1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 }; 207 208 typedef void (*btf_dtor_kfunc_t)(void *); 209 210 struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218 }; 219 220 struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225 }; 226 227 struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235 }; 236 237 struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245 }; 246 247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248 struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254 struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257 } __attribute__((aligned(8))); 258 259 struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262 #ifdef CONFIG_SECURITY 263 void *security; 264 #endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278 #ifdef CONFIG_MEMCG 279 struct obj_cgroup *objcg; 280 #endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 const struct btf_type *attach_func_proto; 298 spinlock_t lock; 299 enum bpf_prog_type type; 300 bool jited; 301 bool xdp_has_frags; 302 } owner; 303 bool bypass_spec_v1; 304 bool frozen; /* write-once; write-protected by freeze_mutex */ 305 bool free_after_mult_rcu_gp; 306 bool free_after_rcu_gp; 307 atomic64_t sleepable_refcnt; 308 s64 __percpu *elem_count; 309 }; 310 311 static inline const char *btf_field_type_name(enum btf_field_type type) 312 { 313 switch (type) { 314 case BPF_SPIN_LOCK: 315 return "bpf_spin_lock"; 316 case BPF_TIMER: 317 return "bpf_timer"; 318 case BPF_WORKQUEUE: 319 return "bpf_wq"; 320 case BPF_KPTR_UNREF: 321 case BPF_KPTR_REF: 322 return "kptr"; 323 case BPF_KPTR_PERCPU: 324 return "percpu_kptr"; 325 case BPF_LIST_HEAD: 326 return "bpf_list_head"; 327 case BPF_LIST_NODE: 328 return "bpf_list_node"; 329 case BPF_RB_ROOT: 330 return "bpf_rb_root"; 331 case BPF_RB_NODE: 332 return "bpf_rb_node"; 333 case BPF_REFCOUNT: 334 return "bpf_refcount"; 335 default: 336 WARN_ON_ONCE(1); 337 return "unknown"; 338 } 339 } 340 341 static inline u32 btf_field_type_size(enum btf_field_type type) 342 { 343 switch (type) { 344 case BPF_SPIN_LOCK: 345 return sizeof(struct bpf_spin_lock); 346 case BPF_TIMER: 347 return sizeof(struct bpf_timer); 348 case BPF_WORKQUEUE: 349 return sizeof(struct bpf_wq); 350 case BPF_KPTR_UNREF: 351 case BPF_KPTR_REF: 352 case BPF_KPTR_PERCPU: 353 return sizeof(u64); 354 case BPF_LIST_HEAD: 355 return sizeof(struct bpf_list_head); 356 case BPF_LIST_NODE: 357 return sizeof(struct bpf_list_node); 358 case BPF_RB_ROOT: 359 return sizeof(struct bpf_rb_root); 360 case BPF_RB_NODE: 361 return sizeof(struct bpf_rb_node); 362 case BPF_REFCOUNT: 363 return sizeof(struct bpf_refcount); 364 default: 365 WARN_ON_ONCE(1); 366 return 0; 367 } 368 } 369 370 static inline u32 btf_field_type_align(enum btf_field_type type) 371 { 372 switch (type) { 373 case BPF_SPIN_LOCK: 374 return __alignof__(struct bpf_spin_lock); 375 case BPF_TIMER: 376 return __alignof__(struct bpf_timer); 377 case BPF_WORKQUEUE: 378 return __alignof__(struct bpf_wq); 379 case BPF_KPTR_UNREF: 380 case BPF_KPTR_REF: 381 case BPF_KPTR_PERCPU: 382 return __alignof__(u64); 383 case BPF_LIST_HEAD: 384 return __alignof__(struct bpf_list_head); 385 case BPF_LIST_NODE: 386 return __alignof__(struct bpf_list_node); 387 case BPF_RB_ROOT: 388 return __alignof__(struct bpf_rb_root); 389 case BPF_RB_NODE: 390 return __alignof__(struct bpf_rb_node); 391 case BPF_REFCOUNT: 392 return __alignof__(struct bpf_refcount); 393 default: 394 WARN_ON_ONCE(1); 395 return 0; 396 } 397 } 398 399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 400 { 401 memset(addr, 0, field->size); 402 403 switch (field->type) { 404 case BPF_REFCOUNT: 405 refcount_set((refcount_t *)addr, 1); 406 break; 407 case BPF_RB_NODE: 408 RB_CLEAR_NODE((struct rb_node *)addr); 409 break; 410 case BPF_LIST_HEAD: 411 case BPF_LIST_NODE: 412 INIT_LIST_HEAD((struct list_head *)addr); 413 break; 414 case BPF_RB_ROOT: 415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 416 case BPF_SPIN_LOCK: 417 case BPF_TIMER: 418 case BPF_WORKQUEUE: 419 case BPF_KPTR_UNREF: 420 case BPF_KPTR_REF: 421 case BPF_KPTR_PERCPU: 422 break; 423 default: 424 WARN_ON_ONCE(1); 425 return; 426 } 427 } 428 429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 430 { 431 if (IS_ERR_OR_NULL(rec)) 432 return false; 433 return rec->field_mask & type; 434 } 435 436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 437 { 438 int i; 439 440 if (IS_ERR_OR_NULL(rec)) 441 return; 442 for (i = 0; i < rec->cnt; i++) 443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 444 } 445 446 /* 'dst' must be a temporary buffer and should not point to memory that is being 447 * used in parallel by a bpf program or bpf syscall, otherwise the access from 448 * the bpf program or bpf syscall may be corrupted by the reinitialization, 449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 451 * program or bpf syscall. 452 */ 453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 454 { 455 bpf_obj_init(map->record, dst); 456 } 457 458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 459 * forced to use 'long' read/writes to try to atomically copy long counters. 460 * Best-effort only. No barriers here, since it _will_ race with concurrent 461 * updates from BPF programs. Called from bpf syscall and mostly used with 462 * size 8 or 16 bytes, so ask compiler to inline it. 463 */ 464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 465 { 466 const long *lsrc = src; 467 long *ldst = dst; 468 469 size /= sizeof(long); 470 while (size--) 471 data_race(*ldst++ = *lsrc++); 472 } 473 474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 475 static inline void bpf_obj_memcpy(struct btf_record *rec, 476 void *dst, void *src, u32 size, 477 bool long_memcpy) 478 { 479 u32 curr_off = 0; 480 int i; 481 482 if (IS_ERR_OR_NULL(rec)) { 483 if (long_memcpy) 484 bpf_long_memcpy(dst, src, round_up(size, 8)); 485 else 486 memcpy(dst, src, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memcpy(dst + curr_off, src + curr_off, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memcpy(dst + curr_off, src + curr_off, size - curr_off); 498 } 499 500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 501 { 502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 503 } 504 505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 506 { 507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 508 } 509 510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 511 { 512 u32 curr_off = 0; 513 int i; 514 515 if (IS_ERR_OR_NULL(rec)) { 516 memset(dst, 0, size); 517 return; 518 } 519 520 for (i = 0; i < rec->cnt; i++) { 521 u32 next_off = rec->fields[i].offset; 522 u32 sz = next_off - curr_off; 523 524 memset(dst + curr_off, 0, sz); 525 curr_off += rec->fields[i].size + sz; 526 } 527 memset(dst + curr_off, 0, size - curr_off); 528 } 529 530 static inline void zero_map_value(struct bpf_map *map, void *dst) 531 { 532 bpf_obj_memzero(map->record, dst, map->value_size); 533 } 534 535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 536 bool lock_src); 537 void bpf_timer_cancel_and_free(void *timer); 538 void bpf_wq_cancel_and_free(void *timer); 539 void bpf_list_head_free(const struct btf_field *field, void *list_head, 540 struct bpf_spin_lock *spin_lock); 541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 542 struct bpf_spin_lock *spin_lock); 543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 546 547 struct bpf_offload_dev; 548 struct bpf_offloaded_map; 549 550 struct bpf_map_dev_ops { 551 int (*map_get_next_key)(struct bpf_offloaded_map *map, 552 void *key, void *next_key); 553 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 554 void *key, void *value); 555 int (*map_update_elem)(struct bpf_offloaded_map *map, 556 void *key, void *value, u64 flags); 557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 558 }; 559 560 struct bpf_offloaded_map { 561 struct bpf_map map; 562 struct net_device *netdev; 563 const struct bpf_map_dev_ops *dev_ops; 564 void *dev_priv; 565 struct list_head offloads; 566 }; 567 568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 569 { 570 return container_of(map, struct bpf_offloaded_map, map); 571 } 572 573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 574 { 575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 576 } 577 578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 579 { 580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 581 map->ops->map_seq_show_elem; 582 } 583 584 int map_check_no_btf(const struct bpf_map *map, 585 const struct btf *btf, 586 const struct btf_type *key_type, 587 const struct btf_type *value_type); 588 589 bool bpf_map_meta_equal(const struct bpf_map *meta0, 590 const struct bpf_map *meta1); 591 592 extern const struct bpf_map_ops bpf_map_offload_ops; 593 594 /* bpf_type_flag contains a set of flags that are applicable to the values of 595 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 596 * or a memory is read-only. We classify types into two categories: base types 597 * and extended types. Extended types are base types combined with a type flag. 598 * 599 * Currently there are no more than 32 base types in arg_type, ret_type and 600 * reg_types. 601 */ 602 #define BPF_BASE_TYPE_BITS 8 603 604 enum bpf_type_flag { 605 /* PTR may be NULL. */ 606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 609 * compatible with both mutable and immutable memory. 610 */ 611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 612 613 /* MEM points to BPF ring buffer reservation. */ 614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 615 616 /* MEM is in user address space. */ 617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 618 619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 623 * to the specified cpu. 624 */ 625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 626 627 /* Indicates that the argument will be released. */ 628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 629 630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 631 * unreferenced and referenced kptr loaded from map value using a load 632 * instruction, so that they can only be dereferenced but not escape the 633 * BPF program into the kernel (i.e. cannot be passed as arguments to 634 * kfunc or bpf helpers). 635 */ 636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 637 638 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 639 640 /* DYNPTR points to memory local to the bpf program. */ 641 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 642 643 /* DYNPTR points to a kernel-produced ringbuf record. */ 644 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 645 646 /* Size is known at compile time. */ 647 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 648 649 /* MEM is of an allocated object of type in program BTF. This is used to 650 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 651 */ 652 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 653 654 /* PTR was passed from the kernel in a trusted context, and may be 655 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 656 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 657 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 658 * without invoking bpf_kptr_xchg(). What we really need to know is 659 * whether a pointer is safe to pass to a kfunc or BPF helper function. 660 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 661 * helpers, they do not cover all possible instances of unsafe 662 * pointers. For example, a pointer that was obtained from walking a 663 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 664 * fact that it may be NULL, invalid, etc. This is due to backwards 665 * compatibility requirements, as this was the behavior that was first 666 * introduced when kptrs were added. The behavior is now considered 667 * deprecated, and PTR_UNTRUSTED will eventually be removed. 668 * 669 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 670 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 671 * For example, pointers passed to tracepoint arguments are considered 672 * PTR_TRUSTED, as are pointers that are passed to struct_ops 673 * callbacks. As alluded to above, pointers that are obtained from 674 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 675 * struct task_struct *task is PTR_TRUSTED, then accessing 676 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 677 * in a BPF register. Similarly, pointers passed to certain programs 678 * types such as kretprobes are not guaranteed to be valid, as they may 679 * for example contain an object that was recently freed. 