~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/crypto/hash.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  * Hash: Hash algorithms under the crypto API
  4  * 
  5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
  6  */
  7 
  8 #ifndef _CRYPTO_HASH_H
  9 #define _CRYPTO_HASH_H
 10 
 11 #include <linux/atomic.h>
 12 #include <linux/crypto.h>
 13 #include <linux/string.h>
 14 
 15 struct crypto_ahash;
 16 
 17 /**
 18  * DOC: Message Digest Algorithm Definitions
 19  *
 20  * These data structures define modular message digest algorithm
 21  * implementations, managed via crypto_register_ahash(),
 22  * crypto_register_shash(), crypto_unregister_ahash() and
 23  * crypto_unregister_shash().
 24  */
 25 
 26 /*
 27  * struct hash_alg_common - define properties of message digest
 28  * @digestsize: Size of the result of the transformation. A buffer of this size
 29  *              must be available to the @final and @finup calls, so they can
 30  *              store the resulting hash into it. For various predefined sizes,
 31  *              search include/crypto/ using
 32  *              git grep _DIGEST_SIZE include/crypto.
 33  * @statesize: Size of the block for partial state of the transformation. A
 34  *             buffer of this size must be passed to the @export function as it
 35  *             will save the partial state of the transformation into it. On the
 36  *             other side, the @import function will load the state from a
 37  *             buffer of this size as well.
 38  * @base: Start of data structure of cipher algorithm. The common data
 39  *        structure of crypto_alg contains information common to all ciphers.
 40  *        The hash_alg_common data structure now adds the hash-specific
 41  *        information.
 42  */
 43 #define HASH_ALG_COMMON {               \
 44         unsigned int digestsize;        \
 45         unsigned int statesize;         \
 46                                         \
 47         struct crypto_alg base;         \
 48 }
 49 struct hash_alg_common HASH_ALG_COMMON;
 50 
 51 struct ahash_request {
 52         struct crypto_async_request base;
 53 
 54         unsigned int nbytes;
 55         struct scatterlist *src;
 56         u8 *result;
 57 
 58         /* This field may only be used by the ahash API code. */
 59         void *priv;
 60 
 61         void *__ctx[] CRYPTO_MINALIGN_ATTR;
 62 };
 63 
 64 /**
 65  * struct ahash_alg - asynchronous message digest definition
 66  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
 67  *        state of the HASH transformation at the beginning. This shall fill in
 68  *        the internal structures used during the entire duration of the whole
 69  *        transformation. No data processing happens at this point. Driver code
 70  *        implementation must not use req->result.
 71  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
 72  *         function actually pushes blocks of data from upper layers into the
 73  *         driver, which then passes those to the hardware as seen fit. This
 74  *         function must not finalize the HASH transformation by calculating the
 75  *         final message digest as this only adds more data into the
 76  *         transformation. This function shall not modify the transformation
 77  *         context, as this function may be called in parallel with the same
 78  *         transformation object. Data processing can happen synchronously
 79  *         [SHASH] or asynchronously [AHASH] at this point. Driver must not use
 80  *         req->result.
 81  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
 82  *         transformation and retrieves the resulting hash from the driver and
 83  *         pushes it back to upper layers. No data processing happens at this
 84  *         point unless hardware requires it to finish the transformation
 85  *         (then the data buffered by the device driver is processed).
 86  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
 87  *         combination of @update and @final calls issued in sequence. As some
 88  *         hardware cannot do @update and @final separately, this callback was
 89  *         added to allow such hardware to be used at least by IPsec. Data
 90  *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
 91  *         at this point.
