~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/filter.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Linux Socket Filter Data Structures
  4  */
  5 #ifndef __LINUX_FILTER_H__
  6 #define __LINUX_FILTER_H__
  7 
  8 #include <linux/atomic.h>
  9 #include <linux/bpf.h>
 10 #include <linux/refcount.h>
 11 #include <linux/compat.h>
 12 #include <linux/skbuff.h>
 13 #include <linux/linkage.h>
 14 #include <linux/printk.h>
 15 #include <linux/workqueue.h>
 16 #include <linux/sched.h>
 17 #include <linux/sched/clock.h>
 18 #include <linux/capability.h>
 19 #include <linux/set_memory.h>
 20 #include <linux/kallsyms.h>
 21 #include <linux/if_vlan.h>
 22 #include <linux/vmalloc.h>
 23 #include <linux/sockptr.h>
 24 #include <crypto/sha1.h>
 25 #include <linux/u64_stats_sync.h>
 26 
 27 #include <net/sch_generic.h>
 28 
 29 #include <asm/byteorder.h>
 30 #include <uapi/linux/filter.h>
 31 
 32 struct sk_buff;
 33 struct sock;
 34 struct seccomp_data;
 35 struct bpf_prog_aux;
 36 struct xdp_rxq_info;
 37 struct xdp_buff;
 38 struct sock_reuseport;
 39 struct ctl_table;
 40 struct ctl_table_header;
 41 
 42 /* ArgX, context and stack frame pointer register positions. Note,
 43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
 44  * calls in BPF_CALL instruction.
 45  */
 46 #define BPF_REG_ARG1    BPF_REG_1
 47 #define BPF_REG_ARG2    BPF_REG_2
 48 #define BPF_REG_ARG3    BPF_REG_3
 49 #define BPF_REG_ARG4    BPF_REG_4
 50 #define BPF_REG_ARG5    BPF_REG_5
 51 #define BPF_REG_CTX     BPF_REG_6
 52 #define BPF_REG_FP      BPF_REG_10
 53 
 54 /* Additional register mappings for converted user programs. */
 55 #define BPF_REG_A       BPF_REG_0
 56 #define BPF_REG_X       BPF_REG_7
 57 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
 58 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
 59 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
 60 
 61 /* Kernel hidden auxiliary/helper register. */
 62 #define BPF_REG_AX              MAX_BPF_REG
 63 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
 64 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
 65 
 66 /* unused opcode to mark special call to bpf_tail_call() helper */
 67 #define BPF_TAIL_CALL   0xf0
 68 
 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
 70 #define BPF_PROBE_MEM   0x20
 71 
 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
 73 #define BPF_PROBE_MEMSX 0x40
 74 
 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
 76 #define BPF_PROBE_MEM32 0xa0
 77 
 78 /* unused opcode to mark special atomic instruction */
 79 #define BPF_PROBE_ATOMIC 0xe0
 80 
 81 /* unused opcode to mark call to interpreter with arguments */
 82 #define BPF_CALL_ARGS   0xe0
 83 
 84 /* unused opcode to mark speculation barrier for mitigating
 85  * Speculative Store Bypass
 86  */
 87 #define BPF_NOSPEC      0xc0
 88 
 89 /* As per nm, we expose JITed images as text (code) section for
 90  * kallsyms. That way, tools like perf can find it to match
 91  * addresses.
 92  */
 93 #define BPF_SYM_ELF_TYPE        't'
 94 
 95 /* BPF program can access up to 512 bytes of stack space. */
 96 #define MAX_BPF_STACK   512
 97 
 98 /* Helper macros for filter block array initializers. */
 99 
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101 
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)                    \
103         ((struct bpf_insn) {                                    \
104                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
105                 .dst_reg = DST,                                 \
106                 .src_reg = SRC,                                 \
107                 .off   = OFF,                                   \
108                 .imm   = 0 })
109 
110 #define BPF_ALU64_REG(OP, DST, SRC)                             \
111         BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112 
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)                    \
114         ((struct bpf_insn) {                                    \
115                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
116                 .dst_reg = DST,                                 \
117                 .src_reg = SRC,                                 \
118                 .off   = OFF,                                   \
119                 .imm   = 0 })
120 
121 #define BPF_ALU32_REG(OP, DST, SRC)                             \
122         BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123 
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125 
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)                    \
127         ((struct bpf_insn) {                                    \
128                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
129                 .dst_reg = DST,                                 \
130                 .src_reg = 0,                                   \
131                 .off   = OFF,                                   \
132                 .imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
134         BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135 
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)                    \
137         ((struct bpf_insn) {                                    \
138                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
139                 .dst_reg = DST,                                 \
140                 .src_reg = 0,                                   \
141                 .off   = OFF,                                   \
142                 .imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
144         BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145 
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147 
148 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
149         ((struct bpf_insn) {                                    \
150                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
151                 .dst_reg = DST,                                 \
152                 .src_reg = 0,                                   \
153                 .off   = 0,                                     \
154                 .imm   = LEN })
155 
156 /* Byte Swap, bswap16/32/64 */
157 
158 #define BPF_BSWAP(DST, LEN)                                     \
159         ((struct bpf_insn) {                                    \
160                 .code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),      \
161                 .dst_reg = DST,                                 \
162                 .src_reg = 0,                                   \
163                 .off   = 0,                                     \
164                 .imm   = LEN })
165 
166 /* Short form of mov, dst_reg = src_reg */
167 
168 #define BPF_MOV64_REG(DST, SRC)                                 \
169         ((struct bpf_insn) {                                    \
170                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
171                 .dst_reg = DST,                                 \
172                 .src_reg = SRC,                                 \
173                 .off   = 0,                                     \
174                 .imm   = 0 })
175 
176 #define BPF_MOV32_REG(DST, SRC)                                 \
177         ((struct bpf_insn) {                                    \
178                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
179                 .dst_reg = DST,                                 \
180                 .src_reg = SRC,                                 \
181                 .off   = 0,                                     \
182                 .imm   = 0 })
183 
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU (-1)
189 
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)                          \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = BPF_ADDR_PERCPU,                       \
196                 .imm   = 0 })
197 
198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200         return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202 
203 /* Short form of mov, dst_reg = imm32 */
204 
205 #define BPF_MOV64_IMM(DST, IMM)                                 \
206         ((struct bpf_insn) {                                    \
207                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
208                 .dst_reg = DST,                                 \
209                 .src_reg = 0,                                   \
210                 .off   = 0,                                     \
211                 .imm   = IMM })
212 
213 #define BPF_MOV32_IMM(DST, IMM)                                 \
214         ((struct bpf_insn) {                                    \
215                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
216                 .dst_reg = DST,                                 \
217                 .src_reg = 0,                                   \
218                 .off   = 0,                                     \
219                 .imm   = IMM })
220 
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222 
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)                          \
224         ((struct bpf_insn) {                                    \
225                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
226                 .dst_reg = DST,                                 \
227                 .src_reg = SRC,                                 \
228                 .off   = OFF,                                   \
229                 .imm   = 0 })
230 
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)                          \
232         ((struct bpf_insn) {                                    \
233                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
234                 .dst_reg = DST,                                 \
235                 .src_reg = SRC,                                 \
236                 .off   = OFF,                                   \
237                 .imm   = 0 })
238 
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)                                       \
241         ((struct bpf_insn) {                                    \