680 */ 681 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 682 683 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 684 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 685 686 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 687 * Currently only valid for linked-list and rbtree nodes. If the nodes 688 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 689 */ 690 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 691 692 /* DYNPTR points to sk_buff */ 693 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 694 695 /* DYNPTR points to xdp_buff */ 696 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 697 698 /* Memory must be aligned on some architectures, used in combination with 699 * MEM_FIXED_SIZE. 700 */ 701 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 702 703 __BPF_TYPE_FLAG_MAX, 704 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 705 }; 706 707 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 708 | DYNPTR_TYPE_XDP) 709 710 /* Max number of base types. */ 711 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 712 713 /* Max number of all types. */ 714 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 715 716 /* function argument constraints */ 717 enum bpf_arg_type { 718 ARG_DONTCARE = 0, /* unused argument in helper function */ 719 720 /* the following constraints used to prototype 721 * bpf_map_lookup/update/delete_elem() functions 722 */ 723 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 724 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 725 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 726 727 /* Used to prototype bpf_memcmp() and other functions that access data 728 * on eBPF program stack 729 */ 730 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 731 ARG_PTR_TO_ARENA, 732 733 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 734 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 735 736 ARG_PTR_TO_CTX, /* pointer to context */ 737 ARG_ANYTHING, /* any (initialized) argument is ok */ 738 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 739 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 740 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 741 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 742 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 743 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 744 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 745 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 746 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 747 ARG_PTR_TO_STACK, /* pointer to stack */ 748 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 749 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 750 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 751 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 752 __BPF_ARG_TYPE_MAX, 753 754 /* Extended arg_types. */ 755 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 756 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 757 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 758 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 759 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 760 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 761 /* pointer to memory does not need to be initialized, helper function must fill 762 * all bytes or clear them in error case. 763 */ 764 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 765 /* Pointer to valid memory of size known at compile time. */ 766 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 767 768 /* This must be the last entry. Its purpose is to ensure the enum is 769 * wide enough to hold the higher bits reserved for bpf_type_flag. 770 */ 771 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 772 }; 773 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 774 775 /* type of values returned from helper functions */ 776 enum bpf_return_type { 777 RET_INTEGER, /* function returns integer */ 778 RET_VOID, /* function doesn't return anything */ 779 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 780 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 781 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 782 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 783 RET_PTR_TO_MEM, /* returns a pointer to memory */ 784 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 785 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 786 __BPF_RET_TYPE_MAX, 787 788 /* Extended ret_types. */ 789 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 790 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 791 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 792 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 793 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 794 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 795 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 796 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 797 798 /* This must be the last entry. Its purpose is to ensure the enum is 799 * wide enough to hold the higher bits reserved for bpf_type_flag. 800 */ 801 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 802 }; 803 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 804 805 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 806 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 807 * instructions after verifying 808 */ 809 struct bpf_func_proto { 810 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 811 bool gpl_only; 812 bool pkt_access; 813 bool might_sleep; 814 enum bpf_return_type ret_type; 815 union { 816 struct { 817 enum bpf_arg_type arg1_type; 818 enum bpf_arg_type arg2_type; 819 enum bpf_arg_type arg3_type; 820 enum bpf_arg_type arg4_type; 821 enum bpf_arg_type arg5_type; 822 }; 823 enum bpf_arg_type arg_type[5]; 824 }; 825 union { 826 struct { 827 u32 *arg1_btf_id; 828 u32 *arg2_btf_id; 829 u32 *arg3_btf_id; 830 u32 *arg4_btf_id; 831 u32 *arg5_btf_id; 832 }; 833 u32 *arg_btf_id[5]; 834 struct { 835 size_t arg1_size; 836 size_t arg2_size; 837 size_t arg3_size; 838 size_t arg4_size; 839 size_t arg5_size; 840 }; 841 size_t arg_size[5]; 842 }; 843 int *ret_btf_id; /* return value btf_id */ 844 bool (*allowed)(const struct bpf_prog *prog); 845 }; 846 847 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 848 * the first argument to eBPF programs. 849 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 850 */ 851 struct bpf_context; 852 853 enum bpf_access_type { 854 BPF_READ = 1, 855 BPF_WRITE = 2 856 }; 857 858 /* types of values stored in eBPF registers */ 859 /* Pointer types represent: 860 * pointer 861 * pointer + imm 862 * pointer + (u16) var 863 * pointer + (u16) var + imm 864 * if (range > 0) then [ptr, ptr + range - off) is safe to access 865 * if (id > 0) means that some 'var' was added 866 * if (off > 0) means that 'imm' was added 867 */ 868 enum bpf_reg_type { 869 NOT_INIT = 0, /* nothing was written into register */ 870 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 871 PTR_TO_CTX, /* reg points to bpf_context */ 872 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 873 PTR_TO_MAP_VALUE, /* reg points to map element value */ 874 PTR_TO_MAP_KEY, /* reg points to a map element key */ 875 PTR_TO_STACK, /* reg == frame_pointer + offset */ 876 PTR_TO_PACKET_META, /* skb->data - meta_len */ 877 PTR_TO_PACKET, /* reg points to skb->data */ 878 PTR_TO_PACKET_END, /* skb->data + headlen */ 879 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 880 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 881 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 882 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 883 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 884 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 885 /* PTR_TO_BTF_ID points to a kernel struct that does not need 886 * to be null checked by the BPF program. This does not imply the 887 * pointer is _not_ null and in practice this can easily be a null 888 * pointer when reading pointer chains. The assumption is program 889 * context will handle null pointer dereference typically via fault 890 * handling. The verifier must keep this in mind and can make no 891 * assumptions about null or non-null when doing branch analysis. 892 * Further, when passed into helpers the helpers can not, without 893 * additional context, assume the value is non-null. 894 */ 895 PTR_TO_BTF_ID, 896 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 897 * been checked for null. Used primarily to inform the verifier 898 * an explicit null check is required for this struct. 899 */ 900 PTR_TO_MEM, /* reg points to valid memory region */ 901 PTR_TO_ARENA, 902 PTR_TO_BUF, /* reg points to a read/write buffer */ 903 PTR_TO_FUNC, /* reg points to a bpf program function */ 904 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 905 __BPF_REG_TYPE_MAX, 906 907 /* Extended reg_types. */ 908 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 909 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 910 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 911 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 912 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 913 914 /* This must be the last entry. Its purpose is to ensure the enum is 915 * wide enough to hold the higher bits reserved for bpf_type_flag. 916 */ 917 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 918 }; 919 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 920 921 /* The information passed from prog-specific *_is_valid_access 922 * back to the verifier. 923 */ 924 struct bpf_insn_access_aux { 925 enum bpf_reg_type reg_type; 926 bool is_ldsx; 927 union { 928 int ctx_field_size; 929 struct { 930 struct btf *btf; 931 u32 btf_id; 932 }; 933 }; 934 struct bpf_verifier_log *log; /* for verbose logs */ 935 bool is_retval; /* is accessing function return value ? */ 936 }; 937 938 static inline void 939 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 940 { 941 aux->ctx_field_size = size; 942 } 943 944 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 945 { 946 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 947 } 948 949 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 950 { 951 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 952 } 953 954 struct bpf_prog_ops { 955 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 956 union bpf_attr __user *uattr); 957 }; 958 959 struct bpf_reg_state; 960 struct bpf_verifier_ops { 961 /* return eBPF function prototype for verification */ 962 const struct bpf_func_proto * 963 (*get_func_proto)(enum bpf_func_id func_id, 964 const struct bpf_prog *prog); 965 966 /* return true if 'size' wide access at offset 'off' within bpf_context 967 * with 'type' (read or write) is allowed 968 */ 969 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 970 const struct bpf_prog *prog, 971 struct bpf_insn_access_aux *info); 972 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 973 const struct bpf_prog *prog); 974 int (*gen_ld_abs)(const struct bpf_insn *orig, 975 struct bpf_insn *insn_buf); 976 u32 (*convert_ctx_access)(enum bpf_access_type type, 977 const struct bpf_insn *src, 978 struct bpf_insn *dst, 979 struct bpf_prog *prog, u32 *target_size); 980 int (*btf_struct_access)(struct bpf_verifier_log *log, 981 const struct bpf_reg_state *reg, 982 int off, int size); 983 }; 984 985 struct bpf_prog_offload_ops { 986 /* verifier basic callbacks */ 987 int (*insn_hook)(struct bpf_verifier_env *env, 988 int insn_idx, int prev_insn_idx); 989 int (*finalize)(struct bpf_verifier_env *env); 990 /* verifier optimization callbacks (called after .finalize) */ 991 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 992 struct bpf_insn *insn); 993 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 994 /* program management callbacks */ 995 int (*prepare)(struct bpf_prog *prog); 996 int (*translate)(struct bpf_prog *prog); 997 void (*destroy)(struct bpf_prog *prog); 998 }; 999 1000 struct bpf_prog_offload { 1001 struct bpf_prog *prog; 1002 struct net_device *netdev; 1003 struct bpf_offload_dev *offdev; 1004 void *dev_priv; 1005 struct list_head offloads; 1006 bool dev_state; 1007 bool opt_failed; 1008 void *jited_image; 1009 u32 jited_len; 1010 }; 1011 1012 enum bpf_cgroup_storage_type { 1013 BPF_CGROUP_STORAGE_SHARED, 1014 BPF_CGROUP_STORAGE_PERCPU, 1015 __BPF_CGROUP_STORAGE_MAX 1016 }; 1017 1018 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1019 1020 /* The longest tracepoint has 12 args. 1021 * See include/trace/bpf_probe.h 1022 */ 1023 #define MAX_BPF_FUNC_ARGS 12 1024 1025 /* The maximum number of arguments passed through registers 1026 * a single function may have. 1027 */ 1028 #define MAX_BPF_FUNC_REG_ARGS 5 1029 1030 /* The argument is a structure. */ 1031 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1032 1033 /* The argument is signed. */ 1034 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1035 1036 struct btf_func_model { 1037 u8 ret_size; 1038 u8 ret_flags; 1039 u8 nr_args; 1040 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1041 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1042 }; 1043 1044 /* Restore arguments before returning from trampoline to let original function 1045 * continue executing. This flag is used for fentry progs when there are no 1046 * fexit progs. 