crypto_aead *tfm);
146         void (*exit)(struct crypto_aead *tfm);
147 
148         unsigned int ivsize;
149         unsigned int maxauthsize;
150         unsigned int chunksize;
151 
152         struct crypto_alg base;
153 };
154 
155 struct crypto_aead {
156         unsigned int authsize;
157         unsigned int reqsize;
158 
159         struct crypto_tfm base;
160 };
161 
162 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
163 {
164         return container_of(tfm, struct crypto_aead, base);
165 }
166 
167 /**
168  * crypto_alloc_aead() - allocate AEAD cipher handle
169  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
170  *           AEAD cipher
171  * @type: specifies the type of the cipher
172  * @mask: specifies the mask for the cipher
173  *
174  * Allocate a cipher handle for an AEAD. The returned struct
175  * crypto_aead is the cipher handle that is required for any subsequent
176  * API invocation for that AEAD.
177  *
178  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
179  *         of an error, PTR_ERR() returns the error code.
180  */
181 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
182 
183 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
184 {
185         return &tfm->base;
186 }
187 
188 /**
189  * crypto_free_aead() - zeroize and free aead handle
190  * @tfm: cipher handle to be freed
191  *
192  * If @tfm is a NULL or error pointer, this function does nothing.
193  */
194 static inline void crypto_free_aead(struct crypto_aead *tfm)
195 {
196         crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
197 }
198 
199 /**
200  * crypto_has_aead() - Search for the availability of an aead.
201  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
202  *            aead
203  * @type: specifies the type of the aead
204  * @mask: specifies the mask for the aead
205  *
206  * Return: true when the aead is known to the kernel crypto API; false
207  *         otherwise
208  */
209 int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
210 
211 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
212 {
213         return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
214 }
215 
216 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
217 {
218         return container_of(crypto_aead_tfm(tfm)->__crt_alg,
219                             struct aead_alg, base);
220 }
221 
222 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
223 {
224         return alg->ivsize;
225 }
226 
227 /**
228  * crypto_aead_ivsize() - obtain IV size
229  * @tfm: cipher handle
230  *
231  * The size of the IV for the aead referenced by the cipher handle is
232  * returned. This IV size may be zero if the cipher does not need an IV.
233  *
234  * Return: IV size in bytes
235  */
236 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
237 {
238         return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
239 }
240 
241 /**
242  * crypto_aead_authsize() - obtain maximum authentication data size
243  * @tfm: cipher handle
244  *
245  * The maximum size of the authentication data for the AEAD cipher referenced
246  * by the AEAD cipher handle is returned. The authentication data size may be
247  * zero if the cipher implements a hard-coded maximum.
248  *
249  * The authentication data may also be known as "tag value".
250  *
251  * Return: authentication data size / tag size in bytes
252  */
253 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
254 {
255         return tfm->authsize;
256 }
257 
258 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
259 {
260         return alg->maxauthsize;
261 }
262 
263 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
264 {
265         return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
266 }
267 
268 /**
269  * crypto_aead_blocksize() - obtain block size of cipher
270  * @tfm: cipher handle
271  *
272  * The block size for the AEAD referenced with the cipher handle is returned.
273  * The caller may use that information to allocate appropriate memory for the
274  * data returned by the encryption or decryption operation
275  *
276  * Return: block size of cipher
277  */
278 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
279 {
280         return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
281 }
282 
283 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
284 {
285         return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
286 }
287 
288 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
289 {
290         return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
291 }
292 
293 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
294 {
295         crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
296 }
297 
298 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
299 {
300         crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
301 }
302 
303 /**
304  * crypto_aead_setkey() - set key for cipher
305  * @tfm: cipher handle
306  * @key: buffer holding the key
307  * @keylen: length of the key in bytes
308  *
309  * The caller provided key is set for the AEAD referenced by the cipher
310  * handle.
