~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/blk-mq.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef BLK_MQ_H
  3 #define BLK_MQ_H
  4 
  5 #include <linux/blkdev.h>
  6 #include <linux/sbitmap.h>
  7 #include <linux/lockdep.h>
  8 #include <linux/scatterlist.h>
  9 #include <linux/prefetch.h>
 10 #include <linux/srcu.h>
 11 #include <linux/rw_hint.h>
 12 
 13 struct blk_mq_tags;
 14 struct blk_flush_queue;
 15 
 16 #define BLKDEV_MIN_RQ   4
 17 #define BLKDEV_DEFAULT_RQ       128
 18 
 19 enum rq_end_io_ret {
 20         RQ_END_IO_NONE,
 21         RQ_END_IO_FREE,
 22 };
 23 
 24 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
 25 
 26 /*
 27  * request flags */
 28 typedef __u32 __bitwise req_flags_t;
 29 
 30 /* Keep rqf_name[] in sync with the definitions below */
 31 enum {
 32         /* drive already may have started this one */
 33         __RQF_STARTED,
 34         /* request for flush sequence */
 35         __RQF_FLUSH_SEQ,
 36         /* merge of different types, fail separately */
 37         __RQF_MIXED_MERGE,
 38         /* don't call prep for this one */
 39         __RQF_DONTPREP,
 40         /* use hctx->sched_tags */
 41         __RQF_SCHED_TAGS,
 42         /* use an I/O scheduler for this request */
 43         __RQF_USE_SCHED,
 44         /* vaguely specified driver internal error.  Ignored by block layer */
 45         __RQF_FAILED,
 46         /* don't warn about errors */
 47         __RQF_QUIET,
 48         /* account into disk and partition IO statistics */
 49         __RQF_IO_STAT,
 50         /* runtime pm request */
 51         __RQF_PM,
 52         /* on IO scheduler merge hash */
 53         __RQF_HASHED,
 54         /* track IO completion time */
 55         __RQF_STATS,
 56         /* Look at ->special_vec for the actual data payload instead of the
 57            bio chain. */
 58         __RQF_SPECIAL_PAYLOAD,
 59         /* request completion needs to be signaled to zone write plugging. */
 60         __RQF_ZONE_WRITE_PLUGGING,
 61         /* ->timeout has been called, don't expire again */
 62         __RQF_TIMED_OUT,
 63         __RQF_RESV,
 64         __RQF_BITS
 65 };
 66 
 67 #define RQF_STARTED             ((__force req_flags_t)(1 << __RQF_STARTED))
 68 #define RQF_FLUSH_SEQ           ((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
 69 #define RQF_MIXED_MERGE         ((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
 70 #define RQF_DONTPREP            ((__force req_flags_t)(1 << __RQF_DONTPREP))
 71 #define RQF_SCHED_TAGS          ((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
 72 #define RQF_USE_SCHED           ((__force req_flags_t)(1 << __RQF_USE_SCHED))
 73 #define RQF_FAILED              ((__force req_flags_t)(1 << __RQF_FAILED))
 74 #define RQF_QUIET               ((__force req_flags_t)(1 << __RQF_QUIET))
 75 #define RQF_IO_STAT             ((__force req_flags_t)(1 << __RQF_IO_STAT))
 76 #define RQF_PM                  ((__force req_flags_t)(1 << __RQF_PM))
 77 #define RQF_HASHED              ((__force req_flags_t)(1 << __RQF_HASHED))
 78 #define RQF_STATS               ((__force req_flags_t)(1 << __RQF_STATS))
 79 #define RQF_SPECIAL_PAYLOAD     \
 80                         ((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
 81 #define RQF_ZONE_WRITE_PLUGGING \
 82                         ((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
 83 #define RQF_TIMED_OUT           ((__force req_flags_t)(1 << __RQF_TIMED_OUT))
 84 #define RQF_RESV                ((__force req_flags_t)(1 << __RQF_RESV))
 85 
 86 /* flags that prevent us from merging requests: */
 87 #define RQF_NOMERGE_FLAGS \
 88         (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
 89 
 90 enum mq_rq_state {
 91         MQ_RQ_IDLE              = 0,
 92         MQ_RQ_IN_FLIGHT         = 1,
 93         MQ_RQ_COMPLETE          = 2,
 94 };
 95 
 96 /*
 97  * Try to put the fields that are referenced together in the same cacheline.
 98  *
 99  * If you modify this structure, make sure to update blk_rq_init() and
100  * especially blk_mq_rq_ctx_init() to take care of the added fields.
