1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/linkage.h> 6 #include <linux/wait_bit.h> 7 #include <linux/kdev_t.h> 8 #include <linux/dcache.h> 9 #include <linux/path.h> 10 #include <linux/stat.h> 11 #include <linux/cache.h> 12 #include <linux/list.h> 13 #include <linux/list_lru.h> 14 #include <linux/llist.h> 15 #include <linux/radix-tree.h> 16 #include <linux/xarray.h> 17 #include <linux/rbtree.h> 18 #include <linux/init.h> 19 #include <linux/pid.h> 20 #include <linux/bug.h> 21 #include <linux/mutex.h> 22 #include <linux/rwsem.h> 23 #include <linux/mm_types.h> 24 #include <linux/capability.h> 25 #include <linux/semaphore.h> 26 #include <linux/fcntl.h> 27 #include <linux/rculist_bl.h> 28 #include <linux/atomic.h> 29 #include <linux/shrinker.h> 30 #include <linux/migrate_mode.h> 31 #include <linux/uidgid.h> 32 #include <linux/lockdep.h> 33 #include <linux/percpu-rwsem.h> 34 #include <linux/workqueue.h> 35 #include <linux/delayed_call.h> 36 #include <linux/uuid.h> 37 #include <linux/errseq.h> 38 #include <linux/ioprio.h> 39 #include <linux/fs_types.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 49 #include <asm/byteorder.h> 50 #include <uapi/linux/fs.h> 51 52 struct backing_dev_info; 53 struct bdi_writeback; 54 struct bio; 55 struct io_comp_batch; 56 struct export_operations; 57 struct fiemap_extent_info; 58 struct hd_geometry; 59 struct iovec; 60 struct kiocb; 61 struct kobject; 62 struct pipe_inode_info; 63 struct poll_table_struct; 64 struct kstatfs; 65 struct vm_area_struct; 66 struct vfsmount; 67 struct cred; 68 struct swap_info_struct; 69 struct seq_file; 70 struct workqueue_struct; 71 struct iov_iter; 72 struct fscrypt_inode_info; 73 struct fscrypt_operations; 74 struct fsverity_info; 75 struct fsverity_operations; 76 struct fsnotify_mark_connector; 77 struct fsnotify_sb_info; 78 struct fs_context; 79 struct fs_parameter_spec; 80 struct fileattr; 81 struct iomap_ops; 82 83 extern void __init inode_init(void); 84 extern void __init inode_init_early(void); 85 extern void __init files_init(void); 86 extern void __init files_maxfiles_init(void); 87 88 extern unsigned long get_max_files(void); 89 extern unsigned int sysctl_nr_open; 90 91 typedef __kernel_rwf_t rwf_t; 92 93 struct buffer_head; 94 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 95 struct buffer_head *bh_result, int create); 96 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 97 ssize_t bytes, void *private); 98 99 #define MAY_EXEC 0x00000001 100 #define MAY_WRITE 0x00000002 101 #define MAY_READ 0x00000004 102 #define MAY_APPEND 0x00000008 103 #define MAY_ACCESS 0x00000010 104 #define MAY_OPEN 0x00000020 105 #define MAY_CHDIR 0x00000040 106 /* called from RCU mode, don't block */ 107 #define MAY_NOT_BLOCK 0x00000080 108 109 /* 110 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 111 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 112 */ 113 114 /* file is open for reading */ 115 #define FMODE_READ ((__force fmode_t)(1 << 0)) 116 /* file is open for writing */ 117 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 118 /* file is seekable */ 119 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 120 /* file can be accessed using pread */ 121 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 122 /* file can be accessed using pwrite */ 123 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 124 /* File is opened for execution with sys_execve / sys_uselib */ 125 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 126 /* File writes are restricted (block device specific) */ 127 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 128 /* File supports atomic writes */ 129 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 130 131 /* FMODE_* bit 8 */ 132 133 /* 32bit hashes as llseek() offset (for directories) */ 134 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 135 /* 64bit hashes as llseek() offset (for directories) */ 136 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 137 138 /* 139 * Don't update ctime and mtime. 140 * 141 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 142 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 143 */ 144 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 145 146 /* Expect random access pattern */ 147 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 148 149 /* File is huge (eg. /dev/mem): treat loff_t as unsigned */ 150 #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)(1 << 13)) 151 152 /* File is opened with O_PATH; almost nothing can be done with it */ 153 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 154 155 /* File needs atomic accesses to f_pos */ 156 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 157 /* Write access to underlying fs */ 158 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 159 /* Has read method(s) */ 160 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 161 /* Has write method(s) */ 162 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 163 164 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 165 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 166 167 /* File is stream-like */ 168 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 169 170 /* File supports DIRECT IO */ 171 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 172 173 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 174 175 /* FMODE_* bit 24 */ 176 177 /* File is embedded in backing_file object */ 178 #define FMODE_BACKING ((__force fmode_t)(1 << 25)) 179 180 /* File was opened by fanotify and shouldn't generate fanotify events */ 181 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) 182 183 /* File is capable of returning -EAGAIN if I/O will block */ 184 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 185 186 /* File represents mount that needs unmounting */ 187 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 188 189 /* File does not contribute to nr_files count */ 190 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 191 192 /* 193 * Attribute flags. These should be or-ed together to figure out what 194 * has been changed! 195 */ 196 #define ATTR_MODE (1 << 0) 197 #define ATTR_UID (1 << 1) 198 #define ATTR_GID (1 << 2) 199 #define ATTR_SIZE (1 << 3) 200 #define ATTR_ATIME (1 << 4) 201 #define ATTR_MTIME (1 << 5) 202 #define ATTR_CTIME (1 << 6) 203 #define ATTR_ATIME_SET (1 << 7) 204 #define ATTR_MTIME_SET (1 << 8) 205 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 206 #define ATTR_KILL_SUID (1 << 11) 207 #define ATTR_KILL_SGID (1 << 12) 208 #define ATTR_FILE (1 << 13) 209 #define ATTR_KILL_PRIV (1 << 14) 210 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 211 #define ATTR_TIMES_SET (1 << 16) 212 #define ATTR_TOUCH (1 << 17) 213 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 214 215 /* 216 * Whiteout is represented by a char device. The following constants define the 217 * mode and device number to use. 218 */ 219 #define WHITEOUT_MODE 0 220 #define WHITEOUT_DEV 0 221 222 /* 223 * This is the Inode Attributes structure, used for notify_change(). It 224 * uses the above definitions as flags, to know which values have changed. 225 * Also, in this manner, a Filesystem can look at only the values it cares 226 * about. Basically, these are the attributes that the VFS layer can 227 * request to change from the FS layer. 228 * 229 * Derek Atkins <warlord@MIT.EDU> 94-10-20 230 */ 231 struct iattr { 232 unsigned int ia_valid; 233 umode_t ia_mode; 234 /* 235 * The two anonymous unions wrap structures with the same member. 236 * 237 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 238 * are a dedicated type requiring the filesystem to use the dedicated 239 * helpers. Other filesystem can continue to use ia_{g,u}id until they 240 * have been ported. 241 * 242 * They always contain the same value. In other words FS_ALLOW_IDMAP 243 * pass down the same value on idmapped mounts as they would on regular 244 * mounts. 245 */ 246 union { 247 kuid_t ia_uid; 248 vfsuid_t ia_vfsuid; 249 }; 250 union { 251 kgid_t ia_gid; 252 vfsgid_t ia_vfsgid; 253 }; 254 loff_t ia_size; 255 struct timespec64 ia_atime; 256 struct timespec64 ia_mtime; 257 struct timespec64 ia_ctime; 258 259 /* 260 * Not an attribute, but an auxiliary info for filesystems wanting to 261 * implement an ftruncate() like method. NOTE: filesystem should 262 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 263 */ 264 struct file *ia_file; 265 }; 266 267 /* 268 * Includes for diskquotas. 269 */ 270 #include <linux/quota.h> 271 272 /* 273 * Maximum number of layers of fs stack. Needs to be limited to 274 * prevent kernel stack overflow 275 */ 276 #define FILESYSTEM_MAX_STACK_DEPTH 2 277 278 /** 279 * enum positive_aop_returns - aop return codes with specific semantics 280 * 281 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 282 * completed, that the page is still locked, and 283 * should be considered active. The VM uses this hint 284 * to return the page to the active list -- it won't 285 * be a candidate for writeback again in the near 286 * future. Other callers must be careful to unlock 287 * the page if they get this return. Returned by 288 * writepage(); 289 * 290 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 291 * unlocked it and the page might have been truncated. 292 * The caller should back up to acquiring a new page and 293 * trying again. The aop will be taking reasonable 294 * precautions not to livelock. If the caller held a page 295 * reference, it should drop it before retrying. Returned 296 * by read_folio(). 297 * 298 * address_space_operation functions return these large constants to indicate 299 * special semantics to the caller. These are much larger than the bytes in a 300 * page to allow for functions that return the number of bytes operated on in a 301 * given page. 302 */ 303 304 enum positive_aop_returns { 305 AOP_WRITEPAGE_ACTIVATE = 0x80000, 306 AOP_TRUNCATED_PAGE = 0x80001, 307 }; 308 309 /* 310 * oh the beauties of C type declarations. 311 */ 312 struct page; 313 struct address_space; 314 struct writeback_control; 315 struct readahead_control; 316 317 /* Match RWF_* bits to IOCB bits */ 318 #define IOCB_HIPRI (__force int) RWF_HIPRI 319 #define IOCB_DSYNC (__force int) RWF_DSYNC 320 #define IOCB_SYNC (__force int) RWF_SYNC 321 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 322 #define IOCB_APPEND (__force int) RWF_APPEND 323 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 324 325 /* non-RWF related bits - start at 16 */ 326 #define IOCB_EVENTFD (1 << 16) 327 #define IOCB_DIRECT (1 << 17) 328 #define IOCB_WRITE (1 << 18) 329 /* iocb->ki_waitq is valid */ 330 #define IOCB_WAITQ (1 << 19) 331 #define IOCB_NOIO (1 << 20) 332 /* can use bio alloc cache */ 333 #define IOCB_ALLOC_CACHE (1 << 21) 334 /* 335 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 336 * iocb completion can be passed back to the owner for execution from a safe 337 * context rather than needing to be punted through a workqueue. If this 338 * flag is set, the bio completion handling may set iocb->dio_complete to a 339 * handler function and iocb->private to context information for that handler. 340 * The issuer should call the handler with that context information from task 341 * context to complete the processing of the iocb. Note that while this 342 * provides a task context for the dio_complete() callback, it should only be 343 * used on the completion side for non-IO generating completions. It's fine to 344 * call blocking functions from this callback, but they should not wait for 345 * unrelated IO (like cache flushing, new IO generation, etc). 346 */ 347 #define IOCB_DIO_CALLER_COMP (1 << 22) 348 /* kiocb is a read or write operation submitted by fs/aio.c. */ 349 #define IOCB_AIO_RW (1 << 23) 350 351 /* for use in trace events */ 352 #define TRACE_IOCB_STRINGS \ 353 { IOCB_HIPRI, "HIPRI" }, \ 354 { IOCB_DSYNC, "DSYNC" }, \ 355 { IOCB_SYNC, "SYNC" }, \ 356 { IOCB_NOWAIT, "NOWAIT" }, \ 357 { IOCB_APPEND, "APPEND" }, \ 358 { IOCB_ATOMIC, "ATOMIC"}, \ 359 { IOCB_EVENTFD, "EVENTFD"}, \ 360 { IOCB_DIRECT, "DIRECT" }, \ 361 { IOCB_WRITE, "WRITE" }, \ 362 { IOCB_WAITQ, "WAITQ" }, \ 363 { IOCB_NOIO, "NOIO" }, \ 364 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 365 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 366 367 struct kiocb { 368 struct file *ki_filp; 369 loff_t ki_pos; 370 void (*ki_complete)(struct kiocb *iocb, long ret); 371 void *private; 372 int ki_flags; 373 u16 ki_ioprio; /* See linux/ioprio.h */ 374 union { 375 /* 376 * Only used for async buffered reads, where it denotes the 377 * page waitqueue associated with completing the read. Valid 378 * IFF IOCB_WAITQ is set. 379 */ 380 struct wait_page_queue *ki_waitq; 381 /* 382 * Can be used for O_DIRECT IO, where the completion handling 383 * is punted back to the issuer of the IO. May only be set 384 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 385 * must then check for presence of this handler when ki_complete 386 * is invoked. The data passed in to this handler must be 387 * assigned to ->private when dio_complete is assigned. 388 */ 389 ssize_t (*dio_complete)(void *data); 390 }; 391 }; 392 393 static inline bool is_sync_kiocb(struct kiocb *kiocb) 394 { 395 return kiocb->ki_complete == NULL; 396 } 397 398 struct address_space_operations { 399 int (*writepage)(struct page *page, struct writeback_control *wbc); 400 int (*read_folio)(struct file *, struct folio *); 401 402 /* Write back some dirty pages from this mapping. */ 403 int (*writepages)(struct address_space *, struct writeback_control *); 404 405 /* Mark a folio dirty. Return true if this dirtied it */ 406 bool (*dirty_folio)(struct address_space *, struct folio *); 407 408 void (*readahead)(struct readahead_control *); 409 410 int (*write_begin)(struct file *, struct address_space *mapping, 411 loff_t pos, unsigned len, 412 struct page **pagep, void **fsdata); 413 int (*write_end)(struct file *, struct address_space *mapping, 414 loff_t pos, unsigned len, unsigned copied, 415 struct page *page, void *fsdata); 416 417 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 418 sector_t (*bmap)(struct address_space *, sector_t); 419 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 420 bool (*release_folio)(struct folio *, gfp_t); 421 void (*free_folio)(struct folio *folio); 422 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 423 /* 424 * migrate the contents of a folio to the specified target. If 425 * migrate_mode is MIGRATE_ASYNC, it must not block. 426 */ 427 int (*migrate_folio)(struct address_space *, struct folio *dst, 428 struct folio *src, enum migrate_mode); 429 int (*launder_folio)(struct folio *); 430 bool (*is_partially_uptodate) (struct folio *, size_t from, 431 size_t count); 432 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 433 int (*error_remove_folio)(struct address_space *, struct folio *); 434 435 /* swapfile support */ 436 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 437 sector_t *span); 438 void (*swap_deactivate)(struct file *file); 439 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 440 }; 441 442 extern const struct address_space_operations empty_aops; 443 444 /** 445 * struct address_space - Contents of a cacheable, mappable object. 446 * @host: Owner, either the inode or the block_device. 447 * @i_pages: Cached pages. 448 * @invalidate_lock: Guards coherency between page cache contents and 449 * file offset->disk block mappings in the filesystem during invalidates. 450 * It is also used to block modification of page cache contents through 451 * memory mappings. 452 * @gfp_mask: Memory allocation flags to use for allocating pages. 453 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 454 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 455 * @i_mmap: Tree of private and shared mappings. 456 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 457 * @nrpages: Number of page entries, protected by the i_pages lock. 458 * @writeback_index: Writeback starts here. 459 * @a_ops: Methods. 460 * @flags: Error bits and flags (AS_*). 461 * @wb_err: The most recent error which has occurred. 462 * @i_private_lock: For use by the owner of the address_space. 