~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/bitmap.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef __LINUX_BITMAP_H
  3 #define __LINUX_BITMAP_H
  4 
  5 #ifndef __ASSEMBLY__
  6 
  7 #include <linux/align.h>
  8 #include <linux/bitops.h>
  9 #include <linux/cleanup.h>
 10 #include <linux/errno.h>
 11 #include <linux/find.h>
 12 #include <linux/limits.h>
 13 #include <linux/string.h>
 14 #include <linux/types.h>
 15 #include <linux/bitmap-str.h>
 16 
 17 struct device;
 18 
 19 /*
 20  * bitmaps provide bit arrays that consume one or more unsigned
 21  * longs.  The bitmap interface and available operations are listed
 22  * here, in bitmap.h
 23  *
 24  * Function implementations generic to all architectures are in
 25  * lib/bitmap.c.  Functions implementations that are architecture
 26  * specific are in various include/asm-<arch>/bitops.h headers
 27  * and other arch/<arch> specific files.
 28  *
 29  * See lib/bitmap.c for more details.
 30  */
 31 
 32 /**
 33  * DOC: bitmap overview
 34  *
 35  * The available bitmap operations and their rough meaning in the
 36  * case that the bitmap is a single unsigned long are thus:
 37  *
 38  * The generated code is more efficient when nbits is known at
 39  * compile-time and at most BITS_PER_LONG.
 40  *
 41  * ::
 42  *
 43  *  bitmap_zero(dst, nbits)                     *dst = 0UL
 44  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
 45  *  bitmap_copy(dst, src, nbits)                *dst = *src
 46  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
 47  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
 48  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
 49  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
 50  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
 51  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
 52  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
 53  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
 54  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
 55  *  bitmap_full(src, nbits)                     Are all bits set in *src?
 56  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
 57  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
 58  *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
 59  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
 60  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
 61  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
 62  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
 63  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
 64  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
 65  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
 66  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
 67  *  bitmap_scatter(dst, src, mask, nbits)       *dst = map(dense, sparse)(src)
 68  *  bitmap_gather(dst, src, mask, nbits)        *dst = map(sparse, dense)(src)
 69  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
 70  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
 71  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
 72  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
 73  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
 74  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
 75  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
 76  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
 77  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
 78  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
 79  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
 80  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
 81  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
 82  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
 83  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
 84  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
 85  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
 86  *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
 87  *                                              map at start
 88  *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
 89  *                                              map at start
 90  *
 91  * Note, bitmap_zero() and bitmap_fill() operate over the region of
 92  * unsigned longs, that is, bits behind bitmap till the unsigned long
 93  * boundary will be zeroed or filled as well. Consider to use
 94  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
 95  * respectively.
 96  */
 97 
 98 /**
 99  * DOC: bitmap bitops
100  *
101  * Also the following operations in asm/bitops.h apply to bitmaps.::
102  *
103  *  set_bit(bit, addr)                  *addr |= bit
104  *  clear_bit(bit, addr)                *addr &= ~bit
105  *  change_bit(bit, addr)               *addr ^= bit
106  *  test_bit(bit, addr)                 Is bit set in *addr?
107  *  test_and_set_bit(bit, addr)         Set bit and return old value
108  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
109  *  test_and_change_bit(bit, addr)      Change bit and return old value
110  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
111  *  find_first_bit(addr, nbits)         Position first set bit in *addr
112  *  find_next_zero_bit(addr, nbits, bit)
113  *                                      Position next zero bit in *addr >= bit
114  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
115  *  find_next_and_bit(addr1, addr2, nbits, bit)
116  *                                      Same as find_next_bit, but in
117  *                                      (*addr1 & *addr2)
118  *
119  */
120 
121 /**
122  * DOC: declare bitmap
123  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124  * to declare an array named 'name' of just enough unsigned longs to
125  * contain all bit positions from 0 to 'bits' - 1.
126  */
127 
128 /*
129  * Allocation and deallocation of bitmap.
130  * Provided in lib/bitmap.c to avoid circular dependency.