 92  * @digest: Combination of @init and @update and @final. This function
 93  *          effectively behaves as the entire chain of operations, @init,
 94  *          @update and @final issued in sequence. Just like @finup, this was
 95  *          added for hardware which cannot do even the @finup, but can only do
 96  *          the whole transformation in one run. Data processing can happen
 97  *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 98  * @setkey: Set optional key used by the hashing algorithm. Intended to push
 99  *          optional key used by the hashing algorithm from upper layers into
100  *          the driver. This function can store the key in the transformation
101  *          context or can outright program it into the hardware. In the former
102  *          case, one must be careful to program the key into the hardware at
103  *          appropriate time and one must be careful that .setkey() can be
104  *          called multiple times during the existence of the transformation
105  *          object. Not  all hashing algorithms do implement this function as it
106  *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
107  *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
108  *          this function. This function must be called before any other of the
109  *          @init, @update, @final, @finup, @digest is called. No data
110  *          processing happens at this point.
111  * @export: Export partial state of the transformation. This function dumps the
112  *          entire state of the ongoing transformation into a provided block of
113  *          data so it can be @import 'ed back later on. This is useful in case
114  *          you want to save partial result of the transformation after
115  *          processing certain amount of data and reload this partial result
116  *          multiple times later on for multiple re-use. No data processing
117  *          happens at this point. Driver must not use req->result.
118  * @import: Import partial state of the transformation. This function loads the
119  *          entire state of the ongoing transformation from a provided block of
120  *          data so the transformation can continue from this point onward. No
121  *          data processing happens at this point. Driver must not use
122  *          req->result.
123  * @init_tfm: Initialize the cryptographic transformation object.
124  *            This function is called only once at the instantiation
125  *            time, right after the transformation context was
126  *            allocated. In case the cryptographic hardware has
127  *            some special requirements which need to be handled
128  *            by software, this function shall check for the precise
129  *            requirement of the transformation and put any software
130  *            fallbacks in place.
131  * @exit_tfm: Deinitialize the cryptographic transformation object.
132  *            This is a counterpart to @init_tfm, used to remove
133  *            various changes set in @init_tfm.
134  * @clone_tfm: Copy transform into new object, may allocate memory.
135  * @halg: see struct hash_alg_common
136  */
137 struct ahash_alg {
138         int (*init)(struct ahash_request *req);
139         int (*update)(struct ahash_request *req);
140         int (*final)(struct ahash_request *req);
141         int (*finup)(struct ahash_request *req);
142         int (*digest)(struct ahash_request *req);
143         int (*export)(struct ahash_request *req, void *out);
144         int (*import)(struct ahash_request *req, const void *in);
145         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
146                       unsigned int keylen);
147         int (*init_tfm)(struct crypto_ahash *tfm);
148         void (*exit_tfm)(struct crypto_ahash *tfm);
149         int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
150 
151         struct hash_alg_common halg;
152 };
153 
154 struct shash_desc {
155         struct crypto_shash *tfm;
156         void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
157 };
158 
159 #define HASH_MAX_DIGESTSIZE      64
160 
161 /*
162  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
163  * containing a 'struct sha3_state'.
164  */
165 #define HASH_MAX_DESCSIZE       (sizeof(struct shash_desc) + 360)
166 
167 #define SHASH_DESC_ON_STACK(shash, ctx)                                      \
168         char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
169                 __aligned(__alignof__(struct shash_desc));                   \
170         struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
171 
172 /**
173  * struct shash_alg - synchronous message digest definition
174  * @init: see struct ahash_alg
175  * @update: see struct ahash_alg
176  * @final: see struct ahash_alg
177  * @finup: see struct ahash_alg
178  * @digest: see struct ahash_alg
179  * @export: see struct ahash_alg
180  * @import: see struct ahash_alg
181  * @setkey: see struct ahash_alg
182  * @init_tfm: Initialize the cryptographic transformation object.
183  *            This function is called only once at the instantiation
184  *            time, right after the transformation context was
185  *            allocated. In case the cryptographic hardware has
186  *            some special requirements which need to be handled
187  *            by software, this function shall check for the precise
188  *            requirement of the transformation and put any software
189  *            fallbacks in place.
