1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12 #ifndef _HYPERV_H 13 #define _HYPERV_H 14 15 #include <uapi/linux/hyperv.h> 16 17 #include <linux/mm.h> 18 #include <linux/types.h> 19 #include <linux/scatterlist.h> 20 #include <linux/list.h> 21 #include <linux/timer.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/mod_devicetable.h> 25 #include <linux/interrupt.h> 26 #include <linux/reciprocal_div.h> 27 #include <asm/hyperv-tlfs.h> 28 29 #define MAX_PAGE_BUFFER_COUNT 32 30 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32 #pragma pack(push, 1) 33 34 /* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71 enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74 }; 75 76 /* Single-page buffer */ 77 struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81 }; 82 83 /* Multiple-page buffer */ 84 struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89 }; 90 91 /* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96 struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101 }; 102 103 /* 0x18 includes the proprietary packet header */ 104 #define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111 #pragma pack(pop) 112 113 struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165 } __packed; 166 167 168 /* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183 #define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187 /* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191 struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208 }; 209 210 211 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212 { 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223 } 224 225 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226 { 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236 } 237 238 static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240 { 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246 } 247 248 /* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268 #define VERSION_WS2008 ((0 << 16) | (13)) 269 #define VERSION_WIN7 ((1 << 16) | (1)) 270 #define VERSION_WIN8 ((2 << 16) | (4)) 271 #define VERSION_WIN8_1 ((3 << 16) | (0)) 272 #define VERSION_WIN10 ((4 << 16) | (0)) 273 #define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 274 #define VERSION_WIN10_V5 ((5 << 16) | (0)) 275 #define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 276 #define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 277 #define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 278 279 /* Make maximum size of pipe payload of 16K */ 280 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 281 282 /* Define PipeMode values. */ 283 #define VMBUS_PIPE_TYPE_BYTE 0x00000000 284 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 285 286 /* The size of the user defined data buffer for non-pipe offers. */ 287 #define MAX_USER_DEFINED_BYTES 120 288 289 /* The size of the user defined data buffer for pipe offers. */ 290 #define MAX_PIPE_USER_DEFINED_BYTES 116 291 292 /* 293 * At the center of the Channel Management library is the Channel Offer. This 294 * struct contains the fundamental information about an offer. 295 */ 296 struct vmbus_channel_offer { 297 guid_t if_type; 298 guid_t if_instance; 299 300 /* 301 * These two fields are not currently used. 302 */ 303 u64 reserved1; 304 u64 reserved2; 305 306 u16 chn_flags; 307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 308 309 union { 310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 311 struct { 312 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 313 } std; 314 315 /* 316 * Pipes: 317 * The following structure is an integrated pipe protocol, which 318 * is implemented on top of standard user-defined data. Pipe 319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 320 * use. 321 */ 322 struct { 323 u32 pipe_mode; 324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 325 } pipe; 326 } u; 327 /* 328 * The sub_channel_index is defined in Win8: a value of zero means a 329 * primary channel and a value of non-zero means a sub-channel. 330 * 331 * Before Win8, the field is reserved, meaning it's always zero. 332 */ 333 u16 sub_channel_index; 334 u16 reserved3; 335 } __packed; 336 337 /* Server Flags */ 338 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 339 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 340 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 341 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 342 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 343 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 344 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 345 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 346 347 struct vmpacket_descriptor { 348 u16 type; 349 u16 offset8; 350 u16 len8; 351 u16 flags; 352 u64 trans_id; 353 } __packed; 354 355 struct vmpacket_header { 356 u32 prev_pkt_start_offset; 357 struct vmpacket_descriptor descriptor; 358 } __packed; 359 360 struct vmtransfer_page_range { 361 u32 byte_count; 362 u32 byte_offset; 363 } __packed; 364 365 struct vmtransfer_page_packet_header { 366 struct vmpacket_descriptor d; 367 u16 xfer_pageset_id; 368 u8 sender_owns_set; 369 u8 reserved; 370 u32 range_cnt; 371 struct vmtransfer_page_range ranges[]; 372 } __packed; 373 374 struct vmgpadl_packet_header { 375 struct vmpacket_descriptor d; 376 u32 gpadl; 377 u32 reserved; 378 } __packed; 379 380 struct vmadd_remove_transfer_page_set { 381 struct vmpacket_descriptor d; 382 u32 gpadl; 383 u16 xfer_pageset_id; 384 u16 reserved; 385 } __packed; 386 387 /* 388 * This structure defines a range in guest physical space that can be made to 389 * look virtually contiguous. 390 */ 391 struct gpa_range { 392 u32 byte_count; 393 u32 byte_offset; 394 u64 pfn_array[]; 395 }; 396 397 /* 398 * This is the format for an Establish Gpadl packet, which contains a handle by 399 * which this GPADL will be known and a set of GPA ranges associated with it. 400 * This can be converted to a MDL by the guest OS. If there are multiple GPA 401 * ranges, then the resulting MDL will be "chained," representing multiple VA 402 * ranges. 