1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5 #ifndef __LINUX_BIO_H 6 #define __LINUX_BIO_H 7 8 #include <linux/mempool.h> 9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10 #include <linux/blk_types.h> 11 #include <linux/uio.h> 12 13 #define BIO_MAX_VECS 256U 14 15 struct queue_limits; 16 17 static inline unsigned int bio_max_segs(unsigned int nr_segs) 18 { 19 return min(nr_segs, BIO_MAX_VECS); 20 } 21 22 #define bio_prio(bio) (bio)->bi_ioprio 23 #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) 24 25 #define bio_iter_iovec(bio, iter) \ 26 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 27 28 #define bio_iter_page(bio, iter) \ 29 bvec_iter_page((bio)->bi_io_vec, (iter)) 30 #define bio_iter_len(bio, iter) \ 31 bvec_iter_len((bio)->bi_io_vec, (iter)) 32 #define bio_iter_offset(bio, iter) \ 33 bvec_iter_offset((bio)->bi_io_vec, (iter)) 34 35 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 36 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 37 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 38 39 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 40 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 41 42 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 43 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 44 45 /* 46 * Return the data direction, READ or WRITE. 47 */ 48 #define bio_data_dir(bio) \ 49 (op_is_write(bio_op(bio)) ? WRITE : READ) 50 51 /* 52 * Check whether this bio carries any data or not. A NULL bio is allowed. 53 */ 54 static inline bool bio_has_data(struct bio *bio) 55 { 56 if (bio && 57 bio->bi_iter.bi_size && 58 bio_op(bio) != REQ_OP_DISCARD && 59 bio_op(bio) != REQ_OP_SECURE_ERASE && 60 bio_op(bio) != REQ_OP_WRITE_ZEROES) 61 return true; 62 63 return false; 64 } 65 66 static inline bool bio_no_advance_iter(const struct bio *bio) 67 { 68 return bio_op(bio) == REQ_OP_DISCARD || 69 bio_op(bio) == REQ_OP_SECURE_ERASE || 70 bio_op(bio) == REQ_OP_WRITE_ZEROES; 71 } 72 73 static inline void *bio_data(struct bio *bio) 74 { 75 if (bio_has_data(bio)) 76 return page_address(bio_page(bio)) + bio_offset(bio); 77 78 return NULL; 79 } 80 81 static inline bool bio_next_segment(const struct bio *bio, 82 struct bvec_iter_all *iter) 83 { 84 if (iter->idx >= bio->bi_vcnt) 85 return false; 86 87 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 88 return true; 89 } 90 91 /* 92 * drivers should _never_ use the all version - the bio may have been split 93 * before it got to the driver and the driver won't own all of it 94 */ 95 #define bio_for_each_segment_all(bvl, bio, iter) \ 96 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 97 98 static inline void bio_advance_iter(const struct bio *bio, 99 struct bvec_iter *iter, unsigned int bytes) 100 { 101 iter->bi_sector += bytes >> 9; 102 103 if (bio_no_advance_iter(bio)) 104 iter->bi_size -= bytes; 105 else 106 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 107 /* TODO: It is reasonable to complete bio with error here. */ 108 } 109 110 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 111 static inline void bio_advance_iter_single(const struct bio *bio, 112 struct bvec_iter *iter, 113 unsigned int bytes) 114 { 115 iter->bi_sector += bytes >> 9; 116 117 if (bio_no_advance_iter(bio)) 118 iter->bi_size -= bytes; 119 else 120 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 121 } 122 123 void __bio_advance(struct bio *, unsigned bytes); 124 125 /** 126 * bio_advance - increment/complete a bio by some number of bytes 127 * @bio: bio to advance 128 * @nbytes: number of bytes to complete 129 * 130 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 131 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 132 * be updated on the last bvec as well. 133 * 134 * @bio will then represent the remaining, uncompleted portion of the io. 135 */ 136 static inline void bio_advance(struct