463 * @i_private_list: For use by the owner of the address_space. 464 * @i_private_data: For use by the owner of the address_space. 465 */ 466 struct address_space { 467 struct inode *host; 468 struct xarray i_pages; 469 struct rw_semaphore invalidate_lock; 470 gfp_t gfp_mask; 471 atomic_t i_mmap_writable; 472 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 473 /* number of thp, only for non-shmem files */ 474 atomic_t nr_thps; 475 #endif 476 struct rb_root_cached i_mmap; 477 unsigned long nrpages; 478 pgoff_t writeback_index; 479 const struct address_space_operations *a_ops; 480 unsigned long flags; 481 errseq_t wb_err; 482 spinlock_t i_private_lock; 483 struct list_head i_private_list; 484 struct rw_semaphore i_mmap_rwsem; 485 void * i_private_data; 486 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 487 /* 488 * On most architectures that alignment is already the case; but 489 * must be enforced here for CRIS, to let the least significant bit 490 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 491 */ 492 493 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 494 #define PAGECACHE_TAG_DIRTY XA_MARK_0 495 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 496 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 497 498 /* 499 * Returns true if any of the pages in the mapping are marked with the tag. 500 */ 501 static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 502 { 503 return xa_marked(&mapping->i_pages, tag); 504 } 505 506 static inline void i_mmap_lock_write(struct address_space *mapping) 507 { 508 down_write(&mapping->i_mmap_rwsem); 509 } 510 511 static inline int i_mmap_trylock_write(struct address_space *mapping) 512 { 513 return down_write_trylock(&mapping->i_mmap_rwsem); 514 } 515 516 static inline void i_mmap_unlock_write(struct address_space *mapping) 517 { 518 up_write(&mapping->i_mmap_rwsem); 519 } 520 521 static inline int i_mmap_trylock_read(struct address_space *mapping) 522 { 523 return down_read_trylock(&mapping->i_mmap_rwsem); 524 } 525 526 static inline void i_mmap_lock_read(struct address_space *mapping) 527 { 528 down_read(&mapping->i_mmap_rwsem); 529 } 530 531 static inline void i_mmap_unlock_read(struct address_space *mapping) 532 { 533 up_read(&mapping->i_mmap_rwsem); 534 } 535 536 static inline void i_mmap_assert_locked(struct address_space *mapping) 537 { 538 lockdep_assert_held(&mapping->i_mmap_rwsem); 539 } 540 541 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 542 { 543 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 544 } 545 546 /* 547 * Might pages of this file be mapped into userspace? 548 */ 549 static inline int mapping_mapped(struct address_space *mapping) 550 { 551 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 552 } 553 554 /* 555 * Might pages of this file have been modified in userspace? 556 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 557 * marks vma as VM_SHARED if it is shared, and the file was opened for 558 * writing i.e. vma may be mprotected writable even if now readonly. 559 * 560 * If i_mmap_writable is negative, no new writable mappings are allowed. You 561 * can only deny writable mappings, if none exists right now. 562 */ 563 static inline int mapping_writably_mapped(struct address_space *mapping) 564 { 565 return atomic_read(&mapping->i_mmap_writable) > 0; 566 } 567 568 static inline int mapping_map_writable(struct address_space *mapping) 569 { 570 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 571 0 : -EPERM; 572 } 573 574 static inline void mapping_unmap_writable(struct address_space *mapping) 575 { 576 atomic_dec(&mapping->i_mmap_writable); 577 } 578 579 static inline int mapping_deny_writable(struct address_space *mapping) 580 { 581 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 582 0 : -EBUSY; 583 } 584 585 static inline void mapping_allow_writable(struct address_space *mapping) 586 { 587 atomic_inc(&mapping->i_mmap_writable); 588 } 589 590 /* 591 * Use sequence counter to get consistent i_size on 32-bit processors. 592 */ 593 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 594 #include <linux/seqlock.h> 595 #define __NEED_I_SIZE_ORDERED 596 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 597 #else 598 #define i_size_ordered_init(inode) do { } while (0) 599 #endif 600 601 struct posix_acl; 602 #define ACL_NOT_CACHED ((void *)(-1)) 603 /* 604 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 605 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 606 * mode with the LOOKUP_RCU flag. 607 */ 608 #define ACL_DONT_CACHE ((void *)(-3)) 609 610 static inline struct posix_acl * 611 uncached_acl_sentinel(struct task_struct *task) 612 { 613 return (void *)task + 1; 614 } 615 616 static inline bool 617 is_uncached_acl(struct posix_acl *acl) 618 { 619 return (long)acl & 1; 620 } 621 622 #define IOP_FASTPERM 0x0001 623 #define IOP_LOOKUP 0x0002 624 #define IOP_NOFOLLOW 0x0004 625 #define IOP_XATTR 0x0008 626 #define IOP_DEFAULT_READLINK 0x0010 627 628 /* 629 * Keep mostly read-only and often accessed (especially for 630 * the RCU path lookup and 'stat' data) fields at the beginning 631 * of the 'struct inode' 632 */ 633 struct inode { 634 umode_t i_mode; 635 unsigned short i_opflags; 636 kuid_t i_uid; 637 kgid_t i_gid; 638 unsigned int i_flags; 639 640 #ifdef CONFIG_FS_POSIX_ACL 641 struct posix_acl *i_acl; 642 struct posix_acl *i_default_acl; 643 #endif 644 645 const struct inode_operations *i_op; 646 struct super_block *i_sb; 647 struct address_space *i_mapping; 648 649 #ifdef CONFIG_SECURITY 650 void *i_security; 651 #endif 652 653 /* Stat data, not accessed from path walking */ 654 unsigned long i_ino; 655 /* 656 * Filesystems may only read i_nlink directly. They shall use the 657 * following functions for modification: 658 * 659 * (set|clear|inc|drop)_nlink 660 * inode_(inc|dec)_link_count 661 */ 662 union { 663 const unsigned int i_nlink; 664 unsigned int __i_nlink; 665 }; 666 dev_t i_rdev; 667 loff_t i_size; 668 time64_t i_atime_sec; 669 time64_t i_mtime_sec; 670 time64_t i_ctime_sec; 671 u32 i_atime_nsec; 672 u32 i_mtime_nsec; 673 u32 i_ctime_nsec; 674 u32 i_generation; 675 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 676 unsigned short i_bytes; 677 u8 i_blkbits; 678 enum rw_hint i_write_hint; 679 blkcnt_t i_blocks; 680 681 #ifdef __NEED_I_SIZE_ORDERED 682 seqcount_t i_size_seqcount; 683 #endif 684 685 /* Misc */ 686 unsigned long i_state; 687 struct rw_semaphore i_rwsem; 688 689 unsigned long dirtied_when; /* jiffies of first dirtying */ 690 unsigned long dirtied_time_when; 691 692 struct hlist_node i_hash; 693 struct list_head i_io_list; /* backing dev IO list */ 694 #ifdef CONFIG_CGROUP_WRITEBACK 695 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 696 697 /* foreign inode detection, see wbc_detach_inode() */ 698 int i_wb_frn_winner; 699 u16 i_wb_frn_avg_time; 700 u16 i_wb_frn_history; 701 #endif 702 struct list_head i_lru; /* inode LRU list */ 703 struct list_head i_sb_list; 704 struct list_head i_wb_list; /* backing dev writeback list */ 705 union { 706 struct hlist_head i_dentry; 707 struct rcu_head i_rcu; 708 }; 709 atomic64_t i_version; 710 atomic64_t i_sequence; /* see futex */ 711 atomic_t i_count; 712 atomic_t i_dio_count; 713 atomic_t i_writecount; 714 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 715 atomic_t i_readcount; /* struct files open RO */ 716 #endif 717 union { 718 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 719 void (*free_inode)(struct inode *); 720 }; 721 struct file_lock_context *i_flctx; 722 struct address_space i_data; 723 struct list_head i_devices; 724 union { 725 struct pipe_inode_info *i_pipe; 726 struct cdev *i_cdev; 727 char *i_link; 728 unsigned i_dir_seq; 729 }; 730 731 732 #ifdef CONFIG_FSNOTIFY 733 __u32 i_fsnotify_mask; /* all events this inode cares about */ 734 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 735 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 736 #endif 737 738 #ifdef CONFIG_FS_ENCRYPTION 739 struct fscrypt_inode_info *i_crypt_info; 740 #endif 741 742 #ifdef CONFIG_FS_VERITY 743 struct fsverity_info *i_verity_info; 744 #endif 745 746 void *i_private; /* fs or device private pointer */ 747 } __randomize_layout; 748 749 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 750 751 static inline unsigned int i_blocksize(const struct inode *node) 752 { 753 return (1 << node->i_blkbits); 754 } 755 756 static inline int inode_unhashed(struct inode *inode) 757 { 758 return hlist_unhashed(&inode->i_hash); 759 } 760 761 /* 762 * __mark_inode_dirty expects inodes to be hashed. Since we don't 763 * want special inodes in the fileset inode space, we make them 764 * appear hashed, but do not put on any lists. hlist_del() 765 * will work fine and require no locking. 766 */ 767 static inline void inode_fake_hash(struct inode *inode) 768 { 769 hlist_add_fake(&inode->i_hash); 770 } 771 772 /* 773 * inode->i_mutex nesting subclasses for the lock validator: 774 * 775 * 0: the object of the current VFS operation 776 * 1: parent 777 * 2: child/target 778 * 3: xattr 779 * 4: second non-directory 780 * 5: second parent (when locking independent directories in rename) 781 * 782 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 783 * non-directories at once. 784 * 785 * The locking order between these classes is 786 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 787 */ 788 enum inode_i_mutex_lock_class 789 { 790 I_MUTEX_NORMAL, 791 I_MUTEX_PARENT, 792 I_MUTEX_CHILD, 793 I_MUTEX_XATTR, 794 I_MUTEX_NONDIR2, 795 I_MUTEX_PARENT2, 796 }; 797 798 static inline void inode_lock(struct inode *inode) 799 { 800 down_write(&inode->i_rwsem); 801 } 802 803 static inline void inode_unlock(struct inode *inode) 804 { 805 up_write(&inode->i_rwsem); 806 } 807 808 static inline void inode_lock_shared(struct inode *inode) 809 { 810 down_read(&inode->i_rwsem); 811 } 812 813 static inline void inode_unlock_shared(struct inode *inode) 814 { 815 up_read(&inode->i_rwsem); 816 } 817 818 static inline int inode_trylock(struct inode *inode) 819 { 820 return down_write_trylock(&inode->i_rwsem); 821 } 822 823 static inline int inode_trylock_shared(struct inode *inode) 824 { 825 return down_read_trylock(&inode->i_rwsem); 826 } 827 828 static inline int inode_is_locked(struct inode *inode) 829 { 830 return rwsem_is_locked(&inode->i_rwsem); 831 } 832 833 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 834 { 835 down_write_nested(&inode->i_rwsem, subclass); 836 } 837 838 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 839 { 840 down_read_nested(&inode->i_rwsem, subclass); 841 } 842 843 static inline void filemap_invalidate_lock(struct address_space *mapping) 844 { 845 down_write(&mapping->invalidate_lock); 846 } 847 848 static inline void filemap_invalidate_unlock(struct address_space *mapping) 849 { 850 up_write(&mapping->invalidate_lock); 851 } 852 853 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 854 { 855 down_read(&mapping->invalidate_lock); 856 } 857 858 static inline int filemap_invalidate_trylock_shared( 859 struct address_space *mapping) 860 { 861 return down_read_trylock(&mapping->invalidate_lock); 862 } 863 864 static inline void filemap_invalidate_unlock_shared( 865 struct address_space *mapping) 866 { 867 up_read(&mapping->invalidate_lock); 868 } 869 870 void lock_two_nondirectories(struct inode *, struct inode*); 871 void unlock_two_nondirectories(struct inode *, struct inode*); 872 873 void filemap_invalidate_lock_two(struct address_space *mapping1, 874 struct address_space *mapping2); 875 void filemap_invalidate_unlock_two(struct address_space *mapping1, 876 struct address_space *mapping2); 877 878 879 /* 880 * NOTE: in a 32bit arch with a preemptable kernel and 881 * an UP compile the i_size_read/write must be atomic 882 * with respect to the local cpu (unlike with preempt disabled), 883 * but they don't need to be atomic with respect to other cpus like in 884 * true SMP (so they need either to either locally disable irq around 885 * the read or for example on x86 they can be still implemented as a 886 * cmpxchg8b without the need of the lock prefix). For SMP compiles 887 * and 64bit archs it makes no difference if preempt is enabled or not. 888 */ 889 static inline loff_t i_size_read(const struct inode *inode) 890 { 891 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 892 loff_t i_size; 893 unsigned int seq; 894 895 do { 896 seq = read_seqcount_begin(&inode->i_size_seqcount); 897 i_size = inode->i_size; 898 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 899 return i_size; 900 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 901 loff_t i_size; 902 903 preempt_disable(); 904 i_size = inode->i_size; 905 preempt_enable(); 906 return i_size; 907 #else 908 /* Pairs with smp_store_release() in i_size_write() */ 909 return smp_load_acquire(&inode->i_size); 910 #endif 911 } 912 913 /* 914 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 915 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 916 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 917 */ 918 static inline void i_size_write(struct inode *inode, loff_t i_size) 919 { 920 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 921 preempt_disable(); 922 write_seqcount_begin(&inode->i_size_seqcount); 923 inode->i_size = i_size; 924 write_seqcount_end(&inode->i_size_seqcount); 925 preempt_enable(); 926 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 927 preempt_disable(); 928 inode->i_size = i_size; 929 preempt_enable(); 930 #else 931 /* 932 * Pairs with smp_load_acquire() in i_size_read() to ensure 933 * changes related to inode size (such as page contents) are 934 * visible before we see the changed inode size. 935 */ 936 smp_store_release(&inode->i_size, i_size); 937 #endif 938 } 939 940 static inline unsigned iminor(const struct inode *inode) 941 { 942 return MINOR(inode->i_rdev); 943 } 944 945 static inline unsigned imajor(const struct inode *inode) 946 { 947 return MAJOR(inode->i_rdev); 948 } 949 950 struct fown_struct { 951 rwlock_t lock; /* protects pid, uid, euid fields */ 952 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 953 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 954 kuid_t uid, euid; /* uid/euid of process setting the owner */ 955 int signum; /* posix.1b rt signal to be delivered on IO */ 956 }; 957 958 /** 959 * struct file_ra_state - Track a file's readahead state. 960 * @start: Where the most recent readahead started. 961 * @size: Number of pages read in the most recent readahead. 962 * @async_size: Numer of pages that were/are not needed immediately 963 * and so were/are genuinely "ahead". Start next readahead when 964 * the first of these pages is accessed. 965 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 966 * @mmap_miss: How many mmap accesses missed in the page cache. 967 * @prev_pos: The last byte in the most recent read request. 968 * 969 * When this structure is passed to ->readahead(), the "most recent" 970 * readahead means the current readahead. 971 */ 972 struct file_ra_state { 973 pgoff_t start; 974 unsigned int size; 975 unsigned int async_size; 976 unsigned int ra_pages; 977 unsigned int mmap_miss; 978 loff_t prev_pos; 979 }; 980 981 /* 982 * Check if @index falls in the readahead windows. 983 */ 984 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 985 { 986 return (index >= ra->start && 987 index < ra->start + ra->size); 988 } 989 990 /* 991 * f_{lock,count,pos_lock} members can be highly contended and share 992 * the same cacheline. f_{lock,mode} are very frequently used together 993 * and so share the same cacheline as well. The read-mostly 994 * f_{path,inode,op} are kept on a separate cacheline. 995 */ 996 struct file { 997 union { 998 /* fput() uses task work when closing and freeing file (default). */ 999 struct callback_head f_task_work; 1000 /* fput() must use workqueue (most kernel threads). */ 1001 struct llist_node f_llist; 1002 unsigned int f_iocb_flags; 1003 }; 1004 1005 /* 1006 * Protects f_ep, f_flags. 1007 * Must not be taken from IRQ context. 