131  */
132 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136 void bitmap_free(const unsigned long *bitmap);
137 
138 DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139 
140 /* Managed variants of the above. */
141 unsigned long *devm_bitmap_alloc(struct device *dev,
142                                  unsigned int nbits, gfp_t flags);
143 unsigned long *devm_bitmap_zalloc(struct device *dev,
144                                   unsigned int nbits, gfp_t flags);
145 
146 /*
147  * lib/bitmap.c provides these functions:
148  */
149 
150 bool __bitmap_equal(const unsigned long *bitmap1,
151                     const unsigned long *bitmap2, unsigned int nbits);
152 bool __pure __bitmap_or_equal(const unsigned long *src1,
153                               const unsigned long *src2,
154                               const unsigned long *src3,
155                               unsigned int nbits);
156 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157                          unsigned int nbits);
158 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159                           unsigned int shift, unsigned int nbits);
160 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161                          unsigned int shift, unsigned int nbits);
162 void bitmap_cut(unsigned long *dst, const unsigned long *src,
163                 unsigned int first, unsigned int cut, unsigned int nbits);
164 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165                  const unsigned long *bitmap2, unsigned int nbits);
166 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167                  const unsigned long *bitmap2, unsigned int nbits);
168 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169                   const unsigned long *bitmap2, unsigned int nbits);
170 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171                     const unsigned long *bitmap2, unsigned int nbits);
172 void __bitmap_replace(unsigned long *dst,
173                       const unsigned long *old, const unsigned long *new,
174                       const unsigned long *mask, unsigned int nbits);
175 bool __bitmap_intersects(const unsigned long *bitmap1,
176                          const unsigned long *bitmap2, unsigned int nbits);
177 bool __bitmap_subset(const unsigned long *bitmap1,
178                      const unsigned long *bitmap2, unsigned int nbits);
179 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181                                  const unsigned long *bitmap2, unsigned int nbits);
182 unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183                                     const unsigned long *bitmap2, unsigned int nbits);
184 void __bitmap_set(unsigned long *map, unsigned int start, int len);
185 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186 
187 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188                                              unsigned long size,
189                                              unsigned long start,
190                                              unsigned int nr,
191                                              unsigned long align_mask,
192                                              unsigned long align_offset);
193 
194 /**
195  * bitmap_find_next_zero_area - find a contiguous aligned zero area
196  * @map: The address to base the search on
197  * @size: The bitmap size in bits
198  * @start: The bitnumber to start searching at
199  * @nr: The number of zeroed bits we're looking for
200  * @align_mask: Alignment mask for zero area
201  *
202  * The @align_mask should be one less than a power of 2; the effect is that
203  * the bit offset of all zero areas this function finds is multiples of that
204  * power of 2. A @align_mask of 0 means no alignment is required.
205  */
206 static inline unsigned long
207 bitmap_find_next_zero_area(unsigned long *map,
208                            unsigned long size,
209                            unsigned long start,
210                            unsigned int nr,
211                            unsigned long align_mask)
212 {
213         return bitmap_find_next_zero_area_off(map, size, start, nr,
214                                               align_mask, 0);
215 }
216 
217 void bitmap_remap(unsigned long *dst, const unsigned long *src,
218                 const unsigned long *old, const unsigned long *new, unsigned int nbits);
219 int bitmap_bitremap(int oldbit,
220                 const unsigned long *old, const unsigned long *new, int bits);
221 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222                 const unsigned long *relmap, unsigned int bits);
223 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224                 unsigned int sz, unsigned int nbits);
225 
226 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228 
229 #define bitmap_size(nbits)      (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230 
231 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232 {
233         unsigned int len = bitmap_size(nbits);
234 
235         if (small_const_nbits(nbits))
236                 *dst = 0;
237         else
238                 memset(dst, 0, len);
239 }
240 
241 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242 {
243         unsigned int len = bitmap_size(nbits);
244 
245         if (small_const_nbits(nbits))
246                 *dst = ~0UL;
247         else
248                 memset(dst, 0xff, len);
249 }
250 
251 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
252                         unsigned int nbits)
253 {
254         unsigned int len = bitmap_size(nbits);
255 
256         if (small_const_nbits(nbits))
257                 *dst = *src;
258         else
259                 memcpy(dst, src, len);
260 }
261 
262 /*
263  * Copy bitmap and clear tail bits in last word.