190  * @exit_tfm: Deinitialize the cryptographic transformation object.
191  *            This is a counterpart to @init_tfm, used to remove
192  *            various changes set in @init_tfm.
193  * @clone_tfm: Copy transform into new object, may allocate memory.
194  * @descsize: Size of the operational state for the message digest. This state
195  *            size is the memory size that needs to be allocated for
196  *            shash_desc.__ctx
197  * @halg: see struct hash_alg_common
198  * @HASH_ALG_COMMON: see struct hash_alg_common
199  */
200 struct shash_alg {
201         int (*init)(struct shash_desc *desc);
202         int (*update)(struct shash_desc *desc, const u8 *data,
203                       unsigned int len);
204         int (*final)(struct shash_desc *desc, u8 *out);
205         int (*finup)(struct shash_desc *desc, const u8 *data,
206                      unsigned int len, u8 *out);
207         int (*digest)(struct shash_desc *desc, const u8 *data,
208                       unsigned int len, u8 *out);
209         int (*export)(struct shash_desc *desc, void *out);
210         int (*import)(struct shash_desc *desc, const void *in);
211         int (*setkey)(struct crypto_shash *tfm, const u8 *key,
212                       unsigned int keylen);
213         int (*init_tfm)(struct crypto_shash *tfm);
214         void (*exit_tfm)(struct crypto_shash *tfm);
215         int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
216 
217         unsigned int descsize;
218 
219         union {
220                 struct HASH_ALG_COMMON;
221                 struct hash_alg_common halg;
222         };
223 };
224 #undef HASH_ALG_COMMON
225 
226 struct crypto_ahash {
227         bool using_shash; /* Underlying algorithm is shash, not ahash */
228         unsigned int statesize;
229         unsigned int reqsize;
230         struct crypto_tfm base;
231 };
232 
233 struct crypto_shash {
234         unsigned int descsize;
235         struct crypto_tfm base;
236 };
237 
238 /**
239  * DOC: Asynchronous Message Digest API
240  *
241  * The asynchronous message digest API is used with the ciphers of type
242  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
243  *
244  * The asynchronous cipher operation discussion provided for the
245  * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
246  */
247 
248 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
249 {
250         return container_of(tfm, struct crypto_ahash, base);
251 }
252 
253 /**
254  * crypto_alloc_ahash() - allocate ahash cipher handle
255  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
256  *            ahash cipher
257  * @type: specifies the type of the cipher
258  * @mask: specifies the mask for the cipher
259  *
260  * Allocate a cipher handle for an ahash. The returned struct
261  * crypto_ahash is the cipher handle that is required for any subsequent
262  * API invocation for that ahash.
263  *
264  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
265  *         of an error, PTR_ERR() returns the error code.
266  */
267 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
268                                         u32 mask);
269 
270 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
271 
272 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
273 {
274         return &tfm->base;
275 }
276 
277 /**
278  * crypto_free_ahash() - zeroize and free the ahash handle
279  * @tfm: cipher handle to be freed
280  *
281  * If @tfm is a NULL or error pointer, this function does nothing.
282  */
283 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
284 {
285         crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
286 }
287 
288 /**
289  * crypto_has_ahash() - Search for the availability of an ahash.
290  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
291  *            ahash
292  * @type: specifies the type of the ahash
293  * @mask: specifies the mask for the ahash
294  *
295  * Return: true when the ahash is known to the kernel crypto API; false
296  *         otherwise
297  */
298 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
299 
300 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
301 {
302         return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
303 }
304 
305 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
306 {
307         return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
308 }
309 
310 /**
311  * crypto_ahash_blocksize() - obtain block size for cipher
312  * @tfm: cipher handle
313  *
314  * The block size for the message digest cipher referenced with the cipher
315  * handle is returned.