1047 */ 1048 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1049 /* Call original function after fentry progs, but before fexit progs. 1050 * Makes sense for fentry/fexit, normal calls and indirect calls. 1051 */ 1052 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1053 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1054 * programs only. Should not be used with normal calls and indirect calls. 1055 */ 1056 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1057 /* Store IP address of the caller on the trampoline stack, 1058 * so it's available for trampoline's programs. 1059 */ 1060 #define BPF_TRAMP_F_IP_ARG BIT(3) 1061 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1062 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1063 1064 /* Get original function from stack instead of from provided direct address. 1065 * Makes sense for trampolines with fexit or fmod_ret programs. 1066 */ 1067 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1068 1069 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1070 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1071 */ 1072 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1073 1074 /* Indicate that current trampoline is in a tail call context. Then, it has to 1075 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1076 */ 1077 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1078 1079 /* 1080 * Indicate the trampoline should be suitable to receive indirect calls; 1081 * without this indirectly calling the generated code can result in #UD/#CP, 1082 * depending on the CFI options. 1083 * 1084 * Used by bpf_struct_ops. 1085 * 1086 * Incompatible with FENTRY usage, overloads @func_addr argument. 1087 */ 1088 #define BPF_TRAMP_F_INDIRECT BIT(8) 1089 1090 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1091 * bytes on x86. 1092 */ 1093 enum { 1094 #if defined(__s390x__) 1095 BPF_MAX_TRAMP_LINKS = 27, 1096 #else 1097 BPF_MAX_TRAMP_LINKS = 38, 1098 #endif 1099 }; 1100 1101 struct bpf_tramp_links { 1102 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1103 int nr_links; 1104 }; 1105 1106 struct bpf_tramp_run_ctx; 1107 1108 /* Different use cases for BPF trampoline: 1109 * 1. replace nop at the function entry (kprobe equivalent) 1110 * flags = BPF_TRAMP_F_RESTORE_REGS 1111 * fentry = a set of programs to run before returning from trampoline 1112 * 1113 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1114 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1115 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1116 * fentry = a set of program to run before calling original function 1117 * fexit = a set of program to run after original function 1118 * 1119 * 3. replace direct call instruction anywhere in the function body 1120 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1121 * With flags = 0 1122 * fentry = a set of programs to run before returning from trampoline 1123 * With flags = BPF_TRAMP_F_CALL_ORIG 1124 * orig_call = original callback addr or direct function addr 1125 * fentry = a set of program to run before calling original function 1126 * fexit = a set of program to run after original function 1127 */ 1128 struct bpf_tramp_image; 1129 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1130 const struct btf_func_model *m, u32 flags, 1131 struct bpf_tramp_links *tlinks, 1132 void *func_addr); 1133 void *arch_alloc_bpf_trampoline(unsigned int size); 1134 void arch_free_bpf_trampoline(void *image, unsigned int size); 1135 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1136 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1137 struct bpf_tramp_links *tlinks, void *func_addr); 1138 1139 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1140 struct bpf_tramp_run_ctx *run_ctx); 1141 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1142 struct bpf_tramp_run_ctx *run_ctx); 1143 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1144 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1145 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1146 struct bpf_tramp_run_ctx *run_ctx); 1147 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1148 struct bpf_tramp_run_ctx *run_ctx); 1149 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1150 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1151 1152 struct bpf_ksym { 1153 unsigned long start; 1154 unsigned long end; 1155 char name[KSYM_NAME_LEN]; 1156 struct list_head lnode; 1157 struct latch_tree_node tnode; 1158 bool prog; 1159 }; 1160 1161 enum bpf_tramp_prog_type { 1162 BPF_TRAMP_FENTRY, 1163 BPF_TRAMP_FEXIT, 1164 BPF_TRAMP_MODIFY_RETURN, 1165 BPF_TRAMP_MAX, 1166 BPF_TRAMP_REPLACE, /* more than MAX */ 1167 }; 1168 1169 struct bpf_tramp_image { 1170 void *image; 1171 int size; 1172 struct bpf_ksym ksym; 1173 struct percpu_ref pcref; 1174 void *ip_after_call; 1175 void *ip_epilogue; 1176 union { 1177 struct rcu_head rcu; 1178 struct work_struct work; 1179 }; 1180 }; 1181 1182 struct bpf_trampoline { 1183 /* hlist for trampoline_table */ 1184 struct hlist_node hlist; 1185 struct ftrace_ops *fops; 1186 /* serializes access to fields of this trampoline */ 1187 struct mutex mutex; 1188 refcount_t refcnt; 1189 u32 flags; 1190 u64 key; 1191 struct { 1192 struct btf_func_model model; 1193 void *addr; 1194 bool ftrace_managed; 1195 } func; 1196 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1197 * program by replacing one of its functions. func.addr is the address 1198 * of the function it replaced. 1199 */ 1200 struct bpf_prog *extension_prog; 1201 /* list of BPF programs using this trampoline */ 1202 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1203 /* Number of attached programs. A counter per kind. */ 1204 int progs_cnt[BPF_TRAMP_MAX]; 1205 /* Executable image of trampoline */ 1206 struct bpf_tramp_image *cur_image; 1207 }; 1208 1209 struct bpf_attach_target_info { 1210 struct btf_func_model fmodel; 1211 long tgt_addr; 1212 struct module *tgt_mod; 1213 const char *tgt_name; 1214 const struct btf_type *tgt_type; 1215 }; 1216 1217 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1218 1219 struct bpf_dispatcher_prog { 1220 struct bpf_prog *prog; 1221 refcount_t users; 1222 }; 1223 1224 struct bpf_dispatcher { 1225 /* dispatcher mutex */ 1226 struct mutex mutex; 1227 void *func; 1228 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1229 int num_progs; 1230 void *image; 1231 void *rw_image; 1232 u32 image_off; 1233 struct bpf_ksym ksym; 1234 #ifdef CONFIG_HAVE_STATIC_CALL 1235 struct static_call_key *sc_key; 1236 void *sc_tramp; 1237 #endif 1238 }; 1239 1240 #ifndef __bpfcall 1241 #define __bpfcall __nocfi 1242 #endif 1243 1244 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1245 const void *ctx, 1246 const struct bpf_insn *insnsi, 1247 bpf_func_t bpf_func) 1248 { 1249 return bpf_func(ctx, insnsi); 1250 } 1251 1252 /* the implementation of the opaque uapi struct bpf_dynptr */ 1253 struct bpf_dynptr_kern { 1254 void *data; 1255 /* Size represents the number of usable bytes of dynptr data. 1256 * If for example the offset is at 4 for a local dynptr whose data is 1257 * of type u64, the number of usable bytes is 4. 1258 * 1259 * The upper 8 bits are reserved. It is as follows: 1260 * Bits 0 - 23 = size 1261 * Bits 24 - 30 = dynptr type 1262 * Bit 31 = whether dynptr is read-only 1263 */ 1264 u32 size; 1265 u32 offset; 1266 } __aligned(8); 1267 1268 enum bpf_dynptr_type { 1269 BPF_DYNPTR_TYPE_INVALID, 1270 /* Points to memory that is local to the bpf program */ 1271 BPF_DYNPTR_TYPE_LOCAL, 1272 /* Underlying data is a ringbuf record */ 1273 BPF_DYNPTR_TYPE_RINGBUF, 1274 /* Underlying data is a sk_buff */ 1275 BPF_DYNPTR_TYPE_SKB, 1276 /* Underlying data is a xdp_buff */ 1277 BPF_DYNPTR_TYPE_XDP, 1278 }; 1279 1280 int bpf_dynptr_check_size(u32 size); 1281 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1282 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1283 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1284 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1285 1286 #ifdef CONFIG_BPF_JIT 1287 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1288 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1289 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1290 struct bpf_attach_target_info *tgt_info); 1291 void bpf_trampoline_put(struct bpf_trampoline *tr); 1292 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1293 1294 /* 1295 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1296 * indirection with a direct call to the bpf program. If the architecture does 1297 * not have STATIC_CALL, avoid a double-indirection. 1298 */ 1299 #ifdef CONFIG_HAVE_STATIC_CALL 1300 1301 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1302 .sc_key = &STATIC_CALL_KEY(_name), \ 1303 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1304 1305 #define __BPF_DISPATCHER_SC(name) \ 1306 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1307 1308 #define __BPF_DISPATCHER_CALL(name) \ 1309 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1310 1311 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1312 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1313 1314 #else 1315 #define __BPF_DISPATCHER_SC_INIT(name) 1316 #define __BPF_DISPATCHER_SC(name) 1317 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1318 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1319 #endif 1320 1321 #define BPF_DISPATCHER_INIT(_name) { \ 1322 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1323 .func = &_name##_func, \ 1324 .progs = {}, \ 1325 .num_progs = 0, \ 1326 .image = NULL, \ 1327 .image_off = 0, \ 1328 .ksym = { \ 1329 .name = #_name, \ 1330 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1331 }, \ 1332 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1333 } 1334 1335 #define DEFINE_BPF_DISPATCHER(name) \ 1336 __BPF_DISPATCHER_SC(name); \ 1337 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1338 const void *ctx, \ 1339 const struct bpf_insn *insnsi, \ 1340 bpf_func_t bpf_func) \ 1341 { \ 1342 return __BPF_DISPATCHER_CALL(name); \ 1343 } \ 1344 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1345 struct bpf_dispatcher bpf_dispatcher_##name = \ 1346 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1347 1348 #define DECLARE_BPF_DISPATCHER(name) \ 1349 unsigned int bpf_dispatcher_##name##_func( \ 1350 const void *ctx, \ 1351 const struct bpf_insn *insnsi, \ 1352 bpf_func_t bpf_func); \ 1353 extern struct bpf_dispatcher bpf_dispatcher_##name; 1354 1355 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1356 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1357 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1358 struct bpf_prog *to); 1359 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1360 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1361 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1362 void bpf_ksym_add(struct bpf_ksym *ksym); 1363 void bpf_ksym_del(struct bpf_ksym *ksym); 1364 int bpf_jit_charge_modmem(u32 size); 1365 void bpf_jit_uncharge_modmem(u32 size); 1366 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1367 #else 1368 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1369 struct bpf_trampoline *tr) 1370 { 1371 return -ENOTSUPP; 1372 } 1373 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1374 struct bpf_trampoline *tr) 1375 { 1376 return -ENOTSUPP; 1377 } 1378 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1379 struct bpf_attach_target_info *tgt_info) 1380 { 1381 return NULL; 1382 } 1383 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1384 #define DEFINE_BPF_DISPATCHER(name) 1385 #define DECLARE_BPF_DISPATCHER(name) 1386 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1387 #define BPF_DISPATCHER_PTR(name) NULL 1388 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1389 struct bpf_prog *from, 1390 struct bpf_prog *to) {} 1391 static inline bool is_bpf_image_address(unsigned long address) 1392 { 1393 return false; 1394 } 1395 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1396 { 1397 return false; 1398 } 1399 #endif 1400 1401 struct bpf_func_info_aux { 1402 u16 linkage; 1403 bool unreliable; 1404 bool called : 1; 1405 bool verified : 1; 1406 }; 1407 1408 enum bpf_jit_poke_reason { 1409 BPF_POKE_REASON_TAIL_CALL, 1410 }; 1411 1412 /* Descriptor of pokes pointing /into/ the JITed image. */ 1413 struct bpf_jit_poke_descriptor { 1414 void *tailcall_target; 1415 void *tailcall_bypass; 1416 void *bypass_addr; 1417 void *aux; 1418 union { 1419 struct { 1420 struct bpf_map *map; 1421 u32 key; 1422 } tail_call; 1423 }; 1424 bool tailcall_target_stable; 1425 u8 adj_off; 1426 u16 reason; 1427 u32 insn_idx; 1428 }; 1429 1430 /* reg_type info for ctx arguments */ 1431 struct bpf_ctx_arg_aux { 1432 u32 offset; 1433 enum bpf_reg_type reg_type; 1434 struct btf *btf; 1435 u32 btf_id; 1436 }; 1437 1438 struct btf_mod_pair { 1439 struct btf *btf; 1440 struct module *module; 1441 }; 1442 1443 struct