1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 #ifndef LINUX_DMAENGINE_H 6 #define LINUX_DMAENGINE_H 7 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/uio.h> 11 #include <linux/bug.h> 12 #include <linux/scatterlist.h> 13 #include <linux/bitmap.h> 14 #include <linux/types.h> 15 #include <asm/page.h> 16 17 /** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22 typedef s32 dma_cookie_t; 23 #define DMA_MIN_COOKIE 1 24 25 static inline int dma_submit_error(dma_cookie_t cookie) 26 { 27 return cookie < 0 ? cookie : 0; 28 } 29 30 /** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37 enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43 }; 44 45 /** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51 enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68 /* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70 }; 71 72 /** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79 enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85 }; 86 87 /** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110 /** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125 struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130 }; 131 132 /** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150 struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161 }; 162 163 /** 164 * struct dma_vec - DMA vector 165 * @addr: Bus address of the start of the vector 166 * @len: Length in bytes of the DMA vector 167 */ 168 struct dma_vec { 169 dma_addr_t addr; 170 size_t len; 171 }; 172 173 /** 174 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 175 * control completion, and communicate status. 176 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 177 * this transaction 178 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 179 * acknowledges receipt, i.e. has a chance to establish any dependency 180 * chains 181 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 182 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 183 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 184 * sources that were the result of a previous operation, in the case of a PQ 185 * operation it continues the calculation with new sources 186 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 187 * on the result of this operation 188 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 189 * cleared or freed 190 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 191 * data and the descriptor should be in different format from normal 192 * data descriptors. 193 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 194 * repeated when it ends until a transaction is issued on the same channel 195 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 196 * interleaved transactions and is ignored for all other transaction types. 197 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 198 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 199 * repeated transaction ends. Not setting this flag when the previously queued 200 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 201 * to never be processed and stay in the issued queue forever. The flag is 202 * ignored if the previous transaction is not a repeated transaction. 203 */ 204 enum dma_ctrl_flags { 205 DMA_PREP_INTERRUPT = (1 << 0), 206 DMA_CTRL_ACK = (1 << 1), 207 DMA_PREP_PQ_DISABLE_P = (1 << 2), 208 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 209 DMA_PREP_CONTINUE = (1 << 4), 210 DMA_PREP_FENCE = (1 << 5), 211 DMA_CTRL_REUSE = (1 << 6), 212 DMA_PREP_CMD = (1 << 7), 213 DMA_PREP_REPEAT = (1 << 8), 214 DMA_PREP_LOAD_EOT = (1 << 9), 215 }; 216 217 /** 218 * enum sum_check_bits - bit position of pq_check_flags 219 */ 220 enum sum_check_bits { 221 SUM_CHECK_P = 0, 222 SUM_CHECK_Q = 1, 223 }; 224 225 /** 226 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 227 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 228 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 229 */ 230 enum sum_check_flags { 231 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 232 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 233 }; 234 235 236 /** 237 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 238 * See linux/cpumask.h 239 */ 240 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 241 242 /** 243 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 244 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 245 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 246 * helper) to the descriptor. 247 * 248 * Client drivers interested to use this mode can follow: 249 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 250 * 1. prepare the descriptor (dmaengine_prep_*) 251 * construct the metadata in the client's buffer 252 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 253 * descriptor 254 * 3. submit the transfer 255 * - DMA_DEV_TO_MEM: 256 * 1. prepare the descriptor (dmaengine_prep_*) 257 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 258 * descriptor 259 * 3. submit the transfer 260 * 4. when the transfer is completed, the metadata should be available in the 261 * attached buffer 262 * 263 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 264 * driver. The client driver can ask for the pointer, maximum size and the 265 * currently used size of the metadata and can directly update or read it. 266 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 267 * provided as helper functions. 268 * 269 * Note: the metadata area for the descriptor is no longer valid after the 270 * transfer has been completed (valid up to the point when the completion 271 * callback returns if used). 272 * 273 * Client drivers interested to use this mode can follow: 274 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 275 * 1. prepare the descriptor (dmaengine_prep_*) 276 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 277 * metadata area 278 * 3. update the metadata at the pointer 279 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 280 * of data the client has placed into the metadata buffer 281 * 5. submit the transfer 282 * - DMA_DEV_TO_MEM: 283 * 1. prepare the descriptor (dmaengine_prep_*) 284 * 2. submit the transfer 285 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 286 * pointer to the engine's metadata area 287 * 4. Read out the metadata from the pointer 288 * 289 * Note: the two mode is not compatible and clients must use one mode for a 290 * descriptor. 291 */ 292 enum dma_desc_metadata_mode { 293 DESC_METADATA_NONE = 0, 294 DESC_METADATA_CLIENT = BIT(0), 295 DESC_METADATA_ENGINE = BIT(1), 296 }; 297 298 /** 299 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 300 * @memcpy_count: transaction counter 301 * @bytes_transferred: byte counter 302 */ 303 struct dma_chan_percpu { 304 /* stats */ 305 unsigned long memcpy_count; 306 unsigned long bytes_transferred; 307 }; 308 309 /** 310 * struct dma_router - DMA router structure 311 * @dev: pointer to the DMA router device 312 * @route_free: function to be called when the route can be disconnected 313 */ 314 struct dma_router { 315 struct device *dev; 316 void (*route_free)(struct device *dev, void *route_data); 317 }; 318 319 /** 320 * struct dma_chan - devices supply DMA channels, clients use them 321 * @device: ptr to the dma device who supplies this channel, always !