1 /* 2 * Generic EDAC defs 3 * 4 * Author: Dave Jiang <djiang@mvista.com> 5 * 6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 */ 12 #ifndef _LINUX_EDAC_H_ 13 #define _LINUX_EDAC_H_ 14 15 #include <linux/atomic.h> 16 #include <linux/device.h> 17 #include <linux/completion.h> 18 #include <linux/workqueue.h> 19 #include <linux/debugfs.h> 20 #include <linux/numa.h> 21 22 #define EDAC_DEVICE_NAME_LEN 31 23 24 struct device; 25 26 #define EDAC_OPSTATE_INVAL -1 27 #define EDAC_OPSTATE_POLL 0 28 #define EDAC_OPSTATE_NMI 1 29 #define EDAC_OPSTATE_INT 2 30 31 extern int edac_op_state; 32 33 const struct bus_type *edac_get_sysfs_subsys(void); 34 35 static inline void opstate_init(void) 36 { 37 switch (edac_op_state) { 38 case EDAC_OPSTATE_POLL: 39 case EDAC_OPSTATE_NMI: 40 break; 41 default: 42 edac_op_state = EDAC_OPSTATE_POLL; 43 } 44 return; 45 } 46 47 /* Max length of a DIMM label*/ 48 #define EDAC_MC_LABEL_LEN 31 49 50 /* Maximum size of the location string */ 51 #define LOCATION_SIZE 256 52 53 /* Defines the maximum number of labels that can be reported */ 54 #define EDAC_MAX_LABELS 8 55 56 /* String used to join two or more labels */ 57 #define OTHER_LABEL " or " 58 59 /** 60 * enum dev_type - describe the type of memory DRAM chips used at the stick 61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it 62 * @DEV_X1: 1 bit for data 63 * @DEV_X2: 2 bits for data 64 * @DEV_X4: 4 bits for data 65 * @DEV_X8: 8 bits for data 66 * @DEV_X16: 16 bits for data 67 * @DEV_X32: 32 bits for data 68 * @DEV_X64: 64 bits for data 69 * 70 * Typical values are x4 and x8. 71 */ 72 enum dev_type { 73 DEV_UNKNOWN = 0, 74 DEV_X1, 75 DEV_X2, 76 DEV_X4, 77 DEV_X8, 78 DEV_X16, 79 DEV_X32, /* Do these parts exist? */ 80 DEV_X64 /* Do these parts exist? */ 81 }; 82 83 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) 84 #define DEV_FLAG_X1 BIT(DEV_X1) 85 #define DEV_FLAG_X2 BIT(DEV_X2) 86 #define DEV_FLAG_X4 BIT(DEV_X4) 87 #define DEV_FLAG_X8 BIT(DEV_X8) 88 #define DEV_FLAG_X16 BIT(DEV_X16) 89 #define DEV_FLAG_X32 BIT(DEV_X32) 90 #define DEV_FLAG_X64 BIT(DEV_X64) 91 92 /** 93 * enum hw_event_mc_err_type - type of the detected error 94 * 95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC 96 * corrected error was detected 97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that 98 * can't be corrected by ECC, but it is not 99 * fatal (maybe it is on an unused memory area, 100 * or the memory controller could recover from 101 * it for example, by re-trying the operation). 102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable 103 * error whose handling is not urgent. This could 104 * be due to hardware data poisoning where the 105 * system can continue operation until the poisoned 106 * data is consumed. Preemptive measures may also 107 * be taken, e.g. offlining pages, etc. 108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not 109 * be recovered. 110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth 111 * type of error: informational logs. 112 */ 113 enum hw_event_mc_err_type { 114 HW_EVENT_ERR_CORRECTED, 115 HW_EVENT_ERR_UNCORRECTED, 116 HW_EVENT_ERR_DEFERRED, 117 HW_EVENT_ERR_FATAL, 118 HW_EVENT_ERR_INFO, 119 }; 120 121 static inline char *mc_event_error_type(const unsigned int err_type) 122 { 123 switch (err_type) { 124 case HW_EVENT_ERR_CORRECTED: 125 return "Corrected"; 126 case HW_EVENT_ERR_UNCORRECTED: 127 return "Uncorrected"; 128 case HW_EVENT_ERR_DEFERRED: 129 return "Deferred"; 130 case HW_EVENT_ERR_FATAL: 131 return "Fatal"; 132 default: 133 case HW_EVENT_ERR_INFO: 134 return "Info"; 135 } 136 } 137 138 /** 139 * enum mem_type - memory types. For a more detailed reference, please see 140 * http://en.wikipedia.org/wiki/DRAM 141 * 142 * @MEM_EMPTY: Empty csrow 143 * @MEM_RESERVED: Reserved csrow type 144 * @MEM_UNKNOWN: Unknown csrow type 145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. 