101  */
102 struct request {
103         struct request_queue *q;
104         struct blk_mq_ctx *mq_ctx;
105         struct blk_mq_hw_ctx *mq_hctx;
106 
107         blk_opf_t cmd_flags;            /* op and common flags */
108         req_flags_t rq_flags;
109 
110         int tag;
111         int internal_tag;
112 
113         unsigned int timeout;
114 
115         /* the following two fields are internal, NEVER access directly */
116         unsigned int __data_len;        /* total data len */
117         sector_t __sector;              /* sector cursor */
118 
119         struct bio *bio;
120         struct bio *biotail;
121 
122         union {
123                 struct list_head queuelist;
124                 struct request *rq_next;
125         };
126 
127         struct block_device *part;
128 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
129         /* Time that the first bio started allocating this request. */
130         u64 alloc_time_ns;
131 #endif
132         /* Time that this request was allocated for this IO. */
133         u64 start_time_ns;
134         /* Time that I/O was submitted to the device. */
135         u64 io_start_time_ns;
136 
137 #ifdef CONFIG_BLK_WBT
138         unsigned short wbt_flags;
139 #endif
140         /*
141          * rq sectors used for blk stats. It has the same value
142          * with blk_rq_sectors(rq), except that it never be zeroed
143          * by completion.
144          */
145         unsigned short stats_sectors;
146 
147         /*
148          * Number of scatter-gather DMA addr+len pairs after
149          * physical address coalescing is performed.
150          */
151         unsigned short nr_phys_segments;
152 
153 #ifdef CONFIG_BLK_DEV_INTEGRITY
154         unsigned short nr_integrity_segments;
155 #endif
156 
157 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
158         struct bio_crypt_ctx *crypt_ctx;
159         struct blk_crypto_keyslot *crypt_keyslot;
160 #endif
161 
162         enum rw_hint write_hint;
163         unsigned short ioprio;
164 
165         enum mq_rq_state state;
166         atomic_t ref;
167 
168         unsigned long deadline;
169 
170         /*
171          * The hash is used inside the scheduler, and killed once the
172          * request reaches the dispatch list. The ipi_list is only used
173          * to queue the request for softirq completion, which is long
174          * after the request has been unhashed (and even removed from
175          * the dispatch list).
176          */
177         union {
178                 struct hlist_node hash; /* merge hash */
179                 struct llist_node ipi_list;
180         };
181 
182         /*
183          * The rb_node is only used inside the io scheduler, requests
184          * are pruned when moved to the dispatch queue. special_vec must
185          * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
186          * insert into an IO scheduler.
187          */
188         union {
189                 struct rb_node rb_node; /* sort/lookup */
190                 struct bio_vec special_vec;
191         };
192 
193         /*
194          * Three pointers are available for the IO schedulers, if they need
195          * more they have to dynamically allocate it.
196          */
197         struct {
198                 struct io_cq            *icq;
199                 void                    *priv[2];
200         } elv;
201 
202         struct {
203                 unsigned int            seq;
204                 rq_end_io_fn            *saved_end_io;
205         } flush;
206 
207         u64 fifo_time;
208 
209         /*
210          * completion callback.
211          */
212         rq_end_io_fn *end_io;
213         void *end_io_data;
214 };
215 
216 static inline enum req_op req_op(const struct request *req)
217 {
218         return req->cmd_flags & REQ_OP_MASK;
219 }
220 
221 static inline bool blk_rq_is_passthrough(struct request *rq)
222 {
223         return blk_op_is_passthrough(rq->cmd_flags);
224 }
225 
226 static inline unsigned short req_get_ioprio(struct request *req)
227 {
228         return req->ioprio;
229 }
230 
231 #define rq_data_dir(rq)         (op_is_write(req_op(rq)) ? WRITE : READ)
232 
233 #define rq_dma_dir(rq) \
234         (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
235 
236 #define rq_list_add(listptr, rq)        do {            \
237         (rq)->rq_next = *(listptr);                     \
238         *(listptr) = rq;                                \
239 } while (0)
240 
241 #define rq_list_add_tail(lastpptr, rq)  do {            \
242         (rq)->rq_next = NULL;                           \
243         **(lastpptr) = rq;                              \
244         *(lastpptr) = &rq->rq_next;                     \
245 } while (0)
246 
247 #define rq_list_pop(listptr)                            \
248 ({                                                      \
249         struct request *__req = NULL;                   \
250         if ((listptr) && *(listptr))    {               \
251                 __req = *(listptr);                     \
252                 *(listptr) = __req->rq_next;            \
253         }                                               \
254         __req;                                          \
255 })
256 
257 #define rq_list_peek(listptr)                           \
258 ({                                                      \
259         struct request *__req = NULL;                   \
260         if ((listptr) && *(listptr))                    \
261                 __req = *(listptr);                     \
262         __req;                                          \
263 })
264 
265 #define rq_list_for_each(listptr, pos)                  \
266         for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
267 
268 #define rq_list_for_each_safe(listptr, pos, nxt)                        \
269         for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);    \
270                 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
271 
272 #define rq_list_next(rq)        (rq)->rq_next
273 #define rq_list_empty(list)     ((list) == (struct request *) NULL)
274 
275 /**
276  * rq_list_move() - move a struct request from one list to another
277  * @src: The source list @rq is currently in
278  * @dst: The destination list that @rq will be appended to
279  * @rq: The request to move
280  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
281  */
282 static inline void rq_list_move(struct request **src, struct request **dst,
283                                 struct request *rq, struct request *prev)
284 {
285         if (prev)
286                 prev->rq_next = rq->rq_next;
287         else
288                 *src = rq->rq_next;
289         rq_list_add(dst, rq);
290 }
291 
292 /**
293  * enum blk_eh_timer_return - How the timeout handler should proceed
294  * @BLK_EH_DONE: The block driver completed the command or will complete it at
295  *      a later time.