%NULL 322 * @slave: ptr to the device using this channel 323 * @cookie: last cookie value returned to client 324 * @completed_cookie: last completed cookie for this channel 325 * @chan_id: channel ID for sysfs 326 * @dev: class device for sysfs 327 * @name: backlink name for sysfs 328 * @dbg_client_name: slave name for debugfs in format: 329 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 330 * @device_node: used to add this to the device chan list 331 * @local: per-cpu pointer to a struct dma_chan_percpu 332 * @client_count: how many clients are using this channel 333 * @table_count: number of appearances in the mem-to-mem allocation table 334 * @router: pointer to the DMA router structure 335 * @route_data: channel specific data for the router 336 * @private: private data for certain client-channel associations 337 */ 338 struct dma_chan { 339 struct dma_device *device; 340 struct device *slave; 341 dma_cookie_t cookie; 342 dma_cookie_t completed_cookie; 343 344 /* sysfs */ 345 int chan_id; 346 struct dma_chan_dev *dev; 347 const char *name; 348 #ifdef CONFIG_DEBUG_FS 349 char *dbg_client_name; 350 #endif 351 352 struct list_head device_node; 353 struct dma_chan_percpu __percpu *local; 354 int client_count; 355 int table_count; 356 357 /* DMA router */ 358 struct dma_router *router; 359 void *route_data; 360 361 void *private; 362 }; 363 364 /** 365 * struct dma_chan_dev - relate sysfs device node to backing channel device 366 * @chan: driver channel device 367 * @device: sysfs device 368 * @dev_id: parent dma_device dev_id 369 * @chan_dma_dev: The channel is using custom/different dma-mapping 370 * compared to the parent dma_device 371 */ 372 struct dma_chan_dev { 373 struct dma_chan *chan; 374 struct device device; 375 int dev_id; 376 bool chan_dma_dev; 377 }; 378 379 /** 380 * enum dma_slave_buswidth - defines bus width of the DMA slave 381 * device, source or target buses 382 */ 383 enum dma_slave_buswidth { 384 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 385 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 386 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 387 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 388 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 389 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 390 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 391 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 392 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 393 DMA_SLAVE_BUSWIDTH_128_BYTES = 128, 394 }; 395 396 /** 397 * struct dma_slave_config - dma slave channel runtime config 398 * @direction: whether the data shall go in or out on this slave 399 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 400 * legal values. DEPRECATED, drivers should use the direction argument 401 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 402 * the dir field in the dma_interleaved_template structure. 403 * @src_addr: this is the physical address where DMA slave data 404 * should be read (RX), if the source is memory this argument is 405 * ignored. 406 * @dst_addr: this is the physical address where DMA slave data 407 * should be written (TX), if the destination is memory this argument 408 * is ignored. 409 * @src_addr_width: this is the width in bytes of the source (RX) 410 * register where DMA data shall be read. If the source 411 * is memory this may be ignored depending on architecture. 412 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. 413 * @dst_addr_width: same as src_addr_width but for destination 414 * target (TX) mutatis mutandis. 415 * @src_maxburst: the maximum number of words (note: words, as in 416 * units of the src_addr_width member, not bytes) that can be sent 417 * in one burst to the device. Typically something like half the 418 * FIFO depth on I/O peripherals so you don't overflow it. This 419 * may or may not be applicable on memory sources. 420 * @dst_maxburst: same as src_maxburst but for destination target 421 * mutatis mutandis. 422 * @src_port_window_size: The length of the register area in words the data need 423 * to be accessed on the device side. It is only used for devices which is using 424 * an area instead of a single register to receive the data. Typically the DMA 425 * loops in this area in order to transfer the data. 426 * @dst_port_window_size: same as src_port_window_size but for the destination 427 * port. 428 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 429 * with 'true' if peripheral should be flow controller. Direction will be 430 * selected at Runtime. 431 * @peripheral_config: peripheral configuration for programming peripheral 432 * for dmaengine transfer 433 * @peripheral_size: peripheral configuration buffer size 434 * 435 * This struct is passed in as configuration data to a DMA engine 436 * in order to set up a certain channel for DMA transport at runtime. 437 * The DMA device/engine has to provide support for an additional 438 * callback in the dma_device structure, device_config and this struct 439 * will then be passed in as an argument to the function. 440 * 441 * The rationale for adding configuration information to this struct is as 442 * follows: if it is likely that more than one DMA slave controllers in 443 * the world will support the configuration option, then make it generic. 444 * If not: if it is fixed so that it be sent in static from the platform 445 * data, then prefer to do that. 446 */ 447 struct dma_slave_config { 448 enum dma_transfer_direction direction; 449 phys_addr_t src_addr; 450 phys_addr_t dst_addr; 451 enum dma_slave_buswidth src_addr_width; 452 enum dma_slave_buswidth dst_addr_width; 453 u32 src_maxburst; 454 u32 dst_maxburst; 455 u32 src_port_window_size; 456 u32 dst_port_window_size; 457 bool device_fc; 458 void *peripheral_config; 459 size_t peripheral_size; 460 }; 461 462 /** 463 * enum dma_residue_granularity - Granularity of the reported transfer residue 464 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 465 * DMA channel is only able to tell whether a descriptor has been completed or 466 * not, which means residue reporting is not supported by this channel. The 467 * residue field of the dma_tx_state field will always be 0. 