bpf_kfunc_desc_tab; 1444 1445 struct bpf_prog_aux { 1446 atomic64_t refcnt; 1447 u32 used_map_cnt; 1448 u32 used_btf_cnt; 1449 u32 max_ctx_offset; 1450 u32 max_pkt_offset; 1451 u32 max_tp_access; 1452 u32 stack_depth; 1453 u32 id; 1454 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1455 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1456 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1457 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1458 u32 ctx_arg_info_size; 1459 u32 max_rdonly_access; 1460 u32 max_rdwr_access; 1461 struct btf *attach_btf; 1462 const struct bpf_ctx_arg_aux *ctx_arg_info; 1463 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1464 struct bpf_prog *dst_prog; 1465 struct bpf_trampoline *dst_trampoline; 1466 enum bpf_prog_type saved_dst_prog_type; 1467 enum bpf_attach_type saved_dst_attach_type; 1468 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1469 bool dev_bound; /* Program is bound to the netdev. */ 1470 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1471 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1472 bool attach_tracing_prog; /* true if tracing another tracing program */ 1473 bool func_proto_unreliable; 1474 bool tail_call_reachable; 1475 bool xdp_has_frags; 1476 bool exception_cb; 1477 bool exception_boundary; 1478 struct bpf_arena *arena; 1479 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1480 const struct btf_type *attach_func_proto; 1481 /* function name for valid attach_btf_id */ 1482 const char *attach_func_name; 1483 struct bpf_prog **func; 1484 void *jit_data; /* JIT specific data. arch dependent */ 1485 struct bpf_jit_poke_descriptor *poke_tab; 1486 struct bpf_kfunc_desc_tab *kfunc_tab; 1487 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1488 u32 size_poke_tab; 1489 #ifdef CONFIG_FINEIBT 1490 struct bpf_ksym ksym_prefix; 1491 #endif 1492 struct bpf_ksym ksym; 1493 const struct bpf_prog_ops *ops; 1494 struct bpf_map **used_maps; 1495 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1496 struct btf_mod_pair *used_btfs; 1497 struct bpf_prog *prog; 1498 struct user_struct *user; 1499 u64 load_time; /* ns since boottime */ 1500 u32 verified_insns; 1501 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1502 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1503 char name[BPF_OBJ_NAME_LEN]; 1504 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1505 #ifdef CONFIG_SECURITY 1506 void *security; 1507 #endif 1508 struct bpf_token *token; 1509 struct bpf_prog_offload *offload; 1510 struct btf *btf; 1511 struct bpf_func_info *func_info; 1512 struct bpf_func_info_aux *func_info_aux; 1513 /* bpf_line_info loaded from userspace. linfo->insn_off 1514 * has the xlated insn offset. 1515 * Both the main and sub prog share the same linfo. 1516 * The subprog can access its first linfo by 1517 * using the linfo_idx. 1518 */ 1519 struct bpf_line_info *linfo; 1520 /* jited_linfo is the jited addr of the linfo. It has a 1521 * one to one mapping to linfo: 1522 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1523 * Both the main and sub prog share the same jited_linfo. 1524 * The subprog can access its first jited_linfo by 1525 * using the linfo_idx. 1526 */ 1527 void **jited_linfo; 1528 u32 func_info_cnt; 1529 u32 nr_linfo; 1530 /* subprog can use linfo_idx to access its first linfo and 1531 * jited_linfo. 1532 * main prog always has linfo_idx == 0 1533 */ 1534 u32 linfo_idx; 1535 struct module *mod; 1536 u32 num_exentries; 1537 struct exception_table_entry *extable; 1538 union { 1539 struct work_struct work; 1540 struct rcu_head rcu; 1541 }; 1542 }; 1543 1544 struct bpf_prog { 1545 u16 pages; /* Number of allocated pages */ 1546 u16 jited:1, /* Is our filter JIT'ed? */ 1547 jit_requested:1,/* archs need to JIT the prog */ 1548 gpl_compatible:1, /* Is filter GPL compatible? */ 1549 cb_access:1, /* Is control block accessed? */ 1550 dst_needed:1, /* Do we need dst entry? */ 1551 blinding_requested:1, /* needs constant blinding */ 1552 blinded:1, /* Was blinded */ 1553 is_func:1, /* program is a bpf function */ 1554 kprobe_override:1, /* Do we override a kprobe? */ 1555 has_callchain_buf:1, /* callchain buffer allocated? */ 1556 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1557 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1558 call_get_func_ip:1, /* Do we call get_func_ip() */ 1559 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1560 sleepable:1; /* BPF program is sleepable */ 1561 enum bpf_prog_type type; /* Type of BPF program */ 1562 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1563 u32 len; /* Number of filter blocks */ 1564 u32 jited_len; /* Size of jited insns in bytes */ 1565 u8 tag[BPF_TAG_SIZE]; 1566 struct bpf_prog_stats __percpu *stats; 1567 int __percpu *active; 1568 unsigned int (*bpf_func)(const void *ctx, 1569 const struct bpf_insn *insn); 1570 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1571 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1572 /* Instructions for interpreter */ 1573 union { 1574 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1575 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1576 }; 1577 }; 1578 1579 struct bpf_array_aux { 1580 /* Programs with direct jumps into programs part of this array. */ 1581 struct list_head poke_progs; 1582 struct bpf_map *map; 1583 struct mutex poke_mutex; 1584 struct work_struct work; 1585 }; 1586 1587 struct bpf_link { 1588 atomic64_t refcnt; 1589 u32 id; 1590 enum bpf_link_type type; 1591 const struct bpf_link_ops *ops; 1592 struct bpf_prog *prog; 1593 /* rcu is used before freeing, work can be used to schedule that 1594 * RCU-based freeing before that, so they never overlap 1595 */ 1596 union { 1597 struct rcu_head rcu; 1598 struct work_struct work; 1599 }; 1600 }; 1601 1602 struct bpf_link_ops { 1603 void (*release)(struct bpf_link *link); 1604 /* deallocate link resources callback, called without RCU grace period 1605 * waiting 1606 */ 1607 void (*dealloc)(struct bpf_link *link); 1608 /* deallocate link resources callback, called after RCU grace period; 1609 * if underlying BPF program is sleepable we go through tasks trace 1610 * RCU GP and then "classic" RCU GP 1611 */ 1612 void (*dealloc_deferred)(struct bpf_link *link); 1613 int (*detach)(struct bpf_link *link); 1614 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1615 struct bpf_prog *old_prog); 1616 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1617 int (*fill_link_info)(const struct bpf_link *link, 1618 struct bpf_link_info *info); 1619 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1620 struct bpf_map *old_map); 1621 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1622 }; 1623 1624 struct bpf_tramp_link { 1625 struct bpf_link link; 1626 struct hlist_node tramp_hlist; 1627 u64 cookie; 1628 }; 1629 1630 struct bpf_shim_tramp_link { 1631 struct bpf_tramp_link link; 1632 struct bpf_trampoline *trampoline; 1633 }; 1634 1635 struct bpf_tracing_link { 1636 struct bpf_tramp_link link; 1637 enum bpf_attach_type attach_type; 1638 struct bpf_trampoline *trampoline; 1639 struct bpf_prog *tgt_prog; 1640 }; 1641 1642 struct bpf_raw_tp_link { 1643 struct bpf_link link; 1644 struct bpf_raw_event_map *btp; 1645 u64 cookie; 1646 }; 1647 1648 struct bpf_link_primer { 1649 struct bpf_link *link; 1650 struct file *file; 1651 int fd; 1652 u32 id; 1653 }; 1654 1655 struct bpf_mount_opts { 1656 kuid_t uid; 1657 kgid_t gid; 1658 umode_t mode; 1659 1660 /* BPF token-related delegation options */ 1661 u64 delegate_cmds; 1662 u64 delegate_maps; 1663 u64 delegate_progs; 1664 u64 delegate_attachs; 1665 }; 1666 1667 struct bpf_token { 1668 struct work_struct work; 1669 atomic64_t refcnt; 1670 struct user_namespace *userns; 1671 u64 allowed_cmds; 1672 u64 allowed_maps; 1673 u64 allowed_progs; 1674 u64 allowed_attachs; 1675 #ifdef CONFIG_SECURITY 1676 void *security; 1677 #endif 1678 }; 1679 1680 struct bpf_struct_ops_value; 1681 struct btf_member; 1682 1683 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1684 /** 1685 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1686 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1687 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1688 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1689 * when determining whether the struct_ops progs in the 1690 * struct_ops map are valid. 1691 * @init: A callback that is invoked a single time, and before any other 1692 * callback, to initialize the structure. A nonzero return value means 1693 * the subsystem could not be initialized. 1694 * @check_member: When defined, a callback invoked by the verifier to allow 1695 * the subsystem to determine if an entry in the struct_ops map 1696 * is valid. A nonzero return value means that the map is 1697 * invalid and should be rejected by the verifier. 1698 * @init_member: A callback that is invoked for each member of the struct_ops 1699 * map to allow the subsystem to initialize the member. A nonzero 1700 * value means the member could not be initialized. This callback 1701 * is exclusive with the @type, @type_id, @value_type, and 1702 * @value_id fields. 1703 * @reg: A callback that is invoked when the struct_ops map has been 1704 * initialized and is being attached to. Zero means the struct_ops map 1705 * has been successfully registered and is live. A nonzero return value 1706 * means the struct_ops map could not be registered. 1707 * @unreg: A callback that is invoked when the struct_ops map should be 1708 * unregistered. 1709 * @update: A callback that is invoked when the live struct_ops map is being 1710 * updated to contain new values. This callback is only invoked when 1711 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1712 * it is assumed that the struct_ops map cannot be updated. 1713 * @validate: A callback that is invoked after all of the members have been 1714 * initialized. This callback should perform static checks on the 1715 * map, meaning that it should either fail or succeed 1716 * deterministically. A struct_ops map that has been validated may 1717 * not necessarily succeed in being registered if the call to @reg 1718 * fails. For example, a valid struct_ops map may be loaded, but 1719 * then fail to be registered due to there being another active 1720 * struct_ops map on the system in the subsystem already. For this 1721 * reason, if this callback is not defined, the check is skipped as 1722 * the struct_ops map will have final verification performed in 1723 * @reg. 1724 * @type: BTF type. 1725 * @value_type: Value type. 1726 * @name: The name of the struct bpf_struct_ops object. 1727 * @func_models: Func models 1728 * @type_id: BTF type id. 1729 * @value_id: BTF value id. 1730 */ 1731 struct bpf_struct_ops { 1732 const struct bpf_verifier_ops *verifier_ops; 1733 int (*init)(struct btf *btf); 1734 int (*check_member)(const struct btf_type *t, 1735 const struct btf_member *member, 1736 const struct bpf_prog *prog); 1737 int (*init_member)(const struct btf_type *t, 1738 const struct btf_member *member, 1739 void *kdata, const void *udata); 1740 int (*reg)(void *kdata, struct bpf_link *link); 1741 void (*unreg)(void *kdata, struct bpf_link *link); 1742 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1743 int (*validate)(void *kdata); 1744 void *cfi_stubs; 1745 struct module *owner; 1746 const char *name; 1747 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1748 }; 1749 1750 /* Every member of a struct_ops type has an instance even a member is not 1751 * an operator (function pointer). The "info" field will be assigned to 1752 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1753 * argument information required by the verifier to verify the program. 1754 * 1755 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1756 * corresponding entry for an given argument. 