296  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
297  *      request to complete.
298  */
299 enum blk_eh_timer_return {
300         BLK_EH_DONE,
301         BLK_EH_RESET_TIMER,
302 };
303 
304 /* Keep alloc_policy_name[] in sync with the definitions below */
305 enum {
306         BLK_TAG_ALLOC_FIFO,     /* allocate starting from 0 */
307         BLK_TAG_ALLOC_RR,       /* allocate starting from last allocated tag */
308         BLK_TAG_ALLOC_MAX
309 };
310 
311 /**
312  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
313  * block device
314  */
315 struct blk_mq_hw_ctx {
316         struct {
317                 /** @lock: Protects the dispatch list. */
318                 spinlock_t              lock;
319                 /**
320                  * @dispatch: Used for requests that are ready to be
321                  * dispatched to the hardware but for some reason (e.g. lack of
322                  * resources) could not be sent to the hardware. As soon as the
323                  * driver can send new requests, requests at this list will
324                  * be sent first for a fairer dispatch.
325                  */
326                 struct list_head        dispatch;
327                  /**
328                   * @state: BLK_MQ_S_* flags. Defines the state of the hw
329                   * queue (active, scheduled to restart, stopped).
330                   */
331                 unsigned long           state;
332         } ____cacheline_aligned_in_smp;
333 
334         /**
335          * @run_work: Used for scheduling a hardware queue run at a later time.
336          */
337         struct delayed_work     run_work;
338         /** @cpumask: Map of available CPUs where this hctx can run. */
339         cpumask_var_t           cpumask;
340         /**
341          * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
342          * selection from @cpumask.
343          */
344         int                     next_cpu;
345         /**
346          * @next_cpu_batch: Counter of how many works left in the batch before
347          * changing to the next CPU.
348          */
349         int                     next_cpu_batch;
350 
351         /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
352         unsigned long           flags;
353 
354         /**
355          * @sched_data: Pointer owned by the IO scheduler attached to a request
356          * queue. It's up to the IO scheduler how to use this pointer.
357          */
358         void                    *sched_data;
359         /**
360          * @queue: Pointer to the request queue that owns this hardware context.
361          */
362         struct request_queue    *queue;
363         /** @fq: Queue of requests that need to perform a flush operation. */
364         struct blk_flush_queue  *fq;
365 
366         /**
367          * @driver_data: Pointer to data owned by the block driver that created
368          * this hctx
369          */
370         void                    *driver_data;
371 
372         /**
373          * @ctx_map: Bitmap for each software queue. If bit is on, there is a
374          * pending request in that software queue.
375          */
376         struct sbitmap          ctx_map;
377 
378         /**
379          * @dispatch_from: Software queue to be used when no scheduler was
380          * selected.
381          */
382         struct blk_mq_ctx       *dispatch_from;
383         /**
384          * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
385          * decide if the hw_queue is busy using Exponential Weighted Moving
386          * Average algorithm.
387          */
388         unsigned int            dispatch_busy;
389 
390         /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
391         unsigned short          type;
392         /** @nr_ctx: Number of software queues. */
393         unsigned short          nr_ctx;
394         /** @ctxs: Array of software queues. */
395         struct blk_mq_ctx       **ctxs;
396 
397         /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
398         spinlock_t              dispatch_wait_lock;
399         /**
400          * @dispatch_wait: Waitqueue to put requests when there is no tag
401          * available at the moment, to wait for another try in the future.
402          */
403         wait_queue_entry_t      dispatch_wait;
404 
405         /**
406          * @wait_index: Index of next available dispatch_wait queue to insert
407          * requests.
408          */
409         atomic_t                wait_index;
410 
411         /**
412          * @tags: Tags owned by the block driver. A tag at this set is only
413          * assigned when a request is dispatched from a hardware queue.
414          */
415         struct blk_mq_tags      *tags;
416         /**
417          * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
418          * scheduler associated with a request queue, a tag is assigned when
419          * that request is allocated. Else, this member is not used.
420          */
421         struct blk_mq_tags      *sched_tags;
422 
423         /** @numa_node: NUMA node the storage adapter has been connected to. */
424         unsigned int            numa_node;
425         /** @queue_num: Index of this hardware queue. */
426         unsigned int            queue_num;
427 
428         /**
429          * @nr_active: Number of active requests. Only used when a tag set is
430          * shared across request queues.