468 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 469 * completed segment of the transfer (For cyclic transfers this is after each 470 * period). This is typically implemented by having the hardware generate an 471 * interrupt after each transferred segment and then the drivers updates the 472 * outstanding residue by the size of the segment. Another possibility is if 473 * the hardware supports scatter-gather and the segment descriptor has a field 474 * which gets set after the segment has been completed. The driver then counts 475 * the number of segments without the flag set to compute the residue. 476 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 477 * burst. This is typically only supported if the hardware has a progress 478 * register of some sort (E.g. a register with the current read/write address 479 * or a register with the amount of bursts/beats/bytes that have been 480 * transferred or still need to be transferred). 481 */ 482 enum dma_residue_granularity { 483 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 484 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 485 DMA_RESIDUE_GRANULARITY_BURST = 2, 486 }; 487 488 /** 489 * struct dma_slave_caps - expose capabilities of a slave channel only 490 * @src_addr_widths: bit mask of src addr widths the channel supports. 491 * Width is specified in bytes, e.g. for a channel supporting 492 * a width of 4 the mask should have BIT(4) set. 493 * @dst_addr_widths: bit mask of dst addr widths the channel supports 494 * @directions: bit mask of slave directions the channel supports. 495 * Since the enum dma_transfer_direction is not defined as bit flag for 496 * each type, the dma controller should set BIT(<TYPE>) and same 497 * should be checked by controller as well 498 * @min_burst: min burst capability per-transfer 499 * @max_burst: max burst capability per-transfer 500 * @max_sg_burst: max number of SG list entries executed in a single burst 501 * DMA tansaction with no software intervention for reinitialization. 502 * Zero value means unlimited number of entries. 503 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 504 * for resume later) 505 * @cmd_resume: true, if resume is supported 506 * @cmd_terminate: true, if terminate cmd is supported 507 * @residue_granularity: granularity of the reported transfer residue 508 * @descriptor_reuse: if a descriptor can be reused by client and 509 * resubmitted multiple times 510 */ 511 struct dma_slave_caps { 512 u32 src_addr_widths; 513 u32 dst_addr_widths; 514 u32 directions; 515 u32 min_burst; 516 u32 max_burst; 517 u32 max_sg_burst; 518 bool cmd_pause; 519 bool cmd_resume; 520 bool cmd_terminate; 521 enum dma_residue_granularity residue_granularity; 522 bool descriptor_reuse; 523 }; 524 525 static inline const char *dma_chan_name(struct dma_chan *chan) 526 { 527 return dev_name(&chan->dev->device); 528 } 529 530 /** 531 * typedef dma_filter_fn - callback filter for dma_request_channel 532 * @chan: channel to be reviewed 533 * @filter_param: opaque parameter passed through dma_request_channel 534 * 535 * When this optional parameter is specified in a call to dma_request_channel a 536 * suitable channel is passed to this routine for further dispositioning before 537 * being returned. Where 'suitable' indicates a non-busy channel that 538 * satisfies the given capability mask. It returns 'true' to indicate that the 539 * channel is suitable. 540 */ 541 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 542 543 typedef void (*dma_async_tx_callback)(void *dma_async_param); 544 545 enum dmaengine_tx_result { 546 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 547 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 548 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 549 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 550 }; 551 552 struct dmaengine_result { 553 enum dmaengine_tx_result result; 554 u32 residue; 555 }; 556 557 typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 558 const struct dmaengine_result *result); 559 560 struct dmaengine_unmap_data { 561 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 562 u16 map_cnt; 563 #else 564 u8 map_cnt; 565 #endif 566 u8 to_cnt; 567 u8 from_cnt; 568 u8 bidi_cnt; 569 struct device *dev; 570 struct kref kref; 571 size_t len; 572 dma_addr_t addr[]; 573 }; 574 575 struct dma_async_tx_descriptor; 576 577 struct dma_descriptor_metadata_ops { 578 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 579 size_t len); 580 581 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 582 size_t *payload_len, size_t *max_len); 583 int (*set_len)(struct dma_async_tx_descriptor *desc, 584 size_t payload_len); 585 }; 586 587 /** 588 * struct dma_async_tx_descriptor - async transaction descriptor 589 * ---dma generic offload fields--- 590 * @cookie: tracking cookie for this transaction, set to -EBUSY if 591 * this tx is sitting on a dependency list 592 * @flags: flags to augment operation preparation, control completion, and 593 * communicate status 594 * @phys: physical address of the descriptor 595 * @chan: target channel for this operation 596 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 597 * descriptor pending. To be pushed on .issue_pending() call 598 * @callback: routine to call after this operation is complete 599 * @callback_param: general parameter to pass to the callback routine 600 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 601 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 602 * DESC_METADATA_NONE 603 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 604 * DMA driver if metadata mode is supported with the descriptor 605 * ---async_tx api specific fields--- 606 * @next: at completion submit this descriptor 607 * @parent: pointer to the next level up in the dependency chain 608 * @lock: protect the parent and next pointers 609 */ 610 struct dma_async_tx_descriptor { 611 dma_cookie_t cookie; 612 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 613 dma_addr_t phys; 614 struct dma_chan *chan; 615 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 616 int (*desc_free)(struct dma_async_tx_descriptor *tx); 617 dma_async_tx_callback callback; 618 dma_async_tx_callback_result callback_result; 619 void *callback_param; 620 struct dmaengine_unmap_data *unmap; 621 enum dma_desc_metadata_mode desc_metadata_mode; 622 struct dma_descriptor_metadata_ops *metadata_ops; 623 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 624 struct dma_async_tx_descriptor *next; 625 struct dma_async_tx_descriptor *parent; 626 spinlock_t lock; 627 #endif 628 }; 629 630 #ifdef CONFIG_DMA_ENGINE 631 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 632 struct dmaengine_unmap_data *unmap) 633 { 634 kref_get(&unmap->kref); 635 tx->unmap = unmap; 636 } 637 638 struct dmaengine_unmap_data * 639 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 640 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 641 #else 642 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 643 struct dmaengine_unmap_data *unmap) 644 { 645 } 646 