242                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
243                 .dst_reg = DST,                                 \
244                 .src_reg = DST,                                 \
245                 .off   = 0,                                     \
246                 .imm   = 1 })
247 
248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252 
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258         return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259                               insn->off == BPF_ADDR_SPACE_CAST &&
260                               insn->imm == 1U << 16;
261 }
262 
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)                                  \
265         BPF_LD_IMM64_RAW(DST, 0, IMM)
266 
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
268         ((struct bpf_insn) {                                    \
269                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
270                 .dst_reg = DST,                                 \
271                 .src_reg = SRC,                                 \
272                 .off   = 0,                                     \
273                 .imm   = (__u32) (IMM) }),                      \
274         ((struct bpf_insn) {                                    \
275                 .code  = 0, /* zero is reserved opcode */       \
276                 .dst_reg = 0,                                   \
277                 .src_reg = 0,                                   \
278                 .off   = 0,                                     \
279                 .imm   = ((__u64) (IMM)) >> 32 })
280 
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
283         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284 
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286 
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
288         ((struct bpf_insn) {                                    \
289                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
290                 .dst_reg = DST,                                 \
291                 .src_reg = SRC,                                 \
292                 .off   = 0,                                     \
293                 .imm   = IMM })
294 
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = SRC,                                 \
300                 .off   = 0,                                     \
301                 .imm   = IMM })
302 
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304 
305 #define BPF_LD_ABS(SIZE, IMM)                                   \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
308                 .dst_reg = 0,                                   \
309                 .src_reg = 0,                                   \
310                 .off   = 0,                                     \
311                 .imm   = IMM })
312 
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314 
315 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
318                 .dst_reg = 0,                                   \
319                 .src_reg = SRC,                                 \
320                 .off   = 0,                                     \
321                 .imm   = IMM })
322 
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324 
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332 
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334 
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)                      \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,  \
338                 .dst_reg = DST,                                 \
339                 .src_reg = SRC,                                 \
340                 .off   = OFF,                                   \
341                 .imm   = 0 })
342 
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344 
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
348                 .dst_reg = DST,                                 \
349                 .src_reg = SRC,                                 \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352 
353 
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368 
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
370         ((struct bpf_insn) {                                    \
371                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
372                 .dst_reg = DST,                                 \
373                 .src_reg = SRC,                                 \
374                 .off   = OFF,                                   \
375                 .imm   = OP })
376 
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379 
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381 
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
383         ((struct bpf_insn) {                                    \
384                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
385                 .dst_reg = DST,                                 \
386                 .src_reg = 0,                                   \
387                 .off   = OFF,                                   \
388                 .imm   = IMM })
389 
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391 
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
393         ((struct bpf_insn) {                                    \
394                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
395                 .dst_reg = DST,                                 \
396                 .src_reg = SRC,                                 \
397                 .off   = OFF,                                   \
398                 .imm   = 0 })
399 
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401 
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
403         ((struct bpf_insn) {                                    \
404                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
405                 .dst_reg = DST,                                 \
406                 .src_reg = 0,                                   \
407                 .off   = OFF,                                   \
408                 .imm   = IMM })
409 
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411 
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
413         ((struct bpf_insn) {                                    \
414                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
415                 .dst_reg = DST,                                 \
416                 .src_reg = SRC,                                 \
417                 .off   = OFF,                                   \
418                 .imm   = 0 })
419 
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421 
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
423         ((struct bpf_insn) {                                    \
424                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
425                 .dst_reg = DST,                                 \
426                 .src_reg = 0,                                   \
427                 .off   = OFF,                                   \
428                 .imm   = IMM })
429 
430 /* Unconditional jumps, goto pc + off16 */
431 
432 #define BPF_JMP_A(OFF)                                          \
433         ((struct bpf_insn) {                                    \
434                 .code  = BPF_JMP | BPF_JA,                      \
435                 .dst_reg = 0,                                   \
436                 .src_reg = 0,                                   \
437                 .off   = OFF,                                   \
438                 .imm   = 0 })
439 
440 /* Relative call */
441 
442 #define BPF_CALL_REL(TGT)                                       \
443         ((struct bpf_insn) {                                    \
444                 .code  = BPF_JMP | BPF_CALL,                    \
445                 .dst_reg = 0,                                   \
446                 .src_reg = BPF_PSEUDO_CALL,                     \
447                 .off   = 0,                                     \
448                 .imm   = TGT })
449 
450 /* Convert function address to BPF immediate */
451 
452 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
453 
454 #define BPF_EMIT_CALL(FUNC)                                     \
455         ((struct bpf_insn) {                                    \
456                 .code  = BPF_JMP | BPF_CALL,                    \
457                 .dst_reg = 0,                                   \
458                 .src_reg = 0,                                   \
459                 .off   = 0,                                     \
460                 .imm   = BPF_CALL_IMM(FUNC) })
461 
462 /* Raw code statement block */
463 
464 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
465         ((struct bpf_insn) {                                    \
466                 .code  = CODE,                                  \
467                 .dst_reg = DST,                                 \
468                 .src_reg = SRC,                                 \
469                 .off   = OFF,                                   \
470                 .imm   = IMM })
471 
472 /* Program exit */
473 
474 #define BPF_EXIT_INSN()                                         \
475         ((struct bpf_insn) {                                    \
476                 .code  = BPF_JMP | BPF_EXIT,                    \
477                 .dst_reg = 0,                                   \
478                 .src_reg = 0,                                   \
479                 .off   = 0,                                     \
480                 .imm   = 0 })
481 
482 /* Speculation barrier */
483 
484 #define BPF_ST_NOSPEC()                                         \
485         ((struct bpf_insn) {                                    \
486                 .code  = BPF_ST | BPF_NOSPEC,                   \
487                 .dst_reg = 0,                                   \
488                 .src_reg = 0,                                   \