316  *
317  * Return: block size of cipher
318  */
319 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
320 {
321         return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
322 }
323 
324 static inline struct hash_alg_common *__crypto_hash_alg_common(
325         struct crypto_alg *alg)
326 {
327         return container_of(alg, struct hash_alg_common, base);
328 }
329 
330 static inline struct hash_alg_common *crypto_hash_alg_common(
331         struct crypto_ahash *tfm)
332 {
333         return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
334 }
335 
336 /**
337  * crypto_ahash_digestsize() - obtain message digest size
338  * @tfm: cipher handle
339  *
340  * The size for the message digest created by the message digest cipher
341  * referenced with the cipher handle is returned.
342  *
343  *
344  * Return: message digest size of cipher
345  */
346 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
347 {
348         return crypto_hash_alg_common(tfm)->digestsize;
349 }
350 
351 /**
352  * crypto_ahash_statesize() - obtain size of the ahash state
353  * @tfm: cipher handle
354  *
355  * Return the size of the ahash state. With the crypto_ahash_export()
356  * function, the caller can export the state into a buffer whose size is
357  * defined with this function.
358  *
359  * Return: size of the ahash state
360  */
361 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
362 {
363         return tfm->statesize;
364 }
365 
366 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
367 {
368         return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
369 }
370 
371 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
372 {
373         crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
374 }
375 
376 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
377 {
378         crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
379 }
380 
381 /**
382  * crypto_ahash_reqtfm() - obtain cipher handle from request
383  * @req: asynchronous request handle that contains the reference to the ahash
384  *       cipher handle
385  *
386  * Return the ahash cipher handle that is registered with the asynchronous
387  * request handle ahash_request.
388  *
389  * Return: ahash cipher handle
390  */
391 static inline struct crypto_ahash *crypto_ahash_reqtfm(
392         struct ahash_request *req)
393 {
394         return __crypto_ahash_cast(req->base.tfm);
395 }
396 
397 /**
398  * crypto_ahash_reqsize() - obtain size of the request data structure
399  * @tfm: cipher handle
400  *
401  * Return: size of the request data
402  */
403 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
404 {
405         return tfm->reqsize;
406 }
407 
408 static inline void *ahash_request_ctx(struct ahash_request *req)
409 {
410         return req->__ctx;
411 }
412 
413 /**
414  * crypto_ahash_setkey - set key for cipher handle
415  * @tfm: cipher handle
416  * @key: buffer holding the key
417  * @keylen: length of the key in bytes
418  *
419  * The caller provided key is set for the ahash cipher. The cipher
420  * handle must point to a keyed hash in order for this function to succeed.
421  *
422  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
423  */
424 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
425                         unsigned int keylen);
426 
427 /**
428  * crypto_ahash_finup() - update and finalize message digest
429  * @req: reference to the ahash_request handle that holds all information
430  *       needed to perform the cipher operation
431  *
432  * This function is a "short-hand" for the function calls of
433  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
434  * meaning as discussed for those separate functions.
435  *
436  * Return: see crypto_ahash_final()
437  */
438 int crypto_ahash_finup(struct ahash_request *req);
439 
440 /**
441  * crypto_ahash_final() - calculate message digest
442  * @req: reference to the ahash_request handle that holds all information
443  *       needed to perform the cipher operation
444  *
445  * Finalize the message digest operation and create the message digest
446  * based on all data added to the cipher handle. The message digest is placed
447  * into the output buffer registered with the ahash_request handle.
448  *
449  * Return:
450  * 0            if the message digest was successfully calculated;
451  * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
452  * -EBUSY       if queue is full and request should be resubmitted later;
453  * other < 0    if an error occurred
454  */
455 int crypto_ahash_final(struct ahash_request *req);
456 
457 /**
458  * crypto_ahash_digest() - calculate message digest for a buffer
459  * @req: reference to the ahash_request handle that holds all information
460  *       needed to perform the cipher operation
461  *
462  * This function is a "short-hand" for the function calls of crypto_ahash_init,
463  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
464  * meaning as discussed for those separate three functions.
