~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/kvm_host.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-only */
  2 #ifndef __KVM_HOST_H
  3 #define __KVM_HOST_H
  4 
  5 
  6 #include <linux/types.h>
  7 #include <linux/hardirq.h>
  8 #include <linux/list.h>
  9 #include <linux/mutex.h>
 10 #include <linux/spinlock.h>
 11 #include <linux/signal.h>
 12 #include <linux/sched.h>
 13 #include <linux/sched/stat.h>
 14 #include <linux/bug.h>
 15 #include <linux/minmax.h>
 16 #include <linux/mm.h>
 17 #include <linux/mmu_notifier.h>
 18 #include <linux/preempt.h>
 19 #include <linux/msi.h>
 20 #include <linux/slab.h>
 21 #include <linux/vmalloc.h>
 22 #include <linux/rcupdate.h>
 23 #include <linux/ratelimit.h>
 24 #include <linux/err.h>
 25 #include <linux/irqflags.h>
 26 #include <linux/context_tracking.h>
 27 #include <linux/irqbypass.h>
 28 #include <linux/rcuwait.h>
 29 #include <linux/refcount.h>
 30 #include <linux/nospec.h>
 31 #include <linux/notifier.h>
 32 #include <linux/ftrace.h>
 33 #include <linux/hashtable.h>
 34 #include <linux/instrumentation.h>
 35 #include <linux/interval_tree.h>
 36 #include <linux/rbtree.h>
 37 #include <linux/xarray.h>
 38 #include <asm/signal.h>
 39 
 40 #include <linux/kvm.h>
 41 #include <linux/kvm_para.h>
 42 
 43 #include <linux/kvm_types.h>
 44 
 45 #include <asm/kvm_host.h>
 46 #include <linux/kvm_dirty_ring.h>
 47 
 48 #ifndef KVM_MAX_VCPU_IDS
 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
 50 #endif
 51 
 52 /*
 53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
 54  * used in kvm, other bits are visible for userspace which are defined in
 55  * include/linux/kvm_h.
 56  */
 57 #define KVM_MEMSLOT_INVALID     (1UL << 16)
 58 
 59 /*
 60  * Bit 63 of the memslot generation number is an "update in-progress flag",
 61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
 62  * This flag effectively creates a unique generation number that is used to
 63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
 64  * i.e. may (or may not) have come from the previous memslots generation.
 65  *
 66  * This is necessary because the actual memslots update is not atomic with
 67  * respect to the generation number update.  Updating the generation number
 68  * first would allow a vCPU to cache a spte from the old memslots using the
 69  * new generation number, and updating the generation number after switching
 70  * to the new memslots would allow cache hits using the old generation number
 71  * to reference the defunct memslots.
 72  *
 73  * This mechanism is used to prevent getting hits in KVM's caches while a
 74  * memslot update is in-progress, and to prevent cache hits *after* updating
 75  * the actual generation number against accesses that were inserted into the
 76  * cache *before* the memslots were updated.
 77  */
 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS      BIT_ULL(63)
 79 
 80 /* Two fragments for cross MMIO pages. */
 81 #define KVM_MAX_MMIO_FRAGMENTS  2
 82 
 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
 84 #define KVM_MAX_NR_ADDRESS_SPACES       1
 85 #endif
 86 
 87 /*
 88  * For the normal pfn, the highest 12 bits should be zero,
 89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
 90  * mask bit 63 to indicate the noslot pfn.
 91  */
 92 #define KVM_PFN_ERR_MASK        (0x7ffULL << 52)
 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
 94 #define KVM_PFN_NOSLOT          (0x1ULL << 63)
 95 
 96 #define KVM_PFN_ERR_FAULT       (KVM_PFN_ERR_MASK)
 97 #define KVM_PFN_ERR_HWPOISON    (KVM_PFN_ERR_MASK + 1)
 98 #define KVM_PFN_ERR_RO_FAULT    (KVM_PFN_ERR_MASK + 2)
 99 #define KVM_PFN_ERR_SIGPENDING  (KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107         return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116         return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126         return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132         return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD         (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD      (PAGE_OFFSET + PAGE_SIZE)
143 
144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146         return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153         return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE    (ERR_PTR(-ENOENT))
157 
158 static inline bool is_error_page(struct page *page)
159 {
160         return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH               (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD                 (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK                 2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL    3
175 #define KVM_REQUEST_ARCH_BASE           8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE      (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188         BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189         (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194                                  unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 
197 #define KVM_USERSPACE_IRQ_SOURCE_ID             0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID        1
199 
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202 
203 struct kvm_io_range {
204         gpa_t addr;
205         int len;
206         struct kvm_io_device *dev;
207 };
208 
209 #define NR_IOBUS_DEVS 1000
210 
211 struct kvm_io_bus {
212         int dev_count;
213         int ioeventfd_count;
214         struct kvm_io_range range[];
215 };
216 
217 enum kvm_bus {
218         KVM_MMIO_BUS,
219         KVM_PIO_BUS,
220         KVM_VIRTIO_CCW_NOTIFY_BUS,
221         KVM_FAST_MMIO_BUS,
222         KVM_NR_BUSES
223 };
224 
225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226                      int len, const void *val);
227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228                             gpa_t addr, int len, const void *val, long cookie);
229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230                     int len, void *val);
231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232                             int len, struct kvm_io_device *dev);
233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234                               struct kvm_io_device *dev);
235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236                                          gpa_t addr);
237 
238 #ifdef CONFIG_KVM_ASYNC_PF
239 struct kvm_async_pf {
240         struct work_struct work;
241         struct list_head link;
242         struct list_head queue;
243         struct kvm_vcpu *vcpu;
244         gpa_t cr2_or_gpa;
245         unsigned long addr;
246         struct kvm_arch_async_pf arch;
247         bool   wakeup_all;
248         bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254                         unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259 union kvm_mmu_notifier_arg {
260         unsigned long attributes;
261 };
262 
263 struct kvm_gfn_range {
264         struct kvm_memory_slot *slot;
265         gfn_t start;
266         gfn_t end;
267         union kvm_mmu_notifier_arg arg;
268         bool may_block;
269 };
270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274 
275 enum {
276         OUTSIDE_GUEST_MODE,
277         IN_GUEST_MODE,
278         EXITING_GUEST_MODE,
279         READING_SHADOW_PAGE_TABLES,
280 };
281 
282 #define KVM_UNMAPPED_PAGE       ((void *) 0x500 + POISON_POINTER_DELTA)
283 
284 struct kvm_host_map {
285         /*
286          * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287          * a 'struct page' for it. When using mem= kernel parameter some memory
288          * can be used as guest memory but they are not managed by host
289          * kernel).
290          * If 'pfn' is not managed by the host kernel, this field is
291          * initialized to KVM_UNMAPPED_PAGE.
292          */
293         struct page *page;
294         void *hva;
295         kvm_pfn_t pfn;
296         kvm_pfn_t gfn;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305         return !!map->hva;
306 }
307 
308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310         return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318         gpa_t gpa;
319         void *data;
320         unsigned len;
321 };
322 
323 struct kvm_vcpu {
324         struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326         struct preempt_notifier preempt_notifier;
327 #endif
328         int cpu;
329         int vcpu_id; /* id given by userspace at creation */
330         int vcpu_idx; /* index into kvm->vcpu_array */
331         int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333         int srcu_depth;
334 #endif
335         int mode;
336         u64 requests;
337         unsigned long guest_debug;
338 
339         struct mutex mutex;
340         struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343         struct rcuwait wait;
344 #endif
345         struct pid __rcu *pid;
346         int sigset_active;
347         sigset_t sigset;
348         unsigned int halt_poll_ns;
349         bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352         int mmio_needed;
353         int mmio_read_completed;
354         int mmio_is_write;
355         int mmio_cur_fragment;
356         int mmio_nr_fragments;
357         struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361         struct {
362                 u32 queued;
363                 struct list_head queue;
364                 struct list_head done;
365                 spinlock_t lock;
366         } async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370         /*
371          * Cpu relax intercept or pause loop exit optimization
372          * in_spin_loop: set when a vcpu does a pause loop exit
373          *  or cpu relax intercepted.
374          * dy_eligible: indicates whether vcpu is eligible for directed yield.
