1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * KCSAN access checks and modifiers. These can be used to explicitly check 4 * uninstrumented accesses, or change KCSAN checking behaviour of accesses. 5 * 6 * Copyright (C) 2019, Google LLC. 7 */ 8 9 #ifndef _LINUX_KCSAN_CHECKS_H 10 #define _LINUX_KCSAN_CHECKS_H 11 12 /* Note: Only include what is already included by compiler.h. */ 13 #include <linux/compiler_attributes.h> 14 #include <linux/types.h> 15 16 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */ 17 #define KCSAN_ACCESS_WRITE (1 << 0) /* Access is a write. */ 18 #define KCSAN_ACCESS_COMPOUND (1 << 1) /* Compounded read-write instrumentation. */ 19 #define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */ 20 /* The following are special, and never due to compiler instrumentation. */ 21 #define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */ 22 #define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */ 23 24 /* 25 * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used 26 * even in compilation units that selectively disable KCSAN, but must use KCSAN 27 * to validate access to an address. Never use these in header files! 28 */ 29 #ifdef CONFIG_KCSAN 30 /** 31 * __kcsan_check_access - check generic access for races 32 * 33 * @ptr: address of access 34 * @size: size of access 35 * @type: access type modifier 36 */ 37 void __kcsan_check_access(const volatile void *ptr, size_t size, int type); 38 39 /* 40 * See definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c. 41 * Note: The mappings are arbitrary, and do not reflect any real mappings of C11 42 * memory orders to the LKMM memory orders and vice-versa! 43 */ 44 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb __ATOMIC_SEQ_CST 45 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb __ATOMIC_ACQ_REL 46 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb __ATOMIC_ACQUIRE 47 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_release __ATOMIC_RELEASE 48 49 /** 50 * __kcsan_mb - full memory barrier instrumentation 51 */ 52 void __kcsan_mb(void); 53 54 /** 55 * __kcsan_wmb - write memory barrier instrumentation 56 */ 57 void __kcsan_wmb(void); 58 59 /** 60 * __kcsan_rmb - read memory barrier instrumentation 61 */ 62 void __kcsan_rmb(void); 63 64 /** 65 * __kcsan_release - release barrier instrumentation 66 */ 67 void __kcsan_release(void); 68 69 /** 70 * kcsan_disable_current - disable KCSAN for the current context 71 * 72 * Supports nesting. 73 */ 74 void kcsan_disable_current(void); 75 76 /** 77 * kcsan_enable_current - re-enable KCSAN for the current context 78 * 79 * Supports nesting. 80 */ 81 void kcsan_enable_current(void); 82 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */ 83 84 /** 85 * kcsan_nestable_atomic_begin - begin nestable atomic region 86 * 87 * Accesses within the atomic region may appear to race with other accesses but 88 * should be considered atomic. 89 */ 90 void kcsan_nestable_atomic_begin(void); 91 92 /** 93 * kcsan_nestable_atomic_end - end nestable atomic region 94 */ 95 void kcsan_nestable_atomic_end(void); 96 97 /** 98 * kcsan_flat_atomic_begin - begin flat atomic region 99 * 100 * Accesses within the atomic region may appear to race with other accesses but 101 * should be considered atomic. 102 */ 103 void kcsan_flat_atomic_begin(void); 104 105 /** 106 * kcsan_flat_atomic_end - end flat atomic region 107 */ 108 void kcsan_flat_atomic_end(void); 109 110 /** 111 * kcsan_atomic_next - consider following accesses as atomic 112 * 113 * Force treating the next n memory accesses for the current context as atomic 114 * operations. 115 * 116 * @n: number of following memory accesses to treat as atomic. 117 */ 118 void kcsan_atomic_next(int n); 119 120 /** 121 * kcsan_set_access_mask - set access mask 122 * 123 * Set the access mask for all accesses for the current context if non-zero. 124 * Only value changes to bits set in the mask will be reported. 125 * 126 * @mask: bitmask 127 */ 128 void kcsan_set_access_mask(unsigned long mask); 129 130 /* Scoped access information. */ 131 struct kcsan_scoped_access { 132 union { 133 struct list_head list; /* scoped_accesses list */ 134 /* 135 * Not an entry in scoped_accesses list; stack depth from where 136 * the access was initialized. 137 */ 138 int stack_depth; 139 }; 140 141 /* Access information. */ 142 const volatile void *ptr; 143 size_t size; 144 int type; 145 /* Location where scoped access was set up. */ 146 unsigned long ip; 147 }; 148 /* 149 * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes 150 * out of scope; relies on attribute "cleanup", which is supported by all 151 * compilers that support KCSAN. 