465  *
466  * Return: see crypto_ahash_final()
467  */
468 int crypto_ahash_digest(struct ahash_request *req);
469 
470 /**
471  * crypto_ahash_export() - extract current message digest state
472  * @req: reference to the ahash_request handle whose state is exported
473  * @out: output buffer of sufficient size that can hold the hash state
474  *
475  * This function exports the hash state of the ahash_request handle into the
476  * caller-allocated output buffer out which must have sufficient size (e.g. by
477  * calling crypto_ahash_statesize()).
478  *
479  * Return: 0 if the export was successful; < 0 if an error occurred
480  */
481 int crypto_ahash_export(struct ahash_request *req, void *out);
482 
483 /**
484  * crypto_ahash_import() - import message digest state
485  * @req: reference to ahash_request handle the state is imported into
486  * @in: buffer holding the state
487  *
488  * This function imports the hash state into the ahash_request handle from the
489  * input buffer. That buffer should have been generated with the
490  * crypto_ahash_export function.
491  *
492  * Return: 0 if the import was successful; < 0 if an error occurred
493  */
494 int crypto_ahash_import(struct ahash_request *req, const void *in);
495 
496 /**
497  * crypto_ahash_init() - (re)initialize message digest handle
498  * @req: ahash_request handle that already is initialized with all necessary
499  *       data using the ahash_request_* API functions
500  *
501  * The call (re-)initializes the message digest referenced by the ahash_request
502  * handle. Any potentially existing state created by previous operations is
503  * discarded.
504  *
505  * Return: see crypto_ahash_final()
506  */
507 int crypto_ahash_init(struct ahash_request *req);
508 
509 /**
510  * crypto_ahash_update() - add data to message digest for processing
511  * @req: ahash_request handle that was previously initialized with the
512  *       crypto_ahash_init call.
513  *
514  * Updates the message digest state of the &ahash_request handle. The input data
515  * is pointed to by the scatter/gather list registered in the &ahash_request
516  * handle
517  *
518  * Return: see crypto_ahash_final()
519  */
520 int crypto_ahash_update(struct ahash_request *req);
521 
522 /**
523  * DOC: Asynchronous Hash Request Handle
524  *
525  * The &ahash_request data structure contains all pointers to data
526  * required for the asynchronous cipher operation. This includes the cipher
527  * handle (which can be used by multiple &ahash_request instances), pointer
528  * to plaintext and the message digest output buffer, asynchronous callback
529  * function, etc. It acts as a handle to the ahash_request_* API calls in a
530  * similar way as ahash handle to the crypto_ahash_* API calls.
531  */
532 
533 /**
534  * ahash_request_set_tfm() - update cipher handle reference in request
535  * @req: request handle to be modified
536  * @tfm: cipher handle that shall be added to the request handle
537  *
538  * Allow the caller to replace the existing ahash handle in the request
539  * data structure with a different one.
540  */
541 static inline void ahash_request_set_tfm(struct ahash_request *req,
542                                          struct crypto_ahash *tfm)
543 {
544         req->base.tfm = crypto_ahash_tfm(tfm);
545 }
546 
547 /**
548  * ahash_request_alloc() - allocate request data structure
549  * @tfm: cipher handle to be registered with the request
550  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
551  *
552  * Allocate the request data structure that must be used with the ahash
553  * message digest API calls. During
554  * the allocation, the provided ahash handle
555  * is registered in the request data structure.