375          */
376         struct {
377                 bool in_spin_loop;
378                 bool dy_eligible;
379         } spin_loop;
380 #endif
381         bool wants_to_run;
382         bool preempted;
383         bool ready;
384         bool scheduled_out;
385         struct kvm_vcpu_arch arch;
386         struct kvm_vcpu_stat stat;
387         char stats_id[KVM_STATS_NAME_SIZE];
388         struct kvm_dirty_ring dirty_ring;
389 
390         /*
391          * The most recently used memslot by this vCPU and the slots generation
392          * for which it is valid.
393          * No wraparound protection is needed since generations won't overflow in
394          * thousands of years, even assuming 1M memslot operations per second.
395          */
396         struct kvm_memory_slot *last_used_slot;
397         u64 last_used_slot_gen;
398 };
399 
400 /*
401  * Start accounting time towards a guest.
402  * Must be called before entering guest context.
403  */
404 static __always_inline void guest_timing_enter_irqoff(void)
405 {
406         /*
407          * This is running in ioctl context so its safe to assume that it's the
408          * stime pending cputime to flush.
409          */
410         instrumentation_begin();
411         vtime_account_guest_enter();
412         instrumentation_end();
413 }
414 
415 /*
416  * Enter guest context and enter an RCU extended quiescent state.
417  *
418  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419  * unsafe to use any code which may directly or indirectly use RCU, tracing
420  * (including IRQ flag tracing), or lockdep. All code in this period must be
421  * non-instrumentable.
422  */
423 static __always_inline void guest_context_enter_irqoff(void)
424 {
425         /*
426          * KVM does not hold any references to rcu protected data when it
427          * switches CPU into a guest mode. In fact switching to a guest mode
428          * is very similar to exiting to userspace from rcu point of view. In
429          * addition CPU may stay in a guest mode for quite a long time (up to
430          * one time slice). Lets treat guest mode as quiescent state, just like
431          * we do with user-mode execution.
432          */
433         if (!context_tracking_guest_enter()) {
434                 instrumentation_begin();
435                 rcu_virt_note_context_switch();
436                 instrumentation_end();
437         }
438 }
439 
440 /*
441  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442  * guest_state_enter_irqoff().
443  */
444 static __always_inline void guest_enter_irqoff(void)
445 {
446         guest_timing_enter_irqoff();
447         guest_context_enter_irqoff();
448 }
449 
450 /**
451  * guest_state_enter_irqoff - Fixup state when entering a guest
452  *
453  * Entry to a guest will enable interrupts, but the kernel state is interrupts
454  * disabled when this is invoked. Also tell RCU about it.
455  *
456  * 1) Trace interrupts on state
457  * 2) Invoke context tracking if enabled to adjust RCU state
458  * 3) Tell lockdep that interrupts are enabled
459  *
460  * Invoked from architecture specific code before entering a guest.
461  * Must be called with interrupts disabled and the caller must be
462  * non-instrumentable.
463  * The caller has to invoke guest_timing_enter_irqoff() before this.
464  *
465  * Note: this is analogous to exit_to_user_mode().
466  */
467 static __always_inline void guest_state_enter_irqoff(void)
468 {
469         instrumentation_begin();
470         trace_hardirqs_on_prepare();
471         lockdep_hardirqs_on_prepare();
472         instrumentation_end();
473 
474         guest_context_enter_irqoff();
475         lockdep_hardirqs_on(CALLER_ADDR0);
476 }
477 
478 /*
479  * Exit guest context and exit an RCU extended quiescent state.
480  *
481  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482  * unsafe to use any code which may directly or indirectly use RCU, tracing
483  * (including IRQ flag tracing), or lockdep. All code in this period must be
484  * non-instrumentable.
485  */
486 static __always_inline void guest_context_exit_irqoff(void)
487 {
488         /*
489          * Guest mode is treated as a quiescent state, see
490          * guest_context_enter_irqoff() for more details.
491          */
492         if (!context_tracking_guest_exit()) {
493                 instrumentation_begin();
494                 rcu_virt_note_context_switch();
495                 instrumentation_end();
496         }
497 }
498 
499 /*
500  * Stop accounting time towards a guest.
501  * Must be called after exiting guest context.
502  */
503 static __always_inline void guest_timing_exit_irqoff(void)
504 {
505         instrumentation_begin();
506         /* Flush the guest cputime we spent on the guest */
507         vtime_account_guest_exit();
508         instrumentation_end();
509 }
510 
511 /*
512  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
513  * guest_timing_exit_irqoff().
514  */
515 static __always_inline void guest_exit_irqoff(void)
516 {
517         guest_context_exit_irqoff();
518         guest_timing_exit_irqoff();
519 }
520 
521 static inline void guest_exit(void)
522 {
523         unsigned long flags;
524 
525         local_irq_save(flags);
526         guest_exit_irqoff();
527         local_irq_restore(flags);
528 }
529 
530 /**
531  * guest_state_exit_irqoff - Establish state when returning from guest mode
532  *
533  * Entry from a guest disables interrupts, but guest mode is traced as
534  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
535  *
536  * 1) Tell lockdep that interrupts are disabled
537  * 2) Invoke context tracking if enabled to reactivate RCU
538  * 3) Trace interrupts off state
539  *
540  * Invoked from architecture specific code after exiting a guest.
541  * Must be invoked with interrupts disabled and the caller must be
542  * non-instrumentable.
543  * The caller has to invoke guest_timing_exit_irqoff() after this.
544  *
545  * Note: this is analogous to enter_from_user_mode().
546  */
547 static __always_inline void guest_state_exit_irqoff(void)
548 {
549         lockdep_hardirqs_off(CALLER_ADDR0);
550         guest_context_exit_irqoff();
551 
552         instrumentation_begin();
553         trace_hardirqs_off_finish();
554         instrumentation_end();
555 }
556 
557 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
558 {
559         /*
560          * The memory barrier ensures a previous write to vcpu->requests cannot
561          * be reordered with the read of vcpu->mode.  It pairs with the general
562          * memory barrier following the write of vcpu->mode in VCPU RUN.
563          */
564         smp_mb__before_atomic();
565         return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
566 }
567 
568 /*
569  * Some of the bitops functions do not support too long bitmaps.
570  * This number must be determined not to exceed such limits.
571  */
572 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
573 
574 /*
575  * Since at idle each memslot belongs to two memslot sets it has to contain
576  * two embedded nodes for each data structure that it forms a part of.
577  *
578  * Two memslot sets (one active and one inactive) are necessary so the VM
579  * continues to run on one memslot set while the other is being modified.
580  *
581  * These two memslot sets normally point to the same set of memslots.
582  * They can, however, be desynchronized when performing a memslot management
583  * operation by replacing the memslot to be modified by its copy.
584  * After the operation is complete, both memslot sets once again point to
585  * the same, common set of memslot data.
586  *
587  * The memslots themselves are independent of each other so they can be
588  * individually added or deleted.
589  */
590 struct kvm_memory_slot {
591         struct hlist_node id_node[2];
592         struct interval_tree_node hva_node[2];
593         struct rb_node gfn_node[2];
594         gfn_t base_gfn;
595         unsigned long npages;
596         unsigned long *dirty_bitmap;
597         struct kvm_arch_memory_slot arch;
598         unsigned long userspace_addr;
599         u32 flags;
600         short id;
601         u16 as_id;
602 
603 #ifdef CONFIG_KVM_PRIVATE_MEM
604         struct {
605                 struct file __rcu *file;
606                 pgoff_t pgoff;
607         } gmem;
608 #endif
609 };
610 
611 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
612 {
613         return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
614 }
615 
616 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
617 {
618         return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
619 }
620 
621 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
622 {
623         return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624 }
625 
626 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
627 {
628         unsigned long len = kvm_dirty_bitmap_bytes(memslot);
629 
630         return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
631 }
632 
633 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
634 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
635 #endif
636 
637 struct kvm_s390_adapter_int {
638         u64 ind_addr;
639         u64 summary_addr;
640         u64 ind_offset;
641         u32 summary_offset;
642         u32 adapter_id;
643 };
644 
645 struct kvm_hv_sint {
646         u32 vcpu;
647         u32 sint;
648 };
649 
650 struct kvm_xen_evtchn {
651         u32 port;
652         u32 vcpu_id;
653         int vcpu_idx;
654         u32 priority;
655 };
656 
657 struct kvm_kernel_irq_routing_entry {
658         u32 gsi;
659         u32 type;
660         int (*set)(struct kvm_kernel_irq_routing_entry *e,
661                    struct kvm *kvm, int irq_source_id, int level,
662                    bool line_status);
663         union {
664                 struct {
665                         unsigned irqchip;
666                         unsigned pin;
667                 } irqchip;
668                 struct {
669                         u32 address_lo;
670                         u32 address_hi;
671                         u32 data;
672                         u32 flags;
673                         u32 devid;
674                 } msi;
675                 struct kvm_s390_adapter_int adapter;
676                 struct kvm_hv_sint hv_sint;
677                 struct kvm_xen_evtchn xen_evtchn;
678         };
679         struct hlist_node link;
680 };
681 
682 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
683 struct kvm_irq_routing_table {
684         int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
685         u32 nr_rt_entries;
686         /*
687          * Array indexed by gsi. Each entry contains list of irq chips
688          * the gsi is connected to.