264  */
265 static inline void bitmap_copy_clear_tail(unsigned long *dst,
266                 const unsigned long *src, unsigned int nbits)
267 {
268         bitmap_copy(dst, src, nbits);
269         if (nbits % BITS_PER_LONG)
270                 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271 }
272 
273 static inline void bitmap_copy_and_extend(unsigned long *to,
274                                           const unsigned long *from,
275                                           unsigned int count, unsigned int size)
276 {
277         unsigned int copy = BITS_TO_LONGS(count);
278 
279         memcpy(to, from, copy * sizeof(long));
280         if (count % BITS_PER_LONG)
281                 to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
282         memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
283 }
284 
285 /*
286  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
287  * machines the order of hi and lo parts of numbers match the bitmap structure.
288  * In both cases conversion is not needed when copying data from/to arrays of
289  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
290  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
291  * architectures are not using bitmap_copy_clear_tail().
292  */
293 #if BITS_PER_LONG == 64
294 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
295                                                         unsigned int nbits);
296 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
297                                                         unsigned int nbits);
298 #else
299 #define bitmap_from_arr32(bitmap, buf, nbits)                   \
300         bitmap_copy_clear_tail((unsigned long *) (bitmap),      \
301                         (const unsigned long *) (buf), (nbits))
302 #define bitmap_to_arr32(buf, bitmap, nbits)                     \
303         bitmap_copy_clear_tail((unsigned long *) (buf),         \
304                         (const unsigned long *) (bitmap), (nbits))
305 #endif
306 
307 /*
308  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
309  * the conversion is not needed when copying data from/to arrays of u64.
310  */
311 #if BITS_PER_LONG == 32
312 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
313 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
314 #else
315 #define bitmap_from_arr64(bitmap, buf, nbits)                   \
316         bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
317 #define bitmap_to_arr64(buf, bitmap, nbits)                     \
318         bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
319 #endif
320 
321 static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1,
322                         const unsigned long *src2, unsigned int nbits)
323 {
324         if (small_const_nbits(nbits))
325                 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
326         return __bitmap_and(dst, src1, src2, nbits);
327 }
328 
329 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
330                         const unsigned long *src2, unsigned int nbits)
331 {
332         if (small_const_nbits(nbits))
333                 *dst = *src1 | *src2;
334         else
335                 __bitmap_or(dst, src1, src2, nbits);
336 }
337 
338 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
339                         const unsigned long *src2, unsigned int nbits)
340 {
341         if (small_const_nbits(nbits))
342                 *dst = *src1 ^ *src2;
343         else
344                 __bitmap_xor(dst, src1, src2, nbits);
345 }
346 
347 static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
348                         const unsigned long *src2, unsigned int nbits)
349 {
350         if (small_const_nbits(nbits))
351                 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
352         return __bitmap_andnot(dst, src1, src2, nbits);
353 }
354 
355 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
356                         unsigned int nbits)
357 {
358         if (small_const_nbits(nbits))
359                 *dst = ~(*src);
360         else
361                 __bitmap_complement(dst, src, nbits);
362 }
363 
364 #ifdef __LITTLE_ENDIAN
365 #define BITMAP_MEM_ALIGNMENT 8
366 #else
367 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
368 #endif
369 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
370 
371 static inline bool bitmap_equal(const unsigned long *src1,
372                                 const unsigned long *src2, unsigned int nbits)
373 {
374         if (small_const_nbits(nbits))
375                 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
376         if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
377             IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
378                 return !memcmp(src1, src2, nbits / 8);
379         return __bitmap_equal(src1, src2, nbits);
380 }
381 
382 /**
383  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
384  * @src1:       Pointer to bitmap 1
385  * @src2:       Pointer to bitmap 2 will be or'ed with bitmap 1
386  * @src3:       Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
387  * @nbits:      number of bits in each of these bitmaps
388  *
389  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
390  */
391 static inline bool bitmap_or_equal(const unsigned long *src1,
392                                    const unsigned long *src2,
393                                    const unsigned long *src3,
394                                    unsigned int nbits)
395 {
396         if (!small_const_nbits(nbits))
397                 return __bitmap_or_equal(src1, src2, src3, nbits);
398 
399         return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
400 }
401 
402 static inline bool bitmap_intersects(const unsigned long *src1,
403                                      const unsigned long *src2,
404                                      unsigned int nbits)
405 {
406         if (small_const_nbits(nbits))
