~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/dma-map-ops.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * This header is for implementations of dma_map_ops and related code.
  4  * It should not be included in drivers just using the DMA API.
  5  */
  6 #ifndef _LINUX_DMA_MAP_OPS_H
  7 #define _LINUX_DMA_MAP_OPS_H
  8 
  9 #include <linux/dma-mapping.h>
 10 #include <linux/pgtable.h>
 11 #include <linux/slab.h>
 12 
 13 struct cma;
 14 struct iommu_ops;
 15 
 16 /*
 17  * Values for struct dma_map_ops.flags:
 18  *
 19  * DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
 20  * handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
 21  * DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is
 22  * coherent and it's not an SWIOTLB buffer.
 23  */
 24 #define DMA_F_PCI_P2PDMA_SUPPORTED     (1 << 0)
 25 #define DMA_F_CAN_SKIP_SYNC            (1 << 1)
 26 
 27 struct dma_map_ops {
 28         unsigned int flags;
 29 
 30         void *(*alloc)(struct device *dev, size_t size,
 31                         dma_addr_t *dma_handle, gfp_t gfp,
 32                         unsigned long attrs);
 33         void (*free)(struct device *dev, size_t size, void *vaddr,
 34                         dma_addr_t dma_handle, unsigned long attrs);
 35         struct page *(*alloc_pages_op)(struct device *dev, size_t size,
 36                         dma_addr_t *dma_handle, enum dma_data_direction dir,
 37                         gfp_t gfp);
 38         void (*free_pages)(struct device *dev, size_t size, struct page *vaddr,
 39                         dma_addr_t dma_handle, enum dma_data_direction dir);
 40         struct sg_table *(*alloc_noncontiguous)(struct device *dev, size_t size,
 41                         enum dma_data_direction dir, gfp_t gfp,
 42                         unsigned long attrs);
 43         void (*free_noncontiguous)(struct device *dev, size_t size,
 44                         struct sg_table *sgt, enum dma_data_direction dir);
 45         int (*mmap)(struct device *, struct vm_area_struct *,
 46                         void *, dma_addr_t, size_t, unsigned long attrs);
 47 
 48         int (*get_sgtable)(struct device *dev, struct sg_table *sgt,
 49                         void *cpu_addr, dma_addr_t dma_addr, size_t size,
 50                         unsigned long attrs);
 51 
 52         dma_addr_t (*map_page)(struct device *dev, struct page *page,
 53                         unsigned long offset, size_t size,
 54                         enum dma_data_direction dir, unsigned long attrs);
 55         void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
 56                         size_t size, enum dma_data_direction dir,
 57                         unsigned long attrs);
 58         /*
 59          * map_sg should return a negative error code on error. See
 60          * dma_map_sgtable() for a list of appropriate error codes
 61          * and their meanings.
 62          */
 63         int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
 64                         enum dma_data_direction dir, unsigned long attrs);
 65         void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents,
 66                         enum dma_data_direction dir, unsigned long attrs);
 67         dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
 68                         size_t size, enum dma_data_direction dir,
 69                         unsigned long attrs);
 70         void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
 71                         size_t size, enum dma_data_direction dir,
 72                         unsigned long attrs);
 73         void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle,
 74                         size_t size, enum dma_data_direction dir);
 75         void (*sync_single_for_device)(struct device *dev,
 76                         dma_addr_t dma_handle, size_t size,
 77                         enum dma_data_direction dir);
 78         void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
 79                         int nents, enum dma_data_direction dir);
 80         void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg,
 81                         int nents, enum dma_data_direction dir);
 82         void (*cache_sync)(struct device *dev, void *vaddr, size_t size,
 83                         enum dma_data_direction direction);
 84         int (*dma_supported)(struct device *dev, u64 mask);
 85         u64 (*get_required_mask)(struct device *dev);
 86         size_t (*max_mapping_size)(struct device *dev);
 87         size_t (*opt_mapping_size)(void);
 88         unsigned long (*get_merge_boundary)(struct device *dev);
 89 };
 90 
 91 #ifdef CONFIG_DMA_OPS
 92 #include <asm/dma-mapping.h>
 93 
 94 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
 95 {
 96         if (dev->dma_ops)
 97                 return dev->dma_ops;
 98         return get_arch_dma_ops();