403 */ 404 struct vmestablish_gpadl { 405 struct vmpacket_descriptor d; 406 u32 gpadl; 407 u32 range_cnt; 408 struct gpa_range range[1]; 409 } __packed; 410 411 /* 412 * This is the format for a Teardown Gpadl packet, which indicates that the 413 * GPADL handle in the Establish Gpadl packet will never be referenced again. 414 */ 415 struct vmteardown_gpadl { 416 struct vmpacket_descriptor d; 417 u32 gpadl; 418 u32 reserved; /* for alignment to a 8-byte boundary */ 419 } __packed; 420 421 /* 422 * This is the format for a GPA-Direct packet, which contains a set of GPA 423 * ranges, in addition to commands and/or data. 424 */ 425 struct vmdata_gpa_direct { 426 struct vmpacket_descriptor d; 427 u32 reserved; 428 u32 range_cnt; 429 struct gpa_range range[1]; 430 } __packed; 431 432 /* This is the format for a Additional Data Packet. */ 433 struct vmadditional_data { 434 struct vmpacket_descriptor d; 435 u64 total_bytes; 436 u32 offset; 437 u32 byte_cnt; 438 unsigned char data[1]; 439 } __packed; 440 441 union vmpacket_largest_possible_header { 442 struct vmpacket_descriptor simple_hdr; 443 struct vmtransfer_page_packet_header xfer_page_hdr; 444 struct vmgpadl_packet_header gpadl_hdr; 445 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 446 struct vmestablish_gpadl establish_gpadl_hdr; 447 struct vmteardown_gpadl teardown_gpadl_hdr; 448 struct vmdata_gpa_direct data_gpa_direct_hdr; 449 }; 450 451 #define VMPACKET_DATA_START_ADDRESS(__packet) \ 452 (void *)(((unsigned char *)__packet) + \ 453 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 454 455 #define VMPACKET_DATA_LENGTH(__packet) \ 456 ((((struct vmpacket_descriptor)__packet)->len8 - \ 457 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 458 459 #define VMPACKET_TRANSFER_MODE(__packet) \ 460 (((struct IMPACT)__packet)->type) 461 462 enum vmbus_packet_type { 463 VM_PKT_INVALID = 0x0, 464 VM_PKT_SYNCH = 0x1, 465 VM_PKT_ADD_XFER_PAGESET = 0x2, 466 VM_PKT_RM_XFER_PAGESET = 0x3, 467 VM_PKT_ESTABLISH_GPADL = 0x4, 468 VM_PKT_TEARDOWN_GPADL = 0x5, 469 VM_PKT_DATA_INBAND = 0x6, 470 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 471 VM_PKT_DATA_USING_GPADL = 0x8, 472 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 473 VM_PKT_CANCEL_REQUEST = 0xa, 474 VM_PKT_COMP = 0xb, 475 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 476 VM_PKT_ADDITIONAL_DATA = 0xd 477 }; 478 479 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 480 481 482 /* Version 1 messages */ 483 enum vmbus_channel_message_type { 484 CHANNELMSG_INVALID = 0, 485 CHANNELMSG_OFFERCHANNEL = 1, 486 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 487 CHANNELMSG_REQUESTOFFERS = 3, 488 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 489 CHANNELMSG_OPENCHANNEL = 5, 490 CHANNELMSG_OPENCHANNEL_RESULT = 6, 491 CHANNELMSG_CLOSECHANNEL = 7, 492 CHANNELMSG_GPADL_HEADER = 8, 493 CHANNELMSG_GPADL_BODY = 9, 494 CHANNELMSG_GPADL_CREATED = 10, 495 CHANNELMSG_GPADL_TEARDOWN = 11, 496 CHANNELMSG_GPADL_TORNDOWN = 12, 497 CHANNELMSG_RELID_RELEASED = 13, 498 CHANNELMSG_INITIATE_CONTACT = 14, 499 CHANNELMSG_VERSION_RESPONSE = 15, 500 CHANNELMSG_UNLOAD = 16, 501 CHANNELMSG_UNLOAD_RESPONSE = 17, 502 CHANNELMSG_18 = 18, 503 CHANNELMSG_19 = 19, 504 CHANNELMSG_20 = 20, 505 CHANNELMSG_TL_CONNECT_REQUEST = 21, 506 CHANNELMSG_MODIFYCHANNEL = 22, 507 CHANNELMSG_TL_CONNECT_RESULT = 23, 508 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 509 CHANNELMSG_COUNT 510 }; 511 512 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 513 #define INVALID_RELID U32_MAX 514 515 struct vmbus_channel_message_header { 516 enum vmbus_channel_message_type msgtype; 517 u32 padding; 518 } __packed; 519 520 /* Query VMBus Version parameters */ 521 struct vmbus_channel_query_vmbus_version { 522 struct vmbus_channel_message_header header; 523 u32 version; 524 } __packed; 525 526 /* VMBus Version Supported parameters */ 527 struct vmbus_channel_version_supported { 528 struct vmbus_channel_message_header header; 529 u8 version_supported; 530 } __packed; 531 532 /* Offer Channel parameters */ 533 struct vmbus_channel_offer_channel { 534 struct vmbus_channel_message_header header; 535 struct vmbus_channel_offer offer; 536 u32 child_relid; 537 u8 monitorid; 538 /* 539 * win7 and beyond splits this field into a bit field. 540 */ 541 u8 monitor_allocated:1; 542 u8 reserved:7; 543 /* 544 * These are new fields added in win7 and later. 545 * Do not access these fields without checking the 546 * negotiated protocol. 547 * 548 * If "is_dedicated_interrupt" is set, we must not set the 549 * associated bit in the channel bitmap while sending the 550 * interrupt to the host. 551 * 552 * connection_id is to be used in signaling the host. 553 */ 554 u16 is_dedicated_interrupt:1; 555 u16 reserved1:15; 556 u32 connection_id; 557 } __packed; 558 559 /* Rescind Offer parameters */ 560 struct vmbus_channel_rescind_offer { 561 struct vmbus_channel_message_header header; 562 u32 child_relid; 563 } __packed; 564 565 /* 566 * Request Offer -- no parameters, SynIC message contains the partition ID 567 * Set Snoop -- no parameters, SynIC message contains the partition ID 568 * Clear Snoop -- no parameters, SynIC message contains the partition ID 569 * All Offers Delivered -- no parameters, SynIC message contains the partition 570 * ID 571 * Flush Client -- no parameters, SynIC message contains the partition ID 572 */ 573 574 /* Open Channel parameters */ 575 struct vmbus_channel_open_channel { 576 struct vmbus_channel_message_header header; 577 578 /* Identifies the specific VMBus channel that is being opened. */ 579 u32 child_relid; 580 581 /* ID making a particular open request at a channel offer unique. */ 582 u32 openid; 583 584 /* GPADL for the channel's ring buffer. */ 585 u32 ringbuffer_gpadlhandle; 586 587 /* 588 * Starting with win8, this field will be used to specify 589 * the target virtual processor on which to deliver the interrupt for 590 * the host to guest communication. 