556  *
557  * Return: allocated request handle in case of success, or NULL if out of memory
558  */
559 static inline struct ahash_request *ahash_request_alloc_noprof(
560         struct crypto_ahash *tfm, gfp_t gfp)
561 {
562         struct ahash_request *req;
563 
564         req = kmalloc_noprof(sizeof(struct ahash_request) +
565                              crypto_ahash_reqsize(tfm), gfp);
566 
567         if (likely(req))
568                 ahash_request_set_tfm(req, tfm);
569 
570         return req;
571 }
572 #define ahash_request_alloc(...)        alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
573 
574 /**
575  * ahash_request_free() - zeroize and free the request data structure
576  * @req: request data structure cipher handle to be freed
577  */
578 static inline void ahash_request_free(struct ahash_request *req)
579 {
580         kfree_sensitive(req);
581 }
582 
583 static inline void ahash_request_zero(struct ahash_request *req)
584 {
585         memzero_explicit(req, sizeof(*req) +
586                               crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
587 }
588 
589 static inline struct ahash_request *ahash_request_cast(
590         struct crypto_async_request *req)
591 {
592         return container_of(req, struct ahash_request, base);
593 }
594 
595 /**
596  * ahash_request_set_callback() - set asynchronous callback function
597  * @req: request handle
598  * @flags: specify zero or an ORing of the flags
599  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
600  *         increase the wait queue beyond the initial maximum size;
601  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
602  * @compl: callback function pointer to be registered with the request handle
603  * @data: The data pointer refers to memory that is not used by the kernel
604  *        crypto API, but provided to the callback function for it to use. Here,
605  *        the caller can provide a reference to memory the callback function can
606  *        operate on. As the callback function is invoked asynchronously to the
607  *        related functionality, it may need to access data structures of the
608  *        related functionality which can be referenced using this pointer. The
609  *        callback function can access the memory via the "data" field in the
610  *        &crypto_async_request data structure provided to the callback function.
611  *
612  * This function allows setting the callback function that is triggered once
613  * the cipher operation completes.
614  *
615  * The callback function is registered with the &ahash_request handle and
616  * must comply with the following template::
617  *
618  *      void callback_function(struct crypto_async_request *req, int error)
619  */
620 static inline void ahash_request_set_callback(struct ahash_request *req,
621                                               u32 flags,
622                                               crypto_completion_t compl,
623                                               void *data)
624 {
625         req->base.complete = compl;
626         req->base.data = data;
627         req->base.flags = flags;
628 }
629 
630 /**
631  * ahash_request_set_crypt() - set data buffers
632  * @req: ahash_request handle to be updated
633  * @src: source scatter/gather list
634  * @result: buffer that is filled with the message digest -- the caller must
635  *          ensure that the buffer has sufficient space by, for example, calling
636  *          crypto_ahash_digestsize()
637  * @nbytes: number of bytes to process from the source scatter/gather list
638  *
639  * By using this call, the caller references the source scatter/gather list.
640  * The source scatter/gather list points to the data the message digest is to
641  * be calculated for.
642  */
643 static inline void ahash_request_set_crypt(struct ahash_request *req,
644                                            struct scatterlist *src, u8 *result,
645                                            unsigned int nbytes)
646 {
647         req->src = src;
648         req->nbytes = nbytes;
649         req->result = result;
650 }
651 
652 /**
653  * DOC: Synchronous Message Digest API
654  *
655  * The synchronous message digest API is used with the ciphers of type
656  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
657  *
658  * The message digest API is able to maintain state information for the
659  * caller.
660  *
661  * The synchronous message digest API can store user-related context in its
662  * shash_desc request data structure.
663  */
664 
665 /**
666  * crypto_alloc_shash() - allocate message digest handle
667  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
668  *            message digest cipher
669  * @type: specifies the type of the cipher
670  * @mask: specifies the mask for the cipher
671  *
672  * Allocate a cipher handle for a message digest. The returned &struct
673  * crypto_shash is the cipher handle that is required for any subsequent
674  * API invocation for that message digest.
675  *
676  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
677  *         of an error, PTR_ERR() returns the error code.