bio *bio, unsigned int nbytes) 137 { 138 if (nbytes == bio->bi_iter.bi_size) { 139 bio->bi_iter.bi_size = 0; 140 return; 141 } 142 __bio_advance(bio, nbytes); 143 } 144 145 #define __bio_for_each_segment(bvl, bio, iter, start) \ 146 for (iter = (start); \ 147 (iter).bi_size && \ 148 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 149 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 150 151 #define bio_for_each_segment(bvl, bio, iter) \ 152 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 153 154 #define __bio_for_each_bvec(bvl, bio, iter, start) \ 155 for (iter = (start); \ 156 (iter).bi_size && \ 157 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 158 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 159 160 /* iterate over multi-page bvec */ 161 #define bio_for_each_bvec(bvl, bio, iter) \ 162 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 163 164 /* 165 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 166 * same reasons as bio_for_each_segment_all(). 167 */ 168 #define bio_for_each_bvec_all(bvl, bio, i) \ 169 for (i = 0, bvl = bio_first_bvec_all(bio); \ 170 i < (bio)->bi_vcnt; i++, bvl++) 171 172 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 173 174 static inline unsigned bio_segments(struct bio *bio) 175 { 176 unsigned segs = 0; 177 struct bio_vec bv; 178 struct bvec_iter iter; 179 180 /* 181 * We special case discard/write same/write zeroes, because they 182 * interpret bi_size differently: 183 */ 184 185 switch (bio_op(bio)) { 186 case REQ_OP_DISCARD: 187 case REQ_OP_SECURE_ERASE: 188 case REQ_OP_WRITE_ZEROES: 189 return 0; 190 default: 191 break; 192 } 193 194 bio_for_each_segment(bv, bio, iter) 195 segs++; 196 197 return segs; 198 } 199 200 /* 201 * get a reference to a bio, so it won't disappear. the intended use is 202 * something like: 203 * 204 * bio_get(bio); 205 * submit_bio(rw, bio); 206 * if (bio->bi_flags ...) 207 * do_something 208 * bio_put(bio); 209 * 210 * without the bio_get(), it could potentially complete I/O before submit_bio 211 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 212 * runs 213 */ 214 static inline void bio_get(struct bio *bio) 215 { 216 bio->bi_flags |= (1 << BIO_REFFED); 217 smp_mb__before_atomic(); 218 atomic_inc(&bio->__bi_cnt); 219 } 220 221 static inline void bio_cnt_set(struct bio *bio, unsigned int count) 222 { 223 if (count != 1) { 224 bio->bi_flags |= (1 << BIO_REFFED); 225 smp_mb(); 226 } 227 atomic_set(&bio->__bi_cnt, count); 228 } 229 230 static inline bool bio_flagged(struct bio *bio, unsigned int bit) 231 { 232 return bio->bi_flags & (1U << bit); 233 } 234 235 static inline void bio_set_flag(struct bio *bio, unsigned int bit) 236 { 237 bio->bi_flags |= (1U << bit); 238 } 239 240 static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 241 { 242 bio->bi_flags &= ~(1U << bit); 243 } 244 245 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 246 { 247 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 248 return bio->bi_io_vec; 249 } 250 251 static inline struct page *bio_first_page_all(struct bio *bio) 252 { 253 return bio_first_bvec_all(bio)->bv_page; 254 } 255 256 static inline struct folio *bio_first_folio_all(struct bio *bio) 257 { 258 return page_folio(bio_first_page_all(bio)); 259 } 260 261 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 262 { 263 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 264 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 265 } 266 267 /** 268 * struct folio_iter - State for iterating all folios in a bio. 269 * @folio: The current folio we're iterating. NULL after the last folio. 270 * @offset: The byte offset within the current folio. 271 * @length: The number of bytes in this iteration (will not cross folio 272 * boundary). 