591 * Prior to win8, incoming channel interrupts would only 592 * be delivered on cpu 0. Setting this value to 0 would 593 * preserve the earlier behavior. 594 */ 595 u32 target_vp; 596 597 /* 598 * The upstream ring buffer begins at offset zero in the memory 599 * described by RingBufferGpadlHandle. The downstream ring buffer 600 * follows it at this offset (in pages). 601 */ 602 u32 downstream_ringbuffer_pageoffset; 603 604 /* User-specific data to be passed along to the server endpoint. */ 605 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 606 } __packed; 607 608 /* Open Channel Result parameters */ 609 struct vmbus_channel_open_result { 610 struct vmbus_channel_message_header header; 611 u32 child_relid; 612 u32 openid; 613 u32 status; 614 } __packed; 615 616 /* Modify Channel Result parameters */ 617 struct vmbus_channel_modifychannel_response { 618 struct vmbus_channel_message_header header; 619 u32 child_relid; 620 u32 status; 621 } __packed; 622 623 /* Close channel parameters; */ 624 struct vmbus_channel_close_channel { 625 struct vmbus_channel_message_header header; 626 u32 child_relid; 627 } __packed; 628 629 /* Channel Message GPADL */ 630 #define GPADL_TYPE_RING_BUFFER 1 631 #define GPADL_TYPE_SERVER_SAVE_AREA 2 632 #define GPADL_TYPE_TRANSACTION 8 633 634 /* 635 * The number of PFNs in a GPADL message is defined by the number of 636 * pages that would be spanned by ByteCount and ByteOffset. If the 637 * implied number of PFNs won't fit in this packet, there will be a 638 * follow-up packet that contains more. 639 */ 640 struct vmbus_channel_gpadl_header { 641 struct vmbus_channel_message_header header; 642 u32 child_relid; 643 u32 gpadl; 644 u16 range_buflen; 645 u16 rangecount; 646 struct gpa_range range[]; 647 } __packed; 648 649 /* This is the followup packet that contains more PFNs. */ 650 struct vmbus_channel_gpadl_body { 651 struct vmbus_channel_message_header header; 652 u32 msgnumber; 653 u32 gpadl; 654 u64 pfn[]; 655 } __packed; 656 657 struct vmbus_channel_gpadl_created { 658 struct vmbus_channel_message_header header; 659 u32 child_relid; 660 u32 gpadl; 661 u32 creation_status; 662 } __packed; 663 664 struct vmbus_channel_gpadl_teardown { 665 struct vmbus_channel_message_header header; 666 u32 child_relid; 667 u32 gpadl; 668 } __packed; 669 670 struct vmbus_channel_gpadl_torndown { 671 struct vmbus_channel_message_header header; 672 u32 gpadl; 673 } __packed; 674 675 struct vmbus_channel_relid_released { 676 struct vmbus_channel_message_header header; 677 u32 child_relid; 678 } __packed; 679 680 struct vmbus_channel_initiate_contact { 681 struct vmbus_channel_message_header header; 682 u32 vmbus_version_requested; 683 u32 target_vcpu; /* The VCPU the host should respond to */ 684 union { 685 u64 interrupt_page; 686 struct { 687 u8 msg_sint; 688 u8 msg_vtl; 689 u8 reserved[6]; 690 }; 691 }; 692 u64 monitor_page1; 693 u64 monitor_page2; 694 } __packed; 695 696 /* Hyper-V socket: guest's connect()-ing to host */ 697 struct vmbus_channel_tl_connect_request { 698 struct vmbus_channel_message_header header; 699 guid_t guest_endpoint_id; 700 guid_t host_service_id; 701 } __packed; 702 703 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 704 struct vmbus_channel_modifychannel { 705 struct vmbus_channel_message_header header; 706 u32 child_relid; 707 u32 target_vp; 708 } __packed; 709 710 struct vmbus_channel_version_response { 711 struct vmbus_channel_message_header header; 712 u8 version_supported; 713 714 u8 connection_state; 715 u16 padding; 716 717 /* 718 * On new hosts that support VMBus protocol 5.0, we must use 719 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 720 * and for subsequent messages, we must use the Message Connection ID 721 * field in the host-returned Version Response Message. 722 * 723 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 724 */ 725 u32 msg_conn_id; 726 } __packed; 727 728 enum vmbus_channel_state { 729 CHANNEL_OFFER_STATE, 730 CHANNEL_OPENING_STATE, 731 CHANNEL_OPEN_STATE, 732 CHANNEL_OPENED_STATE, 733 }; 734 735 /* 736 * Represents each channel msg on the vmbus connection This is a 737 * variable-size data structure depending on the msg type itself 738 */ 739 struct vmbus_channel_msginfo { 740 /* Bookkeeping stuff */ 741 struct list_head msglistentry; 742 743 /* So far, this is only used to handle gpadl body message */ 744 struct list_head submsglist; 745 746 /* Synchronize the request/response if needed */ 747 struct completion waitevent; 748 struct vmbus_channel *waiting_channel; 749 union { 750 struct vmbus_channel_version_supported version_supported; 751 struct vmbus_channel_open_result open_result; 752 struct vmbus_channel_gpadl_torndown gpadl_torndown; 753 struct vmbus_channel_gpadl_created gpadl_created; 754 struct vmbus_channel_version_response version_response; 755 struct vmbus_channel_modifychannel_response modify_response; 756 } response; 757 758 u32 msgsize; 759 /* 760 * The channel message that goes out on the "wire". 761 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 762 */ 763 unsigned char msg[]; 764 }; 765 766 struct vmbus_close_msg { 767 struct vmbus_channel_msginfo info; 768 struct vmbus_channel_close_channel msg; 769 }; 770 771 /* Define connection identifier type. */ 772 union hv_connection_id { 773 u32 asu32; 774 struct { 775 u32 id:24; 776 u32 reserved:8; 777 } u; 778 }; 779 780 enum vmbus_device_type { 781 HV_IDE = 0, 782 HV_SCSI, 783 HV_FC, 784 HV_NIC, 785 HV_ND, 786 HV_PCIE, 787 HV_FB, 788 HV_KBD, 789 HV_MOUSE, 790 HV_KVP, 791 HV_TS, 792 HV_HB, 793 HV_SHUTDOWN, 794 HV_FCOPY, 795 HV_BACKUP, 796 HV_DM, 797 HV_UNKNOWN, 798 }; 799 800 /* 801 * Provides request ids for VMBus. Encapsulates guest memory 802 * addresses and stores the next available slot in req_arr 803 * to generate new ids in constant time. 804 */ 805 struct vmbus_requestor { 806 u64 *req_arr; 807 unsigned long *req_bitmap; /* is a given slot available? */ 808 u32 size; 809 u64 next_request_id; 810 spinlock_t req_lock; /* provides atomicity */ 811 }; 812 813 #define VMBUS_NO_RQSTOR U64_MAX 814 #define VMBUS_RQST_ERROR (U64_MAX - 1) 815 #define VMBUS_RQST_ADDR_ANY U64_MAX 816 /* NetVSC-specific */ 817 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 818 /* StorVSC-specific */ 819 #define VMBUS_RQST_INIT (U64_MAX - 2) 820 #define VMBUS_RQST_RESET (U64_MAX - 3) 821 822 struct vmbus_device { 823 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 824 size_t pref_ring_size; 825 u16 dev_type; 826 guid_t guid; 827 bool perf_device; 828 bool allowed_in_isolated; 829 }; 830 831 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 832 833 struct vmbus_gpadl { 834 u32 gpadl_handle; 835 u32 size; 836 void *buffer; 837 bool decrypted; 838 }; 839 840 struct vmbus_channel { 841 struct list_head listentry; 842 843 struct hv_device *device_obj; 844 845 enum vmbus_channel_state state; 846 847 struct vmbus_channel_offer_channel offermsg; 848 /* 849 * These are based on the OfferMsg.MonitorId. 