407                 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
408         else
409                 return __bitmap_intersects(src1, src2, nbits);
410 }
411 
412 static inline bool bitmap_subset(const unsigned long *src1,
413                                  const unsigned long *src2, unsigned int nbits)
414 {
415         if (small_const_nbits(nbits))
416                 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
417         else
418                 return __bitmap_subset(src1, src2, nbits);
419 }
420 
421 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
422 {
423         if (small_const_nbits(nbits))
424                 return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
425 
426         return find_first_bit(src, nbits) == nbits;
427 }
428 
429 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
430 {
431         if (small_const_nbits(nbits))
432                 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
433 
434         return find_first_zero_bit(src, nbits) == nbits;
435 }
436 
437 static __always_inline
438 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
439 {
440         if (small_const_nbits(nbits))
441                 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
442         return __bitmap_weight(src, nbits);
443 }
444 
445 static __always_inline
446 unsigned long bitmap_weight_and(const unsigned long *src1,
447                                 const unsigned long *src2, unsigned int nbits)
448 {
449         if (small_const_nbits(nbits))
450                 return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
451         return __bitmap_weight_and(src1, src2, nbits);
452 }
453 
454 static __always_inline
455 unsigned long bitmap_weight_andnot(const unsigned long *src1,
456                                    const unsigned long *src2, unsigned int nbits)
457 {
458         if (small_const_nbits(nbits))
459                 return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
460         return __bitmap_weight_andnot(src1, src2, nbits);
461 }
462 
463 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
464                 unsigned int nbits)
465 {
466         if (__builtin_constant_p(nbits) && nbits == 1)
467                 __set_bit(start, map);
468         else if (small_const_nbits(start + nbits))
469                 *map |= GENMASK(start + nbits - 1, start);
470         else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
471                  IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
472                  __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
473                  IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
474                 memset((char *)map + start / 8, 0xff, nbits / 8);
475         else
476                 __bitmap_set(map, start, nbits);
477 }
478 
479 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
480                 unsigned int nbits)
481 {
482         if (__builtin_constant_p(nbits) && nbits == 1)
483                 __clear_bit(start, map);
484         else if (small_const_nbits(start + nbits))
485                 *map &= ~GENMASK(start + nbits - 1, start);
486         else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
487                  IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
488                  __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
489                  IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
490                 memset((char *)map + start / 8, 0, nbits / 8);
491         else
492                 __bitmap_clear(map, start, nbits);
493 }
494 
495 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
496                                 unsigned int shift, unsigned int nbits)
497 {
498         if (small_const_nbits(nbits))
499                 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
500         else
501                 __bitmap_shift_right(dst, src, shift, nbits);
502 }
503 
504 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
505                                 unsigned int shift, unsigned int nbits)
506 {
507         if (small_const_nbits(nbits))
508                 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
509         else
510                 __bitmap_shift_left(dst, src, shift, nbits);
511 }
512 
513 static inline void bitmap_replace(unsigned long *dst,
514                                   const unsigned long *old,
515                                   const unsigned long *new,
516                                   const unsigned long *mask,
517                                   unsigned int nbits)
518 {
519         if (small_const_nbits(nbits))
520                 *dst = (*old & ~(*mask)) | (*new & *mask);
521         else
522                 __bitmap_replace(dst, old, new, mask, nbits);
523 }
524 
525 /**
526  * bitmap_scatter - Scatter a bitmap according to the given mask
527  * @dst: scattered bitmap
528  * @src: gathered bitmap
529  * @mask: mask representing bits to assign to in the scattered bitmap
530  * @nbits: number of bits in each of these bitmaps
531  *
532  * Scatters bitmap with sequential bits according to the given @mask.
533  *
534  * Example:
535  * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
536  *
537  * Or in binary form
538  * @src                 @mask                   @dst
539  * 0000000001011010     0001001100010011        0000001100000010
540  *
541  * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
542  *
543  * A more 'visual' description of the operation::
544  *
545  *      src:  0000000001011010
546  *                      ||||||
547  *               +------+|||||
548  *               |  +----+||||
549  *               |  |+----+|||
550  *               |  ||   +-+||
551  *               |  ||   |  ||
552  *      mask: ...v..vv...v..vv
553  *            ...0..11...0..10
554  *      dst:  0000001100000010
555  *
556  * A relationship exists between bitmap_scatter() and bitmap_gather().
