~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/energy_model.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_ENERGY_MODEL_H
  3 #define _LINUX_ENERGY_MODEL_H
  4 #include <linux/cpumask.h>
  5 #include <linux/device.h>
  6 #include <linux/jump_label.h>
  7 #include <linux/kobject.h>
  8 #include <linux/kref.h>
  9 #include <linux/rcupdate.h>
 10 #include <linux/sched/cpufreq.h>
 11 #include <linux/sched/topology.h>
 12 #include <linux/types.h>
 13 
 14 /**
 15  * struct em_perf_state - Performance state of a performance domain
 16  * @performance:        CPU performance (capacity) at a given frequency
 17  * @frequency:  The frequency in KHz, for consistency with CPUFreq
 18  * @power:      The power consumed at this level (by 1 CPU or by a registered
 19  *              device). It can be a total power: static and dynamic.
 20  * @cost:       The cost coefficient associated with this level, used during
 21  *              energy calculation. Equal to: power * max_frequency / frequency
 22  * @flags:      see "em_perf_state flags" description below.
 23  */
 24 struct em_perf_state {
 25         unsigned long performance;
 26         unsigned long frequency;
 27         unsigned long power;
 28         unsigned long cost;
 29         unsigned long flags;
 30 };
 31 
 32 /*
 33  * em_perf_state flags:
 34  *
 35  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
 36  * in this em_perf_domain, another performance state with a higher frequency
 37  * but a lower or equal power cost. Such inefficient states are ignored when
 38  * using em_pd_get_efficient_*() functions.
 39  */
 40 #define EM_PERF_STATE_INEFFICIENT BIT(0)
 41 
 42 /**
 43  * struct em_perf_table - Performance states table
 44  * @rcu:        RCU used for safe access and destruction
 45  * @kref:       Reference counter to track the users
 46  * @state:      List of performance states, in ascending order
 47  */
 48 struct em_perf_table {
 49         struct rcu_head rcu;
 50         struct kref kref;
 51         struct em_perf_state state[];
 52 };
 53 
 54 /**
 55  * struct em_perf_domain - Performance domain
 56  * @em_table:           Pointer to the runtime modifiable em_perf_table
 57  * @nr_perf_states:     Number of performance states
 58  * @flags:              See "em_perf_domain flags"
 59  * @cpus:               Cpumask covering the CPUs of the domain. It's here
 60  *                      for performance reasons to avoid potential cache
 61  *                      misses during energy calculations in the scheduler
 62  *                      and simplifies allocating/freeing that memory region.
 63  *
 64  * In case of CPU device, a "performance domain" represents a group of CPUs
 65  * whose performance is scaled together. All CPUs of a performance domain
 66  * must have the same micro-architecture. Performance domains often have
 67  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
 68  * field is unused.
 69  */
 70 struct em_perf_domain {
 71         struct em_perf_table __rcu *em_table;
 72         int nr_perf_states;
 73         unsigned long flags;
 74         unsigned long cpus[];
 75 };
 76 
 77 /*
 78  *  em_perf_domain flags:
 79  *
 80  *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
 81  *  other scale.
 82  *
 83  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
 84  *  energy consumption.
 85  *
 86  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
 87  *  created by platform missing real power information
 88  */
 89 #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
 90 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
 91 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
 92 
 93 #define em_span_cpus(em) (to_cpumask((em)->cpus))
 94 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
 95 
 96 #ifdef CONFIG_ENERGY_MODEL
 97 /*
 98  * The max power value in micro-Watts. The limit of 64 Watts is set as
 99  * a safety net to not overflow multiplications on 32bit platforms. The
100  * 32bit value limit for total Perf Domain power implies a limit of
101  * maximum CPUs in such domain to 64.
102  */
103 #define EM_MAX_POWER (64000000) /* 64 Watts */
104 
105 /*
106  * To avoid possible energy estimation overflow on 32bit machines add
107  * limits to number of CPUs in the Perf. Domain.
108  * We are safe on 64bit machine, thus some big number.