273 */ 274 struct folio_iter { 275 struct folio *folio; 276 size_t offset; 277 size_t length; 278 /* private: for use by the iterator */ 279 struct folio *_next; 280 size_t _seg_count; 281 int _i; 282 }; 283 284 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 285 int i) 286 { 287 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 288 289 if (unlikely(i >= bio->bi_vcnt)) { 290 fi->folio = NULL; 291 return; 292 } 293 294 fi->folio = page_folio(bvec->bv_page); 295 fi->offset = bvec->bv_offset + 296 PAGE_SIZE * (bvec->bv_page - &fi->folio->page); 297 fi->_seg_count = bvec->bv_len; 298 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 299 fi->_next = folio_next(fi->folio); 300 fi->_i = i; 301 } 302 303 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 304 { 305 fi->_seg_count -= fi->length; 306 if (fi->_seg_count) { 307 fi->folio = fi->_next; 308 fi->offset = 0; 309 fi->length = min(folio_size(fi->folio), fi->_seg_count); 310 fi->_next = folio_next(fi->folio); 311 } else { 312 bio_first_folio(fi, bio, fi->_i + 1); 313 } 314 } 315 316 /** 317 * bio_for_each_folio_all - Iterate over each folio in a bio. 318 * @fi: struct folio_iter which is updated for each folio. 319 * @bio: struct bio to iterate over. 320 */ 321 #define bio_for_each_folio_all(fi, bio) \ 322 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 323 324 void bio_trim(struct bio *bio, sector_t offset, sector_t size); 325 extern struct bio *bio_split(struct bio *bio, int sectors, 326 gfp_t gfp, struct bio_set *bs); 327 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 328 unsigned *segs, struct bio_set *bs, unsigned max_bytes); 329 330 /** 331 * bio_next_split - get next @sectors from a bio, splitting if necessary 332 * @bio: bio to split 333 * @sectors: number of sectors to split from the front of @bio 334 * @gfp: gfp mask 335 * @bs: bio set to allocate from 336 * 337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 338 * than @sectors, returns the original bio unchanged. 339 */ 340 static inline struct bio *bio_next_split(struct bio *bio, int sectors, 341 gfp_t gfp, struct bio_set *bs) 342 { 343 if (sectors >= bio_sectors(bio)) 344 return bio; 345 346 return bio_split(bio, sectors, gfp, bs); 347 } 348 349 enum { 350 BIOSET_NEED_BVECS = BIT(0), 351 BIOSET_NEED_RESCUER = BIT(1), 352 BIOSET_PERCPU_CACHE = BIT(2), 353 }; 354 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 355 extern void bioset_exit(struct bio_set *); 356 extern int biovec_init_pool(mempool_t *pool, int pool_entries); 357 358 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 359 blk_opf_t opf, gfp_t gfp_mask, 360 struct bio_set *bs); 361 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 362 extern void bio_put(struct bio *); 363 364 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 365 gfp_t gfp, struct bio_set *bs); 366 int bio_init_clone(struct block_device *bdev, struct bio *bio, 367 struct bio *bio_src, gfp_t gfp); 368 369 extern struct bio_set fs_bio_set; 370 371 static inline struct bio *bio_alloc(struct block_device *bdev, 372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 373 { 374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 375 } 376 377 void submit_bio(struct bio *bio); 378 379 extern void bio_endio(struct bio *); 380 381 static inline void bio_io_error(struct bio *bio) 382 { 383 bio->bi_status = BLK_STS_IOERR; 384 bio_endio(bio); 385 } 386 387 static inline void bio_wouldblock_error(struct bio *bio) 388 { 389 bio_set_flag(bio, BIO_QUIET); 390 bio->bi_status = BLK_STS_AGAIN; 391 bio_endio(bio); 392 } 393 394 /* 395 * Calculate number of bvec segments that should be allocated to fit data 396 * pointed by @iter. If @iter is backed by bvec it's going to be reused 397 * instead of allocating a new one. 398 */ 399 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 400 { 401 if (iov_iter_is_bvec(iter)) 402 return 0; 403 return iov_iter_npages(iter, max_segs); 404 } 405 406 struct request_queue; 407 408 