689          */
690         struct hlist_head map[] __counted_by(nr_rt_entries);
691 };
692 #endif
693 
694 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
695 
696 #ifndef KVM_INTERNAL_MEM_SLOTS
697 #define KVM_INTERNAL_MEM_SLOTS 0
698 #endif
699 
700 #define KVM_MEM_SLOTS_NUM SHRT_MAX
701 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
702 
703 #if KVM_MAX_NR_ADDRESS_SPACES == 1
704 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
705 {
706         return KVM_MAX_NR_ADDRESS_SPACES;
707 }
708 
709 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
710 {
711         return 0;
712 }
713 #endif
714 
715 /*
716  * Arch code must define kvm_arch_has_private_mem if support for private memory
717  * is enabled.
718  */
719 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
720 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
721 {
722         return false;
723 }
724 #endif
725 
726 #ifndef kvm_arch_has_readonly_mem
727 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
728 {
729         return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
730 }
731 #endif
732 
733 struct kvm_memslots {
734         u64 generation;
735         atomic_long_t last_used_slot;
736         struct rb_root_cached hva_tree;
737         struct rb_root gfn_tree;
738         /*
739          * The mapping table from slot id to memslot.
740          *
741          * 7-bit bucket count matches the size of the old id to index array for
742          * 512 slots, while giving good performance with this slot count.
743          * Higher bucket counts bring only small performance improvements but
744          * always result in higher memory usage (even for lower memslot counts).
745          */
746         DECLARE_HASHTABLE(id_hash, 7);
747         int node_idx;
748 };
749 
750 struct kvm {
751 #ifdef KVM_HAVE_MMU_RWLOCK
752         rwlock_t mmu_lock;
753 #else
754         spinlock_t mmu_lock;
755 #endif /* KVM_HAVE_MMU_RWLOCK */
756 
757         struct mutex slots_lock;
758 
759         /*
760          * Protects the arch-specific fields of struct kvm_memory_slots in
761          * use by the VM. To be used under the slots_lock (above) or in a
762          * kvm->srcu critical section where acquiring the slots_lock would
763          * lead to deadlock with the synchronize_srcu in
764          * kvm_swap_active_memslots().
765          */
766         struct mutex slots_arch_lock;
767         struct mm_struct *mm; /* userspace tied to this vm */
768         unsigned long nr_memslot_pages;
769         /* The two memslot sets - active and inactive (per address space) */
770         struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
771         /* The current active memslot set for each address space */
772         struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
773         struct xarray vcpu_array;
774         /*
775          * Protected by slots_lock, but can be read outside if an
776          * incorrect answer is acceptable.
777          */
778         atomic_t nr_memslots_dirty_logging;
779 
780         /* Used to wait for completion of MMU notifiers.  */
781         spinlock_t mn_invalidate_lock;
782         unsigned long mn_active_invalidate_count;
783         struct rcuwait mn_memslots_update_rcuwait;
784 
785         /* For management / invalidation of gfn_to_pfn_caches */
786         spinlock_t gpc_lock;
787         struct list_head gpc_list;
788 
789         /*
790          * created_vcpus is protected by kvm->lock, and is incremented
791          * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
792          * incremented after storing the kvm_vcpu pointer in vcpus,
793          * and is accessed atomically.
794          */
795         atomic_t online_vcpus;
796         int max_vcpus;
797         int created_vcpus;
798         int last_boosted_vcpu;
799         struct list_head vm_list;
800         struct mutex lock;
801         struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
802 #ifdef CONFIG_HAVE_KVM_IRQCHIP
803         struct {
804                 spinlock_t        lock;
805                 struct list_head  items;
806                 /* resampler_list update side is protected by resampler_lock. */
807                 struct list_head  resampler_list;
808                 struct mutex      resampler_lock;
809         } irqfds;
810 #endif
811         struct list_head ioeventfds;
812         struct kvm_vm_stat stat;
813         struct kvm_arch arch;
814         refcount_t users_count;
815 #ifdef CONFIG_KVM_MMIO
816         struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
817         spinlock_t ring_lock;
818         struct list_head coalesced_zones;
819 #endif
820 
821         struct mutex irq_lock;
822 #ifdef CONFIG_HAVE_KVM_IRQCHIP
823         /*
824          * Update side is protected by irq_lock.
825          */
826         struct kvm_irq_routing_table __rcu *irq_routing;
827 
828         struct hlist_head irq_ack_notifier_list;
829 #endif
830 
831 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
832         struct mmu_notifier mmu_notifier;
833         unsigned long mmu_invalidate_seq;
834         long mmu_invalidate_in_progress;
835         gfn_t mmu_invalidate_range_start;
836         gfn_t mmu_invalidate_range_end;
837 #endif
838         struct list_head devices;
839         u64 manual_dirty_log_protect;
840         struct dentry *debugfs_dentry;
841         struct kvm_stat_data **debugfs_stat_data;
842         struct srcu_struct srcu;
843         struct srcu_struct irq_srcu;
844         pid_t userspace_pid;
845         bool override_halt_poll_ns;
846         unsigned int max_halt_poll_ns;
847         u32 dirty_ring_size;
848         bool dirty_ring_with_bitmap;
849         bool vm_bugged;
850         bool vm_dead;
851 
852 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
853         struct notifier_block pm_notifier;
854 #endif
855 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
856         /* Protected by slots_locks (for writes) and RCU (for reads) */
857         struct xarray mem_attr_array;
858 #endif
859         char stats_id[KVM_STATS_NAME_SIZE];
860 };
861 
862 #define kvm_err(fmt, ...) \
863         pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
864 #define kvm_info(fmt, ...) \
865         pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
866 #define kvm_debug(fmt, ...) \
867         pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
868 #define kvm_debug_ratelimited(fmt, ...) \
869         pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
870                              ## __VA_ARGS__)
871 #define kvm_pr_unimpl(fmt, ...) \
872         pr_err_ratelimited("kvm [%i]: " fmt, \
873                            task_tgid_nr(current), ## __VA_ARGS__)
874 
875 /* The guest did something we don't support. */
876 #define vcpu_unimpl(vcpu, fmt, ...)                                     \
877         kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,                  \
878                         (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
879 
880 #define vcpu_debug(vcpu, fmt, ...)                                      \
881         kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
882 #define vcpu_debug_ratelimited(vcpu, fmt, ...)                          \
883         kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
884                               ## __VA_ARGS__)
885 #define vcpu_err(vcpu, fmt, ...)                                        \
886         kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
887 
888 static inline void kvm_vm_dead(struct kvm *kvm)
889 {
890         kvm->vm_dead = true;
891         kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
892 }
893 
894 static inline void kvm_vm_bugged(struct kvm *kvm)
895 {
896         kvm->vm_bugged = true;
897         kvm_vm_dead(kvm);
898 }
899 
900 
901 #define KVM_BUG(cond, kvm, fmt...)                              \
902 ({                                                              \
903         bool __ret = !!(cond);                                  \
904                                                                 \
905         if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))         \
906                 kvm_vm_bugged(kvm);                             \
907         unlikely(__ret);                                        \
908 })
909 
910 #define KVM_BUG_ON(cond, kvm)                                   \
911 ({                                                              \
912         bool __ret = !!(cond);                                  \
913                                                                 \
914         if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))           \
915                 kvm_vm_bugged(kvm);                             \
916         unlikely(__ret);                                        \
917 })
918 
919 /*
920  * Note, "data corruption" refers to corruption of host kernel data structures,
921  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
922  * and contained to a single VM should *never* BUG() and potentially panic the
923  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
924  * is corrupted and that corruption can have a cascading effect to other parts
925  * of the hosts and/or to other VMs.