1008 */ 1009 spinlock_t f_lock; 1010 fmode_t f_mode; 1011 atomic_long_t f_count; 1012 struct mutex f_pos_lock; 1013 loff_t f_pos; 1014 unsigned int f_flags; 1015 struct fown_struct f_owner; 1016 const struct cred *f_cred; 1017 struct file_ra_state f_ra; 1018 struct path f_path; 1019 struct inode *f_inode; /* cached value */ 1020 const struct file_operations *f_op; 1021 1022 u64 f_version; 1023 #ifdef CONFIG_SECURITY 1024 void *f_security; 1025 #endif 1026 /* needed for tty driver, and maybe others */ 1027 void *private_data; 1028 1029 #ifdef CONFIG_EPOLL 1030 /* Used by fs/eventpoll.c to link all the hooks to this file */ 1031 struct hlist_head *f_ep; 1032 #endif /* #ifdef CONFIG_EPOLL */ 1033 struct address_space *f_mapping; 1034 errseq_t f_wb_err; 1035 errseq_t f_sb_err; /* for syncfs */ 1036 } __randomize_layout 1037 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1038 1039 struct file_handle { 1040 __u32 handle_bytes; 1041 int handle_type; 1042 /* file identifier */ 1043 unsigned char f_handle[] __counted_by(handle_bytes); 1044 }; 1045 1046 static inline struct file *get_file(struct file *f) 1047 { 1048 long prior = atomic_long_fetch_inc_relaxed(&f->f_count); 1049 WARN_ONCE(!prior, "struct file::f_count incremented from zero; use-after-free condition present!\n"); 1050 return f; 1051 } 1052 1053 struct file *get_file_rcu(struct file __rcu **f); 1054 struct file *get_file_active(struct file **f); 1055 1056 #define file_count(x) atomic_long_read(&(x)->f_count) 1057 1058 #define MAX_NON_LFS ((1UL<<31) - 1) 1059 1060 /* Page cache limit. The filesystems should put that into their s_maxbytes 1061 limits, otherwise bad things can happen in VM. */ 1062 #if BITS_PER_LONG==32 1063 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1064 #elif BITS_PER_LONG==64 1065 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1066 #endif 1067 1068 /* legacy typedef, should eventually be removed */ 1069 typedef void *fl_owner_t; 1070 1071 struct file_lock; 1072 struct file_lease; 1073 1074 /* The following constant reflects the upper bound of the file/locking space */ 1075 #ifndef OFFSET_MAX 1076 #define OFFSET_MAX type_max(loff_t) 1077 #define OFFT_OFFSET_MAX type_max(off_t) 1078 #endif 1079 1080 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1081 1082 static inline struct inode *file_inode(const struct file *f) 1083 { 1084 return f->f_inode; 1085 } 1086 1087 /* 1088 * file_dentry() is a relic from the days that overlayfs was using files with a 1089 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1090 * In those days, file_dentry() was needed to get the underlying fs dentry that 1091 * matches f_inode. 1092 * Files with "fake" path should not exist nowadays, so use an assertion to make 1093 * sure that file_dentry() was not papering over filesystem bugs. 1094 */ 1095 static inline struct dentry *file_dentry(const struct file *file) 1096 { 1097 struct dentry *dentry = file->f_path.dentry; 1098 1099 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1100 return dentry; 1101 } 1102 1103 struct fasync_struct { 1104 rwlock_t fa_lock; 1105 int magic; 1106 int fa_fd; 1107 struct fasync_struct *fa_next; /* singly linked list */ 1108 struct file *fa_file; 1109 struct rcu_head fa_rcu; 1110 }; 1111 1112 #define FASYNC_MAGIC 0x4601 1113 1114 /* SMP safe fasync helpers: */ 1115 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1116 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1117 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1118 extern struct fasync_struct *fasync_alloc(void); 1119 extern void fasync_free(struct fasync_struct *); 1120 1121 /* can be called from interrupts */ 1122 extern void kill_fasync(struct fasync_struct **, int, int); 1123 1124 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1125 extern int f_setown(struct file *filp, int who, int force); 1126 extern void f_delown(struct file *filp); 1127 extern pid_t f_getown(struct file *filp); 1128 extern int send_sigurg(struct fown_struct *fown); 1129 1130 /* 1131 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1132 * represented in both. 1133 */ 1134 #define SB_RDONLY BIT(0) /* Mount read-only */ 1135 #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1136 #define SB_NODEV BIT(2) /* Disallow access to device special files */ 1137 #define SB_NOEXEC BIT(3) /* Disallow program execution */ 1138 #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1139 #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1140 #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1141 #define SB_NOATIME BIT(10) /* Do not update access times. */ 1142 #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1143 #define SB_SILENT BIT(15) 1144 #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ 1145 #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1146 #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1147 #define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1148 #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1149 1150 /* These sb flags are internal to the kernel */ 1151 #define SB_DEAD BIT(21) 1152 #define SB_DYING BIT(24) 1153 #define SB_SUBMOUNT BIT(26) 1154 #define SB_FORCE BIT(27) 1155 #define SB_NOSEC BIT(28) 1156 #define SB_BORN BIT(29) 1157 #define SB_ACTIVE BIT(30) 1158 #define SB_NOUSER BIT(31) 1159 1160 /* These flags relate to encoding and casefolding */ 1161 #define SB_ENC_STRICT_MODE_FL (1 << 0) 1162 1163 #define sb_has_strict_encoding(sb) \ 1164 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1165 1166 /* 1167 * Umount options 1168 */ 1169 1170 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1171 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1172 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1173 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1174 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1175 1176 /* sb->s_iflags */ 1177 #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1178 #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1179 #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1180 #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1181 1182 /* sb->s_iflags to limit user namespace mounts */ 1183 #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1184 #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1185 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 1186 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 1187 1188 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1189 #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1190 #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1191 #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1192 #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ 1193 1194 /* Possible states of 'frozen' field */ 1195 enum { 1196 SB_UNFROZEN = 0, /* FS is unfrozen */ 1197 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1198 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1199 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1200 * internal threads if needed) */ 1201 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1202 }; 1203 1204 #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1205 1206 struct sb_writers { 1207 unsigned short frozen; /* Is sb frozen? */ 1208 int freeze_kcount; /* How many kernel freeze requests? */ 1209 int freeze_ucount; /* How many userspace freeze requests? */ 1210 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1211 }; 1212 1213 struct super_block { 1214 struct list_head s_list; /* Keep this first */ 1215 dev_t s_dev; /* search index; _not_ kdev_t */ 1216 unsigned char s_blocksize_bits; 1217 unsigned long s_blocksize; 1218 loff_t s_maxbytes; /* Max file size */ 1219 struct file_system_type *s_type; 1220 const struct super_operations *s_op; 1221 const struct dquot_operations *dq_op; 1222 const struct quotactl_ops *s_qcop; 1223 const struct export_operations *s_export_op; 1224 unsigned long s_flags; 1225 unsigned long s_iflags; /* internal SB_I_* flags */ 1226 unsigned long s_magic; 1227 struct dentry *s_root; 1228 struct rw_semaphore s_umount; 1229 int s_count; 1230 atomic_t s_active; 1231 #ifdef CONFIG_SECURITY 1232 void *s_security; 1233 #endif 1234 const struct xattr_handler * const *s_xattr; 1235 #ifdef CONFIG_FS_ENCRYPTION 1236 const struct fscrypt_operations *s_cop; 1237 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1238 #endif 1239 #ifdef CONFIG_FS_VERITY 1240 const struct fsverity_operations *s_vop; 1241 #endif 1242 #if IS_ENABLED(CONFIG_UNICODE) 1243 struct unicode_map *s_encoding; 1244 __u16 s_encoding_flags; 1245 #endif 1246 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1247 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1248 struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ 1249 struct file *s_bdev_file; 1250 struct backing_dev_info *s_bdi; 1251 struct mtd_info *s_mtd; 1252 struct hlist_node s_instances; 1253 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1254 struct quota_info s_dquot; /* Diskquota specific options */ 1255 1256 struct sb_writers s_writers; 1257 1258 /* 1259 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1260 * s_fsnotify_info together for cache efficiency. They are frequently 1261 * accessed and rarely modified. 1262 */ 1263 void *s_fs_info; /* Filesystem private info */ 1264 1265 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1266 u32 s_time_gran; 1267 /* Time limits for c/m/atime in seconds */ 1268 time64_t s_time_min; 1269 time64_t s_time_max; 1270 #ifdef CONFIG_FSNOTIFY 1271 __u32 s_fsnotify_mask; 1272 struct fsnotify_sb_info *s_fsnotify_info; 1273 #endif 1274 1275 /* 1276 * q: why are s_id and s_sysfs_name not the same? both are human 1277 * readable strings that identify the filesystem 1278 * a: s_id is allowed to change at runtime; it's used in log messages, 1279 * and we want to when a device starts out as single device (s_id is dev 1280 * name) but then a device is hot added and we have to switch to 1281 * identifying it by UUID 1282 * but s_sysfs_name is a handle for programmatic access, and can't 1283 * change at runtime 1284 */ 1285 char s_id[32]; /* Informational name */ 1286 uuid_t s_uuid; /* UUID */ 1287 u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ 1288 1289 /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ 1290 char s_sysfs_name[UUID_STRING_LEN + 1]; 1291 1292 unsigned int s_max_links; 1293 1294 /* 1295 * The next field is for VFS *only*. No filesystems have any business 1296 * even looking at it. You had been warned. 1297 */ 1298 struct mutex s_vfs_rename_mutex; /* Kludge */ 1299 1300 /* 1301 * Filesystem subtype. If non-empty the filesystem type field 1302 * in /proc/mounts will be "type.subtype" 1303 */ 1304 const char *s_subtype; 1305 1306 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1307 1308 struct shrinker *s_shrink; /* per-sb shrinker handle */ 1309 1310 /* Number of inodes with nlink == 0 but still referenced */ 1311 atomic_long_t s_remove_count; 1312 1313 /* Read-only state of the superblock is being changed */ 1314 int s_readonly_remount; 1315 1316 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1317 errseq_t s_wb_err; 1318 1319 /* AIO completions deferred from interrupt context */ 1320 struct workqueue_struct *s_dio_done_wq; 1321 struct hlist_head s_pins; 1322 1323 /* 1324 * Owning user namespace and default context in which to 1325 * interpret filesystem uids, gids, quotas, device nodes, 1326 * xattrs and security labels. 1327 */ 1328 struct user_namespace *s_user_ns; 1329 1330 /* 1331 * The list_lru structure is essentially just a pointer to a table 1332 * of per-node lru lists, each of which has its own spinlock. 1333 * There is no need to put them into separate cachelines. 1334 */ 1335 struct list_lru s_dentry_lru; 1336 struct list_lru s_inode_lru; 1337 struct rcu_head rcu; 1338 struct work_struct destroy_work; 1339 1340 struct mutex s_sync_lock; /* sync serialisation lock */ 1341 1342 /* 1343 * Indicates how deep in a filesystem stack this SB is 1344 */ 1345 int s_stack_depth; 1346 1347 /* s_inode_list_lock protects s_inodes */ 1348 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1349 struct list_head s_inodes; /* all inodes */ 1350 1351 spinlock_t s_inode_wblist_lock; 1352 struct list_head s_inodes_wb; /* writeback inodes */ 1353 } __randomize_layout; 1354 1355 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1356 { 1357 return inode->i_sb->s_user_ns; 1358 } 1359 1360 /* Helper functions so that in most cases filesystems will 1361 * not need to deal directly with kuid_t and kgid_t and can 1362 * instead deal with the raw numeric values that are stored 1363 * in the filesystem. 1364 */ 1365 static inline uid_t i_uid_read(const struct inode *inode) 1366 { 1367 return from_kuid(i_user_ns(inode), inode->i_uid); 1368 } 1369 1370 static inline gid_t i_gid_read(const struct inode *inode) 1371 { 1372 return from_kgid(i_user_ns(inode), inode->i_gid); 1373 } 1374 1375 static inline void i_uid_write(struct inode *inode, uid_t uid) 1376 { 1377 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1378 } 1379 1380 static inline void i_gid_write(struct inode *inode, gid_t gid) 1381 { 1382 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1383 } 1384 1385 /** 1386 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1387 * @idmap: idmap of the mount the inode was found from 1388 * @inode: inode to map 1389 * 1390 * Return: whe inode's i_uid mapped down according to @idmap. 1391 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1392 */ 1393 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1394 const struct inode *inode) 1395 { 1396 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1397 } 1398 1399 /** 1400 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1401 * @idmap: idmap of the mount the inode was found from 1402 * @attr: the new attributes of @inode 1403 * @inode: the inode to update 1404 * 1405 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1406 * mounts into account if the filesystem supports it. 1407 * 1408 * Return: true if @inode's i_uid field needs to be updated, false if not. 1409 */ 1410 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1411 const struct iattr *attr, 1412 const struct inode *inode) 1413 { 1414 return ((attr->ia_valid & ATTR_UID) && 1415 !vfsuid_eq(attr->ia_vfsuid, 1416 i_uid_into_vfsuid(idmap, inode))); 1417 } 1418 1419 /** 1420 * i_uid_update - update @inode's i_uid field 1421 * @idmap: idmap of the mount the inode was found from 1422 * @attr: the new attributes of @inode 1423 * @inode: the inode to update 1424 * 1425 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1426 * mount into the filesystem kuid. 1427 */ 1428 static inline void i_uid_update(struct mnt_idmap *idmap, 1429 const struct iattr *attr, 1430 struct inode *inode) 1431 { 1432 if (attr->ia_valid & ATTR_UID) 1433 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1434 attr->ia_vfsuid); 1435 } 1436 1437 /** 1438 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1439 * @idmap: idmap of the mount the inode was found from 1440 * @inode: inode to map 1441 * 1442 * Return: the inode's i_gid mapped down according to @idmap. 1443 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1444 */ 1445 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1446 const struct inode *inode) 1447 { 1448 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1449 } 1450 1451 /** 1452 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1453 * @idmap: idmap of the mount the inode was found from 1454 * @attr: the new attributes of @inode 1455 * @inode: the inode to update 1456 * 1457 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1458 * mounts into account if the filesystem supports it. 1459 * 1460 * Return: true if @inode's i_gid field needs to be updated, false if not. 1461 */ 1462 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1463 const struct iattr *attr, 1464 const struct inode *inode) 1465 { 1466 return ((attr->ia_valid & ATTR_GID) && 1467 !vfsgid_eq(attr->ia_vfsgid, 1468 i_gid_into_vfsgid(idmap, inode))); 1469 } 1470 1471 /** 1472 * i_gid_update - update @inode's i_gid field 1473 * @idmap: idmap of the mount the inode was found from 1474 * @attr: the new attributes of @inode 1475 * @inode: the inode to update 1476 * 1477 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1478 * mount into the filesystem kgid. 1479 */ 1480 static inline void i_gid_update(struct mnt_idmap *idmap, 1481 const struct iattr *attr, 1482 struct inode *inode) 1483 { 1484 if (attr->ia_valid & ATTR_GID) 1485 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1486 attr->ia_vfsgid); 1487 } 1488 1489 /** 1490 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1491 * @inode: inode to initialize 1492 * @idmap: idmap of the mount the inode was found from 1493 * 1494 * Initialize the i_uid field of @inode. If the inode was found/created via 1495 * an idmapped mount map the caller's fsuid according to @idmap. 