489                 .off   = 0,                                     \
490                 .imm   = 0 })
491 
492 /* Internal classic blocks for direct assignment */
493 
494 #define __BPF_STMT(CODE, K)                                     \
495         ((struct sock_filter) BPF_STMT(CODE, K))
496 
497 #define __BPF_JUMP(CODE, K, JT, JF)                             \
498         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
499 
500 #define bytes_to_bpf_size(bytes)                                \
501 ({                                                              \
502         int bpf_size = -EINVAL;                                 \
503                                                                 \
504         if (bytes == sizeof(u8))                                \
505                 bpf_size = BPF_B;                               \
506         else if (bytes == sizeof(u16))                          \
507                 bpf_size = BPF_H;                               \
508         else if (bytes == sizeof(u32))                          \
509                 bpf_size = BPF_W;                               \
510         else if (bytes == sizeof(u64))                          \
511                 bpf_size = BPF_DW;                              \
512                                                                 \
513         bpf_size;                                               \
514 })
515 
516 #define bpf_size_to_bytes(bpf_size)                             \
517 ({                                                              \
518         int bytes = -EINVAL;                                    \
519                                                                 \
520         if (bpf_size == BPF_B)                                  \
521                 bytes = sizeof(u8);                             \
522         else if (bpf_size == BPF_H)                             \
523                 bytes = sizeof(u16);                            \
524         else if (bpf_size == BPF_W)                             \
525                 bytes = sizeof(u32);                            \
526         else if (bpf_size == BPF_DW)                            \
527                 bytes = sizeof(u64);                            \
528                                                                 \
529         bytes;                                                  \
530 })
531 
532 #define BPF_SIZEOF(type)                                        \
533         ({                                                      \
534                 const int __size = bytes_to_bpf_size(sizeof(type)); \
535                 BUILD_BUG_ON(__size < 0);                       \
536                 __size;                                         \
537         })
538 
539 #define BPF_FIELD_SIZEOF(type, field)                           \
540         ({                                                      \
541                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
542                 BUILD_BUG_ON(__size < 0);                       \
543                 __size;                                         \
544         })
545 
546 #define BPF_LDST_BYTES(insn)                                    \
547         ({                                                      \
548                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
549                 WARN_ON(__size < 0);                            \
550                 __size;                                         \
551         })
552 
553 #define __BPF_MAP_0(m, v, ...) v
554 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
555 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
556 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
557 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
558 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
559 
560 #define __BPF_REG_0(...) __BPF_PAD(5)
561 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
562 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
563 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
564 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
565 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
566 
567 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
568 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
569 
570 #define __BPF_CAST(t, a)                                                       \
571         (__force t)                                                            \
572         (__force                                                               \
573          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
574                                       (unsigned long)0, (t)0))) a
575 #define __BPF_V void
576 #define __BPF_N
577 
578 #define __BPF_DECL_ARGS(t, a) t   a
579 #define __BPF_DECL_REGS(t, a) u64 a
580 
581 #define __BPF_PAD(n)                                                           \
582         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
583                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
584 
585 #define BPF_CALL_x(x, attr, name, ...)                                         \
586         static __always_inline                                                 \
587         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
588         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
589         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
590         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
591         {                                                                      \
592                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
593         }                                                                      \
594         static __always_inline                                                 \
595         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
596 
597 #define __NOATTR
598 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
599 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
600 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
601 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
602 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
603 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
604 
605 #define NOTRACE_BPF_CALL_1(name, ...)   BPF_CALL_x(1, notrace, name, __VA_ARGS__)
606 
607 #define bpf_ctx_range(TYPE, MEMBER)                                             \
608         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
609 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
610         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
611 #if BITS_PER_LONG == 64
612 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
613         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
614 #else
615 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
616         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
617 #endif /* BITS_PER_LONG == 64 */
618 
619 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
620         ({                                                                      \
621                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
622                 *(PTR_SIZE) = (SIZE);                                           \
623                 offsetof(TYPE, MEMBER);                                         \
624         })
625 
626 /* A struct sock_filter is architecture independent. */
627 struct compat_sock_fprog {
628         u16             len;
629         compat_uptr_t   filter; /* struct sock_filter * */
630 };
631 
632 struct sock_fprog_kern {
633         u16                     len;
634         struct sock_filter      *filter;
635 };
636 
637 /* Some arches need doubleword alignment for their instructions and/or data */
638 #define BPF_IMAGE_ALIGNMENT 8
639 
640 struct bpf_binary_header {
641         u32 size;
642         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
643 };
644 
645 struct bpf_prog_stats {
646         u64_stats_t cnt;
647         u64_stats_t nsecs;
648         u64_stats_t misses;
649         struct u64_stats_sync syncp;
650 } __aligned(2 * sizeof(u64));
651 
652 struct sk_filter {
653         refcount_t      refcnt;
654         struct rcu_head rcu;
655         struct bpf_prog *prog;
656 };
657 
658 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
659 
660 extern struct mutex nf_conn_btf_access_lock;
661 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
662                                      const struct bpf_reg_state *reg,
663                                      int off, int size);
664 
665 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
666                                           const struct bpf_insn *insnsi,
667                                           unsigned int (*bpf_func)(const void *,
668                                                                    const struct bpf_insn *));
669 
670 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
671                                           const void *ctx,
672                                           bpf_dispatcher_fn dfunc)
673 {
674         u32 ret;
675 
676         cant_migrate();
677         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
678                 struct bpf_prog_stats *stats;
679                 u64 duration, start = sched_clock();
680                 unsigned long flags;
681 
682                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
683 
684                 duration = sched_clock() - start;
685                 stats = this_cpu_ptr(prog->stats);
686                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
687                 u64_stats_inc(&stats->cnt);
688                 u64_stats_add(&stats->nsecs, duration);
689                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
690         } else {
691                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
692         }
693         return ret;
694 }
695 
696 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
697 {
698         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
699 }
700 
701 /*
702  * Use in preemptible and therefore migratable context to make sure that
703  * the execution of the BPF program runs on one CPU.