static inline struct dmaengine_unmap_data * 647 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 648 { 649 return NULL; 650 } 651 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 652 { 653 } 654 #endif 655 656 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 657 { 658 if (!tx->unmap) 659 return; 660 661 dmaengine_unmap_put(tx->unmap); 662 tx->unmap = NULL; 663 } 664 665 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 666 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 667 { 668 } 669 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 670 { 671 } 672 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 673 { 674 BUG(); 675 } 676 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 677 { 678 } 679 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 680 { 681 } 682 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 683 { 684 return NULL; 685 } 686 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 687 { 688 return NULL; 689 } 690 691 #else 692 static inline void txd_lock(struct dma_async_tx_descriptor *txd) 693 { 694 spin_lock_bh(&txd->lock); 695 } 696 static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 697 { 698 spin_unlock_bh(&txd->lock); 699 } 700 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 701 { 702 txd->next = next; 703 next->parent = txd; 704 } 705 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 706 { 707 txd->parent = NULL; 708 } 709 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 710 { 711 txd->next = NULL; 712 } 713 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 714 { 715 return txd->parent; 716 } 717 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 718 { 719 return txd->next; 720 } 721 #endif 722 723 /** 724 * struct dma_tx_state - filled in to report the status of 725 * a transfer. 726 * @last: last completed DMA cookie 727 * @used: last issued DMA cookie (i.e. the one in progress) 728 * @residue: the remaining number of bytes left to transmit 729 * on the selected transfer for states DMA_IN_PROGRESS and 730 * DMA_PAUSED if this is implemented in the driver, else 0 731 * @in_flight_bytes: amount of data in bytes cached by the DMA. 732 */ 733 struct dma_tx_state { 734 dma_cookie_t last; 735 dma_cookie_t used; 736 u32 residue; 737 u32 in_flight_bytes; 738 }; 739 740 /** 741 * enum dmaengine_alignment - defines alignment of the DMA async tx 742 * buffers 743 */ 744 enum dmaengine_alignment { 745 DMAENGINE_ALIGN_1_BYTE = 0, 746 DMAENGINE_ALIGN_2_BYTES = 1, 747 DMAENGINE_ALIGN_4_BYTES = 2, 748 DMAENGINE_ALIGN_8_BYTES = 3, 749 DMAENGINE_ALIGN_16_BYTES = 4, 750 DMAENGINE_ALIGN_32_BYTES = 5, 751 DMAENGINE_ALIGN_64_BYTES = 6, 752 DMAENGINE_ALIGN_128_BYTES = 7, 753 DMAENGINE_ALIGN_256_BYTES = 8, 754 }; 755 756 /** 757 * struct dma_slave_map - associates slave device and it's slave channel with 758 * parameter to be used by a filter function 759 * @devname: name of the device 760 * @slave: slave channel name 761 * @param: opaque parameter to pass to struct dma_filter.fn 762 */ 763 struct dma_slave_map { 764 const char *devname; 765 const char *slave; 766 void *param; 767 }; 768 769 /** 770 * struct dma_filter - information for slave device/channel to filter_fn/param 771 * mapping 772 * @fn: filter function callback 773 * @mapcnt: number of slave device/channel in the map 774 * @map: array of channel to filter mapping data 775 */ 776 struct dma_filter { 777 dma_filter_fn fn; 778 int mapcnt; 779 const struct dma_slave_map *map; 780 }; 781 782 /** 783 * struct dma_device - info on the entity supplying DMA services 784 * @ref: reference is taken and put every time a channel is allocated or freed 785 * @chancnt: how many DMA channels are supported 786 * @privatecnt: how many DMA channels are requested by dma_request_channel 787 * @channels: the list of struct dma_chan 788 * @global_node: list_head for global dma_device_list 789 * @filter: information for device/slave to filter function/param mapping 790 * @cap_mask: one or more dma_capability flags 791 * @desc_metadata_modes: supported metadata modes by the DMA device 792 * @max_xor: maximum number of xor sources, 0 if no capability 793 * @max_pq: maximum number of PQ sources and PQ-continue capability 794 * @copy_align: alignment shift for memcpy operations 795 * @xor_align: alignment shift for xor operations 796 * @pq_align: alignment shift for pq operations 797 * @fill_align: alignment shift for memset operations 798 * @dev_id: unique device ID 799 * @dev: struct device reference for dma mapping api 800 * @owner: owner module (automatically set based on the provided dev) 801 * @chan_ida: unique channel ID 802 * @src_addr_widths: bit mask of src addr widths the device supports 803 * Width is specified in bytes, e.g. for a device supporting 804 * a width of 4 the mask should have BIT(4) set. 805 * @dst_addr_widths: bit mask of dst addr widths the device supports 806 * @directions: bit mask of slave directions the device supports. 807 * Since the enum dma_transfer_direction is not defined as bit flag for 808 * each type, the dma controller should set BIT(<TYPE>) and same 809 * should be checked by controller as well 810 * @min_burst: min burst capability per-transfer 811 * @max_burst: max burst capability per-transfer 812 * @max_sg_burst: max number of SG list entries executed in a single burst 813 * DMA tansaction with no software intervention for reinitialization. 814 * Zero value means unlimited number of entries. 815 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 816 * @residue_granularity: granularity of the transfer residue reported 817 * by tx_status 818 * @device_alloc_chan_resources: allocate resources and return the 819 * number of allocated descriptors 820 * @device_router_config: optional callback for DMA router configuration 821 * @device_free_chan_resources: release DMA channel's resources 822 * @device_prep_dma_memcpy: prepares a memcpy operation 823 * @device_prep_dma_xor: prepares a xor operation 824 * @device_prep_dma_xor_val: prepares a xor validation operation 825 * @device_prep_dma_pq: prepares a pq operation 826 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 827 * @device_prep_dma_memset: prepares a memset operation 828 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 829 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 830 * @device_prep_slave_sg: prepares a slave dma operation 831 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 832 * The function takes a buffer of size buf_len. The callback function will 833 * be called after period_len bytes have been transferred. 