152 */ 153 #define __kcsan_cleanup_scoped \ 154 __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access))) 155 156 /** 157 * kcsan_begin_scoped_access - begin scoped access 158 * 159 * Begin scoped access and initialize @sa, which will cause KCSAN to 160 * continuously check the memory range in the current thread until 161 * kcsan_end_scoped_access() is called for @sa. 162 * 163 * Scoped accesses are implemented by appending @sa to an internal list for the 164 * current execution context, and then checked on every call into the KCSAN 165 * runtime. 166 * 167 * @ptr: address of access 168 * @size: size of access 169 * @type: access type modifier 170 * @sa: struct kcsan_scoped_access to use for the scope of the access 171 */ 172 struct kcsan_scoped_access * 173 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, 174 struct kcsan_scoped_access *sa); 175 176 /** 177 * kcsan_end_scoped_access - end scoped access 178 * 179 * End a scoped access, which will stop KCSAN checking the memory range. 180 * Requires that kcsan_begin_scoped_access() was previously called once for @sa. 181 * 182 * @sa: a previously initialized struct kcsan_scoped_access 183 */ 184 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa); 185 186 187 #else /* CONFIG_KCSAN */ 188 189 static inline void __kcsan_check_access(const volatile void *ptr, size_t size, 190 int type) { } 191 192 static inline void __kcsan_mb(void) { } 193 static inline void __kcsan_wmb(void) { } 194 static inline void __kcsan_rmb(void) { } 195 static inline void __kcsan_release(void) { } 196 static inline void kcsan_disable_current(void) { } 197 static inline void kcsan_enable_current(void) { } 198 static inline void kcsan_enable_current_nowarn(void) { } 199 static inline void kcsan_nestable_atomic_begin(void) { } 200 static inline void kcsan_nestable_atomic_end(void) { } 201 static inline void kcsan_flat_atomic_begin(void) { } 202 static inline void kcsan_flat_atomic_end(void) { } 203 static inline void kcsan_atomic_next(int n) { } 204 static inline void kcsan_set_access_mask(unsigned long mask) { } 205 206 struct kcsan_scoped_access { }; 207 #define __kcsan_cleanup_scoped __maybe_unused 208 static inline struct kcsan_scoped_access * 209 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, 210 struct kcsan_scoped_access *sa) { return sa; } 211 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { } 212 213 #endif /* CONFIG_KCSAN */ 214 215 #ifdef __SANITIZE_THREAD__ 216 /* 217 * Only calls into the runtime when the particular compilation unit has KCSAN 218 * instrumentation enabled. May be used in header files. 219 */ 220 #define kcsan_check_access __kcsan_check_access 221 222 /* 223 * Only use these to disable KCSAN for accesses in the current compilation unit; 224 * calls into libraries may still perform KCSAN checks. 225 */ 226 #define __kcsan_disable_current kcsan_disable_current 227 #define __kcsan_enable_current kcsan_enable_current_nowarn 228 #else /* __SANITIZE_THREAD__ */ 229 static inline void kcsan_check_access(const volatile void *ptr, size_t size, 230 int type) { } 231 static inline void __kcsan_enable_current(void) { } 232 static inline void __kcsan_disable_current(void) { } 233 #endif /* __SANITIZE_THREAD__ */ 234 235 #if defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__SANITIZE_THREAD__) 236 /* 237 * Normal barrier instrumentation is not done via explicit calls, but by mapping 238 * to a repurposed __atomic_signal_fence(), which normally does not generate any 239 * real instructions, but is still intercepted by fsanitize=thread. This means, 240 * like any other compile-time instrumentation, barrier instrumentation can be 241 * disabled with the __no_kcsan function attribute. 242 * 243 * Also see definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c. 244 * 245 * These are all macros, like <asm/barrier.h>, since some architectures use them 246 * in non-static inline functions. 247 */ 248 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE(name) \ 249 do { \ 250 barrier(); \ 251 __atomic_signal_fence(__KCSAN_BARRIER_TO_SIGNAL_FENCE_##name); \ 252 barrier(); \ 253 } while (0) 254 #define kcsan_mb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(mb) 255 #define kcsan_wmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(wmb) 256 #define kcsan_rmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(rmb) 257 #define kcsan_release() __KCSAN_BARRIER_TO_SIGNAL_FENCE(release) 258 #elif defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__KCSAN_INSTRUMENT_BARRIERS__) 259 #define kcsan_mb __kcsan_mb 260 #define kcsan_wmb __kcsan_wmb 261 #define kcsan_rmb __kcsan_rmb 262 #define kcsan_release __kcsan_release 263 #else /* CONFIG_KCSAN_WEAK_MEMORY && ... */ 264 #define kcsan_mb() do { } while (0) 265 #define kcsan_wmb() do { } while (0) 266 #define kcsan_rmb() do { } while (0) 267 #define kcsan_release() do { } while (0) 268 #endif /* CONFIG_KCSAN_WEAK_MEMORY && ... */ 269 270 /** 271 * __kcsan_check_read - check regular read access for races 272 * 273 * @ptr: address of access 274 * @size: size of access 275 */ 276 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0) 277 278 /** 279 * __kcsan_check_write - check regular write access for races 280 * 281 * @ptr: address of access 282 * @size: size of access 283 */ 284 #define __kcsan_check_write(ptr, size) \ 285 __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE) 286 287 /** 288 * __kcsan_check_read_write - check regular read-write access for races 289 * 290 * @ptr: address of access 291 * @size: size of access 292 */ 293 #define __kcsan_check_read_write(ptr, size) \ 294 __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE) 295 296 /** 297 * kcsan_check_read - check regular read access for races 298 * 299 * @ptr: address of access 300 * @size: size of access 301 */ 302 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0) 303 304 /** 305 * kcsan_check_write - check regular write access for races 306 * 307 * @ptr: address of access 308 * @size: size of access 309 */ 310 #define kcsan_check_write(ptr, size) \ 311 kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE) 312 313 /** 314 * kcsan_check_read_write - check regular read-write access for races 315 * 316 * @ptr: address of access 317 * @size: size of access 318 */ 319 #define kcsan_check_read_write(ptr, size) \ 320 kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE) 321 322 /* 323 * Check for atomic accesses: if atomic accesses are not ignored, this simply 324 * aliases to kcsan_check_access(), otherwise becomes a no-op. 325 */ 326 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS 327 #define kcsan_check_atomic_read(...) do { } while (0) 328 #define kcsan_check_atomic_write(...) do { } while (0) 329 #define kcsan_check_atomic_read_write(...) do { } while (0) 330 #else 331 #define kcsan_check_atomic_read(ptr, size) \ 332 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC) 333 #define kcsan_check_atomic_write(ptr, size) \ 334 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE) 335 #define kcsan_check_atomic_read_write(ptr, size) \ 336 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND) 337 #endif 338 339 /** 340 * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var 341 * 342 * Assert that there are no concurrent writes to @var; other readers are 343 * allowed. This assertion can be used to specify properties of concurrent code, 344 * where violation cannot be detected as a normal data race. 345 * 346 * For example, if we only have a single writer, but multiple concurrent 347 * readers, to avoid data races, all these accesses must be marked; even 348 * concurrent marked writes racing with the single writer are bugs. 349 * Unfortunately, due to being marked, they are no longer data races. For cases 350 * like these, we can use the macro as follows: 351 * 352 * .. code-block:: c 353 * 354 * void writer(void) { 355 * spin_lock(&update_foo_lock); 356 * ASSERT_EXCLUSIVE_WRITER(shared_foo); 357 * WRITE_ONCE(shared_foo, ...); 358 * spin_unlock(&update_foo_lock); 359 * } 360 * void reader(void) { 361 * // update_foo_lock does not need to be held! 362 * ... = READ_ONCE(shared_foo); 363 * } 364 * 365 * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough 366 * checking if a clear scope where no concurrent writes are expected exists. 367 * 368 * @var: variable to assert on 369 */ 370 #define ASSERT_EXCLUSIVE_WRITER(var) \ 371 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT) 372 373 /* 374 * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is 375 * expected to be unique for the scope in which instances of kcsan_scoped_access 376 * are declared. 377 */ 378 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix 379 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \ 380 struct kcsan_scoped_access __kcsan_scoped_name(id, _) \ 381 __kcsan_cleanup_scoped; \ 382 struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \ 383 __maybe_unused = kcsan_begin_scoped_access( \ 384 &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \ 385 &__kcsan_scoped_name(id, _)) 386 387 /** 388 * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope 389 * 390 * Scoped variant of ASSERT_EXCLUSIVE_WRITER(). 391 * 392 * Assert that there are no concurrent writes to @var for the duration of the 393 * scope in which it is introduced. This provides a better way to fully cover 394 * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and 395 * increases the likelihood for KCSAN to detect racing accesses. 396 * 397 * For example, it allows finding race-condition bugs that only occur due to 398 * state changes within the scope itself: 399 * 400 * .. code-block:: c 401 * 402 * void writer(void) { 403 * spin_lock(&update_foo_lock); 404 * { 405 * ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo); 406 * WRITE_ONCE(shared_foo, 42); 407 * ... 