1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_DMA_MAPPING_H 3 #define _LINUX_DMA_MAPPING_H 4 5 #include <linux/cache.h> 6 #include <linux/sizes.h> 7 #include <linux/string.h> 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/dma-direction.h> 11 #include <linux/scatterlist.h> 12 #include <linux/bug.h> 13 #include <linux/mem_encrypt.h> 14 15 /** 16 * List of possible attributes associated with a DMA mapping. The semantics 17 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst. 18 */ 19 20 /* 21 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 22 * may be weakly ordered, that is that reads and writes may pass each other. 23 */ 24 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 25 /* 26 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 27 * buffered to improve performance. 28 */ 29 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 30 /* 31 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 32 * virtual mapping for the allocated buffer. 33 */ 34 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 35 /* 36 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 37 * the CPU cache for the given buffer assuming that it has been already 38 * transferred to 'device' domain. 39 */ 40 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 41 /* 42 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 43 * in physical memory. 44 */ 45 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 46 /* 47 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 48 * that it's probably not worth the time to try to allocate memory to in a way 49 * that gives better TLB efficiency. 50 */ 51 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 52 /* 53 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 54 * allocation failure reports (similarly to __GFP_NOWARN). 55 */ 56 #define DMA_ATTR_NO_WARN (1UL << 8) 57 58 /* 59 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 60 * accessible at an elevated privilege level (and ideally inaccessible or 61 * at least read-only at lesser-privileged levels). 62 */ 63 #define DMA_ATTR_PRIVILEGED (1UL << 9) 64 65 /* 66 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can 67 * be given to a device to use as a DMA source or target. It is specific to a 68 * given device and there may be a translation between the CPU physical address 69 * space and the bus address space. 70 * 71 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not 72 * be used directly in drivers, but checked for using dma_mapping_error() 73 * instead. 74 */ 75 #define DMA_MAPPING_ERROR (~(dma_addr_t)0) 76 77 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 78 79 #ifdef CONFIG_DMA_API_DEBUG 80 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr); 81 void debug_dma_map_single(struct device *dev, const void *addr, 82 unsigned long len); 83 #else 84 static inline void debug_dma_mapping_error(struct device *dev, 85 dma_addr_t dma_addr) 86 { 87 } 88 static inline void debug_dma_map_single(struct device *dev, const void *addr, 89 unsigned long len) 90 { 91 } 92 #endif /* CONFIG_DMA_API_DEBUG */ 93 94 #ifdef CONFIG_HAS_DMA 95 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 96 { 97 debug_dma_mapping_error(dev, dma_addr); 98 99 if (unlikely(dma_addr == DMA_MAPPING_ERROR)) 100 return -ENOMEM; 101 return 0; 102 } 103 104 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 105 size_t offset, size_t size, enum dma_data_direction dir, 106 unsigned long attrs); 107 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 108 enum dma_data_direction dir, unsigned long attrs); 109 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 110 int nents, enum dma_data_direction dir, unsigned long attrs); 111 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 112 int nents, enum dma_data_direction dir, 113 unsigned long attrs); 114 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 115 enum dma_data_direction dir, unsigned long attrs); 116 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 117 size_t size, enum dma_data_direction dir, unsigned long attrs); 118 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 119 enum dma_data_direction dir, unsigned long attrs); 120 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 121 gfp_t flag, unsigned long attrs); 122 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 123 dma_addr_t dma_handle, unsigned long attrs); 124 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 125 gfp_t gfp, unsigned long attrs); 126 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 127 dma_addr_t dma_handle); 128 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 129 void *cpu_addr, dma_addr_t dma_addr, size_t size, 130 unsigned long attrs); 131 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 132 void *cpu_addr, dma_addr_t dma_addr, size_t size, 133 unsigned long attrs); 134 bool dma_can_mmap(struct device *dev); 135 bool dma_pci_p2pdma_supported(struct device *dev); 136 int dma_set_mask(struct device *dev, u64 mask); 137 int dma_set_coherent_mask(struct device *dev, u64 mask); 138 u64 dma_get_required_mask(struct device *dev); 139 bool dma_addressing_limited(struct device *dev); 140 size_t dma_max_mapping_size(struct device *dev); 141 size_t dma_opt_mapping_size(struct device *dev); 142 unsigned long dma_get_merge_boundary(struct device *dev); 143 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 144 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs); 145 void dma_free_noncontiguous(struct device *dev, size_t size, 146 struct sg_table *sgt, enum dma_data_direction dir); 147 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 148 struct sg_table *sgt); 149 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr); 150 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 151 size_t size, struct sg_table *sgt); 152 #else /* CONFIG_HAS_DMA */ 153 static inline dma_addr_t dma_map_page_attrs(struct device *dev, 154 struct page *page, size_t offset, size_t size, 155 enum dma_data_direction dir, unsigned long attrs) 156 { 157 return DMA_MAPPING_ERROR; 158 } 159 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 } 163 static inline unsigned int dma_map_sg_attrs(struct device *dev, 164 struct scatterlist *sg, int nents, enum dma_data_direction dir, 165 unsigned long attrs) 166 { 167 return 0; 168 } 169 static inline void dma_unmap_sg_attrs(struct device *dev, 170 struct scatterlist *sg, int nents, enum dma_data_direction dir, 171 unsigned long attrs) 172 { 173 } 174 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 175 enum dma_data_direction dir, unsigned long attrs) 176 { 177 return -EOPNOTSUPP; 178 } 179 static inline dma_addr_t dma_map_resource(struct device *dev, 180 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, 181 unsigned long attrs) 182 { 183 return DMA_MAPPING_ERROR; 184 } 185 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 186 size_t size, enum dma_data_direction dir, unsigned long attrs) 187 { 188 } 189 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 190 { 191 return -ENOMEM; 192 } 193 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 194 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) 195 { 196 return NULL; 197 } 198 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 199 dma_addr_t dma_handle, unsigned long attrs) 200 { 201 } 202 static inline void *dmam_alloc_attrs(struct device *dev, size_t size, 203 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 204 { 205 return NULL; 206 } 207 static inline void dmam_free_coherent(struct device *dev, size_t size, 208 void *vaddr, dma_addr_t dma_handle) 209 { 210 } 211 static inline int dma_get_sgtable_attrs(struct device *dev, 212 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, 213 size_t size, unsigned long attrs) 214 { 215 return -ENXIO; 216 } 217 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 218 void *cpu_addr, dma_addr_t dma_addr, size_t size, 219 unsigned long attrs) 220 { 221 return -ENXIO; 222 } 223 static inline bool dma_can_mmap(struct device *dev) 224 { 225 return false; 226 } 227 static inline bool dma_pci_p2pdma_supported(struct device *dev) 228 { 229 return false; 230 } 231 static inline int dma_set_mask(struct device *dev, u64 mask) 232 { 233 return -EIO; 234 } 235 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 236 { 237 return -EIO; 238 } 239 static inline u64 dma_get_required_mask(struct device *dev) 240 { 241 return 0; 242 } 243 static inline bool dma_addressing_limited(struct device *dev) 244 { 245 return false; 246 } 247 static inline size_t dma_max_mapping_size(struct device *dev) 248 { 249 return 0; 250 } 251 static inline size_t dma_opt_mapping_size(struct device *dev) 252 { 253 return 0; 254 } 255 static inline unsigned long dma_get_merge_boundary(struct device *dev) 256 { 257 return 0; 258 } 259 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev, 260 size_t size, enum dma_data_direction dir, gfp_t gfp, 261 unsigned long attrs) 262 { 263 return NULL; 264 } 265 static inline void dma_free_noncontiguous(struct device *dev, size_t size, 266 struct sg_table *sgt, enum dma_data_direction dir) 267 { 268 } 269 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size, 270 struct sg_table *sgt) 271 { 272 return NULL; 273 } 274 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 275 { 276 } 277 static inline int dma_mmap_noncontiguous(struct device *dev, 278 struct vm_area_struct *vma, size_t size, struct sg_table *sgt) 279 { 280 return -EINVAL; 281 } 282 #endif /* CONFIG_HAS_DMA */ 283 284 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 285 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 286 enum dma_data_direction dir); 287 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 288 size_t size, enum dma_data_direction dir); 289 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 290 int nelems, enum dma_data_direction dir); 291 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 292 int nelems, enum dma_data_direction dir); 293 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr); 294 295 static inline bool dma_dev_need_sync(const struct device *dev) 296 { 297 /* Always call DMA sync operations when debugging is enabled */ 298 return !dev->dma_skip_sync || IS_ENABLED(CONFIG_DMA_API_DEBUG); 299 } 300 301 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 302 size_t size, enum dma_data_direction dir) 303 { 304 if (dma_dev_need_sync(dev)) 305 __dma_sync_single_for_cpu(dev, addr, size, dir); 306 } 307 308 static inline void dma_sync_single_for_device(struct device *dev, 309 dma_addr_t addr, size_t size, enum dma_data_direction dir) 310 { 311 if (dma_dev_need_sync(dev)) 312 __dma_sync_single_for_device(dev, addr, size, dir); 313 } 314 315 static inline void dma_sync_sg_for_cpu(struct device *dev, 316 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 317 { 318 if (dma_dev_need_sync(dev)) 319 __dma_sync_sg_for_cpu(dev, sg, nelems, dir); 320 } 321 322 static inline void dma_sync_sg_for_device(struct device *dev, 323 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 324 { 325 if (dma_dev_need_sync(dev)) 326 __dma_sync_sg_for_device(dev, sg, nelems, dir); 327 } 328 329 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 330 { 331 return dma_dev_need_sync(dev) ? __dma_need_sync(dev, dma_addr) : false; 332 } 333 #else /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */ 334 static inline bool dma_dev_need_sync(const struct device *dev) 335 { 336 return false; 337 } 338 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 339 size_t size, enum dma_data_direction dir) 340 { 341 } 342 static inline void dma_sync_single_for_device(struct device *dev, 343 dma_addr_t addr, size_t size, enum dma_data_direction dir) 344 { 345 } 346 static inline void dma_sync_sg_for_cpu(struct device *dev, 347 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 348 { 349 } 350 static inline void dma_sync_sg_for_device(struct device *dev, 351 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 352 { 353 } 354 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 355 { 356 return false; 357 } 358 #endif /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */ 359 360 struct page *dma_alloc_pages(struct device *dev, size_t size, 361 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); 362 void dma_free_pages(struct device *dev, size_t size, struct page *page, 363 dma_addr_t dma_handle, enum dma_data_direction dir); 364 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 365 size_t size, struct page *page); 366 367 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 368 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 369 { 370 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp); 371 return page ? page_address(page) : NULL; 372 } 373 374 static inline void dma_free_noncoherent(struct device *dev, size_t size, 375 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir) 376 { 377 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir); 378 } 379 380 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 381 size_t size, enum dma_data_direction dir, unsigned long attrs) 382 { 383 /* DMA must never operate on areas that might be remapped. */ 384 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), 385 "rejecting DMA map of vmalloc memory\n")) 386 return DMA_MAPPING_ERROR; 387 debug_dma_map_single(dev, ptr, size); 388 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), 389 size, dir, attrs); 390 } 391 392 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 393 size_t size, enum dma_data_direction dir, unsigned long attrs) 394 { 395 return dma_unmap_page_attrs(dev, addr, size, dir, attrs); 396 } 397 398 static inline void dma_sync_single_range_for_cpu(struct device *dev, 399 dma_addr_t addr, unsigned long offset, size_t size, 400 enum dma_data_direction dir) 401 { 402 return dma_sync_single_for_cpu(dev, addr + offset, size, dir); 403 } 404 405 static inline void dma_sync_single_range_for_device(struct device *dev, 406 dma_addr_t addr, unsigned long offset, size_t size, 407 enum dma_data_direction dir) 408 { 409 return dma_sync_single_for_device(dev, addr + offset, size, dir); 410 } 411 412 /** 413 * dma_unmap_sgtable - Unmap the given buffer for DMA 414 * @dev: The device for which to perform the DMA operation 415 * @sgt: The sg_table object describing the buffer 416 * @dir: DMA direction 417 * @attrs: Optional DMA attributes for the unmap operation 418 * 419 * Unmaps a buffer described by a scatterlist stored in the given sg_table 420 * object for the @dir DMA operation by the @dev device. After this function 421 * the ownership of the buffer is transferred back to the CPU domain. 422 */ 423 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, 424 enum dma_data_direction dir, unsigned long attrs) 425 { 426 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 427 } 428 429 /** 430 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access 431 * @dev: The device for which to perform the DMA operation 432 * @sgt: The sg_table object describing the buffer 433 * @dir: DMA direction 434 * 435 * Performs the needed cache synchronization and moves the ownership of the 436 * buffer back to the CPU domain, so it is safe to perform any access to it 437 * by the CPU. Before doing any further DMA operations, one has to transfer 438 * the ownership of the buffer back to the DMA domain by calling the 439 * dma_sync_sgtable_for_device(). 440 */ 441 static inline void dma_sync_sgtable_for_cpu(struct device *dev, 442 struct sg_table *sgt, enum dma_data_direction dir) 443 { 444 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir); 445 } 446 447 /** 448 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA 449 * @dev: The device for which to perform the DMA operation 450 * @sgt: The sg_table object describing the buffer 451 * @dir: DMA direction 452 * 453 * Performs the needed cache synchronization and moves the ownership of the 454 * buffer back to the DMA domain, so it is safe to perform the DMA operation. 455 * Once finished, one has to call dma_sync_sgtable_for_cpu() or 456 * dma_unmap_sgtable(). 