146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. 147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. 148 * @MEM_SDR: SDR - Single data rate SDRAM 149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 150 * They use 3 pins for chip select: Pins 0 and 2 are 151 * for rank 0; pins 1 and 3 are for rank 1, if the memory 152 * is dual-rank. 153 * @MEM_RDR: Registered SDR SDRAM 154 * @MEM_DDR: Double data rate SDRAM 155 * http://en.wikipedia.org/wiki/DDR_SDRAM 156 * @MEM_RDDR: Registered Double data rate SDRAM 157 * This is a variant of the DDR memories. 158 * A registered memory has a buffer inside it, hiding 159 * part of the memory details to the memory controller. 160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. 161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. 162 * Those memories are labeled as "PC2-" instead of "PC" to 163 * differentiate from DDR. 164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 165 * and JESD206. 166 * Those memories are accessed per DIMM slot, and not by 167 * a chip select signal. 168 * @MEM_RDDR2: Registered DDR2 RAM 169 * This is a variant of the DDR2 memories. 170 * @MEM_XDR: Rambus XDR 171 * It is an evolution of the original RAMBUS memories, 172 * created to compete with DDR2. Weren't used on any 173 * x86 arch, but cell_edac PPC memory controller uses it. 174 * @MEM_DDR3: DDR3 RAM 175 * @MEM_RDDR3: Registered DDR3 RAM 176 * This is a variant of the DDR3 memories. 177 * @MEM_LRDDR3: Load-Reduced DDR3 memory. 178 * @MEM_LPDDR3: Low-Power DDR3 memory. 179 * @MEM_DDR4: Unbuffered DDR4 RAM 180 * @MEM_RDDR4: Registered DDR4 RAM 181 * This is a variant of the DDR4 memories. 182 * @MEM_LRDDR4: Load-Reduced DDR4 memory. 183 * @MEM_LPDDR4: Low-Power DDR4 memory. 184 * @MEM_DDR5: Unbuffered DDR5 RAM 185 * @MEM_RDDR5: Registered DDR5 RAM 186 * @MEM_LRDDR5: Load-Reduced DDR5 memory. 187 * @MEM_NVDIMM: Non-volatile RAM 188 * @MEM_WIO2: Wide I/O 2. 189 * @MEM_HBM2: High bandwidth Memory Gen 2. 190 * @MEM_HBM3: High bandwidth Memory Gen 3. 191 */ 192 enum mem_type { 193 MEM_EMPTY = 0, 194 MEM_RESERVED, 195 MEM_UNKNOWN, 196 MEM_FPM, 197 MEM_EDO, 198 MEM_BEDO, 199 MEM_SDR, 200 MEM_RDR, 201 MEM_DDR, 202 MEM_RDDR, 203 MEM_RMBS, 204 MEM_DDR2, 205 MEM_FB_DDR2, 206 MEM_RDDR2, 207 MEM_XDR, 208 MEM_DDR3, 209 MEM_RDDR3, 210 MEM_LRDDR3, 211 MEM_LPDDR3, 212 MEM_DDR4, 213 MEM_RDDR4, 214 MEM_LRDDR4, 215 MEM_LPDDR4, 216 MEM_DDR5, 217 MEM_RDDR5, 218 MEM_LRDDR5, 219 MEM_NVDIMM, 220 MEM_WIO2, 221 MEM_HBM2, 222 MEM_HBM3, 223 }; 224 225 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) 226 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) 227 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) 228 #define MEM_FLAG_FPM BIT(MEM_FPM) 229 #define MEM_FLAG_EDO BIT(MEM_EDO) 230 #define MEM_FLAG_BEDO BIT(MEM_BEDO) 231 #define MEM_FLAG_SDR BIT(MEM_SDR) 232 #define MEM_FLAG_RDR BIT(MEM_RDR) 233 #define MEM_FLAG_DDR BIT(MEM_DDR) 234 #define MEM_FLAG_RDDR BIT(MEM_RDDR) 235 #define MEM_FLAG_RMBS BIT(MEM_RMBS) 236 #define MEM_FLAG_DDR2 BIT(MEM_DDR2) 237 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) 238 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) 239 #define MEM_FLAG_XDR BIT(MEM_XDR) 240 #define MEM_FLAG_DDR3 BIT(MEM_DDR3) 241 