704  *
705  * This uses migrate_disable/enable() explicitly to document that the
706  * invocation of a BPF program does not require reentrancy protection
707  * against a BPF program which is invoked from a preempting task.
708  */
709 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
710                                           const void *ctx)
711 {
712         u32 ret;
713 
714         migrate_disable();
715         ret = bpf_prog_run(prog, ctx);
716         migrate_enable();
717         return ret;
718 }
719 
720 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
721 
722 struct bpf_skb_data_end {
723         struct qdisc_skb_cb qdisc_cb;
724         void *data_meta;
725         void *data_end;
726 };
727 
728 struct bpf_nh_params {
729         u32 nh_family;
730         union {
731                 u32 ipv4_nh;
732                 struct in6_addr ipv6_nh;
733         };
734 };
735 
736 /* flags for bpf_redirect_info kern_flags */
737 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
738 #define BPF_RI_F_RI_INIT        BIT(1)
739 #define BPF_RI_F_CPU_MAP_INIT   BIT(2)
740 #define BPF_RI_F_DEV_MAP_INIT   BIT(3)
741 #define BPF_RI_F_XSK_MAP_INIT   BIT(4)
742 
743 struct bpf_redirect_info {
744         u64 tgt_index;
745         void *tgt_value;
746         struct bpf_map *map;
747         u32 flags;
748         u32 map_id;
749         enum bpf_map_type map_type;
750         struct bpf_nh_params nh;
751         u32 kern_flags;
752 };
753 
754 struct bpf_net_context {
755         struct bpf_redirect_info ri;
756         struct list_head cpu_map_flush_list;
757         struct list_head dev_map_flush_list;
758         struct list_head xskmap_map_flush_list;
759 };
760 
761 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
762 {
763         struct task_struct *tsk = current;
764 
765         if (tsk->bpf_net_context != NULL)
766                 return NULL;
767         bpf_net_ctx->ri.kern_flags = 0;
768 
769         tsk->bpf_net_context = bpf_net_ctx;
770         return bpf_net_ctx;
771 }
772 
773 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
774 {
775         if (bpf_net_ctx)
776                 current->bpf_net_context = NULL;
777 }
778 
779 static inline struct bpf_net_context *bpf_net_ctx_get(void)
780 {
781         return current->bpf_net_context;
782 }
783 
784 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
785 {
786         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
787 
788         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
789                 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
790                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
791         }
792 
793         return &bpf_net_ctx->ri;
794 }
795 
796 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
797 {
798         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
799 
800         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
801                 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
802                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
803         }
804 
805         return &bpf_net_ctx->cpu_map_flush_list;
806 }
807 
808 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
809 {
810         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
811 
812         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
813                 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
814                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
815         }
816 
817         return &bpf_net_ctx->dev_map_flush_list;
818 }
819 
820 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
821 {
822         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
823 
824         if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
825                 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
826                 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
827         }
828 
829         return &bpf_net_ctx->xskmap_map_flush_list;
830 }
831 
832 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
833                                                         struct list_head **lh_dev,
834                                                         struct list_head **lh_xsk)
835 {
836         struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
837         u32 kern_flags = bpf_net_ctx->ri.kern_flags;
838         struct list_head *lh;
839 
840         *lh_map = *lh_dev = *lh_xsk = NULL;
841 
842         if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
843                 return;
844 
845         lh = &bpf_net_ctx->dev_map_flush_list;
846         if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
847                 *lh_dev = lh;
848 
849         lh = &bpf_net_ctx->cpu_map_flush_list;
850         if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
851                 *lh_map = lh;
852 
853         lh = &bpf_net_ctx->xskmap_map_flush_list;
854         if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
855             kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
856                 *lh_xsk = lh;
857 }
858 
859 /* Compute the linear packet data range [data, data_end) which
860  * will be accessed by various program types (cls_bpf, act_bpf,
861  * lwt, ...). Subsystems allowing direct data access must (!)
862  * ensure that cb[] area can be written to when BPF program is
863  * invoked (otherwise cb[] save/restore is necessary).
864  */
865 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
866 {
867         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
868 
869         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
870         cb->data_meta = skb->data - skb_metadata_len(skb);
871         cb->data_end  = skb->data + skb_headlen(skb);
872 }
873 
874 /* Similar to bpf_compute_data_pointers(), except that save orginal
875  * data in cb->data and cb->meta_data for restore.
876  */
877 static inline void bpf_compute_and_save_data_end(
878         struct sk_buff *skb, void **saved_data_end)
879 {
880         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
881 
882         *saved_data_end = cb->data_end;
883         cb->data_end  = skb->data + skb_headlen(skb);
884 }
885 
886 /* Restore data saved by bpf_compute_and_save_data_end(). */
887 static inline void bpf_restore_data_end(
888         struct sk_buff *skb, void *saved_data_end)
889 {
890         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
891 
892         cb->data_end = saved_data_end;
893 }
894 
895 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
896 {
897         /* eBPF programs may read/write skb->cb[] area to transfer meta
898          * data between tail calls. Since this also needs to work with
899          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
900          *
901          * In some socket filter cases, the cb unfortunately needs to be
902          * saved/restored so that protocol specific skb->cb[] data won't
903          * be lost. In any case, due to unpriviledged eBPF programs
904          * attached to sockets, we need to clear the bpf_skb_cb() area
905          * to not leak previous contents to user space.
