1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_ENERGY_MODEL_H 3 #define _LINUX_ENERGY_MODEL_H 4 #include <linux/cpumask.h> 5 #include <linux/device.h> 6 #include <linux/jump_label.h> 7 #include <linux/kobject.h> 8 #include <linux/kref.h> 9 #include <linux/rcupdate.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/topology.h> 12 #include <linux/types.h> 13 14 /** 15 * struct em_perf_state - Performance state of a performance domain 16 * @performance: CPU performance (capacity) at a given frequency 17 * @frequency: The frequency in KHz, for consistency with CPUFreq 18 * @power: The power consumed at this level (by 1 CPU or by a registered 19 * device). It can be a total power: static and dynamic. 20 * @cost: The cost coefficient associated with this level, used during 21 * energy calculation. Equal to: power * max_frequency / frequency 22 * @flags: see "em_perf_state flags" description below. 23 */ 24 struct em_perf_state { 25 unsigned long performance; 26 unsigned long frequency; 27 unsigned long power; 28 unsigned long cost; 29 unsigned long flags; 30 }; 31 32 /* 33 * em_perf_state flags: 34 * 35 * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is 36 * in this em_perf_domain, another performance state with a higher frequency 37 * but a lower or equal power cost. Such inefficient states are ignored when 38 * using em_pd_get_efficient_*() functions. 39 */ 40 #define EM_PERF_STATE_INEFFICIENT BIT(0) 41 42 /** 43 * struct em_perf_table - Performance states table 44 * @rcu: RCU used for safe access and destruction 45 * @kref: Reference counter to track the users 46 * @state: List of performance states, in ascending order 47 */ 48 struct em_perf_table { 49 struct rcu_head rcu; 50 struct kref kref; 51 struct em_perf_state state[]; 52 }; 53 54 /** 55 * struct em_perf_domain - Performance domain 56 * @em_table: Pointer to the runtime modifiable em_perf_table 57 * @nr_perf_states: Number of performance states 58 * @flags: See "em_perf_domain flags" 59 * @cpus: Cpumask covering the CPUs of the domain. It's here 60 * for performance reasons to avoid potential cache 61 * misses during energy calculations in the scheduler 62 * and simplifies allocating/freeing that memory region. 63 * 64 * In case of CPU device, a "performance domain" represents a group of CPUs 65 * whose performance is scaled together. All CPUs of a performance domain 66 * must have the same micro-architecture. Performance domains often have 67 * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus 68 * field is unused. 69 */ 70 struct em_perf_domain { 71 struct em_perf_table __rcu *em_table; 72 int nr_perf_states; 73 unsigned long flags; 74 unsigned long cpus[]; 75 }; 76 77 /* 78 * em_perf_domain flags: 79 * 80 * EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some 81 * other scale. 82 * 83 * EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating 84 * energy consumption. 85 * 86 * EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be 87 * created by platform missing real power information 88 */ 89 #define EM_PERF_DOMAIN_MICROWATTS BIT(0) 90 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1) 91 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2) 92 93 #define em_span_cpus(em) (to_cpumask((em)->cpus)) 94 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL) 95 96 #ifdef CONFIG_ENERGY_MODEL 97 /* 98 * The max power value in micro-Watts. The limit of 64 Watts is set as 99 * a safety net to not overflow multiplications on 32bit platforms. The 100 * 32bit value limit for total Perf Domain power implies a limit of 101 * maximum CPUs in such domain to 64. 102 */ 103 #define EM_MAX_POWER (64000000) /* 64 Watts */ 104 105 /* 106 * To avoid possible energy estimation overflow on 32bit machines add 107 * limits to number of CPUs in the Perf. Domain. 108 * We are safe on 64bit machine, thus some big number. 109 */ 110 #ifdef CONFIG_64BIT 111 #define EM_MAX_NUM_CPUS 4096 112 #else 113 #define EM_MAX_NUM_CPUS 16 114 #endif 115 116 struct em_data_callback { 117 /** 118 * active_power() - Provide power at the next performance state of 119 * a device 120 * @dev : Device for which we do this operation (can be a CPU) 121 * @power : Active power at the performance state 122 * (modified) 123 * @freq : Frequency at the performance state in kHz 124 * (modified) 125 * 126 * active_power() must find the lowest performance state of 'dev' above 127 * 'freq' and update 'power' and 'freq' to the matching active power 128 * and frequency. 