311  *
312  * Note, the key length determines the cipher type. Many block ciphers implement
313  * different cipher modes depending on the key size, such as AES-128 vs AES-192
314  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
315  * is performed.
316  *
317  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
318  */
319 int crypto_aead_setkey(struct crypto_aead *tfm,
320                        const u8 *key, unsigned int keylen);
321 
322 /**
323  * crypto_aead_setauthsize() - set authentication data size
324  * @tfm: cipher handle
325  * @authsize: size of the authentication data / tag in bytes
326  *
327  * Set the authentication data size / tag size. AEAD requires an authentication
328  * tag (or MAC) in addition to the associated data.
329  *
330  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
331  */
332 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
333 
334 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
335 {
336         return __crypto_aead_cast(req->base.tfm);
337 }
338 
339 /**
340  * crypto_aead_encrypt() - encrypt plaintext
341  * @req: reference to the aead_request handle that holds all information
342  *       needed to perform the cipher operation
343  *
344  * Encrypt plaintext data using the aead_request handle. That data structure
345  * and how it is filled with data is discussed with the aead_request_*
346  * functions.
347  *
348  * IMPORTANT NOTE The encryption operation creates the authentication data /
349  *                tag. That data is concatenated with the created ciphertext.
350  *                The ciphertext memory size is therefore the given number of
351  *                block cipher blocks + the size defined by the
352  *                crypto_aead_setauthsize invocation. The caller must ensure
353  *                that sufficient memory is available for the ciphertext and
354  *                the authentication tag.
355  *
356  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
357  */
358 int crypto_aead_encrypt(struct aead_request *req);
359 
360 /**
361  * crypto_aead_decrypt() - decrypt ciphertext
362  * @req: reference to the aead_request handle that holds all information
363  *       needed to perform the cipher operation
364  *
365  * Decrypt ciphertext data using the aead_request handle. That data structure
366  * and how it is filled with data is discussed with the aead_request_*
367  * functions.
368  *
369  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
370  *                authentication data / tag. That authentication data / tag
371  *                must have the size defined by the crypto_aead_setauthsize
372  *                invocation.
373  *
374  *
375  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
376  *         cipher operation performs the authentication of the data during the
377  *         decryption operation. Therefore, the function returns this error if
378  *         the authentication of the ciphertext was unsuccessful (i.e. the
379  *         integrity of the ciphertext or the associated data was violated);
380  *         < 0 if an error occurred.
381  */
382 int crypto_aead_decrypt(struct aead_request *req);
383 
384 /**
385  * DOC: Asynchronous AEAD Request Handle
386  *
387  * The aead_request data structure contains all pointers to data required for
388  * the AEAD cipher operation. This includes the cipher handle (which can be
389  * used by multiple aead_request instances), pointer to plaintext and
390  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
391  * aead_request_* API calls in a similar way as AEAD handle to the
392  * crypto_aead_* API calls.
393  */
394 
395 /**
396  * crypto_aead_reqsize() - obtain size of the request data structure
397  * @tfm: cipher handle
398  *
399  * Return: number of bytes
400  */
401 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
402 {
403         return tfm->reqsize;
404 }
405 
406 /**
407  * aead_request_set_tfm() - update cipher handle reference in request
408  * @req: request handle to be modified
409  * @tfm: cipher handle that shall be added to the request handle
410  *
411  * Allow the caller to replace the existing aead handle in the request
412  * data structure with a different one.
413  */
414 static inline void aead_request_set_tfm(struct aead_request *req,
415                                         struct crypto_aead *tfm)
416 {
417         req->base.tfm = crypto_aead_tfm(tfm);
418 }
419 
420 /**
421  * aead_request_alloc() - allocate request data structure
422  * @tfm: cipher handle to be registered with the request
423  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
424  *
425  * Allocate the request data structure that must be used with the AEAD
426  * encrypt and decrypt API calls. During the allocation, the provided aead
427  * handle is registered in the request data structure.