457 */ 458 static inline void dma_sync_sgtable_for_device(struct device *dev, 459 struct sg_table *sgt, enum dma_data_direction dir) 460 { 461 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir); 462 } 463 464 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 465 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 466 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 467 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 468 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 469 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 470 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 471 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 472 473 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size); 474 475 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 476 dma_addr_t *dma_handle, gfp_t gfp) 477 { 478 return dma_alloc_attrs(dev, size, dma_handle, gfp, 479 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 480 } 481 482 static inline void dma_free_coherent(struct device *dev, size_t size, 483 void *cpu_addr, dma_addr_t dma_handle) 484 { 485 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 486 } 487 488 489 static inline u64 dma_get_mask(struct device *dev) 490 { 491 if (dev->dma_mask && *dev->dma_mask) 492 return *dev->dma_mask; 493 return DMA_BIT_MASK(32); 494 } 495 496 /* 497 * Set both the DMA mask and the coherent DMA mask to the same thing. 498 * Note that we don't check the return value from dma_set_coherent_mask() 499 * as the DMA API guarantees that the coherent DMA mask can be set to 500 * the same or smaller than the streaming DMA mask. 501 */ 502 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 503 { 504 int rc = dma_set_mask(dev, mask); 505 if (rc == 0) 506 dma_set_coherent_mask(dev, mask); 507 return rc; 508 } 509 510 /* 511 * Similar to the above, except it deals with the case where the device 512 * does not have dev->dma_mask appropriately setup. 513 */ 514 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 515 { 516 dev->dma_mask = &dev->coherent_dma_mask; 517 return dma_set_mask_and_coherent(dev, mask); 518 } 519 520 static inline unsigned int dma_get_max_seg_size(struct device *dev) 521 { 522 if (dev->dma_parms && dev->dma_parms->max_segment_size) 523 return dev->dma_parms->max_segment_size; 524 return SZ_64K; 525 } 526 527 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size) 528 { 529 if (dev->dma_parms) { 530 dev->dma_parms->max_segment_size = size; 531 return 0; 532 } 533 return -EIO; 534 } 535 536 static inline unsigned long dma_get_seg_boundary(struct device *dev) 537 { 538 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 539 return dev->dma_parms->segment_boundary_mask; 540 return ULONG_MAX; 541 } 542 543 /** 544 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units 545 * @dev: device to guery the boundary for 546 * @page_shift: ilog() of the IOMMU page size 547 * 548 * Return the segment boundary in IOMMU page units (which may be different from 549 * the CPU page size) for the passed in device. 550 * 551 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for 552 * non-DMA API callers. 553 */ 554 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, 555 unsigned int page_shift) 556 { 557 if (!dev) 558 return (U32_MAX >> page_shift) + 1; 559 return (dma_get_seg_boundary(dev) >> page_shift) + 1; 560 } 561 562 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 563 { 564 if (dev->dma_parms) { 565 dev->dma_parms->segment_boundary_mask = mask; 566 return 0; 567 } 568 return -EIO; 569 } 570 571 static inline unsigned int dma_get_min_align_mask(struct device *dev) 572 { 573 if (dev->dma_parms) 574 return dev->dma_parms->min_align_mask; 575 return 0; 576 } 577 578 static inline int dma_set_min_align_mask(struct device *dev, 579 unsigned int min_align_mask) 580 { 581 if (WARN_ON_ONCE(!dev->dma_parms)) 582 return -EIO; 583 dev->dma_parms->min_align_mask = min_align_mask; 584 return 0; 585 } 586 587 #ifndef dma_get_cache_alignment 588 static inline int dma_get_cache_alignment(void) 589 { 590 #ifdef ARCH_HAS_DMA_MINALIGN 591 return ARCH_DMA_MINALIGN; 592 #endif 593 return 1; 594 } 595 #endif 596 597 static inline void *dmam_alloc_coherent(struct device *dev, size_t size, 598 dma_addr_t *dma_handle, gfp_t gfp) 599 { 600 return dmam_alloc_attrs(dev, size, dma_handle, gfp, 601 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 602 } 603 604 static inline void *dma_alloc_wc(struct device *dev, size_t size, 605 dma_addr_t *dma_addr, gfp_t gfp) 606 { 607 unsigned long attrs = DMA_ATTR_WRITE_COMBINE; 608 609 if (gfp & __GFP_NOWARN) 610 attrs |= DMA_ATTR_NO_WARN; 611 612 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); 613 } 614 615 static inline void dma_free_wc(struct device *dev, size_t size, 616 void *cpu_addr, dma_addr_t dma_addr) 617 { 618 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 619 DMA_ATTR_WRITE_COMBINE); 620 } 621 622 static inline int dma_mmap_wc(struct device *dev, 623 struct vm_area_struct *vma, 624 void *cpu_addr, dma_addr_t dma_addr, 625 size_t size) 626 { 627 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 628 DMA_ATTR_WRITE_COMBINE); 629 } 630 631 #ifdef CONFIG_NEED_DMA_MAP_STATE 632 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 633 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 634 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 635 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 636 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 637 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 638 #else 639 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 640 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 641 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 642 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 643 #define dma_unmap_len(PTR, LEN_NAME) (0) 644 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 645 #endif 646 647 #endif /* _LINUX_DMA_MAPPING_H */ 648
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.