109  */
110 #ifdef CONFIG_64BIT
111 #define EM_MAX_NUM_CPUS 4096
112 #else
113 #define EM_MAX_NUM_CPUS 16
114 #endif
115 
116 struct em_data_callback {
117         /**
118          * active_power() - Provide power at the next performance state of
119          *              a device
120          * @dev         : Device for which we do this operation (can be a CPU)
121          * @power       : Active power at the performance state
122          *              (modified)
123          * @freq        : Frequency at the performance state in kHz
124          *              (modified)
125          *
126          * active_power() must find the lowest performance state of 'dev' above
127          * 'freq' and update 'power' and 'freq' to the matching active power
128          * and frequency.
129          *
130          * In case of CPUs, the power is the one of a single CPU in the domain,
131          * expressed in micro-Watts or an abstract scale. It is expected to
132          * fit in the [0, EM_MAX_POWER] range.
133          *
134          * Return 0 on success.
135          */
136         int (*active_power)(struct device *dev, unsigned long *power,
137                             unsigned long *freq);
138 
139         /**
140          * get_cost() - Provide the cost at the given performance state of
141          *              a device
142          * @dev         : Device for which we do this operation (can be a CPU)
143          * @freq        : Frequency at the performance state in kHz
144          * @cost        : The cost value for the performance state
145          *              (modified)
146          *
147          * In case of CPUs, the cost is the one of a single CPU in the domain.
148          * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
149          * usage in EAS calculation.
150          *
151          * Return 0 on success, or appropriate error value in case of failure.
152          */
153         int (*get_cost)(struct device *dev, unsigned long freq,
154                         unsigned long *cost);
155 };
156 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
157 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)      \
158         { .active_power = _active_power_cb,             \
159           .get_cost = _cost_cb }
160 #define EM_DATA_CB(_active_power_cb)                    \
161                 EM_ADV_DATA_CB(_active_power_cb, NULL)
162 
163 struct em_perf_domain *em_cpu_get(int cpu);
164 struct em_perf_domain *em_pd_get(struct device *dev);
165 int em_dev_update_perf_domain(struct device *dev,
166                               struct em_perf_table __rcu *new_table);
167 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
168                                 struct em_data_callback *cb, cpumask_t *span,
169                                 bool microwatts);
170 void em_dev_unregister_perf_domain(struct device *dev);
171 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd);
172 void em_table_free(struct em_perf_table __rcu *table);
173 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
174                          int nr_states);
175 int em_dev_update_chip_binning(struct device *dev);
176 
177 /**
178  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
179  * @table:              List of performance states, in ascending order
180  * @nr_perf_states:     Number of performance states
181  * @max_util:           Max utilization to map with the EM
182  * @pd_flags:           Performance Domain flags
183  *
184  * It is called from the scheduler code quite frequently and as a consequence
185  * doesn't implement any check.
186  *
187  * Return: An efficient performance state id, high enough to meet @max_util
188  * requirement.
189  */
190 static inline int
191 em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states,
192                           unsigned long max_util, unsigned long pd_flags)
193 {
194         struct em_perf_state *ps;
195         int i;
196 
197         for (i = 0; i < nr_perf_states; i++) {
198                 ps = &table[i];
199                 if (ps->performance >= max_util) {
200                         if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
201                             ps->flags & EM_PERF_STATE_INEFFICIENT)
202                                 continue;
203                         return i;
204                 }
205         }
206 
207         return nr_perf_states - 1;
208 }
209 
210 /**
211  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
212  *              performance domain
213  * @pd          : performance domain for which energy has to be estimated
214  * @max_util    : highest utilization among CPUs of the domain
215  * @sum_util    : sum of the utilization of all CPUs in the domain
216  * @allowed_cpu_cap     : maximum allowed CPU capacity for the @pd, which
217  *                        might reflect reduced frequency (due to thermal)
218  *
219  * This function must be used only for CPU devices. There is no validation,
220  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
221  * the scheduler code quite frequently and that is why there is not checks.
222  *
223  * Return: the sum of the energy consumed by the CPUs of the domain assuming
224  * a capacity state satisfying the max utilization of the domain.
225  */
226 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
227                                 unsigned long max_util, unsigned long sum_util,
228                                 unsigned long allowed_cpu_cap)
229 {
230         struct em_perf_table *em_table;
231         struct em_perf_state *ps;
232         int i;
233 
234 #ifdef CONFIG_SCHED_DEBUG
235         WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
236 #endif
237 
238         if (!sum_util)
239                 return 0;
240 
241         /*
242          * In order to predict the performance state, map the utilization of
243          * the most utilized CPU of the performance domain to a requested
244          * performance, like schedutil. Take also into account that the real
245          * performance might be set lower (due to thermal capping). Thus, clamp
246          * max utilization to the allowed CPU capacity before calculating
247          * effective performance.