906          */
907         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
908         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
909                      sizeof_field(struct qdisc_skb_cb, data));
910 
911         return qdisc_skb_cb(skb)->data;
912 }
913 
914 /* Must be invoked with migration disabled */
915 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
916                                          const void *ctx)
917 {
918         const struct sk_buff *skb = ctx;
919         u8 *cb_data = bpf_skb_cb(skb);
920         u8 cb_saved[BPF_SKB_CB_LEN];
921         u32 res;
922 
923         if (unlikely(prog->cb_access)) {
924                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
925                 memset(cb_data, 0, sizeof(cb_saved));
926         }
927 
928         res = bpf_prog_run(prog, skb);
929 
930         if (unlikely(prog->cb_access))
931                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
932 
933         return res;
934 }
935 
936 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
937                                        struct sk_buff *skb)
938 {
939         u32 res;
940 
941         migrate_disable();
942         res = __bpf_prog_run_save_cb(prog, skb);
943         migrate_enable();
944         return res;
945 }
946 
947 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
948                                         struct sk_buff *skb)
949 {
950         u8 *cb_data = bpf_skb_cb(skb);
951         u32 res;
952 
953         if (unlikely(prog->cb_access))
954                 memset(cb_data, 0, BPF_SKB_CB_LEN);
955 
956         res = bpf_prog_run_pin_on_cpu(prog, skb);
957         return res;
958 }
959 
960 DECLARE_BPF_DISPATCHER(xdp)
961 
962 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
963 
964 u32 xdp_master_redirect(struct xdp_buff *xdp);
965 
966 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
967 
968 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
969 {
970         return prog->len * sizeof(struct bpf_insn);
971 }
972 
973 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
974 {
975         return round_up(bpf_prog_insn_size(prog) +
976                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
977 }
978 
979 static inline unsigned int bpf_prog_size(unsigned int proglen)
980 {
981         return max(sizeof(struct bpf_prog),
982                    offsetof(struct bpf_prog, insns[proglen]));
983 }
984 
985 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
986 {
987         /* When classic BPF programs have been loaded and the arch
988          * does not have a classic BPF JIT (anymore), they have been
989          * converted via bpf_migrate_filter() to eBPF and thus always
990          * have an unspec program type.
991          */
992         return prog->type == BPF_PROG_TYPE_UNSPEC;
993 }
994 
995 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
996 {
997         const u32 size_machine = sizeof(unsigned long);
998 
999         if (size > size_machine && size % size_machine == 0)
1000                 size = size_machine;
1001 
1002         return size;
1003 }
1004 
1005 static inline bool
1006 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1007 {
1008         return size <= size_default && (size & (size - 1)) == 0;
1009 }
1010 
1011 static inline u8
1012 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1013 {
1014         u8 access_off = off & (size_default - 1);
1015 
1016 #ifdef __LITTLE_ENDIAN
1017         return access_off;
1018 #else
1019         return size_default - (access_off + size);
1020 #endif
1021 }
1022 
1023 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
1024         (size == sizeof(__u64) &&                                       \
1025         off >= offsetof(type, field) &&                                 \
1026         off + sizeof(__u64) <= offsetofend(type, field) &&              \
1027         off % sizeof(__u64) == 0)
1028 
1029 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1030 
1031 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1032 {
1033 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1034         if (!fp->jited) {
1035                 set_vm_flush_reset_perms(fp);
1036                 return set_memory_ro((unsigned long)fp, fp->pages);
1037         }
1038 #endif
1039         return 0;
1040 }
1041 
1042 static inline int __must_check
1043 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1044 {
1045         set_vm_flush_reset_perms(hdr);
1046         return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1047 }
1048 
1049 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
1050 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1051 {
1052         return sk_filter_trim_cap(sk, skb, 1);
1053 }
1054 
1055 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1056 void bpf_prog_free(struct bpf_prog *fp);
1057 
1058 bool bpf_opcode_in_insntable(u8 code);
1059 
1060 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1061                                const u32 *insn_to_jit_off);
1062 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1063 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1064 
1065 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1066 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1067 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1068                                   gfp_t gfp_extra_flags);
1069 void __bpf_prog_free(struct bpf_prog *fp);
1070 
1071 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1072 {
1073         __bpf_prog_free(fp);
1074 }
1075 
1076 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1077                                        unsigned int flen);
1078 
1079 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1080 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1081                               bpf_aux_classic_check_t trans, bool save_orig);
1082 void bpf_prog_destroy(struct bpf_prog *fp);
1083 
1084 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1085 int sk_attach_bpf(u32 ufd, struct sock *sk);
1086 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1087 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1088 void sk_reuseport_prog_free(struct bpf_prog *prog);
1089 int sk_detach_filter(struct sock *sk);
1090 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1091 
1092 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1093 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1094 
1095 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1096 #define __bpf_call_base_args \
1097         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1098          (void *)__bpf_call_base)
1099 
1100 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1101 void bpf_jit_compile(struct bpf_prog *prog);
1102 bool bpf_jit_needs_zext(void);
1103 bool bpf_jit_inlines_helper_call(s32 imm);
1104 bool bpf_jit_supports_subprog_tailcalls(void);
1105 bool bpf_jit_supports_percpu_insn(void);
1106 bool bpf_jit_supports_kfunc_call(void);
1107 bool bpf_jit_supports_far_kfunc_call(void);
1108 bool bpf_jit_supports_exceptions(void);
1109 bool bpf_jit_supports_ptr_xchg(void);
1110 bool bpf_jit_supports_arena(void);
1111 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1112 u64 bpf_arch_uaddress_limit(void);
1113 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1114 bool bpf_helper_changes_pkt_data(void *func);
1115 
1116 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1117 {
1118         /* Reconstruction of call-sites is dependent on kallsyms,
1119          * thus make dump the same restriction.
1120          */
1121         return kallsyms_show_value(cred);
1122 }
1123 
1124 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1125                                        const struct bpf_insn *patch, u32 len);
1126 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1127 
1128 static inline bool xdp_return_frame_no_direct(void)
1129 {
1130         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1131 
1132         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1133 }
1134 
1135 static inline void xdp_set_return_frame_no_direct(void)
1136 {
1137         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1138 
1139         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1140 }
1141 
1142 static inline void xdp_clear_return_frame_no_direct(void)
1143 {
1144         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1145 
1146         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1147 }
1148 
1149 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1150                                  unsigned int pktlen)
1151 {
1152         unsigned int len;
1153 
1154         if (unlikely(!(fwd->flags & IFF_UP)))
1155                 return -ENETDOWN;
1156 
1157         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1158         if (pktlen > len)
1159                 return -EMSGSIZE;
1160 
1161         return 0;
1162 }
1163 
1164 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1165  * same cpu context. Further for best results no more than a single map
1166  * for the do_redirect/do_flush pair should be used. This limitation is
1167  * because we only track one map and force a flush when the map changes.