1757 */ 1758 struct bpf_struct_ops_arg_info { 1759 struct bpf_ctx_arg_aux *info; 1760 u32 cnt; 1761 }; 1762 1763 struct bpf_struct_ops_desc { 1764 struct bpf_struct_ops *st_ops; 1765 1766 const struct btf_type *type; 1767 const struct btf_type *value_type; 1768 u32 type_id; 1769 u32 value_id; 1770 1771 /* Collection of argument information for each member */ 1772 struct bpf_struct_ops_arg_info *arg_info; 1773 }; 1774 1775 enum bpf_struct_ops_state { 1776 BPF_STRUCT_OPS_STATE_INIT, 1777 BPF_STRUCT_OPS_STATE_INUSE, 1778 BPF_STRUCT_OPS_STATE_TOBEFREE, 1779 BPF_STRUCT_OPS_STATE_READY, 1780 }; 1781 1782 struct bpf_struct_ops_common_value { 1783 refcount_t refcnt; 1784 enum bpf_struct_ops_state state; 1785 }; 1786 1787 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1788 /* This macro helps developer to register a struct_ops type and generate 1789 * type information correctly. Developers should use this macro to register 1790 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1791 */ 1792 #define register_bpf_struct_ops(st_ops, type) \ 1793 ({ \ 1794 struct bpf_struct_ops_##type { \ 1795 struct bpf_struct_ops_common_value common; \ 1796 struct type data ____cacheline_aligned_in_smp; \ 1797 }; \ 1798 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1799 __register_bpf_struct_ops(st_ops); \ 1800 }) 1801 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1802 bool bpf_struct_ops_get(const void *kdata); 1803 void bpf_struct_ops_put(const void *kdata); 1804 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1805 void *value); 1806 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1807 struct bpf_tramp_link *link, 1808 const struct btf_func_model *model, 1809 void *stub_func, 1810 void **image, u32 *image_off, 1811 bool allow_alloc); 1812 void bpf_struct_ops_image_free(void *image); 1813 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1814 { 1815 if (owner == BPF_MODULE_OWNER) 1816 return bpf_struct_ops_get(data); 1817 else 1818 return try_module_get(owner); 1819 } 1820 static inline void bpf_module_put(const void *data, struct module *owner) 1821 { 1822 if (owner == BPF_MODULE_OWNER) 1823 bpf_struct_ops_put(data); 1824 else 1825 module_put(owner); 1826 } 1827 int bpf_struct_ops_link_create(union bpf_attr *attr); 1828 1829 #ifdef CONFIG_NET 1830 /* Define it here to avoid the use of forward declaration */ 1831 struct bpf_dummy_ops_state { 1832 int val; 1833 }; 1834 1835 struct bpf_dummy_ops { 1836 int (*test_1)(struct bpf_dummy_ops_state *cb); 1837 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1838 char a3, unsigned long a4); 1839 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1840 }; 1841 1842 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1843 union bpf_attr __user *uattr); 1844 #endif 1845 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1846 struct btf *btf, 1847 struct bpf_verifier_log *log); 1848 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1849 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1850 #else 1851 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1852 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1853 { 1854 return try_module_get(owner); 1855 } 1856 static inline void bpf_module_put(const void *data, struct module *owner) 1857 { 1858 module_put(owner); 1859 } 1860 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1861 void *key, 1862 void *value) 1863 { 1864 return -EINVAL; 1865 } 1866 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1867 { 1868 return -EOPNOTSUPP; 1869 } 1870 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1871 { 1872 } 1873 1874 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1875 { 1876 } 1877 1878 #endif 1879 1880 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1881 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1882 int cgroup_atype); 1883 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1884 #else 1885 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1886 int cgroup_atype) 1887 { 1888 return -EOPNOTSUPP; 1889 } 1890 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1891 { 1892 } 1893 #endif 1894 1895 struct bpf_array { 1896 struct bpf_map map; 1897 u32 elem_size; 1898 u32 index_mask; 1899 struct bpf_array_aux *aux; 1900 union { 1901 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1902 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1903 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1904 }; 1905 }; 1906 1907 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1908 #define MAX_TAIL_CALL_CNT 33 1909 1910 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1911 * It's enum to expose it (and thus make it discoverable) through BTF. 1912 */ 1913 enum { 1914 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1915 }; 1916 1917 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1918 BPF_F_RDONLY_PROG | \ 1919 BPF_F_WRONLY | \ 1920 BPF_F_WRONLY_PROG) 1921 1922 #define BPF_MAP_CAN_READ BIT(0) 1923 #define BPF_MAP_CAN_WRITE BIT(1) 1924 1925 /* Maximum number of user-producer ring buffer samples that can be drained in 1926 * a call to bpf_user_ringbuf_drain(). 1927 */ 1928 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1929 1930 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1931 { 1932 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1933 1934 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1935 * not possible. 1936 */ 1937 if (access_flags & BPF_F_RDONLY_PROG) 1938 return BPF_MAP_CAN_READ; 1939 else if (access_flags & BPF_F_WRONLY_PROG) 1940 return BPF_MAP_CAN_WRITE; 1941 else 1942 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1943 } 1944 1945 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1946 { 1947 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1948 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1949 } 1950 1951 struct bpf_event_entry { 1952 struct perf_event *event; 1953 struct file *perf_file; 1954 struct file *map_file; 1955 struct rcu_head rcu; 1956 }; 1957 1958 static inline bool map_type_contains_progs(struct bpf_map *map) 1959 { 1960 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1961 map->map_type == BPF_MAP_TYPE_DEVMAP || 1962 map->map_type == BPF_MAP_TYPE_CPUMAP; 1963 } 1964 1965 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1966 int bpf_prog_calc_tag(struct bpf_prog *fp); 1967 1968 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1969 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1970 1971 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1972 unsigned long off, unsigned long len); 1973 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1974 const struct bpf_insn *src, 1975 struct bpf_insn *dst, 1976 struct bpf_prog *prog, 1977 u32 *target_size); 1978 1979 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1980 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1981 1982 /* an array of programs to be executed under rcu_lock. 1983 * 1984 * Typical usage: 1985 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1986 * 1987 * the structure returned by bpf_prog_array_alloc() should be populated 1988 * with program pointers and the last pointer must be NULL. 1989 * The user has to keep refcnt on the program and make sure the program 1990 * is removed from the array before bpf_prog_put(). 1991 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1992 * since other cpus are walking the array of pointers in parallel. 1993 */ 1994 struct bpf_prog_array_item { 1995 struct bpf_prog *prog; 1996 union { 1997 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1998 u64 bpf_cookie; 1999 }; 2000 }; 2001 2002 struct bpf_prog_array { 2003 struct rcu_head rcu; 2004 struct bpf_prog_array_item items[]; 2005 }; 2006 2007 struct bpf_empty_prog_array { 2008 struct bpf_prog_array hdr; 2009 struct bpf_prog *null_prog; 2010 }; 2011 2012 /* to avoid allocating empty bpf_prog_array for cgroups that 2013 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2014 * It will not be modified the caller of bpf_prog_array_alloc() 2015 * (since caller requested prog_cnt == 0) 2016 * that pointer should be 'freed' by bpf_prog_array_free() 2017 */ 2018 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2019 2020 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2021 void bpf_prog_array_free(struct bpf_prog_array *progs); 2022 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2023 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2024 int bpf_prog_array_length(struct bpf_prog_array *progs); 2025 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2026 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2027 __u32 __user *prog_ids, u32 cnt); 2028 2029 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2030 struct bpf_prog *old_prog); 2031 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2032 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2033 struct bpf_prog *prog); 2034 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2035 u32 *prog_ids, u32 request_cnt, 2036 u32 *prog_cnt); 2037 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2038 struct bpf_prog *exclude_prog, 2039 struct bpf_prog *include_prog, 2040 u64 bpf_cookie, 2041 struct bpf_prog_array **new_array); 2042 2043 struct bpf_run_ctx {}; 2044 2045 struct bpf_cg_run_ctx { 2046 struct bpf_run_ctx run_ctx; 2047 const struct bpf_prog_array_item *prog_item; 2048 int retval; 2049 }; 2050 2051 struct bpf_trace_run_ctx { 2052 struct bpf_run_ctx run_ctx; 2053 u64 bpf_cookie; 2054 bool is_uprobe; 2055 }; 2056 2057 struct bpf_tramp_run_ctx { 2058 struct bpf_run_ctx run_ctx; 2059 u64 bpf_cookie; 2060 struct bpf_run_ctx *saved_run_ctx; 2061 }; 2062 2063 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2064 { 2065 struct bpf_run_ctx *old_ctx = NULL; 2066 2067 #ifdef CONFIG_BPF_SYSCALL 2068 old_ctx = current->bpf_ctx; 2069 current->bpf_ctx = new_ctx; 2070 #endif 2071 return old_ctx; 2072 } 2073 2074 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2075 { 2076 #ifdef CONFIG_BPF_SYSCALL 2077 current->bpf_ctx = old_ctx; 2078 #endif 2079 } 2080 2081 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2082 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2083 /* BPF program asks to set CN on the packet. */ 2084 #define BPF_RET_SET_CN (1 << 0) 2085 2086 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2087 2088 static __always_inline u32 2089 bpf_prog_run_array(const struct bpf_prog_array *array, 2090 const void *ctx, bpf_prog_run_fn run_prog) 2091 { 2092 const struct bpf_prog_array_item *item; 2093 const struct bpf_prog *prog; 2094 struct bpf_run_ctx *old_run_ctx; 2095 struct bpf_trace_run_ctx run_ctx; 2096 u32 ret = 1; 2097 2098 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2099 2100 if (unlikely(!array)) 2101 return ret; 2102 2103 run_ctx.is_uprobe = false; 2104 2105 migrate_disable(); 2106 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2107 item = &array->items[0]; 2108 while ((prog = READ_ONCE(item->prog))) { 2109 run_ctx.bpf_cookie = item->bpf_cookie; 2110 ret &= run_prog(prog, ctx); 2111 item++; 2112 } 2113 bpf_reset_run_ctx(old_run_ctx); 2114 migrate_enable(); 2115 return ret; 2116 } 2117 2118 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2119 * 2120 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2121 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2122 * in order to use the tasks_trace rcu grace period. 2123 * 2124 * When a non-sleepable program is inside the array, we take the rcu read 2125 * section and disable preemption for that program alone, so it can access 2126 * rcu-protected dynamically sized maps. 2127 */ 2128 static __always_inline u32 2129 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2130 const void *ctx, bpf_prog_run_fn run_prog) 2131 { 2132 const struct bpf_prog_array_item *item; 2133 const struct bpf_prog *prog; 2134 const struct bpf_prog_array *array; 2135 struct bpf_run_ctx *old_run_ctx; 2136 struct bpf_trace_run_ctx run_ctx; 2137 u32 ret = 1; 2138 2139 might_fault(); 2140 2141 rcu_read_lock_trace(); 2142 migrate_disable(); 2143 2144 run_ctx.is_uprobe = true; 2145 2146 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2147 if (unlikely(!array)) 2148 goto out; 2149 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2150 item = &array->items[0]; 2151 while ((prog = READ_ONCE(item->prog))) { 2152 if (!prog->sleepable) 2153 rcu_read_lock(); 2154 2155 run_ctx.bpf_cookie = item->bpf_cookie; 2156 ret &= run_prog(prog, ctx); 2157 item++; 2158 2159 if (!prog->sleepable) 2160 rcu_read_unlock(); 2161 } 2162 bpf_reset_run_ctx(old_run_ctx); 2163 out: 2164 migrate_enable(); 2165 rcu_read_unlock_trace(); 2166 return ret; 2167 } 2168 2169 #ifdef CONFIG_BPF_SYSCALL 2170 DECLARE_PER_CPU(int, bpf_prog_active); 2171 extern struct mutex bpf_stats_enabled_mutex; 2172 2173 /* 2174 * Block execution of BPF programs attached to instrumentation (perf, 2175 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2176 * these events can happen inside a region which holds a map bucket lock 2177 * and can deadlock on it. 2178 */ 2179 static inline void bpf_disable_instrumentation(void) 2180 { 2181 migrate_disable(); 2182 this_cpu_inc(bpf_prog_active); 2183 } 2184 2185 static inline void bpf_enable_instrumentation(void) 2186 { 2187 this_cpu_dec(bpf_prog_active); 2188 migrate_enable(); 2189 } 2190 2191 extern const struct super_operations bpf_super_ops; 2192 extern const struct file_operations bpf_map_fops; 2193 extern const struct file_operations bpf_prog_fops; 2194 extern const struct file_operations bpf_iter_fops; 2195 2196 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2197 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2198 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2199 #define BPF_MAP_TYPE(_id, _ops) \ 2200 extern const struct bpf_map_ops _ops; 2201 #define BPF_LINK_TYPE(_id, _name) 2202 #include <linux/bpf_types.h> 2203 #undef BPF_PROG_TYPE 2204 #undef BPF_MAP_TYPE 2205 #undef BPF_LINK_TYPE 2206 2207 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2208 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2209 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2210 