557  * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
558  * See bitmap_scatter() for details related to this relationship.
559  */
560 static inline void bitmap_scatter(unsigned long *dst, const unsigned long *src,
561                                   const unsigned long *mask, unsigned int nbits)
562 {
563         unsigned int n = 0;
564         unsigned int bit;
565 
566         bitmap_zero(dst, nbits);
567 
568         for_each_set_bit(bit, mask, nbits)
569                 __assign_bit(bit, dst, test_bit(n++, src));
570 }
571 
572 /**
573  * bitmap_gather - Gather a bitmap according to given mask
574  * @dst: gathered bitmap
575  * @src: scattered bitmap
576  * @mask: mask representing bits to extract from in the scattered bitmap
577  * @nbits: number of bits in each of these bitmaps
578  *
579  * Gathers bitmap with sparse bits according to the given @mask.
580  *
581  * Example:
582  * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
583  *
584  * Or in binary form
585  * @src                 @mask                   @dst
586  * 0000001100000010     0001001100010011        0000000000011010
587  *
588  * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
589  *
590  * A more 'visual' description of the operation::
591  *
592  *      mask: ...v..vv...v..vv
593  *      src:  0000001100000010
594  *               ^  ^^   ^   0
595  *               |  ||   |  10
596  *               |  ||   > 010
597  *               |  |+--> 1010
598  *               |  +--> 11010
599  *               +----> 011010
600  *      dst:  0000000000011010
601  *
602  * A relationship exists between bitmap_gather() and bitmap_scatter(). See
603  * bitmap_scatter() for the bitmap scatter detailed operations.
604  * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
605  * The operation bitmap_gather(result, scattered, mask, n) leads to a result
606  * equal or equivalent to src.
607  *
608  * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
609  * are not bijective.
610  * The result and src values are equivalent in that sense that a call to
611  * bitmap_scatter(res, src, mask, n) and a call to
612  * bitmap_scatter(res, result, mask, n) will lead to the same res value.
613  */
614 static inline void bitmap_gather(unsigned long *dst, const unsigned long *src,
615                                  const unsigned long *mask, unsigned int nbits)
616 {
617         unsigned int n = 0;
618         unsigned int bit;
619 
620         bitmap_zero(dst, nbits);
621 
622         for_each_set_bit(bit, mask, nbits)
623                 __assign_bit(n++, dst, test_bit(bit, src));
624 }
625 
626 static inline void bitmap_next_set_region(unsigned long *bitmap,
627                                           unsigned int *rs, unsigned int *re,
628                                           unsigned int end)
629 {
630         *rs = find_next_bit(bitmap, end, *rs);
631         *re = find_next_zero_bit(bitmap, end, *rs + 1);
632 }
633 
634 /**
635  * bitmap_release_region - release allocated bitmap region
636  *      @bitmap: array of unsigned longs corresponding to the bitmap
637  *      @pos: beginning of bit region to release
638  *      @order: region size (log base 2 of number of bits) to release
639  *
640  * This is the complement to __bitmap_find_free_region() and releases
641  * the found region (by clearing it in the bitmap).
642  */
643 static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
644 {
645         bitmap_clear(bitmap, pos, BIT(order));
646 }
647 
648 /**
649  * bitmap_allocate_region - allocate bitmap region
650  *      @bitmap: array of unsigned longs corresponding to the bitmap
651  *      @pos: beginning of bit region to allocate
652  *      @order: region size (log base 2 of number of bits) to allocate
653  *
654  * Allocate (set bits in) a specified region of a bitmap.
655  *
656  * Returns: 0 on success, or %-EBUSY if specified region wasn't
657  * free (not all bits were zero).
658  */
659 static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
660 {
661         unsigned int len = BIT(order);
662 
663         if (find_next_bit(bitmap, pos + len, pos) < pos + len)
664                 return -EBUSY;
665         bitmap_set(bitmap, pos, len);
666         return 0;
667 }
668 
669 /**
670  * bitmap_find_free_region - find a contiguous aligned mem region
671  *      @bitmap: array of unsigned longs corresponding to the bitmap
672  *      @bits: number of bits in the bitmap
673  *      @order: region size (log base 2 of number of bits) to find
674  *
675  * Find a region of free (zero) bits in a @bitmap of @bits bits and
676  * allocate them (set them to one).  Only consider regions of length
677  * a power (@order) of two, aligned to that power of two, which
678  * makes the search algorithm much faster.