850 * Save it here for easy access. 851 */ 852 u8 monitor_grp; 853 u8 monitor_bit; 854 855 bool rescind; /* got rescind msg */ 856 bool rescind_ref; /* got rescind msg, got channel reference */ 857 struct completion rescind_event; 858 859 struct vmbus_gpadl ringbuffer_gpadlhandle; 860 861 /* Allocated memory for ring buffer */ 862 struct page *ringbuffer_page; 863 u32 ringbuffer_pagecount; 864 u32 ringbuffer_send_offset; 865 struct hv_ring_buffer_info outbound; /* send to parent */ 866 struct hv_ring_buffer_info inbound; /* receive from parent */ 867 868 struct vmbus_close_msg close_msg; 869 870 /* Statistics */ 871 u64 interrupts; /* Host to Guest interrupts */ 872 u64 sig_events; /* Guest to Host events */ 873 874 /* 875 * Guest to host interrupts caused by the outbound ring buffer changing 876 * from empty to not empty. 877 */ 878 u64 intr_out_empty; 879 880 /* 881 * Indicates that a full outbound ring buffer was encountered. The flag 882 * is set to true when a full outbound ring buffer is encountered and 883 * set to false when a write to the outbound ring buffer is completed. 884 */ 885 bool out_full_flag; 886 887 /* Channel callback's invoked in softirq context */ 888 struct tasklet_struct callback_event; 889 void (*onchannel_callback)(void *context); 890 void *channel_callback_context; 891 892 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 893 u32 old, u32 new); 894 895 /* 896 * Synchronize channel scheduling and channel removal; see the inline 897 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 898 */ 899 spinlock_t sched_lock; 900 901 /* 902 * A channel can be marked for one of three modes of reading: 903 * BATCHED - callback called from taslket and should read 904 * channel until empty. Interrupts from the host 905 * are masked while read is in process (default). 906 * DIRECT - callback called from tasklet (softirq). 907 * ISR - callback called in interrupt context and must 908 * invoke its own deferred processing. 909 * Host interrupts are disabled and must be re-enabled 910 * when ring is empty. 911 */ 912 enum hv_callback_mode { 913 HV_CALL_BATCHED, 914 HV_CALL_DIRECT, 915 HV_CALL_ISR 916 } callback_mode; 917 918 bool is_dedicated_interrupt; 919 u64 sig_event; 920 921 /* 922 * Starting with win8, this field will be used to specify the 923 * target CPU on which to deliver the interrupt for the host 924 * to guest communication. 925 * 926 * Prior to win8, incoming channel interrupts would only be 927 * delivered on CPU 0. Setting this value to 0 would preserve 928 * the earlier behavior. 929 */ 930 u32 target_cpu; 931 /* 932 * Support for sub-channels. For high performance devices, 933 * it will be useful to have multiple sub-channels to support 934 * a scalable communication infrastructure with the host. 935 * The support for sub-channels is implemented as an extension 936 * to the current infrastructure. 937 * The initial offer is considered the primary channel and this 938 * offer message will indicate if the host supports sub-channels. 939 * The guest is free to ask for sub-channels to be offered and can 940 * open these sub-channels as a normal "primary" channel. However, 941 * all sub-channels will have the same type and instance guids as the 942 * primary channel. Requests sent on a given channel will result in a 943 * response on the same channel. 944 */ 945 946 /* 947 * Sub-channel creation callback. This callback will be called in 948 * process context when a sub-channel offer is received from the host. 949 * The guest can open the sub-channel in the context of this callback. 950 */ 951 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 952 953 /* 954 * Channel rescind callback. Some channels (the hvsock ones), need to 955 * register a callback which is invoked in vmbus_onoffer_rescind(). 956 */ 957 void (*chn_rescind_callback)(struct vmbus_channel *channel); 958 959 /* 960 * All Sub-channels of a primary channel are linked here. 961 */ 962 struct list_head sc_list; 963 /* 964 * The primary channel this sub-channel belongs to. 965 * This will be NULL for the primary channel. 966 */ 967 struct vmbus_channel *primary_channel; 968 /* 969 * Support per-channel state for use by vmbus drivers. 970 */ 971 void *per_channel_state; 972 973 /* 974 * Defer freeing channel until after all cpu's have 975 * gone through grace period. 976 */ 977 struct rcu_head rcu; 978 979 /* 980 * For sysfs per-channel properties. 981 */ 982 struct kobject kobj; 983 984 /* 985 * For performance critical channels (storage, networking 986 * etc,), Hyper-V has a mechanism to enhance the throughput 987 * at the expense of latency: 988 * When the host is to be signaled, we just set a bit in a shared page 989 * and this bit will be inspected by the hypervisor within a certain 990 * window and if the bit is set, the host will be signaled. The window 991 * of time is the monitor latency - currently around 100 usecs. This 992 * mechanism improves throughput by: 993 * 994 * A) Making the host more efficient - each time it wakes up, 995 * potentially it will process more number of packets. The 996 * monitor latency allows a batch to build up. 997 * B) By deferring the hypercall to signal, we will also minimize 998 * the interrupts. 