1496 */ 1497 static inline void inode_fsuid_set(struct inode *inode, 1498 struct mnt_idmap *idmap) 1499 { 1500 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1501 } 1502 1503 /** 1504 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1505 * @inode: inode to initialize 1506 * @idmap: idmap of the mount the inode was found from 1507 * 1508 * Initialize the i_gid field of @inode. If the inode was found/created via 1509 * an idmapped mount map the caller's fsgid according to @idmap. 1510 */ 1511 static inline void inode_fsgid_set(struct inode *inode, 1512 struct mnt_idmap *idmap) 1513 { 1514 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1515 } 1516 1517 /** 1518 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1519 * @sb: the superblock we want a mapping in 1520 * @idmap: idmap of the relevant mount 1521 * 1522 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1523 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1524 * the caller's fsuid and fsgid according to the @idmap first. 1525 * 1526 * Return: true if fsuid and fsgid is mapped, false if not. 1527 */ 1528 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1529 struct mnt_idmap *idmap) 1530 { 1531 struct user_namespace *fs_userns = sb->s_user_ns; 1532 kuid_t kuid; 1533 kgid_t kgid; 1534 1535 kuid = mapped_fsuid(idmap, fs_userns); 1536 if (!uid_valid(kuid)) 1537 return false; 1538 kgid = mapped_fsgid(idmap, fs_userns); 1539 if (!gid_valid(kgid)) 1540 return false; 1541 return kuid_has_mapping(fs_userns, kuid) && 1542 kgid_has_mapping(fs_userns, kgid); 1543 } 1544 1545 struct timespec64 current_time(struct inode *inode); 1546 struct timespec64 inode_set_ctime_current(struct inode *inode); 1547 1548 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1549 { 1550 return inode->i_atime_sec; 1551 } 1552 1553 static inline long inode_get_atime_nsec(const struct inode *inode) 1554 { 1555 return inode->i_atime_nsec; 1556 } 1557 1558 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1559 { 1560 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1561 .tv_nsec = inode_get_atime_nsec(inode) }; 1562 1563 return ts; 1564 } 1565 1566 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1567 struct timespec64 ts) 1568 { 1569 inode->i_atime_sec = ts.tv_sec; 1570 inode->i_atime_nsec = ts.tv_nsec; 1571 return ts; 1572 } 1573 1574 static inline struct timespec64 inode_set_atime(struct inode *inode, 1575 time64_t sec, long nsec) 1576 { 1577 struct timespec64 ts = { .tv_sec = sec, 1578 .tv_nsec = nsec }; 1579 1580 return inode_set_atime_to_ts(inode, ts); 1581 } 1582 1583 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1584 { 1585 return inode->i_mtime_sec; 1586 } 1587 1588 static inline long inode_get_mtime_nsec(const struct inode *inode) 1589 { 1590 return inode->i_mtime_nsec; 1591 } 1592 1593 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1594 { 1595 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1596 .tv_nsec = inode_get_mtime_nsec(inode) }; 1597 return ts; 1598 } 1599 1600 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1601 struct timespec64 ts) 1602 { 1603 inode->i_mtime_sec = ts.tv_sec; 1604 inode->i_mtime_nsec = ts.tv_nsec; 1605 return ts; 1606 } 1607 1608 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1609 time64_t sec, long nsec) 1610 { 1611 struct timespec64 ts = { .tv_sec = sec, 1612 .tv_nsec = nsec }; 1613 return inode_set_mtime_to_ts(inode, ts); 1614 } 1615 1616 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1617 { 1618 return inode->i_ctime_sec; 1619 } 1620 1621 static inline long inode_get_ctime_nsec(const struct inode *inode) 1622 { 1623 return inode->i_ctime_nsec; 1624 } 1625 1626 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1627 { 1628 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1629 .tv_nsec = inode_get_ctime_nsec(inode) }; 1630 1631 return ts; 1632 } 1633 1634 static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, 1635 struct timespec64 ts) 1636 { 1637 inode->i_ctime_sec = ts.tv_sec; 1638 inode->i_ctime_nsec = ts.tv_nsec; 1639 return ts; 1640 } 1641 1642 /** 1643 * inode_set_ctime - set the ctime in the inode 1644 * @inode: inode in which to set the ctime 1645 * @sec: tv_sec value to set 1646 * @nsec: tv_nsec value to set 1647 * 1648 * Set the ctime in @inode to { @sec, @nsec } 1649 */ 1650 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1651 time64_t sec, long nsec) 1652 { 1653 struct timespec64 ts = { .tv_sec = sec, 1654 .tv_nsec = nsec }; 1655 1656 return inode_set_ctime_to_ts(inode, ts); 1657 } 1658 1659 struct timespec64 simple_inode_init_ts(struct inode *inode); 1660 1661 /* 1662 * Snapshotting support. 1663 */ 1664 1665 /* 1666 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1667 * instead. 1668 */ 1669 static inline void __sb_end_write(struct super_block *sb, int level) 1670 { 1671 percpu_up_read(sb->s_writers.rw_sem + level-1); 1672 } 1673 1674 static inline void __sb_start_write(struct super_block *sb, int level) 1675 { 1676 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1677 } 1678 1679 static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1680 { 1681 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1682 } 1683 1684 #define __sb_writers_acquired(sb, lev) \ 1685 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1686 #define __sb_writers_release(sb, lev) \ 1687 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1688 1689 /** 1690 * __sb_write_started - check if sb freeze level is held 1691 * @sb: the super we write to 1692 * @level: the freeze level 1693 * 1694 * * > 0 - sb freeze level is held 1695 * * 0 - sb freeze level is not held 1696 * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN 1697 */ 1698 static inline int __sb_write_started(const struct super_block *sb, int level) 1699 { 1700 return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); 1701 } 1702 1703 /** 1704 * sb_write_started - check if SB_FREEZE_WRITE is held 1705 * @sb: the super we write to 1706 * 1707 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1708 */ 1709 static inline bool sb_write_started(const struct super_block *sb) 1710 { 1711 return __sb_write_started(sb, SB_FREEZE_WRITE); 1712 } 1713 1714 /** 1715 * sb_write_not_started - check if SB_FREEZE_WRITE is not held 1716 * @sb: the super we write to 1717 * 1718 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1719 */ 1720 static inline bool sb_write_not_started(const struct super_block *sb) 1721 { 1722 return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; 1723 } 1724 1725 /** 1726 * file_write_started - check if SB_FREEZE_WRITE is held 1727 * @file: the file we write to 1728 * 1729 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1730 * May be false positive with !S_ISREG, because file_start_write() has 1731 * no effect on !S_ISREG. 1732 */ 1733 static inline bool file_write_started(const struct file *file) 1734 { 1735 if (!S_ISREG(file_inode(file)->i_mode)) 1736 return true; 1737 return sb_write_started(file_inode(file)->i_sb); 1738 } 1739 1740 /** 1741 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1742 * @file: the file we write to 1743 * 1744 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1745 * May be false positive with !S_ISREG, because file_start_write() has 1746 * no effect on !S_ISREG. 1747 */ 1748 static inline bool file_write_not_started(const struct file *file) 1749 { 1750 if (!S_ISREG(file_inode(file)->i_mode)) 1751 return true; 1752 return sb_write_not_started(file_inode(file)->i_sb); 1753 } 1754 1755 /** 1756 * sb_end_write - drop write access to a superblock 1757 * @sb: the super we wrote to 1758 * 1759 * Decrement number of writers to the filesystem. Wake up possible waiters 1760 * wanting to freeze the filesystem. 1761 */ 1762 static inline void sb_end_write(struct super_block *sb) 1763 { 1764 __sb_end_write(sb, SB_FREEZE_WRITE); 1765 } 1766 1767 /** 1768 * sb_end_pagefault - drop write access to a superblock from a page fault 1769 * @sb: the super we wrote to 1770 * 1771 * Decrement number of processes handling write page fault to the filesystem. 1772 * Wake up possible waiters wanting to freeze the filesystem. 1773 */ 1774 static inline void sb_end_pagefault(struct super_block *sb) 1775 { 1776 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1777 } 1778 1779 /** 1780 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1781 * @sb: the super we wrote to 1782 * 1783 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1784 * waiters wanting to freeze the filesystem. 1785 */ 1786 static inline void sb_end_intwrite(struct super_block *sb) 1787 { 1788 __sb_end_write(sb, SB_FREEZE_FS); 1789 } 1790 1791 /** 1792 * sb_start_write - get write access to a superblock 1793 * @sb: the super we write to 1794 * 1795 * When a process wants to write data or metadata to a file system (i.e. dirty 1796 * a page or an inode), it should embed the operation in a sb_start_write() - 1797 * sb_end_write() pair to get exclusion against file system freezing. This 1798 * function increments number of writers preventing freezing. If the file 1799 * system is already frozen, the function waits until the file system is 1800 * thawed. 1801 * 1802 * Since freeze protection behaves as a lock, users have to preserve 1803 * ordering of freeze protection and other filesystem locks. Generally, 1804 * freeze protection should be the outermost lock. In particular, we have: 1805 * 1806 * sb_start_write 1807 * -> i_mutex (write path, truncate, directory ops, ...) 1808 * -> s_umount (freeze_super, thaw_super) 1809 */ 1810 static inline void sb_start_write(struct super_block *sb) 1811 { 1812 __sb_start_write(sb, SB_FREEZE_WRITE); 1813 } 1814 1815 static inline bool sb_start_write_trylock(struct super_block *sb) 1816 { 1817 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1818 } 1819 1820 /** 1821 * sb_start_pagefault - get write access to a superblock from a page fault 1822 * @sb: the super we write to 1823 * 1824 * When a process starts handling write page fault, it should embed the 1825 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1826 * exclusion against file system freezing. This is needed since the page fault 1827 * is going to dirty a page. This function increments number of running page 1828 * faults preventing freezing. If the file system is already frozen, the 1829 * function waits until the file system is thawed. 1830 * 1831 * Since page fault freeze protection behaves as a lock, users have to preserve 1832 * ordering of freeze protection and other filesystem locks. It is advised to 1833 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1834 * handling code implies lock dependency: 1835 * 1836 * mmap_lock 1837 * -> sb_start_pagefault 1838 */ 1839 static inline void sb_start_pagefault(struct super_block *sb) 1840 { 1841 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1842 } 1843 1844 /** 1845 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1846 * @sb: the super we write to 1847 * 1848 * This is the third level of protection against filesystem freezing. It is 1849 * free for use by a filesystem. The only requirement is that it must rank 1850 * below sb_start_pagefault. 1851 * 1852 * For example filesystem can call sb_start_intwrite() when starting a 1853 * transaction which somewhat eases handling of freezing for internal sources 1854 * of filesystem changes (internal fs threads, discarding preallocation on file 1855 * close, etc.). 1856 */ 1857 static inline void sb_start_intwrite(struct super_block *sb) 1858 { 1859 __sb_start_write(sb, SB_FREEZE_FS); 1860 } 1861 1862 static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1863 { 1864 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1865 } 1866 1867 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1868 const struct inode *inode); 1869 1870 /* 1871 * VFS helper functions.. 1872 */ 1873 int vfs_create(struct mnt_idmap *, struct inode *, 1874 struct dentry *, umode_t, bool); 1875 int vfs_mkdir(struct mnt_idmap *, struct inode *, 1876 struct dentry *, umode_t); 1877 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1878 umode_t, dev_t); 1879 int vfs_symlink(struct mnt_idmap *, struct inode *, 1880 struct dentry *, const char *); 1881 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1882 struct dentry *, struct inode **); 1883 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1884 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1885 struct inode **); 1886 1887 /** 1888 * struct renamedata - contains all information required for renaming 1889 * @old_mnt_idmap: idmap of the old mount the inode was found from 1890 * @old_dir: parent of source 1891 * @old_dentry: source 1892 * @new_mnt_idmap: idmap of the new mount the inode was found from 1893 * @new_dir: parent of destination 1894 * @new_dentry: destination 1895 * @delegated_inode: returns an inode needing a delegation break 1896 * @flags: rename flags 1897 */ 1898 struct renamedata { 1899 struct mnt_idmap *old_mnt_idmap; 1900 struct inode *old_dir; 1901 struct dentry *old_dentry; 1902 struct mnt_idmap *new_mnt_idmap; 1903 struct inode *new_dir; 1904 struct dentry *new_dentry; 1905 struct inode **delegated_inode; 1906 unsigned int flags; 1907 } __randomize_layout; 1908 1909 int vfs_rename(struct renamedata *); 1910 1911 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1912 struct inode *dir, struct dentry *dentry) 1913 { 1914 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1915 WHITEOUT_DEV); 1916 } 1917 1918 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1919 const struct path *parentpath, 1920 umode_t mode, int open_flag, 1921 const struct cred *cred); 1922 struct file *kernel_file_open(const struct path *path, int flags, 1923 const struct cred *cred); 1924 1925 int vfs_mkobj(struct dentry *, umode_t, 1926 int (*f)(struct dentry *, umode_t, void *), 1927 void *); 1928 1929 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1930 int vfs_fchmod(struct file *file, umode_t mode); 1931 int vfs_utimes(const struct path *path, struct timespec64 *times); 1932 1933 extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1934 1935 #ifdef CONFIG_COMPAT 1936 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1937 unsigned long arg); 1938 #else 1939 #define compat_ptr_ioctl NULL 1940 #endif 1941 1942 /* 1943 * VFS file helper functions. 1944 */ 1945 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1946 const struct inode *dir, umode_t mode); 1947 extern bool may_open_dev(const struct path *path); 1948 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1949 const struct inode *dir, umode_t mode); 1950 bool in_group_or_capable(struct mnt_idmap *idmap, 1951 const struct inode *inode, vfsgid_t vfsgid); 1952 1953 /* 1954 * This is the "filldir" function type, used by readdir() to let 1955 * the kernel specify what kind of dirent layout it wants to have. 1956 * This allows the kernel to read directories into kernel space or 1957 * to have different dirent layouts depending on the binary type. 1958 * Return 'true' to keep going and 'false' if there are no more entries. 1959 */ 1960 struct dir_context; 1961 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1962 unsigned); 1963 1964 struct dir_context { 1965 filldir_t actor; 1966 loff_t pos; 1967 }; 1968 1969 /* 1970 * These flags let !MMU mmap() govern direct device mapping vs immediate 1971 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1972 * 1973 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1974 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1975 * NOMMU_MAP_READ: Can be mapped for reading 1976 * NOMMU_MAP_WRITE: Can be mapped for writing 1977 * NOMMU_MAP_EXEC: Can be mapped for execution 1978 */ 1979 #define NOMMU_MAP_COPY 0x00000001 1980 #define NOMMU_MAP_DIRECT 0x00000008 1981 #define NOMMU_MAP_READ VM_MAYREAD 1982 #define NOMMU_MAP_WRITE VM_MAYWRITE 1983 #define NOMMU_MAP_EXEC VM_MAYEXEC 1984 1985 #define NOMMU_VMFLAGS \ 1986 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1987 1988 /* 1989 * These flags control the behavior of the remap_file_range function pointer. 