431          */
432         atomic_t                nr_active;
433 
434         /** @cpuhp_online: List to store request if CPU is going to die */
435         struct hlist_node       cpuhp_online;
436         /** @cpuhp_dead: List to store request if some CPU die. */
437         struct hlist_node       cpuhp_dead;
438         /** @kobj: Kernel object for sysfs. */
439         struct kobject          kobj;
440 
441 #ifdef CONFIG_BLK_DEBUG_FS
442         /**
443          * @debugfs_dir: debugfs directory for this hardware queue. Named
444          * as cpu<cpu_number>.
445          */
446         struct dentry           *debugfs_dir;
447         /** @sched_debugfs_dir: debugfs directory for the scheduler. */
448         struct dentry           *sched_debugfs_dir;
449 #endif
450 
451         /**
452          * @hctx_list: if this hctx is not in use, this is an entry in
453          * q->unused_hctx_list.
454          */
455         struct list_head        hctx_list;
456 };
457 
458 /**
459  * struct blk_mq_queue_map - Map software queues to hardware queues
460  * @mq_map:       CPU ID to hardware queue index map. This is an array
461  *      with nr_cpu_ids elements. Each element has a value in the range
462  *      [@queue_offset, @queue_offset + @nr_queues).
463  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
464  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
465  *      driver to map each hardware queue type (enum hctx_type) onto a distinct
466  *      set of hardware queues.
467  */
468 struct blk_mq_queue_map {
469         unsigned int *mq_map;
470         unsigned int nr_queues;
471         unsigned int queue_offset;
472 };
473 
474 /**
475  * enum hctx_type - Type of hardware queue
476  * @HCTX_TYPE_DEFAULT:  All I/O not otherwise accounted for.
477  * @HCTX_TYPE_READ:     Just for READ I/O.
478  * @HCTX_TYPE_POLL:     Polled I/O of any kind.
479  * @HCTX_MAX_TYPES:     Number of types of hctx.
480  */
481 enum hctx_type {
482         HCTX_TYPE_DEFAULT,
483         HCTX_TYPE_READ,
484         HCTX_TYPE_POLL,
485 
486         HCTX_MAX_TYPES,
487 };
488 
489 /**
490  * struct blk_mq_tag_set - tag set that can be shared between request queues
491  * @ops:           Pointers to functions that implement block driver behavior.
492  * @map:           One or more ctx -> hctx mappings. One map exists for each
493  *                 hardware queue type (enum hctx_type) that the driver wishes
494  *                 to support. There are no restrictions on maps being of the
495  *                 same size, and it's perfectly legal to share maps between
496  *                 types.
497  * @nr_maps:       Number of elements in the @map array. A number in the range
498  *                 [1, HCTX_MAX_TYPES].
499  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
500  *                 owns this data structure.
501  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
502  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
503  *                 allocations.
504  * @cmd_size:      Number of additional bytes to allocate per request. The block
505  *                 driver owns these additional bytes.
506  * @numa_node:     NUMA node the storage adapter has been connected to.
507  * @timeout:       Request processing timeout in jiffies.
508  * @flags:         Zero or more BLK_MQ_F_* flags.
509  * @driver_data:   Pointer to data owned by the block driver that created this
510  *                 tag set.
511  * @tags:          Tag sets. One tag set per hardware queue. Has @nr_hw_queues
512  *                 elements.
513  * @shared_tags:
514  *                 Shared set of tags. Has @nr_hw_queues elements. If set,
515  *                 shared by all @tags.
516  * @tag_list_lock: Serializes tag_list accesses.
517  * @tag_list:      List of the request queues that use this tag set. See also
518  *                 request_queue.tag_set_list.
519  * @srcu:          Use as lock when type of the request queue is blocking
520  *                 (BLK_MQ_F_BLOCKING).
521  */
522 struct blk_mq_tag_set {
523         const struct blk_mq_ops *ops;
524         struct blk_mq_queue_map map[HCTX_MAX_TYPES];
525         unsigned int            nr_maps;
526         unsigned int            nr_hw_queues;
527         unsigned int            queue_depth;
528         unsigned int            reserved_tags;
529         unsigned int            cmd_size;
530         int                     numa_node;
531         unsigned int            timeout;
532         unsigned int            flags;
533         void                    *driver_data;
534 
535         struct blk_mq_tags      **tags;
536 
537         struct blk_mq_tags      *shared_tags;
538 
539         struct mutex            tag_list_lock;
540         struct list_head        tag_list;
541         struct srcu_struct      *srcu;
542 };
543 
544 /**
545  * struct blk_mq_queue_data - Data about a request inserted in a queue
546  *
547  * @rq:   Request pointer.
548  * @last: If it is the last request in the queue.