926  */
927 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)                   \
928 ({                                                              \
929         bool __ret = !!(cond);                                  \
930                                                                 \
931         if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))          \
932                 BUG_ON(__ret);                                  \
933         else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))      \
934                 kvm_vm_bugged(kvm);                             \
935         unlikely(__ret);                                        \
936 })
937 
938 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
939 {
940 #ifdef CONFIG_PROVE_RCU
941         WARN_ONCE(vcpu->srcu_depth++,
942                   "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
943 #endif
944         vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
945 }
946 
947 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
948 {
949         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
950 
951 #ifdef CONFIG_PROVE_RCU
952         WARN_ONCE(--vcpu->srcu_depth,
953                   "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
954 #endif
955 }
956 
957 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
958 {
959         return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
960 }
961 
962 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
963 {
964         return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
965                                       lockdep_is_held(&kvm->slots_lock) ||
966                                       !refcount_read(&kvm->users_count));
967 }
968 
969 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
970 {
971         int num_vcpus = atomic_read(&kvm->online_vcpus);
972         i = array_index_nospec(i, num_vcpus);
973 
974         /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
975         smp_rmb();
976         return xa_load(&kvm->vcpu_array, i);
977 }
978 
979 #define kvm_for_each_vcpu(idx, vcpup, kvm)                 \
980         xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
981                           (atomic_read(&kvm->online_vcpus) - 1))
982 
983 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
984 {
985         struct kvm_vcpu *vcpu = NULL;
986         unsigned long i;
987 
988         if (id < 0)
989                 return NULL;
990         if (id < KVM_MAX_VCPUS)
991                 vcpu = kvm_get_vcpu(kvm, id);
992         if (vcpu && vcpu->vcpu_id == id)
993                 return vcpu;
994         kvm_for_each_vcpu(i, vcpu, kvm)
995                 if (vcpu->vcpu_id == id)
996                         return vcpu;
997         return NULL;
998 }
999 
1000 void kvm_destroy_vcpus(struct kvm *kvm);
1001 
1002 void vcpu_load(struct kvm_vcpu *vcpu);
1003 void vcpu_put(struct kvm_vcpu *vcpu);
1004 
1005 #ifdef __KVM_HAVE_IOAPIC
1006 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1007 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1008 #else
1009 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1010 {
1011 }
1012 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1013 {
1014 }
1015 #endif
1016 
1017 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1018 int kvm_irqfd_init(void);
1019 void kvm_irqfd_exit(void);
1020 #else
1021 static inline int kvm_irqfd_init(void)
1022 {
1023         return 0;
1024 }
1025 
1026 static inline void kvm_irqfd_exit(void)
1027 {
1028 }
1029 #endif
1030 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1031 void kvm_exit(void);
1032 
1033 void kvm_get_kvm(struct kvm *kvm);
1034 bool kvm_get_kvm_safe(struct kvm *kvm);
1035 void kvm_put_kvm(struct kvm *kvm);
1036 bool file_is_kvm(struct file *file);
1037 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1038 
1039 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1040 {
1041         as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1042         return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1043                         lockdep_is_held(&kvm->slots_lock) ||
1044                         !refcount_read(&kvm->users_count));
1045 }
1046 
1047 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1048 {
1049         return __kvm_memslots(kvm, 0);
1050 }
1051 
1052 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1053 {
1054         int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1055 
1056         return __kvm_memslots(vcpu->kvm, as_id);
1057 }
1058 
1059 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1060 {
1061         return RB_EMPTY_ROOT(&slots->gfn_tree);
1062 }
1063 
1064 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1065 
1066 #define kvm_for_each_memslot(memslot, bkt, slots)                             \
1067         hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1068                 if (WARN_ON_ONCE(!memslot->npages)) {                         \
1069                 } else
1070 
1071 static inline
1072 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1073 {
1074         struct kvm_memory_slot *slot;
1075         int idx = slots->node_idx;
1076 
1077         hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1078                 if (slot->id == id)
1079                         return slot;
1080         }
1081 
1082         return NULL;
1083 }
1084 
1085 /* Iterator used for walking memslots that overlap a gfn range. */
1086 struct kvm_memslot_iter {
1087         struct kvm_memslots *slots;
1088         struct rb_node *node;
1089         struct kvm_memory_slot *slot;
1090 };
1091 
1092 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1093 {
1094         iter->node = rb_next(iter->node);
1095         if (!iter->node)
1096                 return;
1097 
1098         iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1099 }
1100 
1101 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1102                                           struct kvm_memslots *slots,
1103                                           gfn_t start)
1104 {
1105         int idx = slots->node_idx;
1106         struct rb_node *tmp;
1107         struct kvm_memory_slot *slot;
1108 
1109         iter->slots = slots;
1110 
1111         /*
1112          * Find the so called "upper bound" of a key - the first node that has
1113          * its key strictly greater than the searched one (the start gfn in our case).
1114          */
1115         iter->node = NULL;
1116         for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1117                 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1118                 if (start < slot->base_gfn) {
1119                         iter->node = tmp;
1120                         tmp = tmp->rb_left;
1121                 } else {
1122                         tmp = tmp->rb_right;
1123                 }
1124         }
1125 
1126         /*
1127          * Find the slot with the lowest gfn that can possibly intersect with
1128          * the range, so we'll ideally have slot start <= range start
1129          */
1130         if (iter->node) {
1131                 /*
1132                  * A NULL previous node means that the very first slot
1133                  * already has a higher start gfn.
1134                  * In this case slot start > range start.
1135                  */
1136                 tmp = rb_prev(iter->node);
1137                 if (tmp)
1138                         iter->node = tmp;
1139         } else {
1140                 /* a NULL node below means no slots */
1141                 iter->node = rb_last(&slots->gfn_tree);
1142         }
1143 
1144         if (iter->node) {
1145                 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1146 
1147                 /*
1148                  * It is possible in the slot start < range start case that the
1149                  * found slot ends before or at range start (slot end <= range start)
1150                  * and so it does not overlap the requested range.
1151                  *
1152                  * In such non-overlapping case the next slot (if it exists) will
1153                  * already have slot start > range start, otherwise the logic above
1154                  * would have found it instead of the current slot.