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) 242 #define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3) 243 #define MEM_FLAG_DDR4 BIT(MEM_DDR4) 244 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) 245 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) 246 #define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4) 247 #define MEM_FLAG_DDR5 BIT(MEM_DDR5) 248 #define MEM_FLAG_RDDR5 BIT(MEM_RDDR5) 249 #define MEM_FLAG_LRDDR5 BIT(MEM_LRDDR5) 250 #define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM) 251 #define MEM_FLAG_WIO2 BIT(MEM_WIO2) 252 #define MEM_FLAG_HBM2 BIT(MEM_HBM2) 253 #define MEM_FLAG_HBM3 BIT(MEM_HBM3) 254 255 /** 256 * enum edac_type - Error Detection and Correction capabilities and mode 257 * @EDAC_UNKNOWN: Unknown if ECC is available 258 * @EDAC_NONE: Doesn't support ECC 259 * @EDAC_RESERVED: Reserved ECC type 260 * @EDAC_PARITY: Detects parity errors 261 * @EDAC_EC: Error Checking - no correction 262 * @EDAC_SECDED: Single bit error correction, Double detection 263 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist? 264 * @EDAC_S4ECD4ED: Chipkill x4 devices 265 * @EDAC_S8ECD8ED: Chipkill x8 devices 266 * @EDAC_S16ECD16ED: Chipkill x16 devices 267 */ 268 enum edac_type { 269 EDAC_UNKNOWN = 0, 270 EDAC_NONE, 271 EDAC_RESERVED, 272 EDAC_PARITY, 273 EDAC_EC, 274 EDAC_SECDED, 275 EDAC_S2ECD2ED, 276 EDAC_S4ECD4ED, 277 EDAC_S8ECD8ED, 278 EDAC_S16ECD16ED, 279 }; 280 281 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) 282 #define EDAC_FLAG_NONE BIT(EDAC_NONE) 283 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) 284 #define EDAC_FLAG_EC BIT(EDAC_EC) 285 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) 286 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) 287 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) 288 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) 289 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) 290 291 /** 292 * enum scrub_type - scrubbing capabilities 293 * @SCRUB_UNKNOWN: Unknown if scrubber is available 294 * @SCRUB_NONE: No scrubber 295 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing 296 * @SCRUB_SW_SRC: Software scrub only errors 297 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error 298 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable 299 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing 300 * @SCRUB_HW_SRC: Hardware scrub only errors 301 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error 302 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable 303 */ 304 enum scrub_type { 305 SCRUB_UNKNOWN = 0, 306 SCRUB_NONE, 307 SCRUB_SW_PROG, 308 SCRUB_SW_SRC, 309 SCRUB_SW_PROG_SRC, 310 SCRUB_SW_TUNABLE, 311 SCRUB_HW_PROG, 312 SCRUB_HW_SRC, 313 SCRUB_HW_PROG_SRC, 314 SCRUB_HW_TUNABLE 315 }; 316 317 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) 318 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) 319 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) 320 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) 321 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) 322 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) 323 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) 324 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) 325 326 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ 327 328 /* EDAC internal operation states */ 329 #define OP_ALLOC 0x100 330 #define OP_RUNNING_POLL 0x201 331 #define OP_RUNNING_INTERRUPT 0x202 332 #define OP_RUNNING_POLL_INTR 0x203 333 #define OP_OFFLINE 0x300 334 335 /** 336 * enum edac_mc_layer_type - memory controller hierarchy layer 337 * 338 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" 339 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" 340 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot" 341 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select" 342 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped 343 * as a single memory area. This is used when 344 * retrieving errors from a firmware driven driver. 