549  */
550 struct blk_mq_queue_data {
551         struct request *rq;
552         bool last;
553 };
554 
555 typedef bool (busy_tag_iter_fn)(struct request *, void *);
556 
557 /**
558  * struct blk_mq_ops - Callback functions that implements block driver
559  * behaviour.
560  */
561 struct blk_mq_ops {
562         /**
563          * @queue_rq: Queue a new request from block IO.
564          */
565         blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
566                                  const struct blk_mq_queue_data *);
567 
568         /**
569          * @commit_rqs: If a driver uses bd->last to judge when to submit
570          * requests to hardware, it must define this function. In case of errors
571          * that make us stop issuing further requests, this hook serves the
572          * purpose of kicking the hardware (which the last request otherwise
573          * would have done).
574          */
575         void (*commit_rqs)(struct blk_mq_hw_ctx *);
576 
577         /**
578          * @queue_rqs: Queue a list of new requests. Driver is guaranteed
579          * that each request belongs to the same queue. If the driver doesn't
580          * empty the @rqlist completely, then the rest will be queued
581          * individually by the block layer upon return.
582          */
583         void (*queue_rqs)(struct request **rqlist);
584 
585         /**
586          * @get_budget: Reserve budget before queue request, once .queue_rq is
587          * run, it is driver's responsibility to release the
588          * reserved budget. Also we have to handle failure case
589          * of .get_budget for avoiding I/O deadlock.
590          */
591         int (*get_budget)(struct request_queue *);
592 
593         /**
594          * @put_budget: Release the reserved budget.
595          */
596         void (*put_budget)(struct request_queue *, int);
597 
598         /**
599          * @set_rq_budget_token: store rq's budget token
600          */
601         void (*set_rq_budget_token)(struct request *, int);
602         /**
603          * @get_rq_budget_token: retrieve rq's budget token
604          */
605         int (*get_rq_budget_token)(struct request *);
606 
607         /**
608          * @timeout: Called on request timeout.
609          */
610         enum blk_eh_timer_return (*timeout)(struct request *);
611 
612         /**
613          * @poll: Called to poll for completion of a specific tag.
614          */
615         int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
616 
617         /**
618          * @complete: Mark the request as complete.
619          */
620         void (*complete)(struct request *);
621 
622         /**
623          * @init_hctx: Called when the block layer side of a hardware queue has
624          * been set up, allowing the driver to allocate/init matching
625          * structures.
626          */
627         int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
628         /**
629          * @exit_hctx: Ditto for exit/teardown.
630          */
631         void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
632 
633         /**
634          * @init_request: Called for every command allocated by the block layer
635          * to allow the driver to set up driver specific data.
636          *
637          * Tag greater than or equal to queue_depth is for setting up
638          * flush request.
639          */
640         int (*init_request)(struct blk_mq_tag_set *set, struct request *,
641                             unsigned int, unsigned int);
642         /**
643          * @exit_request: Ditto for exit/teardown.
644          */
645         void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
646                              unsigned int);
647 
648         /**
649          * @cleanup_rq: Called before freeing one request which isn't completed
650          * yet, and usually for freeing the driver private data.
651          */
652         void (*cleanup_rq)(struct request *);
653 
654         /**
655          * @busy: If set, returns whether or not this queue currently is busy.
656          */
657         bool (*busy)(struct request_queue *);
658 
659         /**
660          * @map_queues: This allows drivers specify their own queue mapping by
661          * overriding the setup-time function that builds the mq_map.
662          */
663         void (*map_queues)(struct blk_mq_tag_set *set);
664 
665 #ifdef CONFIG_BLK_DEBUG_FS
666         /**
667          * @show_rq: Used by the debugfs implementation to show driver-specific
668          * information about a request.
669          */
670         void (*show_rq)(struct seq_file *m, struct request *rq);
671 #endif
672 };
673 
674 /* Keep hctx_flag_name[] in sync with the definitions below */
675 enum {
676         BLK_MQ_F_SHOULD_MERGE   = 1 << 0,
677         BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
678         /*
679          * Set when this device requires underlying blk-mq device for
680          * completing IO:
681          */
682         BLK_MQ_F_STACKING       = 1 << 2,
683         BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
684         BLK_MQ_F_BLOCKING       = 1 << 4,
685         /* Do not allow an I/O scheduler to be configured. */
686         BLK_MQ_F_NO_SCHED       = 1 << 5,
687 
688         /*
689          * Select 'none' during queue registration in case of a single hwq
690          * or shared hwqs instead of 'mq-deadline'.