1990 * If it is called with len == 0 that means "remap to end of source file". 1991 * See Documentation/filesystems/vfs.rst for more details about this call. 1992 * 1993 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1994 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1995 */ 1996 #define REMAP_FILE_DEDUP (1 << 0) 1997 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 1998 1999 /* 2000 * These flags signal that the caller is ok with altering various aspects of 2001 * the behavior of the remap operation. The changes must be made by the 2002 * implementation; the vfs remap helper functions can take advantage of them. 2003 * Flags in this category exist to preserve the quirky behavior of the hoisted 2004 * btrfs clone/dedupe ioctls. 2005 */ 2006 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 2007 2008 /* 2009 * These flags control the behavior of vfs_copy_file_range(). 2010 * They are not available to the user via syscall. 2011 * 2012 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 2013 */ 2014 #define COPY_FILE_SPLICE (1 << 0) 2015 2016 struct iov_iter; 2017 struct io_uring_cmd; 2018 struct offset_ctx; 2019 2020 typedef unsigned int __bitwise fop_flags_t; 2021 2022 struct file_operations { 2023 struct module *owner; 2024 fop_flags_t fop_flags; 2025 loff_t (*llseek) (struct file *, loff_t, int); 2026 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 2027 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 2028 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 2029 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 2030 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 2031 unsigned int flags); 2032 int (*iterate_shared) (struct file *, struct dir_context *); 2033 __poll_t (*poll) (struct file *, struct poll_table_struct *); 2034 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 2035 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 2036 int (*mmap) (struct file *, struct vm_area_struct *); 2037 int (*open) (struct inode *, struct file *); 2038 int (*flush) (struct file *, fl_owner_t id); 2039 int (*release) (struct inode *, struct file *); 2040 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 2041 int (*fasync) (int, struct file *, int); 2042 int (*lock) (struct file *, int, struct file_lock *); 2043 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2044 int (*check_flags)(int); 2045 int (*flock) (struct file *, int, struct file_lock *); 2046 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 2047 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 2048 void (*splice_eof)(struct file *file); 2049 int (*setlease)(struct file *, int, struct file_lease **, void **); 2050 long (*fallocate)(struct file *file, int mode, loff_t offset, 2051 loff_t len); 2052 void (*show_fdinfo)(struct seq_file *m, struct file *f); 2053 #ifndef CONFIG_MMU 2054 unsigned (*mmap_capabilities)(struct file *); 2055 #endif 2056 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 2057 loff_t, size_t, unsigned int); 2058 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 2059 struct file *file_out, loff_t pos_out, 2060 loff_t len, unsigned int remap_flags); 2061 int (*fadvise)(struct file *, loff_t, loff_t, int); 2062 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 2063 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 2064 unsigned int poll_flags); 2065 } __randomize_layout; 2066 2067 /* Supports async buffered reads */ 2068 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 2069 /* Supports async buffered writes */ 2070 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 2071 /* Supports synchronous page faults for mappings */ 2072 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 2073 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 2074 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 2075 /* Contains huge pages */ 2076 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 2077 2078 /* Wrap a directory iterator that needs exclusive inode access */ 2079 int wrap_directory_iterator(struct file *, struct dir_context *, 2080 int (*) (struct file *, struct dir_context *)); 2081 #define WRAP_DIR_ITER(x) \ 2082 static int shared_##x(struct file *file , struct dir_context *ctx) \ 2083 { return wrap_directory_iterator(file, ctx, x); } 2084 2085 struct inode_operations { 2086 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2087 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2088 int (*permission) (struct mnt_idmap *, struct inode *, int); 2089 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2090 2091 int (*readlink) (struct dentry *, char __user *,int); 2092 2093 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2094 umode_t, bool); 2095 int (*link) (struct dentry *,struct inode *,struct dentry *); 2096 int (*unlink) (struct inode *,struct dentry *); 2097 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2098 const char *); 2099 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 2100 umode_t); 2101 int (*rmdir) (struct inode *,struct dentry *); 2102 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2103 umode_t,dev_t); 2104 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2105 struct inode *, struct dentry *, unsigned int); 2106 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2107 int (*getattr) (struct mnt_idmap *, const struct path *, 2108 struct kstat *, u32, unsigned int); 2109 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2110 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2111 u64 len); 2112 int (*update_time)(struct inode *, int); 2113 int (*atomic_open)(struct inode *, struct dentry *, 2114 struct file *, unsigned open_flag, 2115 umode_t create_mode); 2116 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2117 struct file *, umode_t); 2118 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2119 int); 2120 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2121 struct posix_acl *, int); 2122 int (*fileattr_set)(struct mnt_idmap *idmap, 2123 struct dentry *dentry, struct fileattr *fa); 2124 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 2125 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2126 } ____cacheline_aligned; 2127 2128 static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 2129 { 2130 return file->f_op->mmap(file, vma); 2131 } 2132 2133 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2134 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2135 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2136 loff_t, size_t, unsigned int); 2137 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2138 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2139 struct file *file_out, loff_t pos_out, 2140 loff_t *len, unsigned int remap_flags, 2141 const struct iomap_ops *dax_read_ops); 2142 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2143 struct file *file_out, loff_t pos_out, 2144 loff_t *count, unsigned int remap_flags); 2145 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2146 struct file *file_out, loff_t pos_out, 2147 loff_t len, unsigned int remap_flags); 2148 extern int vfs_dedupe_file_range(struct file *file, 2149 struct file_dedupe_range *same); 2150 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2151 struct file *dst_file, loff_t dst_pos, 2152 loff_t len, unsigned int remap_flags); 2153 2154 /** 2155 * enum freeze_holder - holder of the freeze 2156 * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem 2157 * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem 2158 * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed 2159 * 2160 * Indicate who the owner of the freeze or thaw request is and whether 2161 * the freeze needs to be exclusive or can nest. 2162 * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the 2163 * same holder aren't allowed. It is however allowed to hold a single 2164 * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at 2165 * the same time. This is relied upon by some filesystems during online 2166 * repair or similar. 2167 */ 2168 enum freeze_holder { 2169 FREEZE_HOLDER_KERNEL = (1U << 0), 2170 FREEZE_HOLDER_USERSPACE = (1U << 1), 2171 FREEZE_MAY_NEST = (1U << 2), 2172 }; 2173 2174 struct super_operations { 2175 struct inode *(*alloc_inode)(struct super_block *sb); 2176 void (*destroy_inode)(struct inode *); 2177 void (*free_inode)(struct inode *); 2178 2179 void (*dirty_inode) (struct inode *, int flags); 2180 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2181 int (*drop_inode) (struct inode *); 2182 void (*evict_inode) (struct inode *); 2183 void (*put_super) (struct super_block *); 2184 int (*sync_fs)(struct super_block *sb, int wait); 2185 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2186 int (*freeze_fs) (struct super_block *); 2187 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2188 int (*unfreeze_fs) (struct super_block *); 2189 int (*statfs) (struct dentry *, struct kstatfs *); 2190 int (*remount_fs) (struct super_block *, int *, char *); 2191 void (*umount_begin) (struct super_block *); 2192 2193 int (*show_options)(struct seq_file *, struct dentry *); 2194 int (*show_devname)(struct seq_file *, struct dentry *); 2195 int (*show_path)(struct seq_file *, struct dentry *); 2196 int (*show_stats)(struct seq_file *, struct dentry *); 2197 #ifdef CONFIG_QUOTA 2198 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2199 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2200 struct dquot __rcu **(*get_dquots)(struct inode *); 2201 #endif 2202 long (*nr_cached_objects)(struct super_block *, 2203 struct shrink_control *); 2204 long (*free_cached_objects)(struct super_block *, 2205 struct shrink_control *); 2206 void (*shutdown)(struct super_block *sb); 2207 }; 2208 2209 /* 2210 * Inode flags - they have no relation to superblock flags now 2211 */ 2212 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2213 #define S_NOATIME (1 << 1) /* Do not update access times */ 2214 #define S_APPEND (1 << 2) /* Append-only file */ 2215 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2216 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2217 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2218 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2219 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2220 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2221 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2222 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2223 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2224 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2225 #ifdef CONFIG_FS_DAX 2226 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2227 #else 2228 #define S_DAX 0 /* Make all the DAX code disappear */ 2229 #endif 2230 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2231 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2232 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2233 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2234 2235 /* 2236 * Note that nosuid etc flags are inode-specific: setting some file-system 2237 * flags just means all the inodes inherit those flags by default. It might be 2238 * possible to override it selectively if you really wanted to with some 2239 * ioctl() that is not currently implemented. 2240 * 2241 * Exception: SB_RDONLY is always applied to the entire file system. 2242 * 2243 * Unfortunately, it is possible to change a filesystems flags with it mounted 2244 * with files in use. This means that all of the inodes will not have their 2245 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2246 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2247 */ 2248 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2249 2250 static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2251 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2252 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2253 ((inode)->i_flags & S_SYNC)) 2254 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2255 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2256 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2257 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2258 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2259 2260 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2261 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2262 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2263 2264 #ifdef CONFIG_FS_POSIX_ACL 2265 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2266 #else 2267 #define IS_POSIXACL(inode) 0 2268 #endif 2269 2270 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2271 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2272 2273 #ifdef CONFIG_SWAP 2274 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2275 #else 2276 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2277 #endif 2278 2279 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2280 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2281 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2282 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2283 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2284 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2285 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2286 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2287 2288 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2289 (inode)->i_rdev == WHITEOUT_DEV) 2290 2291 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2292 struct inode *inode) 2293 { 2294 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2295 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2296 } 2297 2298 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2299 { 2300 *kiocb = (struct kiocb) { 2301 .ki_filp = filp, 2302 .ki_flags = filp->f_iocb_flags, 2303 .ki_ioprio = get_current_ioprio(), 2304 }; 2305 } 2306 2307 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2308 struct file *filp) 2309 { 2310 *kiocb = (struct kiocb) { 2311 .ki_filp = filp, 2312 .ki_flags = kiocb_src->ki_flags, 2313 .ki_ioprio = kiocb_src->ki_ioprio, 2314 .ki_pos = kiocb_src->ki_pos, 2315 }; 2316 } 2317 2318 /* 2319 * Inode state bits. Protected by inode->i_lock 2320 * 2321 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2322 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2323 * 2324 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2325 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2326 * various stages of removing an inode. 2327 * 2328 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2329 * 2330 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2331 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2332 * Timestamp updates are the usual cause. 2333 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2334 * these changes separately from I_DIRTY_SYNC so that we 2335 * don't have to write inode on fdatasync() when only 2336 * e.g. the timestamps have changed. 2337 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2338 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2339 * lazytime mount option is enabled. We keep track of this 2340 * separately from I_DIRTY_SYNC in order to implement 2341 * lazytime. This gets cleared if I_DIRTY_INODE 2342 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2343 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2344 * in place because writeback might already be in progress 2345 * and we don't want to lose the time update 2346 * I_NEW Serves as both a mutex and completion notification. 2347 * New inodes set I_NEW. If two processes both create 2348 * the same inode, one of them will release its inode and 2349 * wait for I_NEW to be released before returning. 