428  *
429  * Return: allocated request handle in case of success, or NULL if out of memory
430  */
431 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
432                                                       gfp_t gfp)
433 {
434         struct aead_request *req;
435 
436         req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
437 
438         if (likely(req))
439                 aead_request_set_tfm(req, tfm);
440 
441         return req;
442 }
443 
444 /**
445  * aead_request_free() - zeroize and free request data structure
446  * @req: request data structure cipher handle to be freed
447  */
448 static inline void aead_request_free(struct aead_request *req)
449 {
450         kfree_sensitive(req);
451 }
452 
453 /**
454  * aead_request_set_callback() - set asynchronous callback function
455  * @req: request handle
456  * @flags: specify zero or an ORing of the flags
457  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
458  *         increase the wait queue beyond the initial maximum size;
459  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
460  * @compl: callback function pointer to be registered with the request handle
461  * @data: The data pointer refers to memory that is not used by the kernel
462  *        crypto API, but provided to the callback function for it to use. Here,
463  *        the caller can provide a reference to memory the callback function can
464  *        operate on. As the callback function is invoked asynchronously to the
465  *        related functionality, it may need to access data structures of the
466  *        related functionality which can be referenced using this pointer. The
467  *        callback function can access the memory via the "data" field in the
468  *        crypto_async_request data structure provided to the callback function.
469  *
470  * Setting the callback function that is triggered once the cipher operation
471  * completes
472  *
473  * The callback function is registered with the aead_request handle and
474  * must comply with the following template::
475  *
476  *      void callback_function(struct crypto_async_request *req, int error)
477  */
478 static inline void aead_request_set_callback(struct aead_request *req,
479                                              u32 flags,
480                                              crypto_completion_t compl,
481                                              void *data)
482 {
483         req->base.complete = compl;
484         req->base.data = data;
485         req->base.flags = flags;
486 }
487 
488 /**
489  * aead_request_set_crypt - set data buffers
490  * @req: request handle
491  * @src: source scatter / gather list
492  * @dst: destination scatter / gather list
493  * @cryptlen: number of bytes to process from @src
494  * @iv: IV for the cipher operation which must comply with the IV size defined
495  *      by crypto_aead_ivsize()
496  *
497  * Setting the source data and destination data scatter / gather lists which
498  * hold the associated data concatenated with the plaintext or ciphertext. See
499  * below for the authentication tag.
500  *
501  * For encryption, the source is treated as the plaintext and the
502  * destination is the ciphertext. For a decryption operation, the use is
503  * reversed - the source is the ciphertext and the destination is the plaintext.
504  *
505  * The memory structure for cipher operation has the following structure:
506  *
507  * - AEAD encryption input:  assoc data || plaintext
508  * - AEAD encryption output: assoc data || ciphertext || auth tag
509  * - AEAD decryption input:  assoc data || ciphertext || auth tag
510  * - AEAD decryption output: assoc data || plaintext
511  *
512  * Albeit the kernel requires the presence of the AAD buffer, however,
513  * the kernel does not fill the AAD buffer in the output case. If the
514  * caller wants to have that data buffer filled, the caller must either
515  * use an in-place cipher operation (i.e. same memory location for
516  * input/output memory location).
517  */
518 static inline void aead_request_set_crypt(struct aead_request *req,
519                                           struct scatterlist *src,
520                                           struct scatterlist *dst,
521                                           unsigned int cryptlen, u8 *iv)
522 {
523         req->src = src;
524         req->dst = dst;
525         req->cryptlen = cryptlen;
526         req->iv = iv;
527 }
528 
529 /**
530  * aead_request_set_ad - set associated data information
531  * @req: request handle
532  * @assoclen: number of bytes in associated data
533  *
534  * Setting the AD information.  This function sets the length of
535  * the associated data.
536  */
537 static inline void aead_request_set_ad(struct aead_request *req,
538                                        unsigned int assoclen)
539 {
540         req->assoclen = assoclen;
541 }
542 
543 #endif  /* _CRYPTO_AEAD_H */
544 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php