1168  * This does not appear to be a real limitation for existing software.
1169  */
1170 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1171                             struct xdp_buff *xdp, struct bpf_prog *prog);
1172 int xdp_do_redirect(struct net_device *dev,
1173                     struct xdp_buff *xdp,
1174                     struct bpf_prog *prog);
1175 int xdp_do_redirect_frame(struct net_device *dev,
1176                           struct xdp_buff *xdp,
1177                           struct xdp_frame *xdpf,
1178                           struct bpf_prog *prog);
1179 void xdp_do_flush(void);
1180 
1181 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1182 
1183 #ifdef CONFIG_INET
1184 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1185                                   struct bpf_prog *prog, struct sk_buff *skb,
1186                                   struct sock *migrating_sk,
1187                                   u32 hash);
1188 #else
1189 static inline struct sock *
1190 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1191                      struct bpf_prog *prog, struct sk_buff *skb,
1192                      struct sock *migrating_sk,
1193                      u32 hash)
1194 {
1195         return NULL;
1196 }
1197 #endif
1198 
1199 #ifdef CONFIG_BPF_JIT
1200 extern int bpf_jit_enable;
1201 extern int bpf_jit_harden;
1202 extern int bpf_jit_kallsyms;
1203 extern long bpf_jit_limit;
1204 extern long bpf_jit_limit_max;
1205 
1206 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1207 
1208 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1209 
1210 struct bpf_binary_header *
1211 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1212                      unsigned int alignment,
1213                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1214 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1215 u64 bpf_jit_alloc_exec_limit(void);
1216 void *bpf_jit_alloc_exec(unsigned long size);
1217 void bpf_jit_free_exec(void *addr);
1218 void bpf_jit_free(struct bpf_prog *fp);
1219 struct bpf_binary_header *
1220 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1221 
1222 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1223 void bpf_prog_pack_free(void *ptr, u32 size);
1224 
1225 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1226 {
1227         return list_empty(&fp->aux->ksym.lnode) ||
1228                fp->aux->ksym.lnode.prev == LIST_POISON2;
1229 }
1230 
1231 struct bpf_binary_header *
1232 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1233                           unsigned int alignment,
1234                           struct bpf_binary_header **rw_hdr,
1235                           u8 **rw_image,
1236                           bpf_jit_fill_hole_t bpf_fill_ill_insns);
1237 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1238                                  struct bpf_binary_header *rw_header);
1239 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1240                               struct bpf_binary_header *rw_header);
1241 
1242 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1243                                 struct bpf_jit_poke_descriptor *poke);
1244 
1245 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1246                           const struct bpf_insn *insn, bool extra_pass,
1247                           u64 *func_addr, bool *func_addr_fixed);
1248 
1249 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1250 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1251 
1252 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1253                                 u32 pass, void *image)
1254 {
1255         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1256                proglen, pass, image, current->comm, task_pid_nr(current));
1257 
1258         if (image)
1259                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1260                                16, 1, image, proglen, false);
1261 }
1262 
1263 static inline bool bpf_jit_is_ebpf(void)
1264 {
1265 # ifdef CONFIG_HAVE_EBPF_JIT
1266         return true;
1267 # else
1268         return false;
1269 # endif
1270 }
1271 
1272 static inline bool ebpf_jit_enabled(void)
1273 {
1274         return bpf_jit_enable && bpf_jit_is_ebpf();
1275 }
1276 
1277 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1278 {
1279         return fp->jited && bpf_jit_is_ebpf();
1280 }
1281 
1282 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1283 {
1284         /* These are the prerequisites, should someone ever have the
1285          * idea to call blinding outside of them, we make sure to
1286          * bail out.
1287          */
1288         if (!bpf_jit_is_ebpf())
1289                 return false;
1290         if (!prog->jit_requested)
1291                 return false;
1292         if (!bpf_jit_harden)
1293                 return false;
1294         if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1295                 return false;
1296 
1297         return true;
1298 }
1299 
1300 static inline bool bpf_jit_kallsyms_enabled(void)
1301 {
1302         /* There are a couple of corner cases where kallsyms should
1303          * not be enabled f.e. on hardening.