345 * 346 * This enum is used by the drivers to tell edac_mc_sysfs what name should 347 * be used when describing a memory stick location. 348 */ 349 enum edac_mc_layer_type { 350 EDAC_MC_LAYER_BRANCH, 351 EDAC_MC_LAYER_CHANNEL, 352 EDAC_MC_LAYER_SLOT, 353 EDAC_MC_LAYER_CHIP_SELECT, 354 EDAC_MC_LAYER_ALL_MEM, 355 }; 356 357 /** 358 * struct edac_mc_layer - describes the memory controller hierarchy 359 * @type: layer type 360 * @size: number of components per layer. For example, 361 * if the channel layer has two channels, size = 2 362 * @is_virt_csrow: This layer is part of the "csrow" when old API 363 * compatibility mode is enabled. Otherwise, it is 364 * a channel 365 */ 366 struct edac_mc_layer { 367 enum edac_mc_layer_type type; 368 unsigned size; 369 bool is_virt_csrow; 370 }; 371 372 /* 373 * Maximum number of layers used by the memory controller to uniquely 374 * identify a single memory stick. 375 * NOTE: Changing this constant requires not only to change the constant 376 * below, but also to change the existing code at the core, as there are 377 * some code there that are optimized for 3 layers. 378 */ 379 #define EDAC_MAX_LAYERS 3 380 381 struct dimm_info { 382 struct device dev; 383 384 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 385 386 /* Memory location data */ 387 unsigned int location[EDAC_MAX_LAYERS]; 388 389 struct mem_ctl_info *mci; /* the parent */ 390 unsigned int idx; /* index within the parent dimm array */ 391 392 u32 grain; /* granularity of reported error in bytes */ 393 enum dev_type dtype; /* memory device type */ 394 enum mem_type mtype; /* memory dimm type */ 395 enum edac_type edac_mode; /* EDAC mode for this dimm */ 396 397 u32 nr_pages; /* number of pages on this dimm */ 398 399 unsigned int csrow, cschannel; /* Points to the old API data */ 400 401 u16 smbios_handle; /* Handle for SMBIOS type 17 */ 402 403 u32 ce_count; 404 u32 ue_count; 405 }; 406 407 /** 408 * struct rank_info - contains the information for one DIMM rank 409 * 410 * @chan_idx: channel number where the rank is (typically, 0 or 1) 411 * @ce_count: number of correctable errors for this rank 412 * @csrow: A pointer to the chip select row structure (the parent 413 * structure). The location of the rank is given by 414 * the (csrow->csrow_idx, chan_idx) vector. 415 * @dimm: A pointer to the DIMM structure, where the DIMM label 416 * information is stored. 417 * 418 * FIXME: Currently, the EDAC core model will assume one DIMM per rank. 419 * This is a bad assumption, but it makes this patch easier. Later 420 * patches in this series will fix this issue. 421 */ 422 struct rank_info { 423 int chan_idx; 424 struct csrow_info *csrow; 425 struct dimm_info *dimm; 426 427 u32 ce_count; /* Correctable Errors for this csrow */ 428 }; 429 430 struct csrow_info { 431 struct device dev; 432 433 /* Used only by edac_mc_find_csrow_by_page() */ 434 unsigned long first_page; /* first page number in csrow */ 435 unsigned long last_page; /* last page number in csrow */ 436 unsigned long page_mask; /* used for interleaving - 437 * 0UL for non intlv */ 438 439 int csrow_idx; /* the chip-select row */ 