2350 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2351 * also cause waiting on I_NEW, without I_NEW actually 2352 * being set. find_inode() uses this to prevent returning 2353 * nearly-dead inodes. 2354 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2355 * is zero. I_FREEING must be set when I_WILL_FREE is 2356 * cleared. 2357 * I_FREEING Set when inode is about to be freed but still has dirty 2358 * pages or buffers attached or the inode itself is still 2359 * dirty. 2360 * I_CLEAR Added by clear_inode(). In this state the inode is 2361 * clean and can be destroyed. Inode keeps I_FREEING. 2362 * 2363 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2364 * prohibited for many purposes. iget() must wait for 2365 * the inode to be completely released, then create it 2366 * anew. Other functions will just ignore such inodes, 2367 * if appropriate. I_NEW is used for waiting. 2368 * 2369 * I_SYNC Writeback of inode is running. The bit is set during 2370 * data writeback, and cleared with a wakeup on the bit 2371 * address once it is done. The bit is also used to pin 2372 * the inode in memory for flusher thread. 2373 * 2374 * I_REFERENCED Marks the inode as recently references on the LRU list. 2375 * 2376 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). 2377 * 2378 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2379 * synchronize competing switching instances and to tell 2380 * wb stat updates to grab the i_pages lock. See 2381 * inode_switch_wbs_work_fn() for details. 2382 * 2383 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2384 * and work dirs among overlayfs mounts. 2385 * 2386 * I_CREATING New object's inode in the middle of setting up. 2387 * 2388 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2389 * 2390 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2391 * Used to detect that mark_inode_dirty() should not move 2392 * inode between dirty lists. 2393 * 2394 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2395 * 2396 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 2397 * i_count. 2398 * 2399 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2400 */ 2401 #define I_DIRTY_SYNC (1 << 0) 2402 #define I_DIRTY_DATASYNC (1 << 1) 2403 #define I_DIRTY_PAGES (1 << 2) 2404 #define __I_NEW 3 2405 #define I_NEW (1 << __I_NEW) 2406 #define I_WILL_FREE (1 << 4) 2407 #define I_FREEING (1 << 5) 2408 #define I_CLEAR (1 << 6) 2409 #define __I_SYNC 7 2410 #define I_SYNC (1 << __I_SYNC) 2411 #define I_REFERENCED (1 << 8) 2412 #define __I_DIO_WAKEUP 9 2413 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) 2414 #define I_LINKABLE (1 << 10) 2415 #define I_DIRTY_TIME (1 << 11) 2416 #define I_WB_SWITCH (1 << 13) 2417 #define I_OVL_INUSE (1 << 14) 2418 #define I_CREATING (1 << 15) 2419 #define I_DONTCACHE (1 << 16) 2420 #define I_SYNC_QUEUED (1 << 17) 2421 #define I_PINNING_NETFS_WB (1 << 18) 2422 #define __I_LRU_ISOLATING 19 2423 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) 2424 2425 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2426 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2427 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2428 2429 extern void __mark_inode_dirty(struct inode *, int); 2430 static inline void mark_inode_dirty(struct inode *inode) 2431 { 2432 __mark_inode_dirty(inode, I_DIRTY); 2433 } 2434 2435 static inline void mark_inode_dirty_sync(struct inode *inode) 2436 { 2437 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2438 } 2439 2440 /* 2441 * Returns true if the given inode itself only has dirty timestamps (its pages 2442 * may still be dirty) and isn't currently being allocated or freed. 2443 * Filesystems should call this if when writing an inode when lazytime is 2444 * enabled, they want to opportunistically write the timestamps of other inodes 2445 * located very nearby on-disk, e.g. in the same inode block. This returns true 2446 * if the given inode is in need of such an opportunistic update. Requires 2447 * i_lock, or at least later re-checking under i_lock. 2448 */ 2449 static inline bool inode_is_dirtytime_only(struct inode *inode) 2450 { 2451 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2452 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2453 } 2454 2455 extern void inc_nlink(struct inode *inode); 2456 extern void drop_nlink(struct inode *inode); 2457 extern void clear_nlink(struct inode *inode); 2458 extern void set_nlink(struct inode *inode, unsigned int nlink); 2459 2460 static inline void inode_inc_link_count(struct inode *inode) 2461 { 2462 inc_nlink(inode); 2463 mark_inode_dirty(inode); 2464 } 2465 2466 static inline void inode_dec_link_count(struct inode *inode) 2467 { 2468 drop_nlink(inode); 2469 mark_inode_dirty(inode); 2470 } 2471 2472 enum file_time_flags { 2473 S_ATIME = 1, 2474 S_MTIME = 2, 2475 S_CTIME = 4, 2476 S_VERSION = 8, 2477 }; 2478 2479 extern bool atime_needs_update(const struct path *, struct inode *); 2480 extern void touch_atime(const struct path *); 2481 int inode_update_time(struct inode *inode, int flags); 2482 2483 static inline void file_accessed(struct file *file) 2484 { 2485 if (!(file->f_flags & O_NOATIME)) 2486 touch_atime(&file->f_path); 2487 } 2488 2489 extern int file_modified(struct file *file); 2490 int kiocb_modified(struct kiocb *iocb); 2491 2492 int sync_inode_metadata(struct inode *inode, int wait); 2493 2494 struct file_system_type { 2495 const char *name; 2496 int fs_flags; 2497 #define FS_REQUIRES_DEV 1 2498 #define FS_BINARY_MOUNTDATA 2 2499 #define FS_HAS_SUBTYPE 4 2500 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2501 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2502 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2503 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2504 int (*init_fs_context)(struct fs_context *); 2505 const struct fs_parameter_spec *parameters; 2506 struct dentry *(*mount) (struct file_system_type *, int, 2507 const char *, void *); 2508 void (*kill_sb) (struct super_block *); 2509 struct module *owner; 2510 struct file_system_type * next; 2511 struct hlist_head fs_supers; 2512 2513 struct lock_class_key s_lock_key; 2514 struct lock_class_key s_umount_key; 2515 struct lock_class_key s_vfs_rename_key; 2516 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2517 2518 struct lock_class_key i_lock_key; 2519 struct lock_class_key i_mutex_key; 2520 struct lock_class_key invalidate_lock_key; 2521 struct lock_class_key i_mutex_dir_key; 2522 }; 2523 2524 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2525 2526 extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2527 int flags, const char *dev_name, void *data, 2528 int (*fill_super)(struct super_block *, void *, int)); 2529 extern struct dentry *mount_single(struct file_system_type *fs_type, 2530 int flags, void *data, 2531 int (*fill_super)(struct super_block *, void *, int)); 2532 extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2533 int flags, void *data, 2534 int (*fill_super)(struct super_block *, void *, int)); 2535 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2536 void retire_super(struct super_block *sb); 2537 void generic_shutdown_super(struct super_block *sb); 2538 void kill_block_super(struct super_block *sb); 2539 void kill_anon_super(struct super_block *sb); 2540 void kill_litter_super(struct super_block *sb); 2541 void deactivate_super(struct super_block *sb); 2542 void deactivate_locked_super(struct super_block *sb); 2543 int set_anon_super(struct super_block *s, void *data); 2544 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2545 int get_anon_bdev(dev_t *); 2546 void free_anon_bdev(dev_t); 2547 struct super_block *sget_fc(struct fs_context *fc, 2548 int (*test)(struct super_block *, struct fs_context *), 2549 int (*set)(struct super_block *, struct fs_context *)); 2550 struct super_block *sget(struct file_system_type *type, 2551 int (*test)(struct super_block *,void *), 2552 int (*set)(struct super_block *,void *), 2553 int flags, void *data); 2554 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2555 2556 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2557 #define fops_get(fops) \ 2558 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) 2559 #define fops_put(fops) \ 2560 do { if (fops) module_put((fops)->owner); } while(0) 2561 /* 2562 * This one is to be used *ONLY* from ->open() instances. 2563 * fops must be non-NULL, pinned down *and* module dependencies 2564 * should be sufficient to pin the caller down as well. 2565 */ 2566 #define replace_fops(f, fops) \ 2567 do { \ 2568 struct file *__file = (f); \ 2569 fops_put(__file->f_op); \ 2570 BUG_ON(!(__file->f_op = (fops))); \ 2571 } while(0) 2572 2573 extern int register_filesystem(struct file_system_type *); 2574 extern int unregister_filesystem(struct file_system_type *); 2575 extern int vfs_statfs(const struct path *, struct kstatfs *); 2576 extern int user_statfs(const char __user *, struct kstatfs *); 2577 extern int fd_statfs(int, struct kstatfs *); 2578 int freeze_super(struct super_block *super, enum freeze_holder who); 2579 int thaw_super(struct super_block *super, enum freeze_holder who); 2580 extern __printf(2, 3) 2581 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2582 extern int super_setup_bdi(struct super_block *sb); 2583 2584 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2585 { 2586 if (WARN_ON(len > sizeof(sb->s_uuid))) 2587 len = sizeof(sb->s_uuid); 2588 sb->s_uuid_len = len; 2589 memcpy(&sb->s_uuid, uuid, len); 2590 } 2591 2592 /* set sb sysfs name based on sb->s_bdev */ 2593 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2594 { 2595 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2596 } 2597 2598 /* set sb sysfs name based on sb->s_uuid */ 2599 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2600 { 2601 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2602 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2603 } 2604 2605 /* set sb sysfs name based on sb->s_id */ 2606 static inline void super_set_sysfs_name_id(struct super_block *sb) 2607 { 2608 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2609 } 2610 2611 /* try to use something standard before you use this */ 2612 __printf(2, 3) 2613 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2614 { 2615 va_list args; 2616 2617 va_start(args, fmt); 2618 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2619 va_end(args); 2620 } 2621 2622 extern int current_umask(void); 2623 2624 extern void ihold(struct inode * inode); 2625 extern void iput(struct inode *); 2626 int inode_update_timestamps(struct inode *inode, int flags); 2627 int generic_update_time(struct inode *, int); 2628 2629 /* /sys/fs */ 2630 extern struct kobject *fs_kobj; 2631 2632 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2633 2634 /* fs/open.c */ 2635 struct audit_names; 2636 struct filename { 2637 const char *name; /* pointer to actual string */ 2638 const __user char *uptr; /* original userland pointer */ 2639 atomic_t refcnt; 2640 struct audit_names *aname; 2641 const char iname[]; 2642 }; 2643 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2644 2645 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2646 { 2647 return mnt_idmap(file->f_path.mnt); 2648 } 2649 2650 /** 2651 * is_idmapped_mnt - check whether a mount is mapped 2652 * @mnt: the mount to check 2653 * 2654 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2655 * 2656 * Return: true if mount is mapped, false if not. 2657 */ 2658 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2659 { 2660 return mnt_idmap(mnt) != &nop_mnt_idmap; 2661 } 2662 2663 extern long vfs_truncate(const struct path *, loff_t); 2664 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2665 unsigned int time_attrs, struct file *filp); 2666 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2667 loff_t len); 2668 extern long do_sys_open(int dfd, const char __user *filename, int flags, 2669 umode_t mode); 2670 extern struct file *file_open_name(struct filename *, int, umode_t); 2671 extern struct file *filp_open(const char *, int, umode_t); 2672 extern struct file *file_open_root(const struct path *, 2673 const char *, int, umode_t); 2674 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2675 const char *name, int flags, umode_t mode) 2676 { 2677 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2678 name, flags, mode); 2679 } 2680 struct file *dentry_open(const struct path *path, int flags, 2681 const struct cred *creds); 2682 struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2683 const struct cred *cred); 2684 struct path *backing_file_user_path(struct file *f); 2685 2686 /* 2687 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2688 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2689 * filesystem. When the mapped file path and inode number are displayed to 2690 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2691 * path and inode number to display to the user, which is the path of the fd 2692 * that user has requested to map and the inode number that would be returned 2693 * by fstat() on that same fd. 2694 */ 2695 /* Get the path to display in /proc/<pid>/maps */ 2696 static inline const struct path *file_user_path(struct file *f) 2697 { 2698 if (unlikely(f->f_mode & FMODE_BACKING)) 2699 return backing_file_user_path(f); 2700 return &f->f_path; 2701 } 2702 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2703 static inline const struct inode *file_user_inode(struct file *f) 2704 { 2705 if (unlikely(f->f_mode & FMODE_BACKING)) 2706 return d_inode(backing_file_user_path(f)->dentry); 2707 return file_inode(f); 2708 } 2709 2710 static inline struct file *file_clone_open(struct file *file) 2711 { 2712 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2713 } 2714 extern int filp_close(struct file *, fl_owner_t id); 2715 2716 extern struct filename *getname_flags(const char __user *, int); 2717 extern struct filename *getname_uflags(const char __user *, int); 2718 extern struct filename *getname(const char __user *); 2719 extern struct filename *getname_kernel(const char *); 2720 extern void putname(struct filename *name); 2721 2722 extern int finish_open(struct file *file, struct dentry *dentry, 2723 int (*open)(struct inode *, struct file *)); 2724 extern int finish_no_open(struct file *file, struct dentry *dentry); 2725 2726 /* Helper for the simple case when original dentry is used */ 2727 static inline int finish_open_simple(struct file *file, int error) 2728 { 2729 if (error) 2730 return error; 2731 2732 return finish_open(file, file->f_path.dentry, NULL); 2733 } 2734 2735 /* fs/dcache.c */ 2736 extern void __init vfs_caches_init_early(void); 2737 extern void __init vfs_caches_init(void); 2738 2739 extern struct kmem_cache *names_cachep; 2740 2741 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2742 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2743 2744 extern struct super_block *blockdev_superblock; 2745 static inline bool sb_is_blkdev_sb(struct super_block *sb) 2746 { 2747 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2748 } 2749 2750 void emergency_thaw_all(void); 2751 extern int sync_filesystem(struct super_block *); 2752 extern const struct file_operations def_blk_fops; 2753 extern const struct file_operations def_chr_fops; 2754 2755 /* fs/char_dev.c */ 2756 #define CHRDEV_MAJOR_MAX 512 2757 /* Marks the bottom of the first segment of free char majors */ 2758 #define CHRDEV_MAJOR_DYN_END 234 2759 /* Marks the top and bottom of the second segment of free char majors */ 2760 #define CHRDEV_MAJOR_DYN_EXT_START 511 2761 #define CHRDEV_MAJOR_DYN_EXT_END 384 2762 2763 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2764 extern int register_chrdev_region(dev_t, unsigned, const char *); 2765 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2766 unsigned int count, const char *name, 2767 const struct file_operations *fops); 2768 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2769 unsigned int count, const char *name); 2770 extern void unregister_chrdev_region(dev_t, unsigned); 2771 extern void chrdev_show(struct seq_file *,off_t); 2772 2773 static inline int register_chrdev(unsigned int major, const char *name, 2774 const struct file_operations *fops) 2775 { 2776 return __register_chrdev(major, 0, 256, name, fops); 2777 } 2778 2779 static inline void unregister_chrdev(unsigned int major, const char *name) 2780 { 2781 __unregister_chrdev(major, 0, 256, name); 2782 } 2783 2784 extern void init_special_inode(struct inode *, umode_t, dev_t); 2785 2786 /* Invalid inode operations -- fs/bad_inode.c */ 2787 extern void make_bad_inode(struct inode *); 2788 extern bool is_bad_inode(struct inode *); 2789 2790 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2791 loff_t lend); 2792 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2793 extern int __must_check file_write_and_wait_range(struct file *file, 2794 loff_t start, loff_t end); 2795 2796 static inline int file_write_and_wait(struct file *file) 2797 { 2798 return file_write_and_wait_range(file, 0, LLONG_MAX); 2799 } 2800 2801 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2802 int datasync); 2803 extern int vfs_fsync(struct file *file, int datasync); 2804 2805 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2806 unsigned int flags); 2807 2808 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2809 { 2810 return (iocb->ki_flags & IOCB_DSYNC) || 2811 IS_SYNC(iocb->ki_filp->f_mapping->host); 2812 } 2813 2814 /* 2815 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2816 * to already be updated for the write, and will return either the amount 2817 * of bytes passed in, or an error if syncing the file failed. 