999 * 1000 * Clearly, these optimizations improve throughput at the expense of 1001 * latency. Furthermore, since the channel is shared for both 1002 * control and data messages, control messages currently suffer 1003 * unnecessary latency adversely impacting performance and boot 1004 * time. To fix this issue, permit tagging the channel as being 1005 * in "low latency" mode. In this mode, we will bypass the monitor 1006 * mechanism. 1007 */ 1008 bool low_latency; 1009 1010 bool probe_done; 1011 1012 /* 1013 * Cache the device ID here for easy access; this is useful, in 1014 * particular, in situations where the channel's device_obj has 1015 * not been allocated/initialized yet. 1016 */ 1017 u16 device_id; 1018 1019 /* 1020 * We must offload the handling of the primary/sub channels 1021 * from the single-threaded vmbus_connection.work_queue to 1022 * two different workqueue, otherwise we can block 1023 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 1024 */ 1025 struct work_struct add_channel_work; 1026 1027 /* 1028 * Guest to host interrupts caused by the inbound ring buffer changing 1029 * from full to not full while a packet is waiting. 1030 */ 1031 u64 intr_in_full; 1032 1033 /* 1034 * The total number of write operations that encountered a full 1035 * outbound ring buffer. 1036 */ 1037 u64 out_full_total; 1038 1039 /* 1040 * The number of write operations that were the first to encounter a 1041 * full outbound ring buffer. 1042 */ 1043 u64 out_full_first; 1044 1045 /* enabling/disabling fuzz testing on the channel (default is false)*/ 1046 bool fuzz_testing_state; 1047 1048 /* 1049 * Interrupt delay will delay the guest from emptying the ring buffer 1050 * for a specific amount of time. The delay is in microseconds and will 1051 * be between 1 to a maximum of 1000, its default is 0 (no delay). 1052 * The Message delay will delay guest reading on a per message basis 1053 * in microseconds between 1 to 1000 with the default being 0 1054 * (no delay). 1055 */ 1056 u32 fuzz_testing_interrupt_delay; 1057 u32 fuzz_testing_message_delay; 1058 1059 /* callback to generate a request ID from a request address */ 1060 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 1061 /* callback to retrieve a request address from a request ID */ 1062 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 1063 1064 /* request/transaction ids for VMBus */ 1065 struct vmbus_requestor requestor; 1066 u32 rqstor_size; 1067 1068 /* The max size of a packet on this channel */ 1069 u32 max_pkt_size; 1070 }; 1071 1072 #define lock_requestor(channel, flags) \ 1073 do { \ 1074 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1075 \ 1076 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1077 } while (0) 1078 1079 static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1080 unsigned long flags) 1081 { 1082 struct vmbus_requestor *rqstor = &channel->requestor; 1083 1084 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1085 } 1086 1087 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1088 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1089 u64 rqst_addr); 1090 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1091 u64 rqst_addr); 1092 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1093 1094 static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1095 { 1096 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1097 } 1098 1099 static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1100 { 1101 return is_hvsock_offer(&c->offermsg); 1102 } 1103 1104 static inline bool is_sub_channel(const struct vmbus_channel *c) 1105 { 1106 return c->offermsg.offer.sub_channel_index != 0; 1107 } 1108 1109 static inline void set_channel_read_mode(struct vmbus_channel *c, 1110 enum hv_callback_mode mode) 1111 { 1112 c->callback_mode = mode; 1113 } 1114 1115 static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1116 { 1117 c->per_channel_state = s; 1118 } 1119 1120 static inline void *get_per_channel_state(struct vmbus_channel *c) 1121 { 1122 return c->per_channel_state; 1123 } 1124 1125 static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1126 u32 size) 1127 { 1128 unsigned long flags; 1129 1130 if (size) { 1131 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1132 ++c->out_full_total; 1133 1134 if (!c->out_full_flag) { 1135 ++c->out_full_first; 1136 c->out_full_flag = true; 1137 } 1138 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1139 } else { 1140 c->out_full_flag = false; 1141 } 1142 1143 c->outbound.ring_buffer->pending_send_sz = size; 1144 } 1145 1146 void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1147 1148 int vmbus_request_offers(void); 1149 1150 /* 1151 * APIs for managing sub-channels. 1152 */ 1153 1154 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1155 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1156 1157 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1158 void (*chn_rescind_cb)(struct vmbus_channel *)); 1159 1160 /* The format must be the same as struct vmdata_gpa_direct */ 1161 struct vmbus_channel_packet_page_buffer { 1162 u16 type; 1163 u16 dataoffset8; 1164 u16 length8; 1165 u16 flags; 1166 u64 transactionid; 1167 u32 reserved; 1168 u32 rangecount; 1169 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1170 } __packed; 1171 1172 /* The format must be the same as struct vmdata_gpa_direct */ 1173 struct vmbus_channel_packet_multipage_buffer { 1174 u16 type; 1175 u16 dataoffset8; 1176 u16 length8; 1177 u16 flags; 1178 u64 transactionid; 1179 u32 reserved; 1180 u32 rangecount; /* Always 1 in this case */ 1181 struct hv_multipage_buffer range; 1182 } __packed; 1183 1184 /* The format must be the same as struct vmdata_gpa_direct */ 1185 struct vmbus_packet_mpb_array { 1186 u16 type; 1187 u16 dataoffset8; 1188 u16 length8; 1189 u16 flags; 1190 u64 transactionid; 1191 u32 reserved; 1192 u32 rangecount; /* Always 1 in this case */ 1193 struct hv_mpb_array range; 1194 } __packed; 1195 1196 int vmbus_alloc_ring(struct vmbus_channel *channel, 1197 u32 send_size, u32 recv_size); 1198 void