679  *
680  * Returns: the bit offset in bitmap of the allocated region,
681  * or -errno on failure.
682  */
683 static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
684 {
685         unsigned int pos, end;          /* scans bitmap by regions of size order */
686 
687         for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
688                 if (!bitmap_allocate_region(bitmap, pos, order))
689                         return pos;
690         }
691         return -ENOMEM;
692 }
693 
694 /**
695  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
696  * @n: u64 value
697  *
698  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
699  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
700  *
701  * There are four combinations of endianness and length of the word in linux
702  * ABIs: LE64, BE64, LE32 and BE32.
703  *
704  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
705  * bitmaps and therefore don't require any special handling.
706  *
707  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
708  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
709  * other hand is represented as an array of 32-bit words and the position of
710  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
711  * word.  For example, bit #42 is located at 10th position of 2nd word.
712  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
713  * values in memory as it usually does. But for BE we need to swap hi and lo
714  * words manually.
715  *
716  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
717  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
718  * hi and lo words, as is expected by bitmap.
719  */
720 #if __BITS_PER_LONG == 64
721 #define BITMAP_FROM_U64(n) (n)
722 #else
723 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
724                                 ((unsigned long) ((u64)(n) >> 32))
725 #endif
726 
727 /**
728  * bitmap_from_u64 - Check and swap words within u64.
729  *  @mask: source bitmap
730  *  @dst:  destination bitmap
731  *
732  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
733  * to read u64 mask, we will get the wrong word.
734  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
735  * but we expect the lower 32-bits of u64.
736  */
737 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
738 {
739         bitmap_from_arr64(dst, &mask, 64);
740 }
741 
742 /**
743  * bitmap_read - read a value of n-bits from the memory region
744  * @map: address to the bitmap memory region
745  * @start: bit offset of the n-bit value
746  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
747  *
748  * Returns: value of @nbits bits located at the @start bit offset within the
749  * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
750  * value is undefined.
751  */
752 static inline unsigned long bitmap_read(const unsigned long *map,
753                                         unsigned long start,
754                                         unsigned long nbits)
755 {
756         size_t index = BIT_WORD(start);
757         unsigned long offset = start % BITS_PER_LONG;
758         unsigned long space = BITS_PER_LONG - offset;
759         unsigned long value_low, value_high;
760 
761         if (unlikely(!nbits || nbits > BITS_PER_LONG))
762                 return 0;
763 
764         if (space >= nbits)
765                 return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
766 
767         value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
768         value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
769         return (value_low >> offset) | (value_high << space);
770 }
771 
772 /**
773  * bitmap_write - write n-bit value within a memory region
774  * @map: address to the bitmap memory region
775  * @value: value to write, clamped to nbits
776  * @start: bit offset of the n-bit value
777  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
778  *
779  * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
780  * i.e. bits beyond @nbits are ignored:
781  *
782  *   for (bit = 0; bit < nbits; bit++)
783  *           __assign_bit(start + bit, bitmap, val & BIT(bit));
784  *
785  * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
786  */
787 static inline void bitmap_write(unsigned long *map, unsigned long value,
788                                 unsigned long start, unsigned long nbits)
789 {
790         size_t index;
791         unsigned long offset;
792         unsigned long space;
793         unsigned long mask;
794         bool fit;
795 
796         if (unlikely(!nbits || nbits > BITS_PER_LONG))
797                 return;
798 
799         mask = BITMAP_LAST_WORD_MASK(nbits);
800         value &= mask;
801         offset = start % BITS_PER_LONG;
802         space = BITS_PER_LONG - offset;
803         fit = space >= nbits;
804         index = BIT_WORD(start);
805 
806         map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
807         map[index] |= value << offset;
808         if (fit)
809                 return;
810 
811         map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
812         map[index + 1] |= (value >> space);
813 }
814 
815 #define bitmap_get_value8(map, start)                   \
816         bitmap_read(map, start, BITS_PER_BYTE)
817 #define bitmap_set_value8(map, value, start)            \
818         bitmap_write(map, value, start, BITS_PER_BYTE)
819 
820 #endif /* __ASSEMBLY__ */
821 
822 #endif /* __LINUX_BITMAP_H */
823 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php