834 * @device_prep_interleaved_dma: Transfer expression in a generic way. 835 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 836 * @device_caps: May be used to override the generic DMA slave capabilities 837 * with per-channel specific ones 838 * @device_config: Pushes a new configuration to a channel, return 0 or an error 839 * code 840 * @device_pause: Pauses any transfer happening on a channel. Returns 841 * 0 or an error code 842 * @device_resume: Resumes any transfer on a channel previously 843 * paused. Returns 0 or an error code 844 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 845 * or an error code 846 * @device_synchronize: Synchronizes the termination of a transfers to the 847 * current context. 848 * @device_tx_status: poll for transaction completion, the optional 849 * txstate parameter can be supplied with a pointer to get a 850 * struct with auxiliary transfer status information, otherwise the call 851 * will just return a simple status code 852 * @device_issue_pending: push pending transactions to hardware 853 * @device_release: called sometime atfer dma_async_device_unregister() is 854 * called and there are no further references to this structure. This 855 * must be implemented to free resources however many existing drivers 856 * do not and are therefore not safe to unbind while in use. 857 * @dbg_summary_show: optional routine to show contents in debugfs; default code 858 * will be used when this is omitted, but custom code can show extra, 859 * controller specific information. 860 * @dbg_dev_root: the root folder in debugfs for this device 861 */ 862 struct dma_device { 863 struct kref ref; 864 unsigned int chancnt; 865 unsigned int privatecnt; 866 struct list_head channels; 867 struct list_head global_node; 868 struct dma_filter filter; 869 dma_cap_mask_t cap_mask; 870 enum dma_desc_metadata_mode desc_metadata_modes; 871 unsigned short max_xor; 872 unsigned short max_pq; 873 enum dmaengine_alignment copy_align; 874 enum dmaengine_alignment xor_align; 875 enum dmaengine_alignment pq_align; 876 enum dmaengine_alignment fill_align; 877 #define DMA_HAS_PQ_CONTINUE (1 << 15) 878 879 int dev_id; 880 struct device *dev; 881 struct module *owner; 882 struct ida chan_ida; 883 884 u32 src_addr_widths; 885 u32 dst_addr_widths; 886 u32 directions; 887 u32 min_burst; 888 u32 max_burst; 889 u32 max_sg_burst; 890 bool descriptor_reuse; 891 enum dma_residue_granularity residue_granularity; 892 893 int (*device_alloc_chan_resources)(struct dma_chan *chan); 894 int (*device_router_config)(struct dma_chan *chan); 895 void (*device_free_chan_resources)(struct dma_chan *chan); 896 897 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 898 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 899 size_t len, unsigned long flags); 900 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 901 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 902 unsigned int src_cnt, size_t len, unsigned long flags); 903 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 904 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 905 size_t len, enum sum_check_flags *result, unsigned long flags); 906 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 907 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 908 unsigned int src_cnt, const unsigned char *scf, 909 size_t len, unsigned long flags); 910 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 911 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 912 unsigned int src_cnt, const unsigned char *scf, size_t len, 913 enum sum_check_flags *pqres, unsigned long flags); 914 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 915 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 916 unsigned long flags); 917 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 918 struct dma_chan *chan, struct scatterlist *sg, 919 unsigned int nents, int value, unsigned long flags); 920 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 921 struct dma_chan *chan, unsigned long flags); 922 923 struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)( 924 struct dma_chan *chan, const struct dma_vec *vecs, 925 size_t nents, enum dma_transfer_direction direction, 926 unsigned long flags); 927 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 928 struct dma_chan *chan, struct scatterlist *sgl, 929 unsigned int sg_len, enum dma_transfer_direction direction, 930 unsigned long flags, void *context); 931 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 932 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 933 size_t period_len, enum dma_transfer_direction direction, 934 unsigned long flags); 935 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 936 struct dma_chan *chan, struct dma_interleaved_template *xt, 937 unsigned long flags); 938 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 939 struct dma_chan *chan, dma_addr_t dst, u64 data, 940 unsigned long flags); 941 942 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 943 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); 944 int (*device_pause)(struct dma_chan *chan); 945 int (*device_resume)(struct dma_chan *chan); 946 int (*device_terminate_all)(struct dma_chan *chan); 947 void (*device_synchronize)(struct dma_chan *chan); 948 949 enum dma_status (*device_tx_status)(struct dma_chan *chan, 950 dma_cookie_t cookie, 951 struct dma_tx_state *txstate); 952 void (*device_issue_pending)(struct dma_chan *chan); 953 void (*device_release)(struct dma_device *dev); 954 /* debugfs support */ 955 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 956 struct dentry *dbg_dev_root; 957 }; 958 959 static inline int dmaengine_slave_config(struct dma_chan *chan, 960 struct dma_slave_config *config) 961 { 962 if (chan->device->device_config) 963 return chan->device->device_config(chan, config); 964 965 return -ENOSYS; 966 } 967 968 static inline bool is_slave_direction(enum dma_transfer_direction direction) 969 { 970 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) || 971 (direction == DMA_DEV_TO_DEV); 972 } 973 974 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 975 struct dma_chan *chan, dma_addr_t buf, size_t len, 976 enum dma_transfer_direction dir, unsigned long flags) 977 { 978 struct scatterlist sg; 979 sg_init_table(&sg, 1); 980 sg_dma_address(&sg) = buf; 981 sg_dma_len(&sg) = len; 982 983 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 984 return NULL; 985 986 return chan->device->device_prep_slave_sg(chan, &sg, 1, 987 dir, flags, NULL); 988 } 989 990 /** 991 * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor 992 * @chan: The channel to be used for this descriptor 993 * @vecs: The array of DMA vectors that should be transferred 994 * @nents: The number of DMA vectors in the array 995 * @dir: Specifies the direction of the data transfer 996 * @flags: DMA engine flags 997 */ 998 static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec( 999 struct dma_chan *chan, const struct dma_vec *vecs, size_t nents, 1000 enum dma_transfer_direction dir, unsigned long flags) 1001 { 1002 if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec) 1003 return