 99 }
100 
101 static inline void set_dma_ops(struct device *dev,
102                                const struct dma_map_ops *dma_ops)
103 {
104         dev->dma_ops = dma_ops;
105 }
106 #else /* CONFIG_DMA_OPS */
107 static inline const struct dma_map_ops *get_dma_ops(struct device *dev)
108 {
109         return NULL;
110 }
111 static inline void set_dma_ops(struct device *dev,
112                                const struct dma_map_ops *dma_ops)
113 {
114 }
115 #endif /* CONFIG_DMA_OPS */
116 
117 #ifdef CONFIG_DMA_CMA
118 extern struct cma *dma_contiguous_default_area;
119 
120 static inline struct cma *dev_get_cma_area(struct device *dev)
121 {
122         if (dev && dev->cma_area)
123                 return dev->cma_area;
124         return dma_contiguous_default_area;
125 }
126 
127 void dma_contiguous_reserve(phys_addr_t addr_limit);
128 int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base,
129                 phys_addr_t limit, struct cma **res_cma, bool fixed);
130 
131 struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
132                                        unsigned int order, bool no_warn);
133 bool dma_release_from_contiguous(struct device *dev, struct page *pages,
134                                  int count);
135 struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
136 void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
137 
138 void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size);
139 #else /* CONFIG_DMA_CMA */
140 static inline struct cma *dev_get_cma_area(struct device *dev)
141 {
142         return NULL;
143 }
144 static inline void dma_contiguous_reserve(phys_addr_t limit)
145 {
146 }
147 static inline int dma_contiguous_reserve_area(phys_addr_t size,
148                 phys_addr_t base, phys_addr_t limit, struct cma **res_cma,
149                 bool fixed)
150 {
151         return -ENOSYS;
152 }
153 static inline struct page *dma_alloc_from_contiguous(struct device *dev,
154                 size_t count, unsigned int order, bool no_warn)
155 {
156         return NULL;
157 }
158 static inline bool dma_release_from_contiguous(struct device *dev,
159                 struct page *pages, int count)
160 {
161         return false;
162 }
163 /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
164 static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
165                 gfp_t gfp)
166 {
167         return NULL;
168 }
169 static inline void dma_free_contiguous(struct device *dev, struct page *page,
170                 size_t size)
171 {
172         __free_pages(page, get_order(size));
173 }
174 #endif /* CONFIG_DMA_CMA*/
175 
176 #ifdef CONFIG_DMA_DECLARE_COHERENT
177 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
178                 dma_addr_t device_addr, size_t size);
179 void dma_release_coherent_memory(struct device *dev);
180 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
181                 dma_addr_t *dma_handle, void **ret);
182 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr);
183 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
184                 void *cpu_addr, size_t size, int *ret);
185 #else
186 static inline int dma_declare_coherent_memory(struct device *dev,
187                 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size)
188 {
189         return -ENOSYS;
190 }
191 
192 #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0)
193 #define dma_release_from_dev_coherent(dev, order, vaddr) (0)
194 #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0)
195 static inline void dma_release_coherent_memory(struct device *dev) { }
196 #endif /* CONFIG_DMA_DECLARE_COHERENT */
197 
198 #ifdef CONFIG_DMA_GLOBAL_POOL
199 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
200                 dma_addr_t *dma_handle);
201 int dma_release_from_global_coherent(int order, void *vaddr);
202 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr,
203                 size_t size, int *ret);
204 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size);
205 #else
206 static inline void *dma_alloc_from_global_coherent(struct device *dev,
207                 ssize_t size, dma_addr_t *dma_handle)
208 {
209         return NULL;
210 }
211 static inline int dma_release_from_global_coherent(int order, void *vaddr)
212 {
213         return 0;
214 }
215 static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma,
216                 void *cpu_addr, size_t size, int *ret)
217 {
218         return 0;
219 }
220 #endif /* CONFIG_DMA_GLOBAL_POOL */
221 
222 /*
223  * This is the actual return value from the ->alloc_noncontiguous method.
224  * The users of the DMA API should only care about the sg_table, but to make
225  * the DMA-API internal vmaping and freeing easier we stash away the page
226  * array as well (except for the fallback case).  This can go away any time,
227  * e.g. when a vmap-variant that takes a scatterlist comes along.