vmbus_free_ring(struct vmbus_channel *channel); 1199 1200 int vmbus_connect_ring(struct vmbus_channel *channel, 1201 void (*onchannel_callback)(void *context), 1202 void *context); 1203 int vmbus_disconnect_ring(struct vmbus_channel *channel); 1204 1205 extern int vmbus_open(struct vmbus_channel *channel, 1206 u32 send_ringbuffersize, 1207 u32 recv_ringbuffersize, 1208 void *userdata, 1209 u32 userdatalen, 1210 void (*onchannel_callback)(void *context), 1211 void *context); 1212 1213 extern void vmbus_close(struct vmbus_channel *channel); 1214 1215 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1216 void *buffer, 1217 u32 bufferLen, 1218 u64 requestid, 1219 u64 *trans_id, 1220 enum vmbus_packet_type type, 1221 u32 flags); 1222 extern int vmbus_sendpacket(struct vmbus_channel *channel, 1223 void *buffer, 1224 u32 bufferLen, 1225 u64 requestid, 1226 enum vmbus_packet_type type, 1227 u32 flags); 1228 1229 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1230 struct hv_page_buffer pagebuffers[], 1231 u32 pagecount, 1232 void *buffer, 1233 u32 bufferlen, 1234 u64 requestid); 1235 1236 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1237 struct vmbus_packet_mpb_array *mpb, 1238 u32 desc_size, 1239 void *buffer, 1240 u32 bufferlen, 1241 u64 requestid); 1242 1243 extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1244 void *kbuffer, 1245 u32 size, 1246 struct vmbus_gpadl *gpadl); 1247 1248 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1249 struct vmbus_gpadl *gpadl); 1250 1251 void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1252 1253 extern int vmbus_recvpacket(struct vmbus_channel *channel, 1254 void *buffer, 1255 u32 bufferlen, 1256 u32 *buffer_actual_len, 1257 u64 *requestid); 1258 1259 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1260 void *buffer, 1261 u32 bufferlen, 1262 u32 *buffer_actual_len, 1263 u64 *requestid); 1264 1265 /* Base driver object */ 1266 struct hv_driver { 1267 const char *name; 1268 1269 /* 1270 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1271 * channel flag, actually doesn't mean a synthetic device because the 1272 * offer's if_type/if_instance can change for every new hvsock 1273 * connection. 1274 * 1275 * However, to facilitate the notification of new-offer/rescind-offer 1276 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1277 * a special vmbus device, and hence we need the below flag to 1278 * indicate if the driver is the hvsock driver or not: we need to 1279 * specially treat the hvosck offer & driver in vmbus_match(). 1280 */ 1281 bool hvsock; 1282 1283 /* the device type supported by this driver */ 1284 guid_t dev_type; 1285 const struct hv_vmbus_device_id *id_table; 1286 1287 struct device_driver driver; 1288 1289 /* dynamic device GUID's */ 1290 struct { 1291 spinlock_t lock; 1292 struct list_head list; 1293 } dynids; 1294 1295 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1296 void (*remove)(struct hv_device *dev); 1297 void (*shutdown)(struct hv_device *); 1298 1299 int (*suspend)(struct hv_device *); 1300 int (*resume)(struct hv_device *); 1301 1302 }; 1303 1304 /* Base device object */ 1305 struct hv_device { 1306 /* the device type id of this device */ 1307 guid_t dev_type; 1308 1309 /* the device instance id of this device */ 1310 guid_t dev_instance; 1311 u16 vendor_id; 1312 u16 device_id; 1313 1314 struct device device; 1315 /* 1316 * Driver name to force a match. Do not set directly, because core 1317 * frees it. Use driver_set_override() to set or clear it. 1318 */ 1319 const char *driver_override; 1320 1321 struct vmbus_channel *channel; 1322 struct kset *channels_kset; 1323 struct device_dma_parameters dma_parms; 1324 u64 dma_mask; 1325 1326 /* place holder to keep track of the dir for hv device in debugfs */ 1327 struct dentry *debug_dir; 1328 1329 }; 1330 1331 1332 #define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1333 #define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1334 1335 static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1336 { 1337 dev_set_drvdata(&dev->device, data); 1338 } 1339 1340 static inline void *hv_get_drvdata(struct hv_device *dev) 1341 { 1342 return dev_get_drvdata(&dev->device); 1343 } 1344 1345 struct hv_ring_buffer_debug_info { 1346 u32 current_interrupt_mask; 1347 u32 current_read_index; 1348 u32 current_write_index; 1349 u32 bytes_avail_toread; 1350 u32 bytes_avail_towrite; 1351 }; 1352 1353 1354 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1355 struct hv_ring_buffer_debug_info *debug_info); 1356 1357 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1358 1359 /* Vmbus interface */ 1360 #define vmbus_driver_register(driver) \ 1361 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1362 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1363 struct module *owner, 1364 const char *mod_name); 1365 void vmbus_driver_unregister(struct hv_driver *hv_driver); 1366 1367 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1368 1369 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1370 resource_size_t min, resource_size_t max, 1371 resource_size_t size, resource_size_t align, 1372 bool fb_overlap_ok); 1373 void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1374 1375 /* 1376 * GUID definitions of various offer types - services offered to the guest. 