408 * // shared_foo should still be 42 here! 409 * } 410 * spin_unlock(&update_foo_lock); 411 * } 412 * void buggy(void) { 413 * if (READ_ONCE(shared_foo) == 42) 414 * WRITE_ONCE(shared_foo, 1); // bug! 415 * } 416 * 417 * @var: variable to assert on 418 */ 419 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \ 420 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__) 421 422 /** 423 * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var 424 * 425 * Assert that there are no concurrent accesses to @var (no readers nor 426 * writers). This assertion can be used to specify properties of concurrent 427 * code, where violation cannot be detected as a normal data race. 428 * 429 * For example, where exclusive access is expected after determining no other 430 * users of an object are left, but the object is not actually freed. We can 431 * check that this property actually holds as follows: 432 * 433 * .. code-block:: c 434 * 435 * if (refcount_dec_and_test(&obj->refcnt)) { 436 * ASSERT_EXCLUSIVE_ACCESS(*obj); 437 * do_some_cleanup(obj); 438 * release_for_reuse(obj); 439 * } 440 * 441 * Note: 442 * 443 * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough 444 * checking if a clear scope where no concurrent accesses are expected exists. 445 * 446 * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better 447 * fit to detect use-after-free bugs. 448 * 449 * @var: variable to assert on 450 */ 451 #define ASSERT_EXCLUSIVE_ACCESS(var) \ 452 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT) 453 454 /** 455 * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope 456 * 457 * Scoped variant of ASSERT_EXCLUSIVE_ACCESS(). 458 * 459 * Assert that there are no concurrent accesses to @var (no readers nor writers) 460 * for the entire duration of the scope in which it is introduced. This provides 461 * a better way to fully cover the enclosing scope, compared to multiple 462 * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect 463 * racing accesses. 464 * 465 * @var: variable to assert on 466 */ 467 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \ 468 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__) 469 470 /** 471 * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var 472 * 473 * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER(). 474 * 475 * Assert that there are no concurrent writes to a subset of bits in @var; 476 * concurrent readers are permitted. This assertion captures more detailed 477 * bit-level properties, compared to the other (word granularity) assertions. 478 * Only the bits set in @mask are checked for concurrent modifications, while 479 * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits 480 * are ignored. 481 * 482 * Use this for variables, where some bits must not be modified concurrently, 483 * yet other bits are expected to be modified concurrently. 484 * 485 * For example, variables where, after initialization, some bits are read-only, 486 * but other bits may still be modified concurrently. A reader may wish to 487 * assert that this is true as follows: 488 * 489 * .. code-block:: c 490 * 491 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK); 492 * foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT; 493 * 494 * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed 495 * to access the masked bits only, and KCSAN optimistically assumes it is 496 * therefore safe, even in the presence of data races, and marking it with 497 * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that 498 * it may still be advisable to do so, since we cannot reason about all compiler 499 * optimizations when it comes to bit manipulations (on the reader and writer 500 * side). If you are sure nothing can go wrong, we can write the above simply 501 * as: 502 * 503 * .. code-block:: c 504 * 505 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK); 506 * foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT; 507 * 508 * Another example, where this may be used, is when certain bits of @var may 509 * only be modified when holding the appropriate lock, but other bits may still 510 * be modified concurrently. Writers, where other bits may change concurrently, 511 * could use the assertion as follows: 512 * 513 * .. code-block:: c 514 * 515 * spin_lock(&foo_lock); 516 * ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK); 517 * old_flags = flags; 518 * new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT); 519 * if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... } 520 * spin_unlock(&foo_lock); 521 * 522 * @var: variable to assert on 523 * @mask: only check for modifications to bits set in @mask 524 */ 525 #define ASSERT_EXCLUSIVE_BITS(var, mask) \ 526 do { \ 527 kcsan_set_access_mask(mask); \ 528 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\ 529 kcsan_set_access_mask(0); \ 530 kcsan_atomic_next(1); \ 531 } while (0) 532 533 #endif /* _LINUX_KCSAN_CHECKS_H */ 534
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.