440 441 u32 ue_count; /* Uncorrectable Errors for this csrow */ 442 u32 ce_count; /* Correctable Errors for this csrow */ 443 444 struct mem_ctl_info *mci; /* the parent */ 445 446 /* channel information for this csrow */ 447 u32 nr_channels; 448 struct rank_info **channels; 449 }; 450 451 /* 452 * struct errcount_attribute - used to store the several error counts 453 */ 454 struct errcount_attribute_data { 455 int n_layers; 456 int pos[EDAC_MAX_LAYERS]; 457 int layer0, layer1, layer2; 458 }; 459 460 /** 461 * struct edac_raw_error_desc - Raw error report structure 462 * @grain: minimum granularity for an error report, in bytes 463 * @error_count: number of errors of the same type 464 * @type: severity of the error (CE/UE/Fatal) 465 * @top_layer: top layer of the error (layer[0]) 466 * @mid_layer: middle layer of the error (layer[1]) 467 * @low_layer: low layer of the error (layer[2]) 468 * @page_frame_number: page where the error happened 469 * @offset_in_page: page offset 470 * @syndrome: syndrome of the error (or 0 if unknown or if 471 * the syndrome is not applicable) 472 * @msg: error message 473 * @location: location of the error 474 * @label: label of the affected DIMM(s) 475 * @other_detail: other driver-specific detail about the error 476 */ 477 struct edac_raw_error_desc { 478 char location[LOCATION_SIZE]; 479 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; 480 long grain; 481 482 u16 error_count; 483 enum hw_event_mc_err_type type; 484 int top_layer; 485 int mid_layer; 486 int low_layer; 487 unsigned long page_frame_number; 488 unsigned long offset_in_page; 489 unsigned long syndrome; 490 const char *msg; 491 const char *other_detail; 492 }; 493 494 /* MEMORY controller information structure 495 */ 496 struct mem_ctl_info { 497 struct device dev; 498 const struct bus_type *bus; 499 500 struct list_head link; /* for global list of mem_ctl_info structs */ 501 502 struct module *owner; /* Module owner of this control struct */ 503 504 unsigned long mtype_cap; /* memory types supported by mc */ 505 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ 506 unsigned long edac_cap; /* configuration capabilities - this is 507 * closely related to edac_ctl_cap. The 508 * difference is that the controller may be 509 * capable of s4ecd4ed which would be listed 510 * in edac_ctl_cap, but if channels aren't 511 * capable of s4ecd4ed then the edac_cap would 512 * not have that capability. 513 */ 514 unsigned long scrub_cap; /* chipset scrub capabilities */ 515 enum scrub_type scrub_mode; /* current scrub mode */ 516 517 /* Translates sdram memory scrub rate given in bytes/sec to the 518 internal representation and configures whatever else needs 519 to be configured. 520 */ 521 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); 522 523 /* Get the current sdram memory scrub rate from the internal 524 representation and converts it to the closest matching 525 bandwidth in bytes/sec. 526 */ 527 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); 528 529 530 /* pointer to edac checking routine */ 531 void (*edac_check) (struct mem_ctl_info * mci); 532 533 /* 534 * Remaps memory pages: controller pages to physical pages. 535 * For most MC's, this will be NULL. 536 */ 537 /* FIXME - why not send the phys page to begin with? */ 538 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, 539 unsigned long page); 540 int mc_idx; 541 struct csrow_info **csrows; 542 unsigned int nr_csrows, num_cschannel; 543 544 /* 545 * Memory Controller hierarchy 546 * 547 * There are basically two types of memory controller: the ones that 548 * sees memory sticks ("dimms"), and the ones that sees memory ranks. 