1155                  */
1156                 if (iter->slot->base_gfn + iter->slot->npages <= start)
1157                         kvm_memslot_iter_next(iter);
1158         }
1159 }
1160 
1161 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1162 {
1163         if (!iter->node)
1164                 return false;
1165 
1166         /*
1167          * If this slot starts beyond or at the end of the range so does
1168          * every next one
1169          */
1170         return iter->slot->base_gfn < end;
1171 }
1172 
1173 /* Iterate over each memslot at least partially intersecting [start, end) range */
1174 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)      \
1175         for (kvm_memslot_iter_start(iter, slots, start);                \
1176              kvm_memslot_iter_is_valid(iter, end);                      \
1177              kvm_memslot_iter_next(iter))
1178 
1179 /*
1180  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1181  * - create a new memory slot
1182  * - delete an existing memory slot
1183  * - modify an existing memory slot
1184  *   -- move it in the guest physical memory space
1185  *   -- just change its flags
1186  *
1187  * Since flags can be changed by some of these operations, the following
1188  * differentiation is the best we can do for __kvm_set_memory_region():
1189  */
1190 enum kvm_mr_change {
1191         KVM_MR_CREATE,
1192         KVM_MR_DELETE,
1193         KVM_MR_MOVE,
1194         KVM_MR_FLAGS_ONLY,
1195 };
1196 
1197 int kvm_set_memory_region(struct kvm *kvm,
1198                           const struct kvm_userspace_memory_region2 *mem);
1199 int __kvm_set_memory_region(struct kvm *kvm,
1200                             const struct kvm_userspace_memory_region2 *mem);
1201 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1202 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1203 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1204                                 const struct kvm_memory_slot *old,
1205                                 struct kvm_memory_slot *new,
1206                                 enum kvm_mr_change change);
1207 void kvm_arch_commit_memory_region(struct kvm *kvm,
1208                                 struct kvm_memory_slot *old,
1209                                 const struct kvm_memory_slot *new,
1210                                 enum kvm_mr_change change);
1211 /* flush all memory translations */
1212 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1213 /* flush memory translations pointing to 'slot' */
1214 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1215                                    struct kvm_memory_slot *slot);
1216 
1217 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1218                             struct page **pages, int nr_pages);
1219 
1220 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1221 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1222 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1223 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1224 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1225                                       bool *writable);
1226 void kvm_release_page_clean(struct page *page);
1227 void kvm_release_page_dirty(struct page *page);
1228 
1229 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1230 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231                       bool *writable);
1232 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1233 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1234 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1235                                bool atomic, bool interruptible, bool *async,
1236                                bool write_fault, bool *writable, hva_t *hva);
1237 
1238 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1239 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1240 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1241 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1242 
1243 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1244 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1245                         int len);
1246 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1247 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1248                            void *data, unsigned long len);
1249 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1250                                  void *data, unsigned int offset,
1251                                  unsigned long len);
1252 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1253                          int offset, int len);
1254 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1255                     unsigned long len);
1256 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1257                            void *data, unsigned long len);
1258 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1259                                   void *data, unsigned int offset,
1260                                   unsigned long len);
1261 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1262                               gpa_t gpa, unsigned long len);
1263 
1264 #define __kvm_get_guest(kvm, gfn, offset, v)                            \
1265 ({                                                                      \
1266         unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
1267         typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1268         int __ret = -EFAULT;                                            \
1269                                                                         \
1270         if (!kvm_is_error_hva(__addr))                                  \
1271                 __ret = get_user(v, __uaddr);                           \
1272         __ret;                                                          \
1273 })
1274 
1275 #define kvm_get_guest(kvm, gpa, v)                                      \
1276 ({                                                                      \
1277         gpa_t __gpa = gpa;                                              \
1278         struct kvm *__kvm = kvm;                                        \
1279                                                                         \
1280         __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
1281                         offset_in_page(__gpa), v);                      \
1282 })
1283 
1284 #define __kvm_put_guest(kvm, gfn, offset, v)                            \
1285 ({                                                                      \
1286         unsigned long __addr = gfn_to_hva(kvm, gfn);                    \
1287         typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1288         int __ret = -EFAULT;                                            \
1289                                                                         \
1290         if (!kvm_is_error_hva(__addr))                                  \
1291                 __ret = put_user(v, __uaddr);                           \
1292         if (!__ret)                                                     \
1293                 mark_page_dirty(kvm, gfn);                              \
1294         __ret;                                                          \
1295 })
1296 
1297 #define kvm_put_guest(kvm, gpa, v)                                      \
1298 ({                                                                      \
1299         gpa_t __gpa = gpa;                                              \
1300         struct kvm *__kvm = kvm;                                        \
1301                                                                         \
1302         __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,                     \
1303                         offset_in_page(__gpa), v);                      \
1304 })
1305 
1306 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1308 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1309 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1310 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1311 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1312 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1313 
1314 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1316 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1317 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1318 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1319 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1320 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1321 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1322 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1323                              int len);
1324 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1325                                unsigned long len);
1326 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1327                         unsigned long len);
1328 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1329                               int offset, int len);
1330 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1331                          unsigned long len);
1332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1333 
1334 /**
1335  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1336  *
1337  * @gpc:           struct gfn_to_pfn_cache object.
1338  * @kvm:           pointer to kvm instance.
1339  *
1340  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1341  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1342  * the caller before init).
1343  */
1344 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1345 
1346 /**
1347  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1348  *                    physical address.
1349  *
1350  * @gpc:           struct gfn_to_pfn_cache object.
1351  * @gpa:           guest physical address to map.
1352  * @len:           sanity check; the range being access must fit a single page.
1353  *
1354  * @return:        0 for success.
1355  *                 -EINVAL for a mapping which would cross a page boundary.
1356  *                 -EFAULT for an untranslatable guest physical address.
1357  *
1358  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1359  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1360  * to ensure that the cache is valid before accessing the target page.
1361  */
1362 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1363 
1364 /**
1365  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1366  *
1367  * @gpc:          struct gfn_to_pfn_cache object.
1368  * @hva:          userspace virtual address to map.
1369  * @len:          sanity check; the range being access must fit a single page.
1370  *
1371  * @return:       0 for success.
1372  *                -EINVAL for a mapping which would cross a page boundary.
1373  *                -EFAULT for an untranslatable guest physical address.
1374  *
1375  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1376  * merely bypasses a layer of address translation.
1377  */
1378 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1379 
1380 /**
1381  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1382  *
1383  * @gpc:           struct gfn_to_pfn_cache object.
1384  * @len:           sanity check; the range being access must fit a single page.
1385  *
1386  * @return:        %true if the cache is still valid and the address matches.
1387  *                 %false if the cache is not valid.
1388  *
1389  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1390  * while calling this function, and then continue to hold the lock until the
1391  * access is complete.
1392  *
1393  * Callers in IN_GUEST_MODE may do so without locking, although they should
1394  * still hold a read lock on kvm->scru for the memslot checks.
1395  */
1396 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1397 
1398 /**
1399  * kvm_gpc_refresh - update a previously initialized cache.
1400  *
1401  * @gpc:           struct gfn_to_pfn_cache object.
1402  * @len:           sanity check; the range being access must fit a single page.
1403  *
1404  * @return:        0 for success.
1405  *                 -EINVAL for a mapping which would cross a page boundary.
1406  *                 -EFAULT for an untranslatable guest physical address.
1407  *
1408  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1409  * return from this function does not mean the page can be immediately
1410  * accessed because it may have raced with an invalidation. Callers must
1411  * still lock and check the cache status, as this function does not return
1412  * with the lock still held to permit access.
1413  */
1414 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1415 
1416 /**
1417  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1418  *
1419  * @gpc:           struct gfn_to_pfn_cache object.
1420  *
1421  * This removes a cache from the VM's list to be processed on MMU notifier
1422  * invocation.
1423  */
1424 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1425 
1426 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1427 {
1428         return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1429 }
1430 
1431 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1432 {
1433         return gpc->active && kvm_is_error_gpa(gpc->gpa);
1434 }
1435 
1436 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1437 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1438 
1439 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1440 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1441 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1442 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1443 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1444 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1445 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1446 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1447 
1448 void kvm_flush_remote_tlbs(struct kvm *kvm);
1449 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1450 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1451                                    const struct kvm_memory_slot *memslot);
1452 
1453 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1454 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1455 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1456 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1457 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1458 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1459 #endif
1460 
1461 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1462 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1463 void kvm_mmu_invalidate_end(struct kvm *kvm);
1464 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1465 
1466 long kvm_arch_dev_ioctl(struct file *filp,
1467                         unsigned int ioctl, unsigned long arg);
1468 long kvm_arch_vcpu_ioctl(struct file *filp,
1469                          unsigned int ioctl, unsigned long arg);
1470 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1471 
1472 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1473 
1474 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1475                                         struct kvm_memory_slot *slot,
1476                                         gfn_t gfn_offset,
1477                                         unsigned long mask);
1478 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1479 
1480 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1481 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1482 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1483                       int *is_dirty, struct kvm_memory_slot **memslot);
1484 #endif
1485 
1486 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1487                         bool line_status);
1488 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1489                             struct kvm_enable_cap *cap);
1490 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1491 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1492                               unsigned long arg);
1493 
1494 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1495 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1496 
1497 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1498                                     struct kvm_translation *tr);
1499 
1500 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1503                                   struct kvm_sregs *sregs);
1504 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1505                                   struct kvm_sregs *sregs);
1506 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1507                                     struct kvm_mp_state *mp_state);
1508 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1509                                     struct kvm_mp_state *mp_state);
1510 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1511                                         struct kvm_guest_debug *dbg);
1512 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1513 
1514 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1515 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1516 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1517 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1518 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1519 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1520 
1521 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1522 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1523 #endif
1524 
1525 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1526 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1527 #else
1528 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1529 #endif
1530 
1531 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1532 int kvm_arch_hardware_enable(void);
1533 void kvm_arch_hardware_disable(void);
1534 #endif
1535 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1536 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1537 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1538 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1539 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1540 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1541 int kvm_arch_post_init_vm(struct kvm *kvm);
1542 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1543 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1544 
1545 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1546 /*
1547  * All architectures that want to use vzalloc currently also
1548  * need their own kvm_arch_alloc_vm implementation.