1377 */ 1378 1379 /* 1380 * Network GUID 1381 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1382 */ 1383 #define HV_NIC_GUID \ 1384 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1385 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1386 1387 /* 1388 * IDE GUID 1389 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1390 */ 1391 #define HV_IDE_GUID \ 1392 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1393 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1394 1395 /* 1396 * SCSI GUID 1397 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1398 */ 1399 #define HV_SCSI_GUID \ 1400 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1401 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1402 1403 /* 1404 * Shutdown GUID 1405 * {0e0b6031-5213-4934-818b-38d90ced39db} 1406 */ 1407 #define HV_SHUTDOWN_GUID \ 1408 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1409 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1410 1411 /* 1412 * Time Synch GUID 1413 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1414 */ 1415 #define HV_TS_GUID \ 1416 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1417 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1418 1419 /* 1420 * Heartbeat GUID 1421 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1422 */ 1423 #define HV_HEART_BEAT_GUID \ 1424 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1425 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1426 1427 /* 1428 * KVP GUID 1429 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1430 */ 1431 #define HV_KVP_GUID \ 1432 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1433 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1434 1435 /* 1436 * Dynamic memory GUID 1437 * {525074dc-8985-46e2-8057-a307dc18a502} 1438 */ 1439 #define HV_DM_GUID \ 1440 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1441 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1442 1443 /* 1444 * Mouse GUID 1445 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1446 */ 1447 #define HV_MOUSE_GUID \ 1448 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1449 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1450 1451 /* 1452 * Keyboard GUID 1453 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1454 */ 1455 #define HV_KBD_GUID \ 1456 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1457 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1458 1459 /* 1460 * VSS (Backup/Restore) GUID 1461 */ 1462 #define HV_VSS_GUID \ 1463 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1464 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1465 /* 1466 * Synthetic Video GUID 1467 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1468 */ 1469 #define HV_SYNTHVID_GUID \ 1470 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1471 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1472 1473 /* 1474 * Synthetic FC GUID 1475 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1476 */ 1477 #define HV_SYNTHFC_GUID \ 1478 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1479 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1480 1481 /* 1482 * Guest File Copy Service 1483 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1484 */ 1485 1486 #define HV_FCOPY_GUID \ 1487 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1488 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1489 1490 /* 1491 * NetworkDirect. This is the guest RDMA service. 1492 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1493 */ 1494 #define HV_ND_GUID \ 1495 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1496 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1497 1498 /* 1499 * PCI Express Pass Through 1500 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1501 */ 1502 1503 #define HV_PCIE_GUID \ 1504 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1505 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1506 1507 /* 1508 * Linux doesn't support these 4 devices: the first two are for 1509 * Automatic Virtual Machine Activation, the third is for 1510 * Remote Desktop Virtualization, and the fourth is Initial 1511 * Machine Configuration (IMC) used only by Windows guests. 1512 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1513 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1514 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1515 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1516 */ 1517 1518 #define HV_AVMA1_GUID \ 1519 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1520 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1521 1522 #define HV_AVMA2_GUID \ 1523 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1524 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1525 1526 #define HV_RDV_GUID \ 1527 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1528 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1529 1530 #define HV_IMC_GUID \ 1531 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1532 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1533 1534 /* 1535 * Common header for Hyper-V ICs 1536 */ 1537 1538 #define ICMSGTYPE_NEGOTIATE 0 1539 #define ICMSGTYPE_HEARTBEAT 1 1540 #define ICMSGTYPE_KVPEXCHANGE 2 1541 #define ICMSGTYPE_SHUTDOWN 3 1542 #define ICMSGTYPE_TIMESYNC 4 1543 #define ICMSGTYPE_VSS 5 1544 #define ICMSGTYPE_FCOPY 7 1545 1546 #define ICMSGHDRFLAG_TRANSACTION 1 1547 #define ICMSGHDRFLAG_REQUEST 2 1548 #define ICMSGHDRFLAG_RESPONSE 4 1549 1550 1551 /* 1552 * While we want to handle util services as regular devices, 1553 * there is only one instance of each of these services; so 1554 * we statically allocate the service specific state. 1555 */ 1556 1557 struct hv_util_service { 1558 u8 *recv_buffer; 1559 void *channel; 1560 void (*util_cb)(void *); 1561 int (*util_init)(struct hv_util_service *); 1562 void (*util_deinit)(void); 1563 int (*util_pre_suspend)(void); 1564 int (*util_pre_resume)(void); 1565 }; 1566 1567 struct vmbuspipe_hdr { 1568 u32 flags; 1569 u32 msgsize; 1570 } __packed; 1571 1572 struct ic_version { 1573 u16 major; 1574 u16 minor; 1575 } __packed; 1576 1577 struct icmsg_hdr { 1578 struct ic_version icverframe; 1579 u16 icmsgtype; 1580 struct ic_version icvermsg; 1581 u16 icmsgsize; 1582 u32 status; 1583 u8 ictransaction_id; 1584 u8 icflags; 1585 u8 reserved[2]; 1586 } __packed; 1587 1588 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1589 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1590 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1591 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1592 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1593 1594 struct icmsg_negotiate { 1595 u16 icframe_vercnt; 1596 u16 icmsg_vercnt; 1597 u32 reserved; 1598 struct ic_version icversion_data[]; /* any size array */ 1599 } __packed; 1600 1601 struct