NULL; 1004 1005 return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents, 1006 dir, flags); 1007 } 1008 1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 1010 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 1011 enum dma_transfer_direction dir, unsigned long flags) 1012 { 1013 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1014 return NULL; 1015 1016 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1017 dir, flags, NULL); 1018 } 1019 1020 #ifdef CONFIG_RAPIDIO_DMA_ENGINE 1021 struct rio_dma_ext; 1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 1023 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 1024 enum dma_transfer_direction dir, unsigned long flags, 1025 struct rio_dma_ext *rio_ext) 1026 { 1027 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1028 return NULL; 1029 1030 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1031 dir, flags, rio_ext); 1032 } 1033 #endif 1034 1035 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1036 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1037 size_t period_len, enum dma_transfer_direction dir, 1038 unsigned long flags) 1039 { 1040 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1041 return NULL; 1042 1043 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1044 period_len, dir, flags); 1045 } 1046 1047 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1048 struct dma_chan *chan, struct dma_interleaved_template *xt, 1049 unsigned long flags) 1050 { 1051 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1052 return NULL; 1053 if (flags & DMA_PREP_REPEAT && 1054 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1055 return NULL; 1056 1057 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1058 } 1059 1060 /** 1061 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor. 1062 * @chan: The channel to be used for this descriptor 1063 * @dest: Address of buffer to be set 1064 * @value: Treated as a single byte value that fills the destination buffer 1065 * @len: The total size of dest 1066 * @flags: DMA engine flags 1067 */ 1068 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1069 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1070 unsigned long flags) 1071 { 1072 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1073 return NULL; 1074 1075 return chan->device->device_prep_dma_memset(chan, dest, value, 1076 len, flags); 1077 } 1078 1079 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1080 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1081 size_t len, unsigned long flags) 1082 { 1083 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1084 return NULL; 1085 1086 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1087 len, flags); 1088 } 1089 1090 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1091 enum dma_desc_metadata_mode mode) 1092 { 1093 if (!chan) 1094 return false; 1095 1096 return !!(chan->device->desc_metadata_modes & mode); 1097 } 1098 1099 #ifdef CONFIG_DMA_ENGINE 1100 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1101 void *data, size_t len); 1102 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1103 size_t *payload_len, size_t *max_len); 1104 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1105 size_t payload_len); 1106 #else /* CONFIG_DMA_ENGINE */ 1107 static inline int dmaengine_desc_attach_metadata( 1108 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1109 { 1110 return -EINVAL; 1111 } 1112 static inline void *dmaengine_desc_get_metadata_ptr( 1113 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1114 size_t *max_len) 1115 { 1116 return NULL; 1117 } 1118 static inline int dmaengine_desc_set_metadata_len( 1119 struct dma_async_tx_descriptor *desc, size_t payload_len) 1120 { 1121 return -EINVAL; 1122 } 1123 #endif /* CONFIG_DMA_ENGINE */ 1124 1125 /** 1126 * dmaengine_terminate_all() - Terminate all active DMA transfers 1127 * @chan: The channel for which to terminate the transfers 1128 * 1129 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1130 * dmaengine_terminate_async() instead. 1131 */ 1132 static inline int dmaengine_terminate_all(struct dma_chan *chan) 1133 { 1134 if (chan->device->device_terminate_all) 1135 return chan->device->device_terminate_all(chan); 1136 1137 return -ENOSYS; 1138 } 1139 1140 /** 1141 * dmaengine_terminate_async() - Terminate all active DMA transfers 1142 * @chan: The channel for which to terminate the transfers 1143 * 1144 * Calling this function will terminate all active and pending descriptors 1145 * that have previously been submitted to the channel. It is not guaranteed 1146 * though that the transfer for the active descriptor has stopped when the 1147 * function returns. Furthermore it is possible the complete callback of a 1148 * submitted transfer is still running when this function returns. 1149 * 1150 * dmaengine_synchronize() needs to be called before it is safe to free 1151 * any memory that is accessed by previously submitted descriptors or before 1152 * freeing any resources accessed from within the completion callback of any 1153 * previously submitted descriptors. 1154 * 1155 * This function can be called from atomic context as well as from within a 1156 * complete callback of a descriptor submitted on the same channel. 1157 * 1158 * If none of the two conditions above apply consider using 1159 * dmaengine_terminate_sync() instead. 1160 */ 1161 static inline int dmaengine_terminate_async(struct dma_chan *chan) 1162 { 1163 if (chan->device->device_terminate_all) 1164 return chan->device->device_terminate_all(chan); 1165 1166 return -EINVAL; 1167 } 1168 1169 /** 1170 * dmaengine_synchronize() - Synchronize DMA channel termination 1171 * @chan: The channel to synchronize 1172 * 1173 * Synchronizes to the DMA channel termination to the current context. When this 1174 * function returns it is guaranteed that all transfers for previously issued 1175 * descriptors have stopped and it is safe to free the memory associated 1176 * with them. Furthermore it is guaranteed that all complete callback functions 1177 * for a previously submitted descriptor have finished running and it is safe to 1178 * free resources accessed from within the complete callbacks. 1179 * 1180 * The behavior of this function is undefined if dma_async_issue_pending() has 1181 * been called between dmaengine_terminate_async() and this function. 1182 * 1183 * This function must only be called from non-atomic context and must not be 1184 * called from within a complete callback of a descriptor submitted on the same 1185 * channel. 