228  */
229 struct dma_sgt_handle {
230         struct sg_table sgt;
231         struct page **pages;
232 };
233 #define sgt_handle(sgt) \
234         container_of((sgt), struct dma_sgt_handle, sgt)
235 
236 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
237                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
238                 unsigned long attrs);
239 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
240                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
241                 unsigned long attrs);
242 struct page *dma_common_alloc_pages(struct device *dev, size_t size,
243                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
244 void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr,
245                 dma_addr_t dma_handle, enum dma_data_direction dir);
246 
247 struct page **dma_common_find_pages(void *cpu_addr);
248 void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot,
249                 const void *caller);
250 void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot,
251                 const void *caller);
252 void dma_common_free_remap(void *cpu_addr, size_t size);
253 
254 struct page *dma_alloc_from_pool(struct device *dev, size_t size,
255                 void **cpu_addr, gfp_t flags,
256                 bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t));
257 bool dma_free_from_pool(struct device *dev, void *start, size_t size);
258 
259 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
260                 dma_addr_t dma_start, u64 size);
261 
262 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
263         defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
264         defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
265 extern bool dma_default_coherent;
266 static inline bool dev_is_dma_coherent(struct device *dev)
267 {
268         return dev->dma_coherent;
269 }
270 #else
271 #define dma_default_coherent true
272 
273 static inline bool dev_is_dma_coherent(struct device *dev)
274 {
275         return true;
276 }
277 #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
278 
279 static inline void dma_reset_need_sync(struct device *dev)
280 {
281 #ifdef CONFIG_DMA_NEED_SYNC
282         /* Reset it only once so that the function can be called on hotpath */
283         if (unlikely(dev->dma_skip_sync))
284                 dev->dma_skip_sync = false;
285 #endif
286 }
287 
288 /*
289  * Check whether potential kmalloc() buffers are safe for non-coherent DMA.
290  */
291 static inline bool dma_kmalloc_safe(struct device *dev,
292                                     enum dma_data_direction dir)
293 {
294         /*
295          * If DMA bouncing of kmalloc() buffers is disabled, the kmalloc()
296          * caches have already been aligned to a DMA-safe size.
297          */
298         if (!IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
299                 return true;
300 
301         /*
302          * kmalloc() buffers are DMA-safe irrespective of size if the device
303          * is coherent or the direction is DMA_TO_DEVICE (non-desctructive
304          * cache maintenance and benign cache line evictions).
305          */
306         if (dev_is_dma_coherent(dev) || dir == DMA_TO_DEVICE)
307                 return true;
308 
309         return false;
310 }
311 
312 /*
313  * Check whether the given size, assuming it is for a kmalloc()'ed buffer, is
314  * sufficiently aligned for non-coherent DMA.
315  */
316 static inline bool dma_kmalloc_size_aligned(size_t size)
317 {
318         /*
319          * Larger kmalloc() sizes are guaranteed to be aligned to
320          * ARCH_DMA_MINALIGN.
321          */
322         if (size >= 2 * ARCH_DMA_MINALIGN ||
323             IS_ALIGNED(kmalloc_size_roundup(size), dma_get_cache_alignment()))
324                 return true;
325 
326         return false;
327 }
328 
329 /*
330  * Check whether the given object size may have originated from a kmalloc()
331  * buffer with a slab alignment below the DMA-safe alignment and needs
332  * bouncing for non-coherent DMA. The pointer alignment is not considered and
333  * in-structure DMA-safe offsets are the responsibility of the caller. Such
334  * code should use the static ARCH_DMA_MINALIGN for compiler annotations.
335  *
336  * The heuristics can have false positives, bouncing unnecessarily, though the
337  * buffers would be small. False negatives are theoretically possible if, for
338  * example, multiple small kmalloc() buffers are coalesced into a larger
339  * buffer that passes the alignment check. There are no such known constructs
340  * in the kernel.
341  */
342 static inline bool dma_kmalloc_needs_bounce(struct device *dev, size_t size,
343                                             enum dma_data_direction dir)
344 {
345         return !dma_kmalloc_safe(dev, dir) && !dma_kmalloc_size_aligned(size);
346 }
347 
348 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
349                 gfp_t gfp, unsigned long attrs);
350 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
351                 dma_addr_t dma_addr, unsigned long attrs);
352 
353 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
354 void arch_dma_set_mask(struct device *dev, u64 mask);
355 #else
356 #define arch_dma_set_mask(dev, mask)    do { } while (0)
357 #endif
358 
359 #ifdef CONFIG_MMU
360 /*
361  * Page protection so that devices that can't snoop CPU caches can use the
362  * memory coherently.  We default to pgprot_noncached which is usually used
363  * for ioremap as a safe bet, but architectures can override this with less
364  * strict semantics if possible.