2211 struct bpf_prog *bpf_prog_get(u32 ufd); 2212 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2213 bool attach_drv); 2214 void bpf_prog_add(struct bpf_prog *prog, int i); 2215 void bpf_prog_sub(struct bpf_prog *prog, int i); 2216 void bpf_prog_inc(struct bpf_prog *prog); 2217 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2218 void bpf_prog_put(struct bpf_prog *prog); 2219 2220 void bpf_prog_free_id(struct bpf_prog *prog); 2221 void bpf_map_free_id(struct bpf_map *map); 2222 2223 struct btf_field *btf_record_find(const struct btf_record *rec, 2224 u32 offset, u32 field_mask); 2225 void btf_record_free(struct btf_record *rec); 2226 void bpf_map_free_record(struct bpf_map *map); 2227 struct btf_record *btf_record_dup(const struct btf_record *rec); 2228 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2229 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2230 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2231 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2232 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2233 2234 struct bpf_map *bpf_map_get(u32 ufd); 2235 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2236 struct bpf_map *__bpf_map_get(struct fd f); 2237 void bpf_map_inc(struct bpf_map *map); 2238 void bpf_map_inc_with_uref(struct bpf_map *map); 2239 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2240 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2241 void bpf_map_put_with_uref(struct bpf_map *map); 2242 void bpf_map_put(struct bpf_map *map); 2243 void *bpf_map_area_alloc(u64 size, int numa_node); 2244 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2245 void bpf_map_area_free(void *base); 2246 bool bpf_map_write_active(const struct bpf_map *map); 2247 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2248 int generic_map_lookup_batch(struct bpf_map *map, 2249 const union bpf_attr *attr, 2250 union bpf_attr __user *uattr); 2251 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2252 const union bpf_attr *attr, 2253 union bpf_attr __user *uattr); 2254 int generic_map_delete_batch(struct bpf_map *map, 2255 const union bpf_attr *attr, 2256 union bpf_attr __user *uattr); 2257 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2258 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2259 2260 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2261 unsigned long nr_pages, struct page **page_array); 2262 #ifdef CONFIG_MEMCG 2263 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2264 int node); 2265 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2266 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2267 gfp_t flags); 2268 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2269 size_t align, gfp_t flags); 2270 #else 2271 /* 2272 * These specialized allocators have to be macros for their allocations to be 2273 * accounted separately (to have separate alloc_tag). 2274 */ 2275 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2276 kmalloc_node(_size, _flags, _node) 2277 #define bpf_map_kzalloc(_map, _size, _flags) \ 2278 kzalloc(_size, _flags) 2279 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2280 kvcalloc(_n, _size, _flags) 2281 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2282 __alloc_percpu_gfp(_size, _align, _flags) 2283 #endif 2284 2285 static inline int 2286 bpf_map_init_elem_count(struct bpf_map *map) 2287 { 2288 size_t size = sizeof(*map->elem_count), align = size; 2289 gfp_t flags = GFP_USER | __GFP_NOWARN; 2290 2291 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2292 if (!map->elem_count) 2293 return -ENOMEM; 2294 2295 return 0; 2296 } 2297 2298 static inline void 2299 bpf_map_free_elem_count(struct bpf_map *map) 2300 { 2301 free_percpu(map->elem_count); 2302 } 2303 2304 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2305 { 2306 this_cpu_inc(*map->elem_count); 2307 } 2308 2309 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2310 { 2311 this_cpu_dec(*map->elem_count); 2312 } 2313 2314 extern int sysctl_unprivileged_bpf_disabled; 2315 2316 bool bpf_token_capable(const struct bpf_token *token, int cap); 2317 2318 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2319 { 2320 return bpf_token_capable(token, CAP_PERFMON); 2321 } 2322 2323 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2324 { 2325 return bpf_token_capable(token, CAP_PERFMON); 2326 } 2327 2328 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2329 { 2330 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2331 } 2332 2333 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2334 { 2335 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2336 } 2337 2338 int bpf_map_new_fd(struct bpf_map *map, int flags); 2339 int bpf_prog_new_fd(struct bpf_prog *prog); 2340 2341 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2342 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2343 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2344 int bpf_link_settle(struct bpf_link_primer *primer); 2345 void bpf_link_cleanup(struct bpf_link_primer *primer); 2346 void bpf_link_inc(struct bpf_link *link); 2347 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2348 void bpf_link_put(struct bpf_link *link); 2349 int bpf_link_new_fd(struct bpf_link *link); 2350 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2351 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2352 2353 void bpf_token_inc(struct bpf_token *token); 2354 void bpf_token_put(struct bpf_token *token); 2355 int bpf_token_create(union bpf_attr *attr); 2356 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2357 2358 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2359 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2360 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2361 enum bpf_prog_type prog_type, 2362 enum bpf_attach_type attach_type); 2363 2364 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2365 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2366 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2367 umode_t mode); 2368 2369 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2370 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2371 extern int bpf_iter_ ## target(args); \ 2372 int __init bpf_iter_ ## target(args) { return 0; } 2373 2374 /* 2375 * The task type of iterators. 2376 * 2377 * For BPF task iterators, they can be parameterized with various 2378 * parameters to visit only some of tasks. 2379 * 2380 * BPF_TASK_ITER_ALL (default) 2381 * Iterate over resources of every task. 2382 * 2383 * BPF_TASK_ITER_TID 2384 * Iterate over resources of a task/tid. 2385 * 2386 * BPF_TASK_ITER_TGID 2387 * Iterate over resources of every task of a process / task group. 2388 */ 2389 enum bpf_iter_task_type { 2390 BPF_TASK_ITER_ALL = 0, 2391 BPF_TASK_ITER_TID, 2392 BPF_TASK_ITER_TGID, 2393 }; 2394 2395 struct bpf_iter_aux_info { 2396 /* for map_elem iter */ 2397 struct bpf_map *map; 2398 2399 /* for cgroup iter */ 2400 struct { 2401 struct cgroup *start; /* starting cgroup */ 2402 enum bpf_cgroup_iter_order order; 2403 } cgroup; 2404 struct { 2405 enum bpf_iter_task_type type; 2406 u32 pid; 2407 } task; 2408 }; 2409 2410 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2411 union bpf_iter_link_info *linfo, 2412 struct bpf_iter_aux_info *aux); 2413 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2414 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2415 struct seq_file *seq); 2416 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2417 struct bpf_link_info *info); 2418 typedef const struct bpf_func_proto * 2419 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2420 const struct bpf_prog *prog); 2421 2422 enum bpf_iter_feature { 2423 BPF_ITER_RESCHED = BIT(0), 2424 }; 2425 2426 #define BPF_ITER_CTX_ARG_MAX 2 2427 struct bpf_iter_reg { 2428 const char *target; 2429 bpf_iter_attach_target_t attach_target; 2430 bpf_iter_detach_target_t detach_target; 2431 bpf_iter_show_fdinfo_t show_fdinfo; 2432 bpf_iter_fill_link_info_t fill_link_info; 2433 bpf_iter_get_func_proto_t get_func_proto; 2434 u32 ctx_arg_info_size; 2435 u32 feature; 2436 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2437 const struct bpf_iter_seq_info *seq_info; 2438 }; 2439 2440 struct bpf_iter_meta { 2441 __bpf_md_ptr(struct seq_file *, seq); 2442 u64 session_id; 2443 u64 seq_num; 2444 }; 2445 2446 struct bpf_iter__bpf_map_elem { 2447 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2448 __bpf_md_ptr(struct bpf_map *, map); 2449 __bpf_md_ptr(void *, key); 2450 __bpf_md_ptr(void *, value); 2451 }; 2452 2453 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2454 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2455 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2456 const struct bpf_func_proto * 2457 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2458 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2459 int bpf_iter_new_fd(struct bpf_link *link); 2460 bool bpf_link_is_iter(struct bpf_link *link); 2461 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2462 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2463 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2464 struct seq_file *seq); 2465 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2466 struct bpf_link_info *info); 2467 2468 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2469 struct bpf_func_state *caller, 2470 struct bpf_func_state *callee); 2471 2472 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2473 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2474 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2475 u64 flags); 2476 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2477 u64 flags); 2478 2479 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2480 2481 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2482 void *key, void *value, u64 map_flags); 2483 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2484 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2485 void *key, void *value, u64 map_flags); 2486 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2487 2488 int bpf_get_file_flag(int flags); 2489 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2490 size_t actual_size); 2491 2492 /* verify correctness of eBPF program */ 2493 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2494 2495 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2496 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2497 #endif 2498 2499 struct btf *bpf_get_btf_vmlinux(void); 2500 2501 /* Map specifics */ 2502 struct xdp_frame; 2503 struct sk_buff; 2504 struct bpf_dtab_netdev; 2505 struct bpf_cpu_map_entry; 2506 2507 void __dev_flush(struct list_head *flush_list); 2508 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2509 struct net_device *dev_rx); 2510 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2511 struct net_device *dev_rx); 2512 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2513 struct bpf_map *map, bool exclude_ingress); 2514 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2515 struct bpf_prog *xdp_prog); 2516 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2517 struct bpf_prog *xdp_prog, struct bpf_map *map, 2518 bool exclude_ingress); 2519 2520 void __cpu_map_flush(struct list_head *flush_list); 2521 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2522 struct net_device *dev_rx); 2523 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2524 struct sk_buff *skb); 2525 2526 /* Return map's numa specified by userspace */ 2527 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2528 { 2529 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2530 attr->numa_node : NUMA_NO_NODE; 2531 } 2532 2533 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2534 int array_map_alloc_check(union bpf_attr *attr); 2535 2536 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2537 union bpf_attr __user *uattr); 2538 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2539 union bpf_attr __user *uattr); 2540 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2541 const union bpf_attr *kattr, 2542 union bpf_attr __user *uattr); 2543 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2544 const union bpf_attr *kattr, 2545 union bpf_attr __user *uattr); 2546 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2547 const union bpf_attr *kattr, 2548 union bpf_attr __user *uattr); 2549 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2550 const union bpf_attr *kattr, 2551 union bpf_attr __user *uattr); 2552 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2553 const union bpf_attr *kattr, 2554 union bpf_attr __user *uattr); 2555 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2556 const struct bpf_prog *prog, 2557 struct bpf_insn_access_aux *info); 2558 2559 static inline bool bpf_tracing_ctx_access(int off, int size, 2560 enum bpf_access_type type) 2561 { 2562 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2563 return false; 2564 if (type != BPF_READ) 