1549  */
1550 static inline struct kvm *kvm_arch_alloc_vm(void)
1551 {
1552         return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1553 }
1554 #endif
1555 
1556 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1557 {
1558         kvfree(kvm);
1559 }
1560 
1561 #ifndef __KVM_HAVE_ARCH_VM_FREE
1562 static inline void kvm_arch_free_vm(struct kvm *kvm)
1563 {
1564         __kvm_arch_free_vm(kvm);
1565 }
1566 #endif
1567 
1568 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1569 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1570 {
1571         return -ENOTSUPP;
1572 }
1573 #else
1574 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1575 #endif
1576 
1577 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1578 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1579                                                     gfn_t gfn, u64 nr_pages)
1580 {
1581         return -EOPNOTSUPP;
1582 }
1583 #else
1584 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1585 #endif
1586 
1587 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1588 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1589 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1590 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1591 #else
1592 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1593 {
1594 }
1595 
1596 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1597 {
1598 }
1599 
1600 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1601 {
1602         return false;
1603 }
1604 #endif
1605 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1606 void kvm_arch_start_assignment(struct kvm *kvm);
1607 void kvm_arch_end_assignment(struct kvm *kvm);
1608 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1609 #else
1610 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1611 {
1612 }
1613 
1614 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1615 {
1616 }
1617 
1618 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1619 {
1620         return false;
1621 }
1622 #endif
1623 
1624 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1625 {
1626 #ifdef __KVM_HAVE_ARCH_WQP
1627         return vcpu->arch.waitp;
1628 #else
1629         return &vcpu->wait;
1630 #endif
1631 }
1632 
1633 /*
1634  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1635  * true if the vCPU was blocking and was awakened, false otherwise.
1636  */
1637 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1638 {
1639         return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1640 }
1641 
1642 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1643 {
1644         return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1645 }
1646 
1647 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1648 /*
1649  * returns true if the virtual interrupt controller is initialized and
1650  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1651  * controller is dynamically instantiated and this is not always true.
1652  */
1653 bool kvm_arch_intc_initialized(struct kvm *kvm);
1654 #else
1655 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1656 {
1657         return true;
1658 }
1659 #endif
1660 
1661 #ifdef CONFIG_GUEST_PERF_EVENTS
1662 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1663 
1664 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1665 void kvm_unregister_perf_callbacks(void);
1666 #else
1667 static inline void kvm_register_perf_callbacks(void *ign) {}
1668 static inline void kvm_unregister_perf_callbacks(void) {}
1669 #endif /* CONFIG_GUEST_PERF_EVENTS */
1670 
1671 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1672 void kvm_arch_destroy_vm(struct kvm *kvm);
1673 void kvm_arch_sync_events(struct kvm *kvm);
1674 
1675 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1676 
1677 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1678 bool kvm_is_zone_device_page(struct page *page);
1679 
1680 struct kvm_irq_ack_notifier {
1681         struct hlist_node link;
1682         unsigned gsi;
1683         void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1684 };
1685 
1686 int kvm_irq_map_gsi(struct kvm *kvm,
1687                     struct kvm_kernel_irq_routing_entry *entries, int gsi);
1688 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1689 
1690 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1691                 bool line_status);
1692 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1693                 int irq_source_id, int level, bool line_status);
1694 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1695                                struct kvm *kvm, int irq_source_id,
1696                                int level, bool line_status);
1697 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1698 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1699 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1700 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1701                                    struct kvm_irq_ack_notifier *kian);
1702 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1703                                    struct kvm_irq_ack_notifier *kian);
1704 int kvm_request_irq_source_id(struct kvm *kvm);
1705 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1706 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1707 
1708 /*
1709  * Returns a pointer to the memslot if it contains gfn.
1710  * Otherwise returns NULL.
1711  */
1712 static inline struct kvm_memory_slot *
1713 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1714 {
1715         if (!slot)
1716                 return NULL;
1717 
1718         if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1719                 return slot;
1720         else
1721                 return NULL;
1722 }
1723 
1724 /*
1725  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1726  *
1727  * With "approx" set returns the memslot also when the address falls
1728  * in a hole. In that case one of the memslots bordering the hole is
1729  * returned.
1730  */
1731 static inline struct kvm_memory_slot *
1732 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1733 {
1734         struct kvm_memory_slot *slot;
1735         struct rb_node *node;
1736         int idx = slots->node_idx;
1737 
1738         slot = NULL;
1739         for (node = slots->gfn_tree.rb_node; node; ) {
1740                 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1741                 if (gfn >= slot->base_gfn) {
1742                         if (gfn < slot->base_gfn + slot->npages)
1743                                 return slot;
1744                         node = node->rb_right;
1745                 } else
1746                         node = node->rb_left;
1747         }
1748 
1749         return approx ? slot : NULL;
1750 }
1751 
1752 static inline struct kvm_memory_slot *
1753 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1754 {
1755         struct kvm_memory_slot *slot;
1756 
1757         slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1758         slot = try_get_memslot(slot, gfn);
1759         if (slot)
1760                 return slot;
1761 
1762         slot = search_memslots(slots, gfn, approx);
1763         if (slot) {
1764                 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1765                 return slot;
1766         }
1767 
1768         return NULL;
1769 }
1770 
1771 /*
1772  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1773  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1774  * because that would bloat other code too much.
1775  */
1776 static inline struct kvm_memory_slot *
1777 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1778 {
1779         return ____gfn_to_memslot(slots, gfn, false);
1780 }
1781 
1782 static inline unsigned long
1783 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1784 {
1785         /*
1786          * The index was checked originally in search_memslots.  To avoid
1787          * that a malicious guest builds a Spectre gadget out of e.g. page
1788          * table walks, do not let the processor speculate loads outside
1789          * the guest's registered memslots.
1790          */
1791         unsigned long offset = gfn - slot->base_gfn;
1792         offset = array_index_nospec(offset, slot->npages);
1793         return slot->userspace_addr + offset * PAGE_SIZE;
1794 }
1795 
1796 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1797 {
1798         return gfn_to_memslot(kvm, gfn)->id;
1799 }
1800 
1801 static inline gfn_t
1802 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1803 {
1804         gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1805 
1806         return slot->base_gfn + gfn_offset;
1807 }
1808 
1809 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1810 {
1811         return (gpa_t)gfn << PAGE_SHIFT;
1812 }
1813 
1814 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1815 {
1816         return (gfn_t)(gpa >> PAGE_SHIFT);
1817 }
1818 
1819 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1820 {
1821         return (hpa_t)pfn << PAGE_SHIFT;
1822 }
1823 
1824 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1825 {
1826         unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1827 
1828         return !kvm_is_error_hva(hva);
1829 }
1830 
1831 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1832 {
1833         lockdep_assert_held(&gpc->lock);
1834 
1835         if (!gpc->memslot)
1836                 return;
1837 
1838         mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1839 }
1840 
1841 enum kvm_stat_kind {
1842         KVM_STAT_VM,
1843         KVM_STAT_VCPU,
1844 };
1845 
1846 struct kvm_stat_data {
1847         struct kvm *kvm;
1848         const struct _kvm_stats_desc *desc;
1849         enum kvm_stat_kind kind;
1850 };
1851 
1852 struct _kvm_stats_desc {
1853         struct kvm_stats_desc desc;
1854         char name[KVM_STATS_NAME_SIZE];
1855 };
1856 
1857 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)                      \
1858         .flags = type | unit | base |                                          \
1859                  BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |              \
1860                  BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |              \
1861                  BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),               \
1862         .exponent = exp,                                                       \
1863         .size = sz,                                                            \
1864         .bucket_size = bsz
1865 
1866 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)            \
1867         {                                                                      \
1868                 {                                                              \
1869                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1870                         .offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1871                 },                                                             \
1872                 .name = #stat,                                                 \
1873         }
1874 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)          \
1875         {                                                                      \
1876                 {                                                              \
1877                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1878                         .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1879                 },                                                             \
1880                 .name = #stat,                                                 \
1881         }
1882 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)                    \
1883         {                                                                      \
1884                 {                                                              \
1885                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1886                         .offset = offsetof(struct kvm_vm_stat, stat)           \
1887                 },                                                             \
1888                 .name = #stat,                                                 \
1889         }
1890 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)                  \
1891         {                                                                      \
1892                 {                                                              \
1893                         STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1894                         .offset = offsetof(struct kvm_vcpu_stat, stat)         \
1895                 },                                                             \
1896                 .name = #stat,                                                 \
1897         }
1898 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1899 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)                \