1186 */ 1187 static inline void dmaengine_synchronize(struct dma_chan *chan) 1188 { 1189 might_sleep(); 1190 1191 if (chan->device->device_synchronize) 1192 chan->device->device_synchronize(chan); 1193 } 1194 1195 /** 1196 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1197 * @chan: The channel for which to terminate the transfers 1198 * 1199 * Calling this function will terminate all active and pending transfers 1200 * that have previously been submitted to the channel. It is similar to 1201 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1202 * stopped and that all complete callbacks have finished running when the 1203 * function returns. 1204 * 1205 * This function must only be called from non-atomic context and must not be 1206 * called from within a complete callback of a descriptor submitted on the same 1207 * channel. 1208 */ 1209 static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1210 { 1211 int ret; 1212 1213 ret = dmaengine_terminate_async(chan); 1214 if (ret) 1215 return ret; 1216 1217 dmaengine_synchronize(chan); 1218 1219 return 0; 1220 } 1221 1222 static inline int dmaengine_pause(struct dma_chan *chan) 1223 { 1224 if (chan->device->device_pause) 1225 return chan->device->device_pause(chan); 1226 1227 return -ENOSYS; 1228 } 1229 1230 static inline int dmaengine_resume(struct dma_chan *chan) 1231 { 1232 if (chan->device->device_resume) 1233 return chan->device->device_resume(chan); 1234 1235 return -ENOSYS; 1236 } 1237 1238 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1239 dma_cookie_t cookie, struct dma_tx_state *state) 1240 { 1241 return chan->device->device_tx_status(chan, cookie, state); 1242 } 1243 1244 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1245 { 1246 return desc->tx_submit(desc); 1247 } 1248 1249 static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1250 size_t off1, size_t off2, size_t len) 1251 { 1252 return !(((1 << align) - 1) & (off1 | off2 | len)); 1253 } 1254 1255 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1256 size_t off2, size_t len) 1257 { 1258 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1259 } 1260 1261 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1262 size_t off2, size_t len) 1263 { 1264 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1265 } 1266 1267 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1268 size_t off2, size_t len) 1269 { 1270 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1271 } 1272 1273 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1274 size_t off2, size_t len) 1275 { 1276 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1277 } 1278 1279 static inline void 1280 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1281 { 1282 dma->max_pq = maxpq; 1283 if (has_pq_continue) 1284 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1285 } 1286 1287 static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1288 { 1289 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1290 } 1291 1292 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1293 { 1294 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1295 1296 return (flags & mask) == mask; 1297 } 1298 1299 static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1300 { 1301 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1302 } 1303 1304 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1305 { 1306 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1307 } 1308 1309 /* dma_maxpq - reduce maxpq in the face of continued operations 1310 * @dma - dma device with PQ capability 1311 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1312 * 1313 * When an engine does not support native continuation we need 3 extra 1314 * source slots to reuse P and Q with the following coefficients: 1315 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1316 * 2/ {01} * Q : use Q to continue Q' calculation 1317 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1318 * 1319 * In the case where P is disabled we only need 1 extra source: 1320 * 1/ {01} * Q : use Q to continue Q' calculation 1321 */ 1322 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1323 { 1324 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1325 return dma_dev_to_maxpq(dma); 1326 if (dmaf_p_disabled_continue(flags)) 1327 return dma_dev_to_maxpq(dma) - 1; 1328 if (dmaf_continue(flags)) 1329 return dma_dev_to_maxpq(dma) - 3; 1330 BUG(); 1331 } 1332 1333 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1334 size_t dir_icg) 1335 { 1336 if (inc) { 1337 if (dir_icg) 1338 return dir_icg; 1339 if (sgl) 1340 return icg; 1341 } 1342 1343 return 0; 1344 } 1345 1346 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1347 struct data_chunk *chunk) 1348 { 1349 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1350 chunk->icg, chunk->dst_icg); 1351 } 1352 1353 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1354 struct data_chunk *chunk) 1355 { 1356 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1357 chunk->icg, chunk->src_icg); 1358 } 1359 1360 /* --- public DMA engine API --- */ 1361 1362 #ifdef CONFIG_DMA_ENGINE 1363 void dmaengine_get(void); 1364 void dmaengine_put(void); 1365 #else 1366 static inline void dmaengine_get(void) 1367 { 1368 } 1369 static inline void dmaengine_put(void) 1370 { 1371 } 1372 #endif 1373 1374 #ifdef CONFIG_ASYNC_TX_DMA 1375 #define async_dmaengine_get() dmaengine_get() 1376 #define async_dmaengine_put() dmaengine_put() 1377 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1378 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1379 #else 1380 #define async_dma_find_channel(type) dma_find_channel(type) 1381 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1382 #else 1383 static inline void async_dmaengine_get(void) 1384 { 1385 } 1386 static inline void async_dmaengine_put(void) 1387 { 1388 } 1389 static inline struct dma_chan * 1390 async_dma_find_channel(enum dma_transaction_type type) 1391 { 1392 return NULL; 1393 } 1394 #endif /* CONFIG_ASYNC_TX_DMA */ 1395 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1396 struct dma_chan *chan); 1397 1398 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1399 { 1400 tx->flags |= DMA_CTRL_ACK; 1401 } 1402 1403 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1404 { 1405 tx->flags &= ~DMA_CTRL_ACK; 1406 } 1407 1408 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1409 { 1410 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1411 } 1412 1413 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1414 static inline void 1415 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1416 { 1417 set_bit(tx_type, dstp->bits); 1418 } 1419 1420 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1421 static inline void 1422 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1423 { 1424 clear_bit(tx_type, dstp->bits); 1425 } 1426 1427 #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1428 static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1429 { 1430 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1431 } 1432 1433 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1434 static inline int 1435 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1436 { 1437 return test_bit(tx_type, srcp->bits); 1438 } 1439 1440 #define for_each_dma_cap_mask(cap, mask) \ 1441 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1442 1443 /** 1444 * dma_async_issue_pending - flush pending transactions to HW 1445 * @chan: target DMA channel 1446 * 1447 * This allows drivers to push copies to HW in batches, 1448 * reducing MMIO writes where possible. 