2565 return false; 2566 if (off % size != 0) 2567 return false; 2568 return true; 2569 } 2570 2571 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2572 enum bpf_access_type type, 2573 const struct bpf_prog *prog, 2574 struct bpf_insn_access_aux *info) 2575 { 2576 if (!bpf_tracing_ctx_access(off, size, type)) 2577 return false; 2578 return btf_ctx_access(off, size, type, prog, info); 2579 } 2580 2581 int btf_struct_access(struct bpf_verifier_log *log, 2582 const struct bpf_reg_state *reg, 2583 int off, int size, enum bpf_access_type atype, 2584 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2585 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2586 const struct btf *btf, u32 id, int off, 2587 const struct btf *need_btf, u32 need_type_id, 2588 bool strict); 2589 2590 int btf_distill_func_proto(struct bpf_verifier_log *log, 2591 struct btf *btf, 2592 const struct btf_type *func_proto, 2593 const char *func_name, 2594 struct btf_func_model *m); 2595 2596 struct bpf_reg_state; 2597 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2598 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2599 struct btf *btf, const struct btf_type *t); 2600 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2601 int comp_idx, const char *tag_key); 2602 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2603 int comp_idx, const char *tag_key, int last_id); 2604 2605 struct bpf_prog *bpf_prog_by_id(u32 id); 2606 struct bpf_link *bpf_link_by_id(u32 id); 2607 2608 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2609 const struct bpf_prog *prog); 2610 void bpf_task_storage_free(struct task_struct *task); 2611 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2612 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2613 const struct btf_func_model * 2614 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2615 const struct bpf_insn *insn); 2616 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2617 u16 btf_fd_idx, u8 **func_addr); 2618 2619 struct bpf_core_ctx { 2620 struct bpf_verifier_log *log; 2621 const struct btf *btf; 2622 }; 2623 2624 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2625 const struct bpf_reg_state *reg, 2626 const char *field_name, u32 btf_id, const char *suffix); 2627 2628 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2629 const struct btf *reg_btf, u32 reg_id, 2630 const struct btf *arg_btf, u32 arg_id); 2631 2632 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2633 int relo_idx, void *insn); 2634 2635 static inline bool unprivileged_ebpf_enabled(void) 2636 { 2637 return !sysctl_unprivileged_bpf_disabled; 2638 } 2639 2640 /* Not all bpf prog type has the bpf_ctx. 2641 * For the bpf prog type that has initialized the bpf_ctx, 2642 * this function can be used to decide if a kernel function 2643 * is called by a bpf program. 2644 */ 2645 static inline bool has_current_bpf_ctx(void) 2646 { 2647 return !!current->bpf_ctx; 2648 } 2649 2650 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2651 2652 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2653 enum bpf_dynptr_type type, u32 offset, u32 size); 2654 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2655 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2656 2657 #else /* !CONFIG_BPF_SYSCALL */ 2658 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2659 { 2660 return ERR_PTR(-EOPNOTSUPP); 2661 } 2662 2663 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2664 enum bpf_prog_type type, 2665 bool attach_drv) 2666 { 2667 return ERR_PTR(-EOPNOTSUPP); 2668 } 2669 2670 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2671 { 2672 } 2673 2674 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2675 { 2676 } 2677 2678 static inline void bpf_prog_put(struct bpf_prog *prog) 2679 { 2680 } 2681 2682 static inline void bpf_prog_inc(struct bpf_prog *prog) 2683 { 2684 } 2685 2686 static inline struct bpf_prog *__must_check 2687 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2688 { 2689 return ERR_PTR(-EOPNOTSUPP); 2690 } 2691 2692 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2693 const struct bpf_link_ops *ops, 2694 struct bpf_prog *prog) 2695 { 2696 } 2697 2698 static inline int bpf_link_prime(struct bpf_link *link, 2699 struct bpf_link_primer *primer) 2700 { 2701 return -EOPNOTSUPP; 2702 } 2703 2704 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2705 { 2706 return -EOPNOTSUPP; 2707 } 2708 2709 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2710 { 2711 } 2712 2713 static inline void bpf_link_inc(struct bpf_link *link) 2714 { 2715 } 2716 2717 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2718 { 2719 return NULL; 2720 } 2721 2722 static inline void bpf_link_put(struct bpf_link *link) 2723 { 2724 } 2725 2726 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2727 { 2728 return -EOPNOTSUPP; 2729 } 2730 2731 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2732 { 2733 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2734 } 2735 2736 static inline void bpf_token_inc(struct bpf_token *token) 2737 { 2738 } 2739 2740 static inline void bpf_token_put(struct bpf_token *token) 2741 { 2742 } 2743 2744 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2745 { 2746 return ERR_PTR(-EOPNOTSUPP); 2747 } 2748 2749 static inline void __dev_flush(struct list_head *flush_list) 2750 { 2751 } 2752 2753 struct xdp_frame; 2754 struct bpf_dtab_netdev; 2755 struct bpf_cpu_map_entry; 2756 2757 static inline 2758 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2759 struct net_device *dev_rx) 2760 { 2761 return 0; 2762 } 2763 2764 static inline 2765 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2766 struct net_device *dev_rx) 2767 { 2768 return 0; 2769 } 2770 2771 static inline 2772 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2773 struct bpf_map *map, bool exclude_ingress) 2774 { 2775 return 0; 2776 } 2777 2778 struct sk_buff; 2779 2780 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2781 struct sk_buff *skb, 2782 struct bpf_prog *xdp_prog) 2783 { 2784 return 0; 2785 } 2786 2787 static inline 2788 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2789 struct bpf_prog *xdp_prog, struct bpf_map *map, 2790 bool exclude_ingress) 2791 { 2792 return 0; 2793 } 2794 2795 static inline void __cpu_map_flush(struct list_head *flush_list) 2796 { 2797 } 2798 2799 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2800 struct xdp_frame *xdpf, 2801 struct net_device *dev_rx) 2802 { 2803 return 0; 2804 } 2805 2806 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2807 struct sk_buff *skb) 2808 { 2809 return -EOPNOTSUPP; 2810 } 2811 2812 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2813 enum bpf_prog_type type) 2814 { 2815 return ERR_PTR(-EOPNOTSUPP); 2816 } 2817 2818 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2819 const union bpf_attr *kattr, 2820 union bpf_attr __user *uattr) 2821 { 2822 return -ENOTSUPP; 2823 } 2824 2825 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2826 const union bpf_attr *kattr, 2827 union bpf_attr __user *uattr) 2828 { 2829 return -ENOTSUPP; 2830 } 2831 2832 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2833 const union bpf_attr *kattr, 2834 union bpf_attr __user *uattr) 2835 { 2836 return -ENOTSUPP; 2837 } 2838 2839 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2840 const union bpf_attr *kattr, 2841 union bpf_attr __user *uattr) 2842 { 2843 return -ENOTSUPP; 2844 } 2845 2846 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2847 const union bpf_attr *kattr, 2848 union bpf_attr __user *uattr) 2849 { 2850 return -ENOTSUPP; 2851 } 2852 2853 static inline void bpf_map_put(struct bpf_map *map) 2854 { 2855 } 2856 2857 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2858 { 2859 return ERR_PTR(-ENOTSUPP); 2860 } 2861 2862 static inline int btf_struct_access(struct bpf_verifier_log *log, 2863 const struct bpf_reg_state *reg, 2864 int off, int size, enum bpf_access_type atype, 2865 u32 *next_btf_id, enum bpf_type_flag *flag, 2866 const char **field_name) 2867 { 2868 return -EACCES; 2869 } 2870 2871 static inline const struct bpf_func_proto * 2872 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2873 { 2874 return NULL; 2875 } 2876 2877 static inline void bpf_task_storage_free(struct task_struct *task) 2878 { 2879 } 2880 2881 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2882 { 2883 return false; 2884 } 2885 2886 static inline const struct btf_func_model * 2887 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2888 const struct bpf_insn *insn) 2889 { 2890 return NULL; 2891 } 2892 2893 static inline int 2894 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2895 u16 btf_fd_idx, u8 **func_addr) 2896 { 2897 return -ENOTSUPP; 2898 } 2899 2900 static inline bool unprivileged_ebpf_enabled(void) 2901 { 2902 return false; 2903 } 2904 2905 static inline bool has_current_bpf_ctx(void) 2906 { 2907 return false; 2908 } 2909 2910 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2911 { 2912 } 2913 2914 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2915 { 2916 } 2917 2918 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2919 enum bpf_dynptr_type type, u32 offset, u32 size) 2920 { 2921 } 2922 2923 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2924 { 2925 } 2926 2927 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2928 { 2929 } 2930 #endif /* CONFIG_BPF_SYSCALL */ 2931 2932 static __always_inline int 2933 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2934 { 2935 int ret = -EFAULT; 2936 2937 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2938 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2939 if (unlikely(ret < 0)) 2940 memset(dst, 0, size); 2941 return ret; 2942 } 2943 2944 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 2945 2946 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2947 enum bpf_prog_type type) 2948 { 2949 return bpf_prog_get_type_dev(ufd, type, false); 2950 } 2951 2952 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2953 struct bpf_map **used_maps, u32 len); 2954 2955 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2956 2957 int bpf_prog_offload_compile(struct bpf_prog *prog); 2958 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2959 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2960 struct bpf_prog *prog); 2961 2962 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2963 2964 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2965 int bpf_map_offload_update_elem(struct bpf_map *map, 2966 void *key, void *value, u64 flags); 2967 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2968 int bpf_map_offload_get_next_key(struct bpf_map *map, 2969 void *key, void *next_key); 2970 2971 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2972 2973 struct bpf_offload_dev * 2974 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2975 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2976 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2977 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2978 struct net_device *netdev); 2979 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2980 struct net_device *netdev); 2981 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2982 2983 void unpriv_ebpf_notify(int new_state); 2984 2985 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2986 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2987 struct bpf_prog_aux *prog_aux); 2988 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2989 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2990 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2991 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2992 2993 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2994 { 2995 return aux->dev_bound; 2996 } 2997 2998 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2999 { 3000 return aux->offload_requested; 3001 } 3002 3003 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3004 3005 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3006 { 3007 return unlikely(map->ops == &bpf_map_offload_ops); 3008 } 3009 3010 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3011 void bpf_map_offload_map_free(struct bpf_map *map); 3012 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3013 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3014 const union bpf_attr *kattr, 3015 union bpf_attr __user *uattr); 3016 3017 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3018 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3019 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3020 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3021 union bpf_attr __user *uattr); 3022 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3023 3024 void sock_map_unhash(struct sock *sk); 3025 void sock_map_destroy(struct sock *sk); 3026 void sock_map_close(struct sock *sk, long timeout); 3027 #else 3028 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3029 struct bpf_prog_aux *prog_aux) 3030 { 3031 return -EOPNOTSUPP; 3032 } 3033 3034 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3035 u32 func_id) 3036 { 3037 return NULL; 3038 } 3039 3040 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3041 union bpf_attr *attr) 3042 { 3043 return -EOPNOTSUPP; 3044 } 3045 3046 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3047 struct bpf_prog *old_prog) 3048 { 3049 return -EOPNOTSUPP; 3050 } 3051 3052 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3053 { 3054 } 3055 3056 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3057 { 3058 return false; 3059 } 3060 3061 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3062 { 3063 return false; 3064 } 3065 3066 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3067 { 3068 return false; 3069 } 3070 3071 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3072 { 3073 return false; 3074 } 3075 3076 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3077 { 3078 return ERR_PTR(-EOPNOTSUPP); 3079 } 3080 3081 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3082 { 3083 } 3084 3085 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3086 { 3087 return 0; 3088 } 3089 3090 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3091 const union bpf_attr *kattr, 3092 union bpf_attr __user *uattr) 3093 { 3094 return -ENOTSUPP; 3095 } 3096 3097 #ifdef CONFIG_BPF_SYSCALL 3098 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3099 struct bpf_prog *prog) 3100 { 3101 return -EINVAL; 3102 } 3103 3104 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3105 enum bpf_prog_type ptype) 3106 { 3107 return -EOPNOTSUPP; 3108 } 3109 3110 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3111 u64 flags) 3112 { 3113 return -EOPNOTSUPP; 3114 } 3115 3116 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3117 union bpf_attr __user *uattr) 3118 { 3119 return -EINVAL; 3120 } 3121 3122 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3123 { 3124 return -EOPNOTSUPP; 3125 } 3126 #endif /* CONFIG_BPF_SYSCALL */ 3127 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3128 3129 static __always_inline void 3130 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3131 { 3132 const struct bpf_prog_array_item *item; 3133 struct bpf_prog *prog; 3134 3135 if (unlikely(!array)) 3136 return; 3137 3138 item = &array->items[0]; 3139 while ((prog = READ_ONCE(item->prog))) { 3140 bpf_prog_inc_misses_counter(prog); 3141 item++; 3142 } 3143 } 3144 3145 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3146 void bpf_sk_reuseport_detach(struct sock *sk); 3147 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3148 void *value); 3149 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3150 void *value, u64 map_flags); 3151 #else 3152 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3153 { 3154 } 3155 3156 #ifdef CONFIG_BPF_SYSCALL 3157 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3158 void *key, void *value) 3159 { 3160 return -EOPNOTSUPP; 3161 } 3162 3163 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3164 void *key, void *value, 3165 u64 map_flags) 3166 { 3167 return -EOPNOTSUPP; 3168 } 3169 #endif /* CONFIG_BPF_SYSCALL */ 3170 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3171 3172 /* verifier prototypes for helper functions called from eBPF programs */ 3173 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3174 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3175 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3176 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3177 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3178 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3179 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3180 3181 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3182 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3183 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3184 extern const struct bpf_func_proto bpf_tail_call_proto; 3185 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3186 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3187 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3188 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3189 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3190 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3191 extern const struct bpf_func_proto bpf_get_stackid_proto; 3192 extern const struct bpf_func_proto bpf_get_stack_proto; 3193 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3194 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3195 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3196 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3197 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3198 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3199 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3200 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3201 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3202 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3203 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3204 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3205 extern const struct bpf_func_proto bpf_spin_lock_proto; 3206 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3207 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3208 extern const struct bpf_func_proto bpf_strtol_proto; 3209 extern const struct bpf_func_proto bpf_strtoul_proto; 3210 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3211 extern const struct bpf_func_proto bpf_jiffies64_proto; 3212 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3213 extern const struct bpf_func_proto bpf_event_output_data_proto; 3214 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3215 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3216 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3217 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3218 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3219 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3220 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3221 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3222 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3223 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3224 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3225 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3226 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3227 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3228 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3229 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3230 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3231 extern const struct bpf_func_proto bpf_snprintf_proto; 3232 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3233 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3234 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3235 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3236 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3237 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3238 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3239 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3240 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3241 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3242 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3243 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3244 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3245 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3246 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3247 extern const struct bpf_func_proto bpf_find_vma_proto; 3248 extern const struct bpf_func_proto bpf_loop_proto; 3249 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3250 extern const struct bpf_func_proto bpf_set_retval_proto; 3251 extern const struct bpf_func_proto bpf_get_retval_proto; 3252 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3253 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3254 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3255 3256 const struct bpf_func_proto *tracing_prog_func_proto( 3257 enum bpf_func_id func_id, const struct bpf_prog *prog); 3258 3259 /* Shared helpers among cBPF and eBPF. */ 3260 void bpf_user_rnd_init_once(void); 3261 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3262 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3263 3264 #if defined(CONFIG_NET) 3265 bool bpf_sock_common_is_valid_access(int off, int size, 3266 enum bpf_access_type type, 3267 struct bpf_insn_access_aux *info); 3268 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3269 struct bpf_insn_access_aux *info); 3270 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3271 const struct bpf_insn *si, 3272 struct bpf_insn *insn_buf, 3273 struct bpf_prog *prog, 3274 u32 *target_size); 3275 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3276 struct bpf_dynptr *ptr); 3277 #else 3278 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3279 enum bpf_access_type type, 3280 struct bpf_insn_access_aux *info) 3281 { 3282 return false; 3283 } 3284 static inline bool bpf_sock_is_valid_access(int off, int size, 3285 enum bpf_access_type type, 3286 struct bpf_insn_access_aux *info) 3287 { 3288 return false; 3289 } 3290 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3291 const struct bpf_insn *si, 3292 struct bpf_insn *insn_buf, 3293 struct bpf_prog *prog, 3294 u32 *target_size) 3295 { 3296 return 0; 3297 } 3298 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3299 struct bpf_dynptr *ptr) 3300 { 3301 return -EOPNOTSUPP; 3302 } 3303 #endif 3304 3305 #ifdef CONFIG_INET 3306 struct sk_reuseport_kern { 3307 struct sk_buff *skb; 3308 struct sock *sk; 3309 struct sock *selected_sk; 3310 struct sock *migrating_sk; 3311 void *data_end; 3312 u32 hash; 3313 u32 reuseport_id; 3314 bool bind_inany; 3315 }; 3316 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3317 struct bpf_insn_access_aux *info); 3318 3319 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3320 const struct bpf_insn *si, 3321 struct bpf_insn *insn_buf, 3322 struct bpf_prog *prog, 3323 u32 *target_size); 3324 3325 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3326 struct bpf_insn_access_aux *info); 3327 3328 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3329 const struct bpf_insn *si, 3330 struct bpf_insn *insn_buf, 3331 struct bpf_prog *prog, 3332 u32 *target_size); 3333 #else 3334 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3335 enum bpf_access_type type, 3336 struct bpf_insn_access_aux *info) 3337 { 3338 return false; 3339 } 3340 3341 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3342 const struct bpf_insn *si, 3343 struct bpf_insn *insn_buf, 3344 struct bpf_prog *prog, 3345 u32 *target_size) 3346 { 3347 return 0; 3348 } 3349 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3350 enum bpf_access_type type, 3351 struct bpf_insn_access_aux *info) 3352 { 3353 return false; 3354 } 3355 3356 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3357 const struct bpf_insn *si, 3358 struct bpf_insn *insn_buf, 3359 struct bpf_prog *prog, 3360 u32 *target_size) 3361 { 3362 return 0; 3363 } 3364 #endif /* CONFIG_INET */ 3365 3366 enum bpf_text_poke_type { 3367 BPF_MOD_CALL, 3368 BPF_MOD_JUMP, 3369 }; 3370 3371 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3372 void *addr1, void *addr2); 3373 3374 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3375 struct bpf_prog *new, struct bpf_prog *old); 3376 3377 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3378 int bpf_arch_text_invalidate(void *dst, size_t len); 3379 3380 struct btf_id_set; 3381 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3382 3383 #define MAX_BPRINTF_VARARGS 12 3384 #define MAX_BPRINTF_BUF 1024 3385 3386 struct bpf_bprintf_data { 3387 u32 *bin_args; 3388 char *buf; 3389 bool get_bin_args; 3390 bool get_buf; 3391 }; 3392 3393 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3394 u32 num_args, struct bpf_bprintf_data *data); 3395 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3396 3397 #ifdef CONFIG_BPF_LSM 3398 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3399 void bpf_cgroup_atype_put(int cgroup_atype); 3400 #else 3401 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3402 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3403 #endif /* CONFIG_BPF_LSM */ 3404 3405 struct key; 3406 3407 #ifdef CONFIG_KEYS 3408 struct bpf_key { 3409 struct key *key; 3410 bool has_ref; 3411 }; 3412 #endif /* CONFIG_KEYS */ 3413 3414 static inline bool type_is_alloc(u32 type) 3415 { 3416 return type & MEM_ALLOC; 3417 } 3418 3419 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3420 { 3421 if (memcg_bpf_enabled()) 3422 return flags | __GFP_ACCOUNT; 3423 return flags; 3424 } 3425 3426 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3427 { 3428 return prog->aux->func_idx != 0; 3429 } 3430 3431 #endif /* _LINUX_BPF_H */ 3432
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.