1900         SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1901 
1902 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)               \
1903         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,                     \
1904                 unit, base, exponent, 1, 0)
1905 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)                  \
1906         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,                        \
1907                 unit, base, exponent, 1, 0)
1908 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)                     \
1909         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,                           \
1910                 unit, base, exponent, 1, 0)
1911 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1912         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,                    \
1913                 unit, base, exponent, sz, bsz)
1914 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)             \
1915         STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,                       \
1916                 unit, base, exponent, sz, 0)
1917 
1918 /* Cumulative counter, read/write */
1919 #define STATS_DESC_COUNTER(SCOPE, name)                                        \
1920         STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,                \
1921                 KVM_STATS_BASE_POW10, 0)
1922 /* Instantaneous counter, read only */
1923 #define STATS_DESC_ICOUNTER(SCOPE, name)                                       \
1924         STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,                   \
1925                 KVM_STATS_BASE_POW10, 0)
1926 /* Peak counter, read/write */
1927 #define STATS_DESC_PCOUNTER(SCOPE, name)                                       \
1928         STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,                      \
1929                 KVM_STATS_BASE_POW10, 0)
1930 
1931 /* Instantaneous boolean value, read only */
1932 #define STATS_DESC_IBOOLEAN(SCOPE, name)                                       \
1933         STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,                \
1934                 KVM_STATS_BASE_POW10, 0)
1935 /* Peak (sticky) boolean value, read/write */
1936 #define STATS_DESC_PBOOLEAN(SCOPE, name)                                       \
1937         STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,                   \
1938                 KVM_STATS_BASE_POW10, 0)
1939 
1940 /* Cumulative time in nanosecond */
1941 #define STATS_DESC_TIME_NSEC(SCOPE, name)                                      \
1942         STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,             \
1943                 KVM_STATS_BASE_POW10, -9)
1944 /* Linear histogram for time in nanosecond */
1945 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)                     \
1946         STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,            \
1947                 KVM_STATS_BASE_POW10, -9, sz, bsz)
1948 /* Logarithmic histogram for time in nanosecond */
1949 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)                          \
1950         STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,               \
1951                 KVM_STATS_BASE_POW10, -9, sz)
1952 
1953 #define KVM_GENERIC_VM_STATS()                                                 \
1954         STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),                      \
1955         STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1956 
1957 #define KVM_GENERIC_VCPU_STATS()                                               \
1958         STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),                \
1959         STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),                 \
1960         STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),                   \
1961         STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),                         \
1962         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),              \
1963         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),                 \
1964         STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),                      \
1965         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1966                         HALT_POLL_HIST_COUNT),                                 \
1967         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,        \
1968                         HALT_POLL_HIST_COUNT),                                 \
1969         STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,             \
1970                         HALT_POLL_HIST_COUNT),                                 \
1971         STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1972 
1973 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1974                        const struct _kvm_stats_desc *desc,
1975                        void *stats, size_t size_stats,
1976                        char __user *user_buffer, size_t size, loff_t *offset);
1977 
1978 /**
1979  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1980  * statistics data.
1981  *
1982  * @data: start address of the stats data
1983  * @size: the number of bucket of the stats data
1984  * @value: the new value used to update the linear histogram's bucket
1985  * @bucket_size: the size (width) of a bucket
1986  */
1987 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1988                                                 u64 value, size_t bucket_size)
1989 {
1990         size_t index = div64_u64(value, bucket_size);
1991 
1992         index = min(index, size - 1);
1993         ++data[index];
1994 }
1995 
1996 /**
1997  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1998  * statistics data.
1999  *
2000  * @data: start address of the stats data
2001  * @size: the number of bucket of the stats data
2002  * @value: the new value used to update the logarithmic histogram's bucket
2003  */
2004 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2005 {
2006         size_t index = fls64(value);
2007 
2008         index = min(index, size - 1);
2009         ++data[index];
2010 }
2011 
2012 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)                      \
2013         kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2014 #define KVM_STATS_LOG_HIST_UPDATE(array, value)                                \
2015         kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2016 
2017 
2018 extern const struct kvm_stats_header kvm_vm_stats_header;
2019 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2020 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2021 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2022 
2023 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2024 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2025 {
2026         if (unlikely(kvm->mmu_invalidate_in_progress))
2027                 return 1;
2028         /*
2029          * Ensure the read of mmu_invalidate_in_progress happens before
2030          * the read of mmu_invalidate_seq.  This interacts with the
2031          * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2032          * that the caller either sees the old (non-zero) value of
2033          * mmu_invalidate_in_progress or the new (incremented) value of
2034          * mmu_invalidate_seq.
2035          *
2036          * PowerPC Book3s HV KVM calls this under a per-page lock rather
2037          * than under kvm->mmu_lock, for scalability, so can't rely on
2038          * kvm->mmu_lock to keep things ordered.
2039          */
2040         smp_rmb();
2041         if (kvm->mmu_invalidate_seq != mmu_seq)
2042                 return 1;
2043         return 0;
2044 }
2045 
2046 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2047                                            unsigned long mmu_seq,
2048                                            gfn_t gfn)
2049 {
2050         lockdep_assert_held(&kvm->mmu_lock);
2051         /*
2052          * If mmu_invalidate_in_progress is non-zero, then the range maintained
2053          * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2054          * that might be being invalidated. Note that it may include some false
2055          * positives, due to shortcuts when handing concurrent invalidations.
2056          */
2057         if (unlikely(kvm->mmu_invalidate_in_progress)) {
2058                 /*
2059                  * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2060                  * but before updating the range is a KVM bug.
2061                  */
2062                 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2063                                  kvm->mmu_invalidate_range_end == INVALID_GPA))
2064                         return 1;
2065 
2066                 if (gfn >= kvm->mmu_invalidate_range_start &&
2067                     gfn < kvm->mmu_invalidate_range_end)
2068                         return 1;
2069         }
2070 
2071         if (kvm->mmu_invalidate_seq != mmu_seq)
2072                 return 1;
2073         return 0;
2074 }
2075 
2076 /*
2077  * This lockless version of the range-based retry check *must* be paired with a
2078  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2079  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2080  * get false negatives and false positives.
2081  */
2082 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2083                                                    unsigned long mmu_seq,
2084                                                    gfn_t gfn)
2085 {
2086         /*
2087          * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2088          * are always read from memory, e.g. so that checking for retry in a
2089          * loop won't result in an infinite retry loop.  Don't force loads for
2090          * start+end, as the key to avoiding infinite retry loops is observing
2091          * the 1=>0 transition of in-progress, i.e. getting false negatives
2092          * due to stale start+end values is acceptable.
2093          */
2094         if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2095             gfn >= kvm->mmu_invalidate_range_start &&
2096             gfn < kvm->mmu_invalidate_range_end)
2097                 return true;
2098 
2099         return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2100 }
2101 #endif
2102 
2103 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2104 
2105 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2106 
2107 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2108 int kvm_set_irq_routing(struct kvm *kvm,
2109                         const struct kvm_irq_routing_entry *entries,
2110                         unsigned nr,
2111                         unsigned flags);
2112 int kvm_init_irq_routing(struct kvm *kvm);
2113 int kvm_set_routing_entry(struct kvm *kvm,
2114                           struct kvm_kernel_irq_routing_entry *e,
2115                           const struct kvm_irq_routing_entry *ue);
2116 void kvm_free_irq_routing(struct kvm *kvm);
2117 
2118 #else
2119 
2120 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2121 
2122 static inline int kvm_init_irq_routing(struct kvm *kvm)
2123 {
2124         return 0;
2125 }
2126 
2127 #endif
2128 
2129 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2130 
2131 void kvm_eventfd_init(struct kvm *kvm);
2132 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2133 
2134 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2135 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2136 void kvm_irqfd_release(struct kvm *kvm);
2137 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2138                                 unsigned int irqchip,
2139                                 unsigned int pin);
2140 void kvm_irq_routing_update(struct kvm *);
2141 #else
2142 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2143 {
2144         return -EINVAL;
2145 }
2146 
2147 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2148 
2149 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2150                                               unsigned int irqchip,
2151                                               unsigned int pin)
2152 {
2153         return false;
2154 }
2155 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2156 
2157 void kvm_arch_irq_routing_update(struct kvm *kvm);
2158 
2159 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2160 {
2161         /*
2162          * Ensure the rest of the request is published to kvm_check_request's
2163          * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2164          */
2165         smp_wmb();
2166         set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2167 }
2168 
2169 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2170 {
2171         /*
2172          * Request that don't require vCPU action should never be logged in
2173          * vcpu->requests.  The vCPU won't clear the request, so it will stay
2174          * logged indefinitely and prevent the vCPU from entering the guest.