248          */
249         max_util = min(max_util, allowed_cpu_cap);
250 
251         /*
252          * Find the lowest performance state of the Energy Model above the
253          * requested performance.
254          */
255         em_table = rcu_dereference(pd->em_table);
256         i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states,
257                                       max_util, pd->flags);
258         ps = &em_table->state[i];
259 
260         /*
261          * The performance (capacity) of a CPU in the domain at the performance
262          * state (ps) can be computed as:
263          *
264          *                     ps->freq * scale_cpu
265          *   ps->performance = --------------------                  (1)
266          *                         cpu_max_freq
267          *
268          * So, ignoring the costs of idle states (which are not available in
269          * the EM), the energy consumed by this CPU at that performance state
270          * is estimated as:
271          *
272          *             ps->power * cpu_util
273          *   cpu_nrg = --------------------                          (2)
274          *               ps->performance
275          *
276          * since 'cpu_util / ps->performance' represents its percentage of busy
277          * time.
278          *
279          *   NOTE: Although the result of this computation actually is in
280          *         units of power, it can be manipulated as an energy value
281          *         over a scheduling period, since it is assumed to be
282          *         constant during that interval.
283          *
284          * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
285          * of two terms:
286          *
287          *             ps->power * cpu_max_freq
288          *   cpu_nrg = ------------------------ * cpu_util           (3)
289          *               ps->freq * scale_cpu
290          *
291          * The first term is static, and is stored in the em_perf_state struct
292          * as 'ps->cost'.
293          *
294          * Since all CPUs of the domain have the same micro-architecture, they
295          * share the same 'ps->cost', and the same CPU capacity. Hence, the
296          * total energy of the domain (which is the simple sum of the energy of
297          * all of its CPUs) can be factorized as:
298          *
299          *   pd_nrg = ps->cost * \Sum cpu_util                       (4)
300          */
301         return ps->cost * sum_util;
302 }
303 
304 /**
305  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
306  *                              domain
307  * @pd          : performance domain for which this must be done
308  *
309  * Return: the number of performance states in the performance domain table
310  */
311 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
312 {
313         return pd->nr_perf_states;
314 }
315 
316 /**
317  * em_perf_state_from_pd() - Get the performance states table of perf.
318  *                              domain
319  * @pd          : performance domain for which this must be done
320  *
321  * To use this function the rcu_read_lock() should be hold. After the usage
322  * of the performance states table is finished, the rcu_read_unlock() should
323  * be called.
324  *
325  * Return: the pointer to performance states table of the performance domain
326  */
327 static inline
328 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
329 {
330         return rcu_dereference(pd->em_table)->state;
331 }
332 
333 #else
334 struct em_data_callback {};
335 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
336 #define EM_DATA_CB(_active_power_cb) { }
337 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
338 
339 static inline
340 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
341                                 struct em_data_callback *cb, cpumask_t *span,
342                                 bool microwatts)
343 {
344         return -EINVAL;
345 }
346 static inline void em_dev_unregister_perf_domain(struct device *dev)
347 {
348 }
349 static inline struct em_perf_domain *em_cpu_get(int cpu)
350 {
351         return NULL;
352 }
353 static inline struct em_perf_domain *em_pd_get(struct device *dev)
354 {
355         return NULL;
356 }
357 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
358                         unsigned long max_util, unsigned long sum_util,
359                         unsigned long allowed_cpu_cap)
360 {
361         return 0;
362 }
363 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
364 {
365         return 0;
366 }
367 static inline
368 struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
369 {
370         return NULL;
371 }
372 static inline void em_table_free(struct em_perf_table __rcu *table) {}
373 static inline
374 int em_dev_update_perf_domain(struct device *dev,
375                               struct em_perf_table __rcu *new_table)
376 {
377         return -EINVAL;
378 }
379 static inline
380 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
381 {
382         return NULL;
383 }
384 static inline
385 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
386                          int nr_states)
387 {
388         return -EINVAL;
389 }
390 static inline int em_dev_update_chip_binning(struct device *dev)
391 {
392         return -EINVAL;
393 }
394 #endif
395 
396 #endif
397 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php