691          */
692         BLK_MQ_F_NO_SCHED_BY_DEFAULT    = 1 << 6,
693         BLK_MQ_F_ALLOC_POLICY_START_BIT = 7,
694         BLK_MQ_F_ALLOC_POLICY_BITS = 1,
695 };
696 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
697         ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
698                 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
699 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
700         ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
701                 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
702 
703 #define BLK_MQ_MAX_DEPTH        (10240)
704 #define BLK_MQ_NO_HCTX_IDX      (-1U)
705 
706 enum {
707         /* Keep hctx_state_name[] in sync with the definitions below */
708         BLK_MQ_S_STOPPED,
709         BLK_MQ_S_TAG_ACTIVE,
710         BLK_MQ_S_SCHED_RESTART,
711         /* hw queue is inactive after all its CPUs become offline */
712         BLK_MQ_S_INACTIVE,
713         BLK_MQ_S_MAX
714 };
715 
716 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
717                 struct queue_limits *lim, void *queuedata,
718                 struct lock_class_key *lkclass);
719 #define blk_mq_alloc_disk(set, lim, queuedata)                          \
720 ({                                                                      \
721         static struct lock_class_key __key;                             \
722                                                                         \
723         __blk_mq_alloc_disk(set, lim, queuedata, &__key);               \
724 })
725 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
726                 struct lock_class_key *lkclass);
727 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
728                 struct queue_limits *lim, void *queuedata);
729 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
730                 struct request_queue *q);
731 void blk_mq_destroy_queue(struct request_queue *);
732 
733 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
734 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
735                 const struct blk_mq_ops *ops, unsigned int queue_depth,
736                 unsigned int set_flags);
737 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
738 
739 void blk_mq_free_request(struct request *rq);
740 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
741                 unsigned int poll_flags);
742 
743 bool blk_mq_queue_inflight(struct request_queue *q);
744 
745 enum {
746         /* return when out of requests */
747         BLK_MQ_REQ_NOWAIT       = (__force blk_mq_req_flags_t)(1 << 0),
748         /* allocate from reserved pool */
749         BLK_MQ_REQ_RESERVED     = (__force blk_mq_req_flags_t)(1 << 1),
750         /* set RQF_PM */
751         BLK_MQ_REQ_PM           = (__force blk_mq_req_flags_t)(1 << 2),
752 };
753 
754 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
755                 blk_mq_req_flags_t flags);
756 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
757                 blk_opf_t opf, blk_mq_req_flags_t flags,
758                 unsigned int hctx_idx);
759 
760 /*
761  * Tag address space map.
762  */
763 struct blk_mq_tags {
764         unsigned int nr_tags;
765         unsigned int nr_reserved_tags;
766         unsigned int active_queues;
767 
768         struct sbitmap_queue bitmap_tags;
769         struct sbitmap_queue breserved_tags;
770 
771         struct request **rqs;
772         struct request **static_rqs;
773         struct list_head page_list;
774 
775         /*
776          * used to clear request reference in rqs[] before freeing one
777          * request pool
778          */
779         spinlock_t lock;
780 };
781 
782 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
783                                                unsigned int tag)
784 {
785         if (tag < tags->nr_tags) {
786                 prefetch(tags->rqs[tag]);
787                 return tags->rqs[tag];
788         }
789 
790         return NULL;
791 }
792 
793 enum {
794         BLK_MQ_UNIQUE_TAG_BITS = 16,
795         BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
796 };
797 
798 u32 blk_mq_unique_tag(struct request *rq);
799 
800 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
801 {
802         return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
803 }
804 
805 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
806 {
807         return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
808 }
809 
810 /**
811  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
812  * @rq: target request.
813  */
814 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
815 {
816         return READ_ONCE(rq->state);
817 }
818 
819 static inline int blk_mq_request_started(struct request *rq)
820 {
821         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
822 }
823 
824 static inline int blk_mq_request_completed(struct request *rq)
825 {
826         return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
827 }
828 
829 /*
830  * 
831  * Set the state to complete when completing a request from inside ->queue_rq.
832  * This is used by drivers that want to ensure special complete actions that
833  * need access to the request are called on failure, e.g. by nvme for
834  * multipathing.
835  */
836 static inline void blk_mq_set_request_complete(struct request *rq)
837 {
838         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
839 }
840 
841 /*
842  * Complete the request directly instead of deferring it to softirq or
843  * completing it another CPU. Useful in preemptible instead of an interrupt.
844  */
845 static inline void blk_mq_complete_request_direct(struct request *rq,
846                    void (*complete)(struct request *rq))
847 {
848         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
849         complete(rq);
850 }
851 
852 void blk_mq_start_request(struct request *rq);
853 void blk_mq_end_request(struct request *rq, blk_status_t error);
854 void __blk_mq_end_request(struct request *rq, blk_status_t error);
855 void blk_mq_end_request_batch(struct io_comp_batch *ib);
856 
857 /*
858  * Only need start/end time stamping if we have iostat or
859  * blk stats enabled, or using an IO scheduler.
860  */
861 static inline bool blk_mq_need_time_stamp(struct request *rq)
862 {
863         /*
864          * passthrough io doesn't use iostat accounting, cgroup stats
865          * and io scheduler functionalities.
866          */
867         if (blk_rq_is_passthrough(rq))
868                 return false;
869         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
870 }
871 
872 static inline bool blk_mq_is_reserved_rq(struct request *rq)
873 {
874         return rq->rq_flags & RQF_RESV;
875 }
876 
877 /*
878  * Batched completions only work when there is no I/O error and no special
879  * ->end_io handler.