678  */
679 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
680                                         u32 mask);
681 
682 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
683 
684 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
685 
686 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
687 {
688         return &tfm->base;
689 }
690 
691 /**
692  * crypto_free_shash() - zeroize and free the message digest handle
693  * @tfm: cipher handle to be freed
694  *
695  * If @tfm is a NULL or error pointer, this function does nothing.
696  */
697 static inline void crypto_free_shash(struct crypto_shash *tfm)
698 {
699         crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
700 }
701 
702 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
703 {
704         return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
705 }
706 
707 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
708 {
709         return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
710 }
711 
712 /**
713  * crypto_shash_blocksize() - obtain block size for cipher
714  * @tfm: cipher handle
715  *
716  * The block size for the message digest cipher referenced with the cipher
717  * handle is returned.
718  *
719  * Return: block size of cipher
720  */
721 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
722 {
723         return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
724 }
725 
726 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
727 {
728         return container_of(alg, struct shash_alg, base);
729 }
730 
731 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
732 {
733         return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
734 }
735 
736 /**
737  * crypto_shash_digestsize() - obtain message digest size
738  * @tfm: cipher handle
739  *
740  * The size for the message digest created by the message digest cipher
741  * referenced with the cipher handle is returned.
742  *
743  * Return: digest size of cipher
744  */
745 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
746 {
747         return crypto_shash_alg(tfm)->digestsize;
748 }
749 
750 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
751 {
752         return crypto_shash_alg(tfm)->statesize;
753 }
754 
755 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
756 {
757         return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
758 }
759 
760 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
761 {
762         crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
763 }
764 
765 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
766 {
767         crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
768 }
769 
770 /**
771  * crypto_shash_descsize() - obtain the operational state size
772  * @tfm: cipher handle
773  *
774  * The size of the operational state the cipher needs during operation is
775  * returned for the hash referenced with the cipher handle. This size is
776  * required to calculate the memory requirements to allow the caller allocating
777  * sufficient memory for operational state.
778  *
779  * The operational state is defined with struct shash_desc where the size of
780  * that data structure is to be calculated as
781  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
782  *
783  * Return: size of the operational state
784  */
785 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
786 {
787         return tfm->descsize;
788 }
789 
790 static inline void *shash_desc_ctx(struct shash_desc *desc)
791 {
792         return desc->__ctx;
793 }
794 
795 /**
796  * crypto_shash_setkey() - set key for message digest
797  * @tfm: cipher handle
798  * @key: buffer holding the key
799  * @keylen: length of the key in bytes
800  *
801  * The caller provided key is set for the keyed message digest cipher. The
802  * cipher handle must point to a keyed message digest cipher in order for this
803  * function to succeed.
804  *
805  * Context: Any context.
806  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
807  */
808 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
809                         unsigned int keylen);
810 
811 /**
812  * crypto_shash_digest() - calculate message digest for buffer
813  * @desc: see crypto_shash_final()
814  * @data: see crypto_shash_update()
815  * @len: see crypto_shash_update()
816  * @out: see crypto_shash_final()
817  *
818  * This function is a "short-hand" for the function calls of crypto_shash_init,
819  * crypto_shash_update and crypto_shash_final. The parameters have the same
820  * meaning as discussed for those separate three functions.
821  *
822  * Context: Any context.
823  * Return: 0 if the message digest creation was successful; < 0 if an error
824  *         occurred
825  */
826 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
827                         unsigned int len, u8 *out);
828 
829 /**
830  * crypto_shash_tfm_digest() - calculate message digest for buffer
831  * @tfm: hash transformation object
832  * @data: see crypto_shash_update()
833  * @len: see crypto_shash_update()
834  * @out: see crypto_shash_final()
835  *
836  * This is a simplified version of crypto_shash_digest() for users who don't
837  * want to allocate their own hash descriptor (shash_desc).  Instead,
838  * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
839  * directly, and it allocates a hash descriptor on the stack internally.
840  * Note that this stack allocation may be fairly large.