2818 */ 2819 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2820 { 2821 if (iocb_is_dsync(iocb)) { 2822 int ret = vfs_fsync_range(iocb->ki_filp, 2823 iocb->ki_pos - count, iocb->ki_pos - 1, 2824 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2825 if (ret) 2826 return ret; 2827 } 2828 2829 return count; 2830 } 2831 2832 extern void emergency_sync(void); 2833 extern void emergency_remount(void); 2834 2835 #ifdef CONFIG_BLOCK 2836 extern int bmap(struct inode *inode, sector_t *block); 2837 #else 2838 static inline int bmap(struct inode *inode, sector_t *block) 2839 { 2840 return -EINVAL; 2841 } 2842 #endif 2843 2844 int notify_change(struct mnt_idmap *, struct dentry *, 2845 struct iattr *, struct inode **); 2846 int inode_permission(struct mnt_idmap *, struct inode *, int); 2847 int generic_permission(struct mnt_idmap *, struct inode *, int); 2848 static inline int file_permission(struct file *file, int mask) 2849 { 2850 return inode_permission(file_mnt_idmap(file), 2851 file_inode(file), mask); 2852 } 2853 static inline int path_permission(const struct path *path, int mask) 2854 { 2855 return inode_permission(mnt_idmap(path->mnt), 2856 d_inode(path->dentry), mask); 2857 } 2858 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2859 struct inode *inode); 2860 2861 static inline bool execute_ok(struct inode *inode) 2862 { 2863 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2864 } 2865 2866 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2867 { 2868 return (inode->i_mode ^ mode) & S_IFMT; 2869 } 2870 2871 /** 2872 * file_start_write - get write access to a superblock for regular file io 2873 * @file: the file we want to write to 2874 * 2875 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2876 * Should be matched with a call to file_end_write(). 2877 */ 2878 static inline void file_start_write(struct file *file) 2879 { 2880 if (!S_ISREG(file_inode(file)->i_mode)) 2881 return; 2882 sb_start_write(file_inode(file)->i_sb); 2883 } 2884 2885 static inline bool file_start_write_trylock(struct file *file) 2886 { 2887 if (!S_ISREG(file_inode(file)->i_mode)) 2888 return true; 2889 return sb_start_write_trylock(file_inode(file)->i_sb); 2890 } 2891 2892 /** 2893 * file_end_write - drop write access to a superblock of a regular file 2894 * @file: the file we wrote to 2895 * 2896 * Should be matched with a call to file_start_write(). 2897 */ 2898 static inline void file_end_write(struct file *file) 2899 { 2900 if (!S_ISREG(file_inode(file)->i_mode)) 2901 return; 2902 sb_end_write(file_inode(file)->i_sb); 2903 } 2904 2905 /** 2906 * kiocb_start_write - get write access to a superblock for async file io 2907 * @iocb: the io context we want to submit the write with 2908 * 2909 * This is a variant of sb_start_write() for async io submission. 2910 * Should be matched with a call to kiocb_end_write(). 2911 */ 2912 static inline void kiocb_start_write(struct kiocb *iocb) 2913 { 2914 struct inode *inode = file_inode(iocb->ki_filp); 2915 2916 sb_start_write(inode->i_sb); 2917 /* 2918 * Fool lockdep by telling it the lock got released so that it 2919 * doesn't complain about the held lock when we return to userspace. 2920 */ 2921 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2922 } 2923 2924 /** 2925 * kiocb_end_write - drop write access to a superblock after async file io 2926 * @iocb: the io context we sumbitted the write with 2927 * 2928 * Should be matched with a call to kiocb_start_write(). 2929 */ 2930 static inline void kiocb_end_write(struct kiocb *iocb) 2931 { 2932 struct inode *inode = file_inode(iocb->ki_filp); 2933 2934 /* 2935 * Tell lockdep we inherited freeze protection from submission thread. 2936 */ 2937 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2938 sb_end_write(inode->i_sb); 2939 } 2940 2941 /* 2942 * This is used for regular files where some users -- especially the 2943 * currently executed binary in a process, previously handled via 2944 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2945 * read-write shared) accesses. 2946 * 2947 * get_write_access() gets write permission for a file. 2948 * put_write_access() releases this write permission. 2949 * deny_write_access() denies write access to a file. 2950 * allow_write_access() re-enables write access to a file. 2951 * 2952 * The i_writecount field of an inode can have the following values: 2953 * 0: no write access, no denied write access 2954 * < 0: (-i_writecount) users that denied write access to the file. 2955 * > 0: (i_writecount) users that have write access to the file. 2956 * 2957 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2958 * except for the cases where we don't hold i_writecount yet. Then we need to 2959 * use {get,deny}_write_access() - these functions check the sign and refuse 2960 * to do the change if sign is wrong. 2961 */ 2962 static inline int get_write_access(struct inode *inode) 2963 { 2964 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2965 } 2966 static inline int deny_write_access(struct file *file) 2967 { 2968 struct inode *inode = file_inode(file); 2969 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2970 } 2971 static inline void put_write_access(struct inode * inode) 2972 { 2973 atomic_dec(&inode->i_writecount); 2974 } 2975 static inline void allow_write_access(struct file *file) 2976 { 2977 if (file) 2978 atomic_inc(&file_inode(file)->i_writecount); 2979 } 2980 static inline bool inode_is_open_for_write(const struct inode *inode) 2981 { 2982 return atomic_read(&inode->i_writecount) > 0; 2983 } 2984 2985 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2986 static inline void i_readcount_dec(struct inode *inode) 2987 { 2988 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2989 } 2990 static inline void i_readcount_inc(struct inode *inode) 2991 { 2992 atomic_inc(&inode->i_readcount); 2993 } 2994 #else 2995 static inline void i_readcount_dec(struct inode *inode) 2996 { 2997 return; 2998 } 2999 static inline void i_readcount_inc(struct inode *inode) 3000 { 3001 return; 3002 } 3003 #endif 3004 extern int do_pipe_flags(int *, int); 3005 3006 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 3007 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 3008 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 3009 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 3010 extern struct file * open_exec(const char *); 3011 3012 /* fs/dcache.c -- generic fs support functions */ 3013 extern bool is_subdir(struct dentry *, struct dentry *); 3014 extern bool path_is_under(const struct path *, const struct path *); 3015 3016 extern char *file_path(struct file *, char *, int); 3017 3018 /** 3019 * is_dot_dotdot - returns true only if @name is "." or ".." 3020 * @name: file name to check 3021 * @len: length of file name, in bytes 3022 */ 3023 static inline bool is_dot_dotdot(const char *name, size_t len) 3024 { 3025 return len && unlikely(name[0] == '.') && 3026 (len == 1 || (len == 2 && name[1] == '.')); 3027 } 3028 3029 #include <linux/err.h> 3030 3031 /* needed for stackable file system support */ 3032 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 3033 3034 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 3035 3036 extern int inode_init_always(struct super_block *, struct inode *); 3037 extern void inode_init_once(struct inode *); 3038 extern void address_space_init_once(struct address_space *mapping); 3039 extern struct inode * igrab(struct inode *); 3040 extern ino_t iunique(struct super_block *, ino_t); 3041 extern int inode_needs_sync(struct inode *inode); 3042 extern int generic_delete_inode(struct inode *inode); 3043 static inline int generic_drop_inode(struct inode *inode) 3044 { 3045 return !inode->i_nlink || inode_unhashed(inode); 3046 } 3047 extern void d_mark_dontcache(struct inode *inode); 3048 3049 extern struct inode *ilookup5_nowait(struct super_block *sb, 3050 unsigned long hashval, int (*test)(struct inode *, void *), 3051 void *data); 3052 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 3053 int (*test)(struct inode *, void *), void *data); 3054 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 3055 3056 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 3057 int (*test)(struct inode *, void *), 3058 int (*set)(struct inode *, void *), 3059 void *data); 3060 struct inode *iget5_locked(struct super_block *, unsigned long, 3061 int (*test)(struct inode *, void *), 3062 int (*set)(struct inode *, void *), void *); 3063 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 3064 int (*test)(struct inode *, void *), 3065 int (*set)(struct inode *, void *), void *); 3066 extern struct inode * iget_locked(struct super_block *, unsigned long); 3067 extern struct inode *find_inode_nowait(struct super_block *, 3068 unsigned long, 3069 int (*match)(struct inode *, 3070 unsigned long, void *), 3071 void *data); 3072 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 3073 int (*)(struct inode *, void *), void *); 3074 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 3075 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 3076 extern int insert_inode_locked(struct inode *); 3077 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3078 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 3079 #else 3080 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 3081 #endif 3082 extern void unlock_new_inode(struct inode *); 3083 extern void discard_new_inode(struct inode *); 3084 extern unsigned int get_next_ino(void); 3085 extern void evict_inodes(struct super_block *sb); 3086 void dump_mapping(const struct address_space *); 3087 3088 /* 3089 * Userspace may rely on the inode number being non-zero. For example, glibc 3090 * simply ignores files with zero i_ino in unlink() and other places. 3091 * 3092 * As an additional complication, if userspace was compiled with 3093 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 3094 * lower 32 bits, so we need to check that those aren't zero explicitly. With 3095 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 3096 * better safe than sorry. 3097 */ 3098 static inline bool is_zero_ino(ino_t ino) 3099 { 3100 return (u32)ino == 0; 3101 } 3102 3103 extern void __iget(struct inode * inode); 3104 extern void iget_failed(struct inode *); 3105 extern void clear_inode(struct inode *); 3106 extern void __destroy_inode(struct inode *); 3107 extern struct inode *new_inode_pseudo(struct super_block *sb); 3108 extern struct inode *new_inode(struct super_block *sb); 3109 extern void free_inode_nonrcu(struct inode *inode); 3110 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 3111 extern int file_remove_privs_flags(struct file *file, unsigned int flags); 3112 extern int file_remove_privs(struct file *); 3113 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 3114 const struct inode *inode); 3115 3116 /* 3117 * This must be used for allocating filesystems specific inodes to set 3118 * up the inode reclaim context correctly. 3119 */ 3120 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 3121 3122 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 3123 static inline void insert_inode_hash(struct inode *inode) 3124 { 3125 __insert_inode_hash(inode, inode->i_ino); 3126 } 3127 3128 extern void __remove_inode_hash(struct inode *); 3129 static inline void remove_inode_hash(struct inode *inode) 3130 { 3131 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3132 __remove_inode_hash(inode); 3133 } 3134 3135 extern void inode_sb_list_add(struct inode *inode); 3136 extern void inode_add_lru(struct inode *inode); 3137 3138 extern int sb_set_blocksize(struct super_block *, int); 3139 extern int sb_min_blocksize(struct super_block *, int); 3140 3141 extern int generic_file_mmap(struct file *, struct vm_area_struct *); 3142 extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3143 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3144 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3145 extern int generic_write_check_limits(struct file *file, loff_t pos, 3146 loff_t *count); 3147 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3148 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3149 ssize_t already_read); 3150 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3151 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3152 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3153 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3154 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3155 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3156 ssize_t direct_written, ssize_t buffered_written); 3157 3158 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3159 rwf_t flags); 3160 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3161 rwf_t flags); 3162 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3163 struct iov_iter *iter); 3164 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3165 struct iov_iter *iter); 3166 3167 /* fs/splice.c */ 3168 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3169 struct pipe_inode_info *pipe, 3170 size_t len, unsigned int flags); 3171 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3172 struct pipe_inode_info *pipe, 3173 size_t len, unsigned int flags); 3174 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3175 struct file *, loff_t *, size_t, unsigned int); 3176 3177 3178 extern void 3179 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3180 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3181 #define no_llseek NULL 3182 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3183 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3184 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3185 int whence, loff_t maxsize, loff_t eof); 3186 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3187 int whence, loff_t size); 3188 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3189 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3190 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3191 extern int generic_file_open(struct inode * inode, struct file * filp); 3192 extern int nonseekable_open(struct inode * inode, struct file * filp); 3193 extern int stream_open(struct inode * inode, struct file * filp); 3194 3195 #ifdef CONFIG_BLOCK 3196 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3197 loff_t file_offset); 3198 3199 enum { 3200 /* need locking between buffered and direct access */ 3201 DIO_LOCKING = 0x01, 3202 3203 /* filesystem does not support filling holes */ 3204 DIO_SKIP_HOLES = 0x02, 3205 }; 3206 3207 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3208 struct block_device *bdev, struct iov_iter *iter, 3209 get_block_t get_block, 3210 dio_iodone_t end_io, 3211 int flags); 3212 3213 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3214 struct inode *inode, 3215 struct iov_iter *iter, 3216 get_block_t get_block) 3217 { 3218 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3219 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3220 } 3221 #endif 3222 3223 void inode_dio_wait(struct inode *inode); 3224 3225 /** 3226 * inode_dio_begin - signal start of a direct I/O requests 3227 * @inode: inode the direct I/O happens on 3228 * 3229 * This is called once we've finished processing a direct I/O request, 3230 * and is used to wake up callers waiting for direct I/O to be quiesced. 