549 * All old memory controllers enumerate memories per rank, but most 550 * of the recent drivers enumerate memories per DIMM, instead. 551 * When the memory controller is per rank, csbased is true. 552 */ 553 unsigned int n_layers; 554 struct edac_mc_layer *layers; 555 bool csbased; 556 557 /* 558 * DIMM info. Will eventually remove the entire csrows_info some day 559 */ 560 unsigned int tot_dimms; 561 struct dimm_info **dimms; 562 563 /* 564 * FIXME - what about controllers on other busses? - IDs must be 565 * unique. dev pointer should be sufficiently unique, but 566 * BUS:SLOT.FUNC numbers may not be unique. 567 */ 568 struct device *pdev; 569 const char *mod_name; 570 const char *ctl_name; 571 const char *dev_name; 572 void *pvt_info; 573 unsigned long start_time; /* mci load start time (in jiffies) */ 574 575 /* 576 * drivers shouldn't access those fields directly, as the core 577 * already handles that. 578 */ 579 u32 ce_noinfo_count, ue_noinfo_count; 580 u32 ue_mc, ce_mc; 581 582 struct completion complete; 583 584 /* Additional top controller level attributes, but specified 585 * by the low level driver. 586 * 587 * Set by the low level driver to provide attributes at the 588 * controller level. 589 * An array of structures, NULL terminated 590 * 591 * If attributes are desired, then set to array of attributes 592 * If no attributes are desired, leave NULL 593 */ 594 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; 595 596 /* work struct for this MC */ 597 struct delayed_work work; 598 599 /* 600 * Used to report an error - by being at the global struct 601 * makes the memory allocated by the EDAC core 602 */ 603 struct edac_raw_error_desc error_desc; 604 605 /* the internal state of this controller instance */ 606 int op_state; 607 608 struct dentry *debugfs; 609 u8 fake_inject_layer[EDAC_MAX_LAYERS]; 610 bool fake_inject_ue; 611 u16 fake_inject_count; 612 }; 613 614 #define mci_for_each_dimm(mci, dimm) \ 615 for ((dimm) = (mci)->dimms[0]; \ 616 (dimm); \ 617 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \ 618 ? (mci)->dimms[(dimm)->idx + 1] \ 619 : NULL) 620 621 /** 622 * edac_get_dimm - Get DIMM info from a memory controller given by 623 * [layer0,layer1,layer2] position 624 * 625 * @mci: MC descriptor struct mem_ctl_info 626 * @layer0: layer0 position 627 * @layer1: layer1 position. Unused if n_layers < 2 628 * @layer2: layer2 position. Unused if n_layers < 3 629 * 630 * For 1 layer, this function returns "dimms[layer0]"; 631 * 632 * For 2 layers, this function is similar to allocating a two-dimensional 633 * array and returning "dimms[layer0][layer1]"; 634 * 635 * For 3 layers, this function is similar to allocating a tri-dimensional 636 * array and returning "dimms[layer0][layer1][layer2]"; 637 */ 638 static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci, 639 int layer0, int layer1, int layer2) 640 { 641 int index; 642 643 if (layer0 < 0 644 || (mci->n_layers > 1 && layer1 < 0) 645 || (mci->n_layers > 2 && layer2 < 0)) 646 return NULL; 647 648 index = layer0; 649 650 if (mci->n_layers > 1) 651 index = index * mci->layers[1].size + layer1; 652 653 if (mci->n_layers > 2) 654 index = index * mci->layers[2].size + layer2; 655 656 if (index < 0 || index >= mci->tot_dimms) 657 return NULL; 658 659 if (WARN_ON_ONCE(mci->dimms[index]->idx != index)) 660 return NULL; 661 662 return mci->dimms[index]; 663 } 664 #endif /* _LINUX_EDAC_H_ */ 665
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.