extern int submit_bio_wait(struct bio *bio); 409 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 410 unsigned short max_vecs, blk_opf_t opf); 411 extern void bio_uninit(struct bio *); 412 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 413 void bio_chain(struct bio *, struct bio *); 414 415 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 416 unsigned off); 417 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 418 size_t len, size_t off); 419 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 420 unsigned int, unsigned int); 421 int bio_add_zone_append_page(struct bio *bio, struct page *page, 422 unsigned int len, unsigned int offset); 423 void __bio_add_page(struct bio *bio, struct page *page, 424 unsigned int len, unsigned int off); 425 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 426 size_t off); 427 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 428 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter); 429 void __bio_release_pages(struct bio *bio, bool mark_dirty); 430 extern void bio_set_pages_dirty(struct bio *bio); 431 extern void bio_check_pages_dirty(struct bio *bio); 432 433 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 434 struct bio *src, struct bvec_iter *src_iter); 435 extern void bio_copy_data(struct bio *dst, struct bio *src); 436 extern void bio_free_pages(struct bio *bio); 437 void guard_bio_eod(struct bio *bio); 438 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 439 440 static inline void zero_fill_bio(struct bio *bio) 441 { 442 zero_fill_bio_iter(bio, bio->bi_iter); 443 } 444 445 static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 446 { 447 if (bio_flagged(bio, BIO_PAGE_PINNED)) 448 __bio_release_pages(bio, mark_dirty); 449 } 450 451 #define bio_dev(bio) \ 452 disk_devt((bio)->bi_bdev->bd_disk) 453 454 #ifdef CONFIG_BLK_CGROUP 455 void bio_associate_blkg(struct bio *bio); 456 void bio_associate_blkg_from_css(struct bio *bio, 457 struct cgroup_subsys_state *css); 458 void bio_clone_blkg_association(struct bio *dst, struct bio *src); 459 void blkcg_punt_bio_submit(struct bio *bio); 460 #else /* CONFIG_BLK_CGROUP */ 461 static inline void bio_associate_blkg(struct bio *bio) { } 462 static inline void bio_associate_blkg_from_css(struct bio *bio, 463 struct cgroup_subsys_state *css) 464 { } 465 static inline void bio_clone_blkg_association(struct bio *dst, 466 struct bio *src) { } 467 static inline void blkcg_punt_bio_submit(struct bio *bio) 468 { 469 submit_bio(bio); 470 } 471 #endif /* CONFIG_BLK_CGROUP */ 472 473 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 474 { 475 bio_clear_flag(bio, BIO_REMAPPED); 476 if (bio->bi_bdev != bdev) 477 bio_clear_flag(bio, BIO_BPS_THROTTLED); 478 bio->bi_bdev = bdev; 479 bio_associate_blkg(bio); 480 } 481 482 /* 483 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 484 * 485 * A bio_list anchors a singly-linked list of bios chained through the bi_next 486 * member of the bio. The bio_list also caches the last list member to allow 487 * fast access to the tail. 488 */ 489 struct bio_list { 490 struct bio *head; 491 struct bio *tail; 492 }; 493 494 static inline int bio_list_empty(const struct bio_list *bl) 495 { 496 return bl->head == NULL; 497 } 498 499 static inline void bio_list_init(struct bio_list *bl) 500 { 501 bl->head = bl->tail = NULL; 502 } 503 504 #define BIO_EMPTY_LIST { NULL, NULL } 505 506 #define bio_list_for_each(bio, bl) \ 507 for (bio = (bl)->head; bio; bio = bio->bi_next) 508 509 static inline unsigned bio_list_size(const struct bio_list *bl) 510 { 511 unsigned sz = 0; 512 struct bio *bio; 513 514 bio_list_for_each(bio, bl) 515 sz++; 516 517 return sz; 518 } 519 520 static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 521 { 522 bio->bi_next = NULL; 523 524 if (bl->tail) 525 bl->tail->bi_next = bio; 526 else 527 bl->head = bio; 528 529 bl->tail = bio; 530 } 531 532 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 533 { 534 bio->bi_next = bl->head; 535 536 bl->head = bio; 537 538 if (!bl->tail) 539 bl->tail = bio; 540 } 541 542 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 543 { 544 if (!bl2->head) 545 return; 546 547 if (bl->tail) 548 bl->tail->bi_next = bl2->head; 549 else 550 bl->head = bl2->head; 551 552 bl->tail = bl2->tail; 553 } 554 555 static inline void bio_list_merge_init(struct bio_list *bl, 556 struct bio_list *bl2) 557 { 558 bio_list_merge(bl, bl2); 559 bio_list_init(bl2); 560 } 561 562 static inline void bio_list_merge_head(struct bio_list *bl, 563 struct bio_list *bl2) 564 { 565 if (!bl2->head) 566 return; 567 568 if (bl->head) 569 bl2->tail->bi_next = bl->head; 570 else 571 bl->tail = bl2->tail; 572 573 bl->head = bl2->head; 574 } 575 576 static inline struct bio *bio_list_peek(struct bio_list *bl) 577 { 578 return bl->head; 579 } 580 581 static inline struct bio *bio_list_pop(struct bio_list *bl) 582 { 583 struct bio *bio = bl->head; 584 585 if (bio) { 586 bl->head = bl->head->bi_next; 587 if (!bl->head) 588 bl->tail = NULL; 589 590 bio->bi_next = NULL; 591 } 592 593 return bio; 594 } 595 596 static inline struct bio *bio_list_get(struct bio_list *bl) 597 { 598 struct bio *bio = bl->head; 599 600 bl->head = bl->tail = NULL; 601 602 return bio; 603 } 604 605 /* 606 * Increment chain count for the bio. Make sure the CHAIN flag update 607 * is visible before the raised count. 608 */ 609 static inline void bio_inc_remaining(struct bio *bio) 610 { 611 bio_set_flag(bio, BIO_CHAIN); 612 smp_mb__before_atomic(); 613 atomic_inc(&bio->__bi_remaining); 614 } 615 616 /* 617 * bio_set is used to allow other portions of the IO system to 618 * allocate their own private memory pools for bio and iovec structures. 619 * These memory pools in turn all allocate from the bio_slab 620 * and the bvec_slabs[]. 621 */ 622 #define BIO_POOL_SIZE 2 623 624 struct bio_set { 625 struct kmem_cache *bio_slab; 626 unsigned int front_pad; 627 628 /* 629 * per-cpu bio alloc cache 630 */ 631 struct bio_alloc_cache __percpu *cache; 632 633 mempool_t bio_pool; 634 mempool_t bvec_pool; 635 #if defined(CONFIG_BLK_DEV_INTEGRITY) 636 mempool_t bio_integrity_pool; 637 mempool_t bvec_integrity_pool; 638 #endif 639 640 unsigned int back_pad; 641 /* 642 * Deadlock avoidance for stacking block drivers: see comments in 643 * bio_alloc_bioset() for details 644 */ 645 spinlock_t rescue_lock; 646 struct bio_list rescue_list; 647 struct work_struct rescue_work; 648 struct workqueue_struct *rescue_workqueue; 649 650 /* 651 * Hot un-plug notifier for the per-cpu cache, if used 652 */ 653 struct hlist_node cpuhp_dead; 654 }; 655 656 static inline bool bioset_initialized(struct bio_set *bs) 657 { 658 return bs->bio_slab != NULL; 659 } 660 661 /* 662 * Mark a bio as polled. Note that for async polled IO, the caller must 663 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 664 * We cannot block waiting for requests on polled IO, as those completions 665 * must be found by the caller. This is different than IRQ driven IO, where 666 * it's safe to wait for IO to complete. 667 */ 668 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 669 { 670 bio->bi_opf |= REQ_POLLED; 671 if (kiocb->ki_flags & IOCB_NOWAIT) 672 bio->bi_opf |= REQ_NOWAIT; 673 } 674 675 static inline void bio_clear_polled(struct bio *bio) 676 { 677 bio->bi_opf &= ~REQ_POLLED; 678 } 679 680 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 681 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 682 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new); 683 684 struct bio *blk_alloc_discard_bio(struct block_device *bdev, 685 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask); 686 687 #endif /* __LINUX_BIO_H */ 688
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.