2175          */
2176         BUILD_BUG_ON(!__builtin_constant_p(req) ||
2177                      (req & KVM_REQUEST_NO_ACTION));
2178 
2179         __kvm_make_request(req, vcpu);
2180 }
2181 
2182 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2183 {
2184         return READ_ONCE(vcpu->requests);
2185 }
2186 
2187 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2188 {
2189         return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2190 }
2191 
2192 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2193 {
2194         clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2195 }
2196 
2197 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2198 {
2199         if (kvm_test_request(req, vcpu)) {
2200                 kvm_clear_request(req, vcpu);
2201 
2202                 /*
2203                  * Ensure the rest of the request is visible to kvm_check_request's
2204                  * caller.  Paired with the smp_wmb in kvm_make_request.
2205                  */
2206                 smp_mb__after_atomic();
2207                 return true;
2208         } else {
2209                 return false;
2210         }
2211 }
2212 
2213 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2214 extern bool kvm_rebooting;
2215 #endif
2216 
2217 extern unsigned int halt_poll_ns;
2218 extern unsigned int halt_poll_ns_grow;
2219 extern unsigned int halt_poll_ns_grow_start;
2220 extern unsigned int halt_poll_ns_shrink;
2221 
2222 struct kvm_device {
2223         const struct kvm_device_ops *ops;
2224         struct kvm *kvm;
2225         void *private;
2226         struct list_head vm_node;
2227 };
2228 
2229 /* create, destroy, and name are mandatory */
2230 struct kvm_device_ops {
2231         const char *name;
2232 
2233         /*
2234          * create is called holding kvm->lock and any operations not suitable
2235          * to do while holding the lock should be deferred to init (see
2236          * below).
2237          */
2238         int (*create)(struct kvm_device *dev, u32 type);
2239 
2240         /*
2241          * init is called after create if create is successful and is called
2242          * outside of holding kvm->lock.
2243          */
2244         void (*init)(struct kvm_device *dev);
2245 
2246         /*
2247          * Destroy is responsible for freeing dev.
2248          *
2249          * Destroy may be called before or after destructors are called
2250          * on emulated I/O regions, depending on whether a reference is
2251          * held by a vcpu or other kvm component that gets destroyed
2252          * after the emulated I/O.
2253          */
2254         void (*destroy)(struct kvm_device *dev);
2255 
2256         /*
2257          * Release is an alternative method to free the device. It is
2258          * called when the device file descriptor is closed. Once
2259          * release is called, the destroy method will not be called
2260          * anymore as the device is removed from the device list of
2261          * the VM. kvm->lock is held.
2262          */
2263         void (*release)(struct kvm_device *dev);
2264 
2265         int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2266         int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2267         int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2268         long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2269                       unsigned long arg);
2270         int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2271 };
2272 
2273 struct kvm_device *kvm_device_from_filp(struct file *filp);
2274 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2275 void kvm_unregister_device_ops(u32 type);
2276 
2277 extern struct kvm_device_ops kvm_mpic_ops;
2278 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2279 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2280 
2281 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2282 
2283 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2284 {
2285         vcpu->spin_loop.in_spin_loop = val;
2286 }
2287 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2288 {
2289         vcpu->spin_loop.dy_eligible = val;
2290 }
2291 
2292 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2293 
2294 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2295 {
2296 }
2297 
2298 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2299 {
2300 }
2301 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2302 
2303 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2304 {
2305         return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2306                 !(memslot->flags & KVM_MEMSLOT_INVALID));
2307 }
2308 
2309 struct kvm_vcpu *kvm_get_running_vcpu(void);
2310 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2311 
2312 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2313 bool kvm_arch_has_irq_bypass(void);
2314 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2315                            struct irq_bypass_producer *);
2316 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2317                            struct irq_bypass_producer *);
2318 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2319 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2320 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2321                                   uint32_t guest_irq, bool set);
2322 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2323                                   struct kvm_kernel_irq_routing_entry *);
2324 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2325 
2326 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2327 /* If we wakeup during the poll time, was it a sucessful poll? */
2328 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2329 {
2330         return vcpu->valid_wakeup;
2331 }
2332 
2333 #else
2334 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2335 {
2336         return true;
2337 }
2338 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2339 
2340 #ifdef CONFIG_HAVE_KVM_NO_POLL
2341 /* Callback that tells if we must not poll */
2342 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2343 #else
2344 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2345 {
2346         return false;
2347 }
2348 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2349 
2350 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2351 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2352                                unsigned int ioctl, unsigned long arg);
2353 #else
2354 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2355                                              unsigned int ioctl,
2356                                              unsigned long arg)
2357 {
2358         return -ENOIOCTLCMD;
2359 }
2360 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2361 
2362 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2363 
2364 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2365 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2366 #else
2367 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2368 {
2369         return 0;
2370 }
2371 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2372 
2373 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2374 
2375 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2376                                 uintptr_t data, const char *name,
2377                                 struct task_struct **thread_ptr);
2378 
2379 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2380 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2381 {
2382         vcpu->run->exit_reason = KVM_EXIT_INTR;
2383         vcpu->stat.signal_exits++;
2384 }
2385 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2386 
2387 /*
2388  * If more than one page is being (un)accounted, @virt must be the address of
2389  * the first page of a block of pages what were allocated together (i.e
2390  * accounted together).
2391  *
2392  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2393  * is thread-safe.
2394  */
2395 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2396 {
2397         mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2398 }
2399 
2400 /*
2401  * This defines how many reserved entries we want to keep before we
2402  * kick the vcpu to the userspace to avoid dirty ring full.  This
2403  * value can be tuned to higher if e.g. PML is enabled on the host.
2404  */
2405 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2406 
2407 /* Max number of entries allowed for each kvm dirty ring */
2408 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2409 
2410 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2411                                                  gpa_t gpa, gpa_t size,
2412                                                  bool is_write, bool is_exec,
2413                                                  bool is_private)
2414 {
2415         vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2416         vcpu->run->memory_fault.gpa = gpa;
2417         vcpu->run->memory_fault.size = size;
2418 
2419         /* RWX flags are not (yet) defined or communicated to userspace. */
2420         vcpu->run->memory_fault.flags = 0;
2421         if (is_private)
2422                 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2423 }
2424 
2425 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2426 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2427 {
2428         return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2429 }
2430 
2431 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2432                                      unsigned long mask, unsigned long attrs);
2433 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2434                                         struct kvm_gfn_range *range);
2435 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2436                                          struct kvm_gfn_range *range);
2437 
2438 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2439 {
2440         return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2441                kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2442 }
2443 #else
2444 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2445 {
2446         return false;
2447 }
2448 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2449 
2450 #ifdef CONFIG_KVM_PRIVATE_MEM
2451 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2452                      gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2453 #else
2454 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2455                                    struct kvm_memory_slot *slot, gfn_t gfn,
2456                                    kvm_pfn_t *pfn, int *max_order)
2457 {
2458         KVM_BUG_ON(1, kvm);
2459         return -EIO;
2460 }
2461 #endif /* CONFIG_KVM_PRIVATE_MEM */
2462 
2463 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2464 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2465 #endif
2466 
2467 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2468 /**
2469  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2470  *
2471  * @kvm: KVM instance
2472  * @gfn: starting GFN to be populated
2473  * @src: userspace-provided buffer containing data to copy into GFN range
2474  *       (passed to @post_populate, and incremented on each iteration
2475  *       if not NULL)
2476  * @npages: number of pages to copy from userspace-buffer
2477  * @post_populate: callback to issue for each gmem page that backs the GPA
2478  *                 range
2479  * @opaque: opaque data to pass to @post_populate callback
2480  *
2481  * This is primarily intended for cases where a gmem-backed GPA range needs
2482  * to be initialized with userspace-provided data prior to being mapped into
2483  * the guest as a private page. This should be called with the slots->lock
2484  * held so that caller-enforced invariants regarding the expected memory
2485  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2486  *
2487  * Returns the number of pages that were populated.
2488  */
2489 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2490                                     void __user *src, int order, void *opaque);
2491 
2492 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2493                        kvm_gmem_populate_cb post_populate, void *opaque);
2494 #endif
2495 
2496 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2497 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2498 #endif
2499 
2500 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2501 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2502                                     struct kvm_pre_fault_memory *range);
2503 #endif
2504 
2505 #endif
2506 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php