880  */
881 static inline bool blk_mq_add_to_batch(struct request *req,
882                                        struct io_comp_batch *iob, int ioerror,
883                                        void (*complete)(struct io_comp_batch *))
884 {
885         /*
886          * blk_mq_end_request_batch() can't end request allocated from
887          * sched tags
888          */
889         if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
890                         (req->end_io && !blk_rq_is_passthrough(req)))
891                 return false;
892 
893         if (!iob->complete)
894                 iob->complete = complete;
895         else if (iob->complete != complete)
896                 return false;
897         iob->need_ts |= blk_mq_need_time_stamp(req);
898         rq_list_add(&iob->req_list, req);
899         return true;
900 }
901 
902 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
903 void blk_mq_kick_requeue_list(struct request_queue *q);
904 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
905 void blk_mq_complete_request(struct request *rq);
906 bool blk_mq_complete_request_remote(struct request *rq);
907 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
908 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
909 void blk_mq_stop_hw_queues(struct request_queue *q);
910 void blk_mq_start_hw_queues(struct request_queue *q);
911 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
912 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
913 void blk_mq_quiesce_queue(struct request_queue *q);
914 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
915 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
916 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
917 void blk_mq_unquiesce_queue(struct request_queue *q);
918 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
919 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
920 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
921 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
922 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
923                 busy_tag_iter_fn *fn, void *priv);
924 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
925 void blk_mq_freeze_queue(struct request_queue *q);
926 void blk_mq_unfreeze_queue(struct request_queue *q);
927 void blk_freeze_queue_start(struct request_queue *q);
928 void blk_mq_freeze_queue_wait(struct request_queue *q);
929 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
930                                      unsigned long timeout);
931 
932 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
933 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
934 
935 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
936 
937 unsigned int blk_mq_rq_cpu(struct request *rq);
938 
939 bool __blk_should_fake_timeout(struct request_queue *q);
940 static inline bool blk_should_fake_timeout(struct request_queue *q)
941 {
942         if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
943             test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
944                 return __blk_should_fake_timeout(q);
945         return false;
946 }
947 
948 /**
949  * blk_mq_rq_from_pdu - cast a PDU to a request
950  * @pdu: the PDU (Protocol Data Unit) to be casted
951  *
952  * Return: request
953  *
954  * Driver command data is immediately after the request. So subtract request
955  * size to get back to the original request.
956  */
957 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
958 {
959         return pdu - sizeof(struct request);
960 }
961 
962 /**
963  * blk_mq_rq_to_pdu - cast a request to a PDU
964  * @rq: the request to be casted
965  *
966  * Return: pointer to the PDU
967  *
968  * Driver command data is immediately after the request. So add request to get
969  * the PDU.
970  */
971 static inline void *blk_mq_rq_to_pdu(struct request *rq)
972 {
973         return rq + 1;
974 }
975 
976 #define queue_for_each_hw_ctx(q, hctx, i)                               \
977         xa_for_each(&(q)->hctx_table, (i), (hctx))
978 
979 #define hctx_for_each_ctx(hctx, ctx, i)                                 \
980         for ((i) = 0; (i) < (hctx)->nr_ctx &&                           \
981              ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
982 
983 static inline void blk_mq_cleanup_rq(struct request *rq)
984 {
985         if (rq->q->mq_ops->cleanup_rq)
986                 rq->q->mq_ops->cleanup_rq(rq);
987 }
988 
989 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
990                 unsigned int nr_segs)
991 {
992         rq->nr_phys_segments = nr_segs;
993         rq->__data_len = bio->bi_iter.bi_size;
994         rq->bio = rq->biotail = bio;
995         rq->ioprio = bio_prio(bio);
996 }
997 
998 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
999                 struct lock_class_key *key);
1000 
1001 static inline bool rq_is_sync(struct request *rq)
1002 {
1003         return op_is_sync(rq->cmd_flags);
1004 }
1005 
1006 void blk_rq_init(struct request_queue *q, struct request *rq);
1007 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1008                 struct bio_set *bs, gfp_t gfp_mask,
1009                 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1010 void blk_rq_unprep_clone(struct request *rq);
1011 blk_status_t blk_insert_cloned_request(struct request *rq);
1012 
1013 struct rq_map_data {
1014         struct page **pages;
1015         unsigned long offset;
1016         unsigned short page_order;
1017         unsigned short nr_entries;
1018         bool null_mapped;
1019         bool from_user;
1020 };
1021 
1022 int blk_rq_map_user(struct request_queue *, struct request *,
1023                 struct rq_map_data *, void __user *, unsigned long, gfp_t);
1024 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1025                 void __user *, unsigned long, gfp_t, bool, int, bool, int);