1449 */ 1450 static inline void dma_async_issue_pending(struct dma_chan *chan) 1451 { 1452 chan->device->device_issue_pending(chan); 1453 } 1454 1455 /** 1456 * dma_async_is_tx_complete - poll for transaction completion 1457 * @chan: DMA channel 1458 * @cookie: transaction identifier to check status of 1459 * @last: returns last completed cookie, can be NULL 1460 * @used: returns last issued cookie, can be NULL 1461 * 1462 * If @last and @used are passed in, upon return they reflect the driver 1463 * internal state and can be used with dma_async_is_complete() to check 1464 * the status of multiple cookies without re-checking hardware state. 1465 */ 1466 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1467 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1468 { 1469 struct dma_tx_state state; 1470 enum dma_status status; 1471 1472 status = chan->device->device_tx_status(chan, cookie, &state); 1473 if (last) 1474 *last = state.last; 1475 if (used) 1476 *used = state.used; 1477 return status; 1478 } 1479 1480 /** 1481 * dma_async_is_complete - test a cookie against chan state 1482 * @cookie: transaction identifier to test status of 1483 * @last_complete: last know completed transaction 1484 * @last_used: last cookie value handed out 1485 * 1486 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1487 * the test logic is separated for lightweight testing of multiple cookies 1488 */ 1489 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1490 dma_cookie_t last_complete, dma_cookie_t last_used) 1491 { 1492 if (last_complete <= last_used) { 1493 if ((cookie <= last_complete) || (cookie > last_used)) 1494 return DMA_COMPLETE; 1495 } else { 1496 if ((cookie <= last_complete) && (cookie > last_used)) 1497 return DMA_COMPLETE; 1498 } 1499 return DMA_IN_PROGRESS; 1500 } 1501 1502 static inline void 1503 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1504 { 1505 if (!st) 1506 return; 1507 1508 st->last = last; 1509 st->used = used; 1510 st->residue = residue; 1511 } 1512 1513 #ifdef CONFIG_DMA_ENGINE 1514 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1515 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1516 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1517 void dma_issue_pending_all(void); 1518 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1519 dma_filter_fn fn, void *fn_param, 1520 struct device_node *np); 1521 1522 struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1523 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1524 1525 void dma_release_channel(struct dma_chan *chan); 1526 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1527 #else 1528 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1529 { 1530 return NULL; 1531 } 1532 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1533 { 1534 return DMA_COMPLETE; 1535 } 1536 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1537 { 1538 return DMA_COMPLETE; 1539 } 1540 static inline void dma_issue_pending_all(void) 1541 { 1542 } 1543 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1544 dma_filter_fn fn, 1545 void *fn_param, 1546 struct device_node *np) 1547 { 1548 return NULL; 1549 } 1550 static inline struct dma_chan *dma_request_chan(struct device *dev, 1551 const char *name) 1552 { 1553 return ERR_PTR(-ENODEV); 1554 } 1555 static inline struct dma_chan *dma_request_chan_by_mask( 1556 const dma_cap_mask_t *mask) 1557 { 1558 return ERR_PTR(-ENODEV); 1559 } 1560 static inline void dma_release_channel(struct dma_chan *chan) 1561 { 1562 } 1563 static inline int dma_get_slave_caps(struct dma_chan *chan, 1564 struct dma_slave_caps *caps) 1565 { 1566 return -ENXIO; 1567 } 1568 #endif 1569 1570 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1571 { 1572 struct dma_slave_caps caps; 1573 int ret; 1574 1575 ret = dma_get_slave_caps(tx->chan, &caps); 1576 if (ret) 1577 return ret; 1578 1579 if (!caps.descriptor_reuse) 1580 return -EPERM; 1581 1582 tx->flags |= DMA_CTRL_REUSE; 1583 return 0; 1584 } 1585 1586 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1587 { 1588 tx->flags &= ~DMA_CTRL_REUSE; 1589 } 1590 1591 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1592 { 1593 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1594 } 1595 1596 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1597 { 1598 /* this is supported for reusable desc, so check that */ 1599 if (!dmaengine_desc_test_reuse(desc)) 1600 return -EPERM; 1601 1602 return desc->desc_free(desc); 1603 } 1604 1605 /* --- DMA device --- */ 1606 1607 int dma_async_device_register(struct dma_device *device); 1608 int dmaenginem_async_device_register(struct dma_device *device); 1609 void dma_async_device_unregister(struct dma_device *device); 1610 int dma_async_device_channel_register(struct dma_device *device, 1611 struct dma_chan *chan, 1612 const char *name); 1613 void dma_async_device_channel_unregister(struct dma_device *device, 1614 struct dma_chan *chan); 1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1616 #define dma_request_channel(mask, x, y) \ 1617 __dma_request_channel(&(mask), x, y, NULL) 1618 1619 /* Deprecated, please use dma_request_chan() directly */ 1620 static inline struct dma_chan * __deprecated 1621 dma_request_slave_channel(struct device *dev, const char *name) 1622 { 1623 struct dma_chan *ch = dma_request_chan(dev, name); 1624 1625 return IS_ERR(ch) ? NULL : ch; 1626 } 1627 1628 static inline struct dma_chan 1629 *dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1630 dma_filter_fn fn, void *fn_param, 1631 struct device *dev, const char *name) 1632 { 1633 struct dma_chan *chan; 1634 1635 chan = dma_request_slave_channel(dev, name); 1636 if (chan) 1637 return chan; 1638 1639 if (!fn || !fn_param) 1640 return NULL; 1641 1642 return __dma_request_channel(&mask, fn, fn_param, NULL); 1643 } 1644 1645 static inline char * 1646 dmaengine_get_direction_text(enum dma_transfer_direction dir) 1647 { 1648 switch (dir) { 1649 case DMA_DEV_TO_MEM: 1650 return "DEV_TO_MEM"; 1651 case DMA_MEM_TO_DEV: 1652 return "MEM_TO_DEV"; 1653 case DMA_MEM_TO_MEM: 1654 return "MEM_TO_MEM"; 1655 case DMA_DEV_TO_DEV: 1656 return "DEV_TO_DEV"; 1657 default: 1658 return "invalid"; 1659 } 1660 } 1661 1662 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1663 { 1664 if (chan->dev->chan_dma_dev) 1665 return &chan->dev->device; 1666 1667 return chan->device->dev; 1668 } 1669 1670 #endif /* DMAENGINE_H */ 1671
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.