1304          */
1305         if (bpf_jit_harden)
1306                 return false;
1307         if (!bpf_jit_kallsyms)
1308                 return false;
1309         if (bpf_jit_kallsyms == 1)
1310                 return true;
1311 
1312         return false;
1313 }
1314 
1315 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1316                                  unsigned long *off, char *sym);
1317 bool is_bpf_text_address(unsigned long addr);
1318 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1319                     char *sym);
1320 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1321 
1322 static inline int
1323 bpf_address_lookup(unsigned long addr, unsigned long *size,
1324                    unsigned long *off, char **modname, char *sym)
1325 {
1326         int ret = __bpf_address_lookup(addr, size, off, sym);
1327 
1328         if (ret && modname)
1329                 *modname = NULL;
1330         return ret;
1331 }
1332 
1333 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1334 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1335 
1336 #else /* CONFIG_BPF_JIT */
1337 
1338 static inline bool ebpf_jit_enabled(void)
1339 {
1340         return false;
1341 }
1342 
1343 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1344 {
1345         return false;
1346 }
1347 
1348 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1349 {
1350         return false;
1351 }
1352 
1353 static inline int
1354 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1355                             struct bpf_jit_poke_descriptor *poke)
1356 {
1357         return -ENOTSUPP;
1358 }
1359 
1360 static inline void bpf_jit_free(struct bpf_prog *fp)
1361 {
1362         bpf_prog_unlock_free(fp);
1363 }
1364 
1365 static inline bool bpf_jit_kallsyms_enabled(void)
1366 {
1367         return false;
1368 }
1369 
1370 static inline int
1371 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1372                      unsigned long *off, char *sym)
1373 {
1374         return 0;
1375 }
1376 
1377 static inline bool is_bpf_text_address(unsigned long addr)
1378 {
1379         return false;
1380 }
1381 
1382 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1383                                   char *type, char *sym)
1384 {
1385         return -ERANGE;
1386 }
1387 
1388 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1389 {
1390         return NULL;
1391 }
1392 
1393 static inline int
1394 bpf_address_lookup(unsigned long addr, unsigned long *size,
1395                    unsigned long *off, char **modname, char *sym)
1396 {
1397         return 0;
1398 }
1399 
1400 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1401 {
1402 }
1403 
1404 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1405 {
1406 }
1407 
1408 #endif /* CONFIG_BPF_JIT */
1409 
1410 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1411 
1412 #define BPF_ANC         BIT(15)
1413 
1414 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1415 {
1416         switch (first->code) {
1417         case BPF_RET | BPF_K:
1418         case BPF_LD | BPF_W | BPF_LEN:
1419                 return false;
1420 
1421         case BPF_LD | BPF_W | BPF_ABS:
1422         case BPF_LD | BPF_H | BPF_ABS:
1423         case BPF_LD | BPF_B | BPF_ABS:
1424                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1425                         return true;
1426                 return false;
1427 
1428         default:
1429                 return true;
1430         }
1431 }
1432 
1433 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1434 {
1435         BUG_ON(ftest->code & BPF_ANC);
1436 
1437         switch (ftest->code) {
1438         case BPF_LD | BPF_W | BPF_ABS:
1439         case BPF_LD | BPF_H | BPF_ABS:
1440         case BPF_LD | BPF_B | BPF_ABS:
1441 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1442                                 return BPF_ANC | SKF_AD_##CODE
1443                 switch (ftest->k) {
1444                 BPF_ANCILLARY(PROTOCOL);
1445                 BPF_ANCILLARY(PKTTYPE);
1446                 BPF_ANCILLARY(IFINDEX);
1447                 BPF_ANCILLARY(NLATTR);
1448                 BPF_ANCILLARY(NLATTR_NEST);
1449                 BPF_ANCILLARY(MARK);
1450                 BPF_ANCILLARY(QUEUE);
1451                 BPF_ANCILLARY(HATYPE);
1452                 BPF_ANCILLARY(RXHASH);
1453                 BPF_ANCILLARY(CPU);
1454                 BPF_ANCILLARY(ALU_XOR_X);
1455                 BPF_ANCILLARY(VLAN_TAG);
1456                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1457                 BPF_ANCILLARY(PAY_OFFSET);
1458                 BPF_ANCILLARY(RANDOM);
1459                 BPF_ANCILLARY(VLAN_TPID);
1460                 }
1461                 fallthrough;
1462         default:
1463                 return ftest->code;
1464         }
1465 }
1466 
1467 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1468                                            int k, unsigned int size);
1469 
1470 static inline int bpf_tell_extensions(void)
1471 {
1472         return SKF_AD_MAX;
1473 }
1474 
1475 struct bpf_sock_addr_kern {
1476         struct sock *sk;
1477         struct sockaddr *uaddr;
1478         /* Temporary "register" to make indirect stores to nested structures
1479          * defined above. We need three registers to make such a store, but
1480          * only two (src and dst) are available at convert_ctx_access time
1481          */
1482         u64 tmp_reg;
1483         void *t_ctx;    /* Attach type specific context. */
1484         u32 uaddrlen;
1485 };
1486 
1487 struct bpf_sock_ops_kern {
1488         struct  sock *sk;
1489         union {
1490                 u32 args[4];
1491                 u32 reply;
1492                 u32 replylong[4];
1493         };
1494         struct sk_buff  *syn_skb;
1495         struct sk_buff  *skb;
1496         void    *skb_data_end;
1497         u8      op;
1498         u8      is_fullsock;
1499         u8      remaining_opt_len;
1500         u64     temp;                   /* temp and everything after is not
1501                                          * initialized to 0 before calling
1502                                          * the BPF program. New fields that
1503                                          * should be initialized to 0 should
1504                                          * be inserted before temp.
1505                                          * temp is scratch storage used by
1506                                          * sock_ops_convert_ctx_access
1507                                          * as temporary storage of a register.
1508                                          */
1509 };
1510 
1511 struct bpf_sysctl_kern {
1512         struct ctl_table_header *head;
1513         const struct ctl_table *table;
1514         void *cur_val;
1515         size_t cur_len;
1516         void *new_val;
1517         size_t new_len;
1518         int new_updated;
1519         int write;
1520         loff_t *ppos;
1521         /* Temporary "register" for indirect stores to ppos. */
1522         u64 tmp_reg;
1523 };
1524 
1525 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1526 struct bpf_sockopt_buf {
1527         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1528 };
1529 
1530 struct bpf_sockopt_kern {
1531         struct sock     *sk;
1532         u8              *optval;
1533         u8              *optval_end;
1534         s32             level;
1535         s32             optname;
1536         s32             optlen;
1537         /* for retval in struct bpf_cg_run_ctx */
1538         struct task_struct *current_task;
1539         /* Temporary "register" for indirect stores to ppos. */
1540         u64             tmp_reg;
1541 };
1542 
1543 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1544 
1545 struct bpf_sk_lookup_kern {
1546         u16             family;
1547         u16             protocol;
1548         __be16          sport;
1549         u16             dport;
1550         struct {
1551                 __be32 saddr;
1552                 __be32 daddr;
1553         } v4;
1554         struct {
1555                 const struct in6_addr *saddr;
1556                 const struct in6_addr *daddr;
1557         } v6;
1558         struct sock     *selected_sk;
1559         u32             ingress_ifindex;
1560         bool            no_reuseport;
1561 };
1562 
1563 extern struct static_key_false bpf_sk_lookup_enabled;
1564 
1565 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1566  *
1567  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1568  * SK_DROP. Their meaning is as follows:
1569  *
1570  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1571  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1572  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1573  *
1574  * This macro aggregates return values and selected sockets from
1575  * multiple BPF programs according to following rules in order:
1576  *
1577  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1578  *     macro result is SK_PASS and last ctx.selected_sk is used.
1579  *  2. If any program returned SK_DROP return value,
1580  *     macro result is SK_DROP.
1581  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1582  *
1583  * Caller must ensure that the prog array is non-NULL, and that the
1584  * array as well as the programs it contains remain valid.