shutdown_msg_data { 1602 u32 reason_code; 1603 u32 timeout_seconds; 1604 u32 flags; 1605 u8 display_message[2048]; 1606 } __packed; 1607 1608 struct heartbeat_msg_data { 1609 u64 seq_num; 1610 u32 reserved[8]; 1611 } __packed; 1612 1613 /* Time Sync IC defs */ 1614 #define ICTIMESYNCFLAG_PROBE 0 1615 #define ICTIMESYNCFLAG_SYNC 1 1616 #define ICTIMESYNCFLAG_SAMPLE 2 1617 1618 #ifdef __x86_64__ 1619 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1620 #else 1621 #define WLTIMEDELTA 116444736000000000LL 1622 #endif 1623 1624 struct ictimesync_data { 1625 u64 parenttime; 1626 u64 childtime; 1627 u64 roundtriptime; 1628 u8 flags; 1629 } __packed; 1630 1631 struct ictimesync_ref_data { 1632 u64 parenttime; 1633 u64 vmreferencetime; 1634 u8 flags; 1635 char leapflags; 1636 char stratum; 1637 u8 reserved[3]; 1638 } __packed; 1639 1640 struct hyperv_service_callback { 1641 u8 msg_type; 1642 char *log_msg; 1643 guid_t data; 1644 struct vmbus_channel *channel; 1645 void (*callback)(void *context); 1646 }; 1647 1648 struct hv_dma_range { 1649 dma_addr_t dma; 1650 u32 mapping_size; 1651 }; 1652 1653 #define MAX_SRV_VER 0x7ffffff 1654 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1655 const int *fw_version, int fw_vercnt, 1656 const int *srv_version, int srv_vercnt, 1657 int *nego_fw_version, int *nego_srv_version); 1658 1659 void hv_process_channel_removal(struct vmbus_channel *channel); 1660 1661 void vmbus_setevent(struct vmbus_channel *channel); 1662 /* 1663 * Negotiated version with the Host. 1664 */ 1665 1666 extern __u32 vmbus_proto_version; 1667 1668 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1669 const guid_t *shv_host_servie_id); 1670 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1671 void vmbus_set_event(struct vmbus_channel *channel); 1672 1673 /* Get the start of the ring buffer. */ 1674 static inline void * 1675 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1676 { 1677 return ring_info->ring_buffer->buffer; 1678 } 1679 1680 /* 1681 * Mask off host interrupt callback notifications 1682 */ 1683 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1684 { 1685 rbi->ring_buffer->interrupt_mask = 1; 1686 1687 /* make sure mask update is not reordered */ 1688 virt_mb(); 1689 } 1690 1691 /* 1692 * Re-enable host callback and return number of outstanding bytes 1693 */ 1694 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1695 { 1696 1697 rbi->ring_buffer->interrupt_mask = 0; 1698 1699 /* make sure mask update is not reordered */ 1700 virt_mb(); 1701 1702 /* 1703 * Now check to see if the ring buffer is still empty. 1704 * If it is not, we raced and we need to process new 1705 * incoming messages. 1706 */ 1707 return hv_get_bytes_to_read(rbi); 1708 } 1709 1710 /* 1711 * An API to support in-place processing of incoming VMBUS packets. 1712 */ 1713 1714 /* Get data payload associated with descriptor */ 1715 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1716 { 1717 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1718 } 1719 1720 /* Get data size associated with descriptor */ 1721 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1722 { 1723 return (desc->len8 << 3) - (desc->offset8 << 3); 1724 } 1725 1726 /* Get packet length associated with descriptor */ 1727 static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1728 { 1729 return desc->len8 << 3; 1730 } 1731 1732 struct vmpacket_descriptor * 1733 hv_pkt_iter_first(struct vmbus_channel *channel); 1734 1735 struct vmpacket_descriptor * 1736 __hv_pkt_iter_next(struct vmbus_channel *channel, 1737 const struct vmpacket_descriptor *pkt); 1738 1739 void hv_pkt_iter_close(struct vmbus_channel *channel); 1740 1741 static inline struct vmpacket_descriptor * 1742 hv_pkt_iter_next(struct vmbus_channel *channel, 1743 const struct vmpacket_descriptor *pkt) 1744 { 1745 struct vmpacket_descriptor *nxt; 1746 1747 nxt = __hv_pkt_iter_next(channel, pkt); 1748 if (!nxt) 1749 hv_pkt_iter_close(channel); 1750 1751 return nxt; 1752 } 1753 1754 #define foreach_vmbus_pkt(pkt, channel) \ 1755 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1756 pkt = hv_pkt_iter_next(channel, pkt)) 1757 1758 /* 1759 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1760 * sends requests to read and write blocks. Each block must be 128 bytes or 1761 * smaller. Optionally, the VF driver can register a callback function which 1762 * will be invoked when the host says that one or more of the first 64 block 1763 * IDs is "invalid" which means that the VF driver should reread them. 1764 */ 1765 #define HV_CONFIG_BLOCK_SIZE_MAX 128 1766 1767 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1768 unsigned int block_id, unsigned int *bytes_returned); 1769 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1770 unsigned int block_id); 1771 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1772 void (*block_invalidate)(void *context, 1773 u64 block_mask)); 1774 1775 struct hyperv_pci_block_ops { 1776 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1777 unsigned int block_id, unsigned int *bytes_returned); 1778 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1779 unsigned int block_id); 1780 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1781 void (*block_invalidate)(void *context, 1782 u64 block_mask)); 1783 }; 1784 1785 extern struct hyperv_pci_block_ops hvpci_block_ops; 1786 1787 static inline unsigned long virt_to_hvpfn(void *addr) 1788 { 1789 phys_addr_t paddr; 1790 1791 if (is_vmalloc_addr(addr)) 1792 paddr = page_to_phys(vmalloc_to_page(addr)) + 1793 offset_in_page(addr); 1794 else 1795 paddr = __pa(addr); 1796 1797 return paddr >> HV_HYP_PAGE_SHIFT; 1798 } 1799 1800 #define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1801 #define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1802 #define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1803 #define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1804 #define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1805 1806 #endif /* _HYPERV_H */ 1807
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.