1026 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1027                 struct rq_map_data *, const struct iov_iter *, gfp_t);
1028 int blk_rq_unmap_user(struct bio *);
1029 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1030                 unsigned int, gfp_t);
1031 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1032 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1033 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1034 bool blk_rq_is_poll(struct request *rq);
1035 
1036 struct req_iterator {
1037         struct bvec_iter iter;
1038         struct bio *bio;
1039 };
1040 
1041 #define __rq_for_each_bio(_bio, rq)     \
1042         if ((rq->bio))                  \
1043                 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1044 
1045 #define rq_for_each_segment(bvl, _rq, _iter)                    \
1046         __rq_for_each_bio(_iter.bio, _rq)                       \
1047                 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1048 
1049 #define rq_for_each_bvec(bvl, _rq, _iter)                       \
1050         __rq_for_each_bio(_iter.bio, _rq)                       \
1051                 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1052 
1053 #define rq_iter_last(bvec, _iter)                               \
1054                 (_iter.bio->bi_next == NULL &&                  \
1055                  bio_iter_last(bvec, _iter.iter))
1056 
1057 /*
1058  * blk_rq_pos()                 : the current sector
1059  * blk_rq_bytes()               : bytes left in the entire request
1060  * blk_rq_cur_bytes()           : bytes left in the current segment
1061  * blk_rq_sectors()             : sectors left in the entire request
1062  * blk_rq_cur_sectors()         : sectors left in the current segment
1063  * blk_rq_stats_sectors()       : sectors of the entire request used for stats
1064  */
1065 static inline sector_t blk_rq_pos(const struct request *rq)
1066 {
1067         return rq->__sector;
1068 }
1069 
1070 static inline unsigned int blk_rq_bytes(const struct request *rq)
1071 {
1072         return rq->__data_len;
1073 }
1074 
1075 static inline int blk_rq_cur_bytes(const struct request *rq)
1076 {
1077         if (!rq->bio)
1078                 return 0;
1079         if (!bio_has_data(rq->bio))     /* dataless requests such as discard */
1080                 return rq->bio->bi_iter.bi_size;
1081         return bio_iovec(rq->bio).bv_len;
1082 }
1083 
1084 static inline unsigned int blk_rq_sectors(const struct request *rq)
1085 {
1086         return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1087 }
1088 
1089 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1090 {
1091         return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1092 }
1093 
1094 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1095 {
1096         return rq->stats_sectors;
1097 }
1098 
1099 /*
1100  * Some commands like WRITE SAME have a payload or data transfer size which
1101  * is different from the size of the request.  Any driver that supports such
1102  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1103  * calculate the data transfer size.
1104  */
1105 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1106 {
1107         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1108                 return rq->special_vec.bv_len;
1109         return blk_rq_bytes(rq);
1110 }
1111 
1112 /*
1113  * Return the first full biovec in the request.  The caller needs to check that
1114  * there are any bvecs before calling this helper.
1115  */
1116 static inline struct bio_vec req_bvec(struct request *rq)
1117 {
1118         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1119                 return rq->special_vec;
1120         return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1121 }
1122 
1123 static inline unsigned int blk_rq_count_bios(struct request *rq)
1124 {
1125         unsigned int nr_bios = 0;
1126         struct bio *bio;
1127 
1128         __rq_for_each_bio(bio, rq)
1129                 nr_bios++;
1130 
1131         return nr_bios;
1132 }
1133 
1134 void blk_steal_bios(struct bio_list *list, struct request *rq);
1135 
1136 /*
1137  * Request completion related functions.
1138  *
1139  * blk_update_request() completes given number of bytes and updates
1140  * the request without completing it.
1141  */
1142 bool blk_update_request(struct request *rq, blk_status_t error,
1143                                unsigned int nr_bytes);
1144 void blk_abort_request(struct request *);
1145 
1146 /*
1147  * Number of physical segments as sent to the device.
1148  *
1149  * Normally this is the number of discontiguous data segments sent by the
1150  * submitter.  But for data-less command like discard we might have no
1151  * actual data segments submitted, but the driver might have to add it's
1152  * own special payload.  In that case we still return 1 here so that this
1153  * special payload will be mapped.
1154  */
1155 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1156 {
1157         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1158                 return 1;
1159         return rq->nr_phys_segments;
1160 }
1161 
1162 /*
1163  * Number of discard segments (or ranges) the driver needs to fill in.
1164  * Each discard bio merged into a request is counted as one segment.
1165  */
1166 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1167 {
1168         return max_t(unsigned short, rq->nr_phys_segments, 1);
1169 }
1170 
1171 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1172                 struct scatterlist *sglist, struct scatterlist **last_sg);
1173 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1174                 struct scatterlist *sglist)
1175 {
1176         struct scatterlist *last_sg = NULL;
1177 
1178         return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1179 }
1180 void blk_dump_rq_flags(struct request *, char *);
1181 
1182 #endif /* BLK_MQ_H */
1183 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php