3231 */ 3232 static inline void inode_dio_begin(struct inode *inode) 3233 { 3234 atomic_inc(&inode->i_dio_count); 3235 } 3236 3237 /** 3238 * inode_dio_end - signal finish of a direct I/O requests 3239 * @inode: inode the direct I/O happens on 3240 * 3241 * This is called once we've finished processing a direct I/O request, 3242 * and is used to wake up callers waiting for direct I/O to be quiesced. 3243 */ 3244 static inline void inode_dio_end(struct inode *inode) 3245 { 3246 if (atomic_dec_and_test(&inode->i_dio_count)) 3247 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 3248 } 3249 3250 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3251 unsigned int mask); 3252 3253 extern const struct file_operations generic_ro_fops; 3254 3255 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3256 3257 extern int readlink_copy(char __user *, int, const char *); 3258 extern int page_readlink(struct dentry *, char __user *, int); 3259 extern const char *page_get_link(struct dentry *, struct inode *, 3260 struct delayed_call *); 3261 extern void page_put_link(void *); 3262 extern int page_symlink(struct inode *inode, const char *symname, int len); 3263 extern const struct inode_operations page_symlink_inode_operations; 3264 extern void kfree_link(void *); 3265 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3266 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3267 void generic_fill_statx_atomic_writes(struct kstat *stat, 3268 unsigned int unit_min, 3269 unsigned int unit_max); 3270 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3271 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3272 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3273 void inode_add_bytes(struct inode *inode, loff_t bytes); 3274 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3275 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3276 static inline loff_t __inode_get_bytes(struct inode *inode) 3277 { 3278 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3279 } 3280 loff_t inode_get_bytes(struct inode *inode); 3281 void inode_set_bytes(struct inode *inode, loff_t bytes); 3282 const char *simple_get_link(struct dentry *, struct inode *, 3283 struct delayed_call *); 3284 extern const struct inode_operations simple_symlink_inode_operations; 3285 3286 extern int iterate_dir(struct file *, struct dir_context *); 3287 3288 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3289 int flags); 3290 int vfs_fstat(int fd, struct kstat *stat); 3291 3292 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3293 { 3294 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3295 } 3296 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3297 { 3298 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3299 } 3300 3301 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3302 extern int vfs_readlink(struct dentry *, char __user *, int); 3303 3304 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3305 extern void put_filesystem(struct file_system_type *fs); 3306 extern struct file_system_type *get_fs_type(const char *name); 3307 extern void drop_super(struct super_block *sb); 3308 extern void drop_super_exclusive(struct super_block *sb); 3309 extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3310 extern void iterate_supers_type(struct file_system_type *, 3311 void (*)(struct super_block *, void *), void *); 3312 3313 extern int dcache_dir_open(struct inode *, struct file *); 3314 extern int dcache_dir_close(struct inode *, struct file *); 3315 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3316 extern int dcache_readdir(struct file *, struct dir_context *); 3317 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3318 struct iattr *); 3319 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3320 struct kstat *, u32, unsigned int); 3321 extern int simple_statfs(struct dentry *, struct kstatfs *); 3322 extern int simple_open(struct inode *inode, struct file *file); 3323 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3324 extern int simple_unlink(struct inode *, struct dentry *); 3325 extern int simple_rmdir(struct inode *, struct dentry *); 3326 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3327 struct inode *new_dir, struct dentry *new_dentry); 3328 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3329 struct inode *new_dir, struct dentry *new_dentry); 3330 extern int simple_rename(struct mnt_idmap *, struct inode *, 3331 struct dentry *, struct inode *, struct dentry *, 3332 unsigned int); 3333 extern void simple_recursive_removal(struct dentry *, 3334 void (*callback)(struct dentry *)); 3335 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3336 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3337 extern int simple_empty(struct dentry *); 3338 extern int simple_write_begin(struct file *file, struct address_space *mapping, 3339 loff_t pos, unsigned len, 3340 struct page **pagep, void **fsdata); 3341 extern const struct address_space_operations ram_aops; 3342 extern int always_delete_dentry(const struct dentry *); 3343 extern struct inode *alloc_anon_inode(struct super_block *); 3344 extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); 3345 extern const struct dentry_operations simple_dentry_operations; 3346 3347 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3348 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3349 extern const struct file_operations simple_dir_operations; 3350 extern const struct inode_operations simple_dir_inode_operations; 3351 extern void make_empty_dir_inode(struct inode *inode); 3352 extern bool is_empty_dir_inode(struct inode *inode); 3353 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3354 struct dentry *d_alloc_name(struct dentry *, const char *); 3355 extern int simple_fill_super(struct super_block *, unsigned long, 3356 const struct tree_descr *); 3357 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3358 extern void simple_release_fs(struct vfsmount **mount, int *count); 3359 3360 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3361 loff_t *ppos, const void *from, size_t available); 3362 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3363 const void __user *from, size_t count); 3364 3365 struct offset_ctx { 3366 struct maple_tree mt; 3367 unsigned long next_offset; 3368 }; 3369 3370 void simple_offset_init(struct offset_ctx *octx); 3371 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3372 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3373 int simple_offset_empty(struct dentry *dentry); 3374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3375 struct inode *new_dir, struct dentry *new_dentry); 3376 int simple_offset_rename_exchange(struct inode *old_dir, 3377 struct dentry *old_dentry, 3378 struct inode *new_dir, 3379 struct dentry *new_dentry); 3380 void simple_offset_destroy(struct offset_ctx *octx); 3381 3382 extern const struct file_operations simple_offset_dir_operations; 3383 3384 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3385 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3386 3387 extern int generic_check_addressable(unsigned, u64); 3388 3389 extern void generic_set_sb_d_ops(struct super_block *sb); 3390 extern int generic_ci_match(const struct inode *parent, 3391 const struct qstr *name, 3392 const struct qstr *folded_name, 3393 const u8 *de_name, u32 de_name_len); 3394 3395 static inline bool sb_has_encoding(const struct super_block *sb) 3396 { 3397 #if IS_ENABLED(CONFIG_UNICODE) 3398 return !!sb->s_encoding; 3399 #else 3400 return false; 3401 #endif 3402 } 3403 3404 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3405 unsigned int ia_valid); 3406 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3407 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3408 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3409 const struct iattr *attr); 3410 3411 extern int file_update_time(struct file *file); 3412 3413 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3414 { 3415 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3416 } 3417 3418 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3419 { 3420 struct inode *inode; 3421 3422 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3423 return false; 3424 if (!vma_is_dax(vma)) 3425 return false; 3426 inode = file_inode(vma->vm_file); 3427 if (S_ISCHR(inode->i_mode)) 3428 return false; /* device-dax */ 3429 return true; 3430 } 3431 3432 static inline int iocb_flags(struct file *file) 3433 { 3434 int res = 0; 3435 if (file->f_flags & O_APPEND) 3436 res |= IOCB_APPEND; 3437 if (file->f_flags & O_DIRECT) 3438 res |= IOCB_DIRECT; 3439 if (file->f_flags & O_DSYNC) 3440 res |= IOCB_DSYNC; 3441 if (file->f_flags & __O_SYNC) 3442 res |= IOCB_SYNC; 3443 return res; 3444 } 3445 3446 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3447 int rw_type) 3448 { 3449 int kiocb_flags = 0; 3450 3451 /* make sure there's no overlap between RWF and private IOCB flags */ 3452 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3453 3454 if (!flags) 3455 return 0; 3456 if (unlikely(flags & ~RWF_SUPPORTED)) 3457 return -EOPNOTSUPP; 3458 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3459 return -EINVAL; 3460 3461 if (flags & RWF_NOWAIT) { 3462 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3463 return -EOPNOTSUPP; 3464 kiocb_flags |= IOCB_NOIO; 3465 } 3466 if (flags & RWF_ATOMIC) { 3467 if (rw_type != WRITE) 3468 return -EOPNOTSUPP; 3469 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3470 return -EOPNOTSUPP; 3471 } 3472 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3473 if (flags & RWF_SYNC) 3474 kiocb_flags |= IOCB_DSYNC; 3475 3476 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3477 if (IS_APPEND(file_inode(ki->ki_filp))) 3478 return -EPERM; 3479 ki->ki_flags &= ~IOCB_APPEND; 3480 } 3481 3482 ki->ki_flags |= kiocb_flags; 3483 return 0; 3484 } 3485 3486 /* Transaction based IO helpers */ 3487 3488 /* 3489 * An argresp is stored in an allocated page and holds the 3490 * size of the argument or response, along with its content 3491 */ 3492 struct simple_transaction_argresp { 3493 ssize_t size; 3494 char data[]; 3495 }; 3496 3497 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3498 3499 char *simple_transaction_get(struct file *file, const char __user *buf, 3500 size_t size); 3501 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3502 size_t size, loff_t *pos); 3503 int simple_transaction_release(struct inode *inode, struct file *file); 3504 3505 void simple_transaction_set(struct file *file, size_t n); 3506 3507 /* 3508 * simple attribute files 3509 * 3510 * These attributes behave similar to those in sysfs: 3511 * 3512 * Writing to an attribute immediately sets a value, an open file can be 3513 * written to multiple times. 3514 * 3515 * Reading from an attribute creates a buffer from the value that might get 3516 * read with multiple read calls. When the attribute has been read 3517 * completely, no further read calls are possible until the file is opened 3518 * again. 3519 * 3520 * All attributes contain a text representation of a numeric value 3521 * that are accessed with the get() and set() functions. 3522 */ 3523 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3524 static int __fops ## _open(struct inode *inode, struct file *file) \ 3525 { \ 3526 __simple_attr_check_format(__fmt, 0ull); \ 3527 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3528 } \ 3529 static const struct file_operations __fops = { \ 3530 .owner = THIS_MODULE, \ 3531 .open = __fops ## _open, \ 3532 .release = simple_attr_release, \ 3533 .read = simple_attr_read, \ 3534 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3535 .llseek = generic_file_llseek, \ 3536 } 3537 3538 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3539 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3540 3541 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3542 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3543 3544 static inline __printf(1, 2) 3545 void __simple_attr_check_format(const char *fmt, ...) 3546 { 3547 /* don't do anything, just let the compiler check the arguments; */ 3548 } 3549 3550 int simple_attr_open(struct inode *inode, struct file *file, 3551 int (*get)(void *, u64 *), int (*set)(void *, u64), 3552 const char *fmt); 3553 int simple_attr_release(struct inode *inode, struct file *file); 3554 ssize_t simple_attr_read(struct file *file, char __user *buf, 3555 size_t len, loff_t *ppos); 3556 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3557 size_t len, loff_t *ppos); 3558 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3559 size_t len, loff_t *ppos); 3560 3561 struct ctl_table; 3562 int __init list_bdev_fs_names(char *buf, size_t size); 3563 3564 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3565 #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3566 3567 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3568 #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3569 (flag & __FMODE_NONOTIFY))) 3570 3571 static inline bool is_sxid(umode_t mode) 3572 { 3573 return mode & (S_ISUID | S_ISGID); 3574 } 3575 3576 static inline int check_sticky(struct mnt_idmap *idmap, 3577 struct inode *dir, struct inode *inode) 3578 { 3579 if (!(dir->i_mode & S_ISVTX)) 3580 return 0; 3581 3582 return __check_sticky(idmap, dir, inode); 3583 } 3584 3585 static inline void inode_has_no_xattr(struct inode *inode) 3586 { 3587 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3588 inode->i_flags |= S_NOSEC; 3589 } 3590 3591 static inline bool is_root_inode(struct inode *inode) 3592 { 3593 return inode == inode->i_sb->s_root->d_inode; 3594 } 3595 3596 static inline bool dir_emit(struct dir_context *ctx, 3597 const char *name, int namelen, 3598 u64 ino, unsigned type) 3599 { 3600 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3601 } 3602 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3603 { 3604 return ctx->actor(ctx, ".", 1, ctx->pos, 3605 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3606 } 3607 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3608 { 3609 return ctx->actor(ctx, "..", 2, ctx->pos, 3610 d_parent_ino(file->f_path.dentry), DT_DIR); 3611 } 3612 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3613 { 3614 if (ctx->pos == 0) { 3615 if (!dir_emit_dot(file, ctx)) 3616 return false; 3617 ctx->pos = 1; 3618 } 3619 if (ctx->pos == 1) { 3620 if (!dir_emit_dotdot(file, ctx)) 3621 return false; 3622 ctx->pos = 2; 3623 } 3624 return true; 3625 } 3626 static inline bool dir_relax(struct inode *inode) 3627 { 3628 inode_unlock(inode); 3629 inode_lock(inode); 3630 return !IS_DEADDIR(inode); 3631 } 3632 3633 static inline bool dir_relax_shared(struct inode *inode) 3634 { 3635 inode_unlock_shared(inode); 3636 inode_lock_shared(inode); 3637 return !IS_DEADDIR(inode); 3638 } 3639 3640 extern bool path_noexec(const struct path *path); 3641 extern void inode_nohighmem(struct inode *inode); 3642 3643 /* mm/fadvise.c */ 3644 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3645 int advice); 3646 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3647 int advice); 3648 3649 static inline bool vfs_empty_path(int dfd, const char __user *path) 3650 { 3651 char c; 3652 3653 if (dfd < 0) 3654 return false; 3655 3656 /* We now allow NULL to be used for empty path. */ 3657 if (!path) 3658 return true; 3659 3660 if (unlikely(get_user(c, path))) 3661 return false; 3662 3663 return !c; 3664 } 3665 3666 bool generic_atomic_write_valid(struct iov_iter *iter, loff_t pos); 3667 3668 #endif /* _LINUX_FS_H */ 3669
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.