1585  */
1586 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1587         ({                                                              \
1588                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1589                 struct bpf_prog_array_item *_item;                      \
1590                 struct sock *_selected_sk = NULL;                       \
1591                 bool _no_reuseport = false;                             \
1592                 struct bpf_prog *_prog;                                 \
1593                 bool _all_pass = true;                                  \
1594                 u32 _ret;                                               \
1595                                                                         \
1596                 migrate_disable();                                      \
1597                 _item = &(array)->items[0];                             \
1598                 while ((_prog = READ_ONCE(_item->prog))) {              \
1599                         /* restore most recent selection */             \
1600                         _ctx->selected_sk = _selected_sk;               \
1601                         _ctx->no_reuseport = _no_reuseport;             \
1602                                                                         \
1603                         _ret = func(_prog, _ctx);                       \
1604                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1605                                 /* remember last non-NULL socket */     \
1606                                 _selected_sk = _ctx->selected_sk;       \
1607                                 _no_reuseport = _ctx->no_reuseport;     \
1608                         } else if (_ret == SK_DROP && _all_pass) {      \
1609                                 _all_pass = false;                      \
1610                         }                                               \
1611                         _item++;                                        \
1612                 }                                                       \
1613                 _ctx->selected_sk = _selected_sk;                       \
1614                 _ctx->no_reuseport = _no_reuseport;                     \
1615                 migrate_enable();                                       \
1616                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1617          })
1618 
1619 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1620                                         const __be32 saddr, const __be16 sport,
1621                                         const __be32 daddr, const u16 dport,
1622                                         const int ifindex, struct sock **psk)
1623 {
1624         struct bpf_prog_array *run_array;
1625         struct sock *selected_sk = NULL;
1626         bool no_reuseport = false;
1627 
1628         rcu_read_lock();
1629         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1630         if (run_array) {
1631                 struct bpf_sk_lookup_kern ctx = {
1632                         .family         = AF_INET,
1633                         .protocol       = protocol,
1634                         .v4.saddr       = saddr,
1635                         .v4.daddr       = daddr,
1636                         .sport          = sport,
1637                         .dport          = dport,
1638                         .ingress_ifindex        = ifindex,
1639                 };
1640                 u32 act;
1641 
1642                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1643                 if (act == SK_PASS) {
1644                         selected_sk = ctx.selected_sk;
1645                         no_reuseport = ctx.no_reuseport;
1646                 } else {
1647                         selected_sk = ERR_PTR(-ECONNREFUSED);
1648                 }
1649         }
1650         rcu_read_unlock();
1651         *psk = selected_sk;
1652         return no_reuseport;
1653 }
1654 
1655 #if IS_ENABLED(CONFIG_IPV6)
1656 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1657                                         const struct in6_addr *saddr,
1658                                         const __be16 sport,
1659                                         const struct in6_addr *daddr,
1660                                         const u16 dport,
1661                                         const int ifindex, struct sock **psk)
1662 {
1663         struct bpf_prog_array *run_array;
1664         struct sock *selected_sk = NULL;
1665         bool no_reuseport = false;
1666 
1667         rcu_read_lock();
1668         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1669         if (run_array) {
1670                 struct bpf_sk_lookup_kern ctx = {
1671                         .family         = AF_INET6,
1672                         .protocol       = protocol,
1673                         .v6.saddr       = saddr,
1674                         .v6.daddr       = daddr,
1675                         .sport          = sport,
1676                         .dport          = dport,
1677                         .ingress_ifindex        = ifindex,
1678                 };
1679                 u32 act;
1680 
1681                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1682                 if (act == SK_PASS) {
1683                         selected_sk = ctx.selected_sk;
1684                         no_reuseport = ctx.no_reuseport;
1685                 } else {
1686                         selected_sk = ERR_PTR(-ECONNREFUSED);
1687                 }
1688         }
1689         rcu_read_unlock();
1690         *psk = selected_sk;
1691         return no_reuseport;
1692 }
1693 #endif /* IS_ENABLED(CONFIG_IPV6) */
1694 
1695 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1696                                                    u64 flags, const u64 flag_mask,
1697                                                    void *lookup_elem(struct bpf_map *map, u32 key))
1698 {
1699         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1700         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1701 
1702         /* Lower bits of the flags are used as return code on lookup failure */
1703         if (unlikely(flags & ~(action_mask | flag_mask)))
1704                 return XDP_ABORTED;
1705 
1706         ri->tgt_value = lookup_elem(map, index);
1707         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1708                 /* If the lookup fails we want to clear out the state in the
1709                  * redirect_info struct completely, so that if an eBPF program
1710                  * performs multiple lookups, the last one always takes
1711                  * precedence.
1712                  */
1713                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1714                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1715                 return flags & action_mask;
1716         }
1717 
1718         ri->tgt_index = index;
1719         ri->map_id = map->id;
1720         ri->map_type = map->map_type;
1721 
1722         if (flags & BPF_F_BROADCAST) {
1723                 WRITE_ONCE(ri->map, map);
1724                 ri->flags = flags;
1725         } else {
1726                 WRITE_ONCE(ri->map, NULL);
1727                 ri->flags = 0;
1728         }
1729 
1730         return XDP_REDIRECT;
1731 }
1732 
1733 #ifdef CONFIG_NET
1734 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1735 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1736                           u32 len, u64 flags);
1737 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1738 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1739 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1740 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1741                       void *buf, unsigned long len, bool flush);
1742 #else /* CONFIG_NET */
1743 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1744                                        void *to, u32 len)
1745 {
1746         return -EOPNOTSUPP;
1747 }
1748 
1749 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1750                                         const void *from, u32 len, u64 flags)
1751 {
1752         return -EOPNOTSUPP;
1753 }
1754 
1755 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1756                                        void *buf, u32 len)
1757 {
1758         return -EOPNOTSUPP;
1759 }
1760 
1761 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1762                                         void *buf, u32 len)
1763 {
1764         return -EOPNOTSUPP;
1765 }
1766 
1767 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1768 {
1769         return NULL;
1770 }
1771 
1772 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1773                                     unsigned long len, bool flush)
1774 {
1775 }
1776 #endif /* CONFIG_NET */
1777 
1778 #endif /* __LINUX_FILTER_H__ */
1779 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php