129 * 130 * In case of CPUs, the power is the one of a single CPU in the domain, 131 * expressed in micro-Watts or an abstract scale. It is expected to 132 * fit in the [0, EM_MAX_POWER] range. 133 * 134 * Return 0 on success. 135 */ 136 int (*active_power)(struct device *dev, unsigned long *power, 137 unsigned long *freq); 138 139 /** 140 * get_cost() - Provide the cost at the given performance state of 141 * a device 142 * @dev : Device for which we do this operation (can be a CPU) 143 * @freq : Frequency at the performance state in kHz 144 * @cost : The cost value for the performance state 145 * (modified) 146 * 147 * In case of CPUs, the cost is the one of a single CPU in the domain. 148 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal 149 * usage in EAS calculation. 150 * 151 * Return 0 on success, or appropriate error value in case of failure. 152 */ 153 int (*get_cost)(struct device *dev, unsigned long freq, 154 unsigned long *cost); 155 }; 156 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb) 157 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) \ 158 { .active_power = _active_power_cb, \ 159 .get_cost = _cost_cb } 160 #define EM_DATA_CB(_active_power_cb) \ 161 EM_ADV_DATA_CB(_active_power_cb, NULL) 162 163 struct em_perf_domain *em_cpu_get(int cpu); 164 struct em_perf_domain *em_pd_get(struct device *dev); 165 int em_dev_update_perf_domain(struct device *dev, 166 struct em_perf_table __rcu *new_table); 167 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 168 struct em_data_callback *cb, cpumask_t *span, 169 bool microwatts); 170 void em_dev_unregister_perf_domain(struct device *dev); 171 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd); 172 void em_table_free(struct em_perf_table __rcu *table); 173 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 174 int nr_states); 175 int em_dev_update_chip_binning(struct device *dev); 176 177 /** 178 * em_pd_get_efficient_state() - Get an efficient performance state from the EM 179 * @table: List of performance states, in ascending order 180 * @nr_perf_states: Number of performance states 181 * @max_util: Max utilization to map with the EM 182 * @pd_flags: Performance Domain flags 183 * 184 * It is called from the scheduler code quite frequently and as a consequence 185 * doesn't implement any check. 186 * 187 * Return: An efficient performance state id, high enough to meet @max_util 188 * requirement. 189 */ 190 static inline int 191 em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states, 192 unsigned long max_util, unsigned long pd_flags) 193 { 194 struct em_perf_state *ps; 195 int i; 196 197 for (i = 0; i < nr_perf_states; i++) { 198 ps = &table[i]; 199 if (ps->performance >= max_util) { 200 if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES && 201 ps->flags & EM_PERF_STATE_INEFFICIENT) 202 continue; 203 return i; 204 } 205 } 206 207 return nr_perf_states - 1; 208 } 209 210 /** 211 * em_cpu_energy() - Estimates the energy consumed by the CPUs of a 212 * performance domain 213 * @pd : performance domain for which energy has to be estimated 214 * @max_util : highest utilization among CPUs of the domain 215 * @sum_util : sum of the utilization of all CPUs in the domain 216 * @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which 217 * might reflect reduced frequency (due to thermal) 218 * 219 * This function must be used only for CPU devices. There is no validation, 220 * i.e. if the EM is a CPU type and has cpumask allocated. It is called from 221 * the scheduler code quite frequently and that is why there is not checks. 222 * 223 * Return: the sum of the energy consumed by the CPUs of the domain assuming 224 * a capacity state satisfying the max utilization of the domain. 225 */ 226 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 227 unsigned long max_util, unsigned long sum_util, 228 unsigned long allowed_cpu_cap) 229 { 230 struct em_perf_table *em_table; 231 struct em_perf_state *ps; 232 int i; 233 234 #ifdef CONFIG_SCHED_DEBUG 235 WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n"); 236 #endif 237 238 if (!sum_util) 239 return 0; 240 241 /* 242 * In order to predict the performance state, map the utilization of 243 * the most utilized CPU of the performance domain to a requested 244 * performance, like schedutil. Take also into account that the real 245 * performance might be set lower (due to thermal capping). Thus, clamp 246 * max utilization to the allowed CPU capacity before calculating 247 * effective performance. 