365  */
366 #ifndef pgprot_dmacoherent
367 #define pgprot_dmacoherent(prot)        pgprot_noncached(prot)
368 #endif
369 
370 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs);
371 #else
372 static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot,
373                 unsigned long attrs)
374 {
375         return prot;    /* no protection bits supported without page tables */
376 }
377 #endif /* CONFIG_MMU */
378 
379 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE
380 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
381                 enum dma_data_direction dir);
382 #else
383 static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
384                 enum dma_data_direction dir)
385 {
386 }
387 #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */
388 
389 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
390 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
391                 enum dma_data_direction dir);
392 #else
393 static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
394                 enum dma_data_direction dir)
395 {
396 }
397 #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */
398 
399 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL
400 void arch_sync_dma_for_cpu_all(void);
401 #else
402 static inline void arch_sync_dma_for_cpu_all(void)
403 {
404 }
405 #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */
406 
407 #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT
408 void arch_dma_prep_coherent(struct page *page, size_t size);
409 #else
410 static inline void arch_dma_prep_coherent(struct page *page, size_t size)
411 {
412 }
413 #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
414 
415 #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN
416 void arch_dma_mark_clean(phys_addr_t paddr, size_t size);
417 #else
418 static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
419 {
420 }
421 #endif /* ARCH_HAS_DMA_MARK_CLEAN */
422 
423 void *arch_dma_set_uncached(void *addr, size_t size);
424 void arch_dma_clear_uncached(void *addr, size_t size);
425 
426 #ifdef CONFIG_ARCH_HAS_DMA_MAP_DIRECT
427 bool arch_dma_map_page_direct(struct device *dev, phys_addr_t addr);
428 bool arch_dma_unmap_page_direct(struct device *dev, dma_addr_t dma_handle);
429 bool arch_dma_map_sg_direct(struct device *dev, struct scatterlist *sg,
430                 int nents);
431 bool arch_dma_unmap_sg_direct(struct device *dev, struct scatterlist *sg,
432                 int nents);
433 #else
434 #define arch_dma_map_page_direct(d, a)          (false)
435 #define arch_dma_unmap_page_direct(d, a)        (false)
436 #define arch_dma_map_sg_direct(d, s, n)         (false)
437 #define arch_dma_unmap_sg_direct(d, s, n)       (false)
438 #endif
439 
440 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
441 void arch_setup_dma_ops(struct device *dev, bool coherent);
442 #else
443 static inline void arch_setup_dma_ops(struct device *dev, bool coherent)
444 {
445 }
446 #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */
447 
448 #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS
449 void arch_teardown_dma_ops(struct device *dev);
450 #else
451 static inline void arch_teardown_dma_ops(struct device *dev)
452 {
453 }
454 #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */
455 
456 #ifdef CONFIG_DMA_API_DEBUG
457 void dma_debug_add_bus(const struct bus_type *bus);
458 void debug_dma_dump_mappings(struct device *dev);
459 #else
460 static inline void dma_debug_add_bus(const struct bus_type *bus)
461 {
462 }
463 static inline void debug_dma_dump_mappings(struct device *dev)
464 {
465 }
466 #endif /* CONFIG_DMA_API_DEBUG */
467 
468 extern const struct dma_map_ops dma_dummy_ops;
469 
470 enum pci_p2pdma_map_type {
471         /*
472          * PCI_P2PDMA_MAP_UNKNOWN: Used internally for indicating the mapping
473          * type hasn't been calculated yet. Functions that return this enum
474          * never return this value.
475          */
476         PCI_P2PDMA_MAP_UNKNOWN = 0,
477 
478         /*
479          * PCI_P2PDMA_MAP_NOT_SUPPORTED: Indicates the transaction will
480          * traverse the host bridge and the host bridge is not in the
481          * allowlist. DMA Mapping routines should return an error when
482          * this is returned.
483          */
484         PCI_P2PDMA_MAP_NOT_SUPPORTED,
485 
486         /*
487          * PCI_P2PDMA_BUS_ADDR: Indicates that two devices can talk to
488          * each other directly through a PCI switch and the transaction will
489          * not traverse the host bridge. Such a mapping should program
490          * the DMA engine with PCI bus addresses.
491          */
492         PCI_P2PDMA_MAP_BUS_ADDR,
493 
494         /*
495          * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: Indicates two devices can talk
496          * to each other, but the transaction traverses a host bridge on the
497          * allowlist. In this case, a normal mapping either with CPU physical
498          * addresses (in the case of dma-direct) or IOVA addresses (in the
499          * case of IOMMUs) should be used to program the DMA engine.
500          */
501         PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
502 };
503 
504 struct pci_p2pdma_map_state {
505         struct dev_pagemap *pgmap;
506         int map;
507         u64 bus_off;
508 };
509 
510 #ifdef CONFIG_PCI_P2PDMA
511 enum pci_p2pdma_map_type
512 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
513                        struct scatterlist *sg);
514 #else /* CONFIG_PCI_P2PDMA */
515 static inline enum pci_p2pdma_map_type
516 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
517                        struct scatterlist *sg)
518 {
519         return PCI_P2PDMA_MAP_NOT_SUPPORTED;
520 }
521 #endif /* CONFIG_PCI_P2PDMA */
522 
523 #endif /* _LINUX_DMA_MAP_OPS_H */
524 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php