841  *
842  * Context: Any context.
843  * Return: 0 on success; < 0 if an error occurred.
844  */
845 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
846                             unsigned int len, u8 *out);
847 
848 /**
849  * crypto_shash_export() - extract operational state for message digest
850  * @desc: reference to the operational state handle whose state is exported
851  * @out: output buffer of sufficient size that can hold the hash state
852  *
853  * This function exports the hash state of the operational state handle into the
854  * caller-allocated output buffer out which must have sufficient size (e.g. by
855  * calling crypto_shash_descsize).
856  *
857  * Context: Any context.
858  * Return: 0 if the export creation was successful; < 0 if an error occurred
859  */
860 int crypto_shash_export(struct shash_desc *desc, void *out);
861 
862 /**
863  * crypto_shash_import() - import operational state
864  * @desc: reference to the operational state handle the state imported into
865  * @in: buffer holding the state
866  *
867  * This function imports the hash state into the operational state handle from
868  * the input buffer. That buffer should have been generated with the
869  * crypto_ahash_export function.
870  *
871  * Context: Any context.
872  * Return: 0 if the import was successful; < 0 if an error occurred
873  */
874 int crypto_shash_import(struct shash_desc *desc, const void *in);
875 
876 /**
877  * crypto_shash_init() - (re)initialize message digest
878  * @desc: operational state handle that is already filled
879  *
880  * The call (re-)initializes the message digest referenced by the
881  * operational state handle. Any potentially existing state created by
882  * previous operations is discarded.
883  *
884  * Context: Any context.
885  * Return: 0 if the message digest initialization was successful; < 0 if an
886  *         error occurred
887  */
888 static inline int crypto_shash_init(struct shash_desc *desc)
889 {
890         struct crypto_shash *tfm = desc->tfm;
891 
892         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
893                 return -ENOKEY;
894 
895         return crypto_shash_alg(tfm)->init(desc);
896 }
897 
898 /**
899  * crypto_shash_update() - add data to message digest for processing
900  * @desc: operational state handle that is already initialized
901  * @data: input data to be added to the message digest
902  * @len: length of the input data
903  *
904  * Updates the message digest state of the operational state handle.
905  *
906  * Context: Any context.
907  * Return: 0 if the message digest update was successful; < 0 if an error
908  *         occurred
909  */
910 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
911                         unsigned int len);
912 
913 /**
914  * crypto_shash_final() - calculate message digest
915  * @desc: operational state handle that is already filled with data
916  * @out: output buffer filled with the message digest
917  *
918  * Finalize the message digest operation and create the message digest
919  * based on all data added to the cipher handle. The message digest is placed
920  * into the output buffer. The caller must ensure that the output buffer is
921  * large enough by using crypto_shash_digestsize.
922  *
923  * Context: Any context.
924  * Return: 0 if the message digest creation was successful; < 0 if an error
925  *         occurred
926  */
927 int crypto_shash_final(struct shash_desc *desc, u8 *out);
928 
929 /**
930  * crypto_shash_finup() - calculate message digest of buffer
931  * @desc: see crypto_shash_final()
932  * @data: see crypto_shash_update()
933  * @len: see crypto_shash_update()
934  * @out: see crypto_shash_final()
935  *
936  * This function is a "short-hand" for the function calls of
937  * crypto_shash_update and crypto_shash_final. The parameters have the same
938  * meaning as discussed for those separate functions.
939  *
940  * Context: Any context.
941  * Return: 0 if the message digest creation was successful; < 0 if an error
942  *         occurred
943  */
944 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
945                        unsigned int len, u8 *out);
946 
947 static inline void shash_desc_zero(struct shash_desc *desc)
948 {
949         memzero_explicit(desc,
950                          sizeof(*desc) + crypto_shash_descsize(desc->tfm));
951 }
952 
953 #endif  /* _CRYPTO_HASH_H */
954 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php