248 */ 249 max_util = min(max_util, allowed_cpu_cap); 250 251 /* 252 * Find the lowest performance state of the Energy Model above the 253 * requested performance. 254 */ 255 em_table = rcu_dereference(pd->em_table); 256 i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states, 257 max_util, pd->flags); 258 ps = &em_table->state[i]; 259 260 /* 261 * The performance (capacity) of a CPU in the domain at the performance 262 * state (ps) can be computed as: 263 * 264 * ps->freq * scale_cpu 265 * ps->performance = -------------------- (1) 266 * cpu_max_freq 267 * 268 * So, ignoring the costs of idle states (which are not available in 269 * the EM), the energy consumed by this CPU at that performance state 270 * is estimated as: 271 * 272 * ps->power * cpu_util 273 * cpu_nrg = -------------------- (2) 274 * ps->performance 275 * 276 * since 'cpu_util / ps->performance' represents its percentage of busy 277 * time. 278 * 279 * NOTE: Although the result of this computation actually is in 280 * units of power, it can be manipulated as an energy value 281 * over a scheduling period, since it is assumed to be 282 * constant during that interval. 283 * 284 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product 285 * of two terms: 286 * 287 * ps->power * cpu_max_freq 288 * cpu_nrg = ------------------------ * cpu_util (3) 289 * ps->freq * scale_cpu 290 * 291 * The first term is static, and is stored in the em_perf_state struct 292 * as 'ps->cost'. 293 * 294 * Since all CPUs of the domain have the same micro-architecture, they 295 * share the same 'ps->cost', and the same CPU capacity. Hence, the 296 * total energy of the domain (which is the simple sum of the energy of 297 * all of its CPUs) can be factorized as: 298 * 299 * pd_nrg = ps->cost * \Sum cpu_util (4) 300 */ 301 return ps->cost * sum_util; 302 } 303 304 /** 305 * em_pd_nr_perf_states() - Get the number of performance states of a perf. 306 * domain 307 * @pd : performance domain for which this must be done 308 * 309 * Return: the number of performance states in the performance domain table 310 */ 311 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 312 { 313 return pd->nr_perf_states; 314 } 315 316 /** 317 * em_perf_state_from_pd() - Get the performance states table of perf. 318 * domain 319 * @pd : performance domain for which this must be done 320 * 321 * To use this function the rcu_read_lock() should be hold. After the usage 322 * of the performance states table is finished, the rcu_read_unlock() should 323 * be called. 324 * 325 * Return: the pointer to performance states table of the performance domain 326 */ 327 static inline 328 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 329 { 330 return rcu_dereference(pd->em_table)->state; 331 } 332 333 #else 334 struct em_data_callback {}; 335 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { } 336 #define EM_DATA_CB(_active_power_cb) { } 337 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0) 338 339 static inline 340 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, 341 struct em_data_callback *cb, cpumask_t *span, 342 bool microwatts) 343 { 344 return -EINVAL; 345 } 346 static inline void em_dev_unregister_perf_domain(struct device *dev) 347 { 348 } 349 static inline struct em_perf_domain *em_cpu_get(int cpu) 350 { 351 return NULL; 352 } 353 static inline struct em_perf_domain *em_pd_get(struct device *dev) 354 { 355 return NULL; 356 } 357 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd, 358 unsigned long max_util, unsigned long sum_util, 359 unsigned long allowed_cpu_cap) 360 { 361 return 0; 362 } 363 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd) 364 { 365 return 0; 366 } 367 static inline 368 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd) 369 { 370 return NULL; 371 } 372 static inline void em_table_free(struct em_perf_table __rcu *table) {} 373 static inline 374 int em_dev_update_perf_domain(struct device *dev, 375 struct em_perf_table __rcu *new_table) 376 { 377 return -EINVAL; 378 } 379 static inline 380 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd) 381 { 382 return NULL; 383 } 384 static inline 385 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table, 386 int nr_states) 387 { 388 return -EINVAL; 389 } 390 static inline int em_dev_update_chip_binning(struct device *dev) 391 { 392 return -EINVAL; 393 } 394 #endif 395 396 #endif 397
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.