1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 static inline bool kvm_is_error_gpa(gpa_t gpa) 152 { 153 return gpa == INVALID_GPA; 154 } 155 156 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 157 158 static inline bool is_error_page(struct page *page) 159 { 160 return IS_ERR(page); 161 } 162 163 #define KVM_REQUEST_MASK GENMASK(7,0) 164 #define KVM_REQUEST_NO_WAKEUP BIT(8) 165 #define KVM_REQUEST_WAIT BIT(9) 166 #define KVM_REQUEST_NO_ACTION BIT(10) 167 /* 168 * Architecture-independent vcpu->requests bit members 169 * Bits 3-7 are reserved for more arch-independent bits. 170 */ 171 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 172 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 173 #define KVM_REQ_UNBLOCK 2 174 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 175 #define KVM_REQUEST_ARCH_BASE 8 176 177 /* 178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 183 * guarantee the vCPU received an IPI and has actually exited guest mode. 184 */ 185 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 186 187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 190 }) 191 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 192 193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 194 unsigned long *vcpu_bitmap); 195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 196 197 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 199 200 extern struct mutex kvm_lock; 201 extern struct list_head vm_list; 202 203 struct kvm_io_range { 204 gpa_t addr; 205 int len; 206 struct kvm_io_device *dev; 207 }; 208 209 #define NR_IOBUS_DEVS 1000 210 211 struct kvm_io_bus { 212 int dev_count; 213 int ioeventfd_count; 214 struct kvm_io_range range[]; 215 }; 216 217 enum kvm_bus { 218 KVM_MMIO_BUS, 219 KVM_PIO_BUS, 220 KVM_VIRTIO_CCW_NOTIFY_BUS, 221 KVM_FAST_MMIO_BUS, 222 KVM_NR_BUSES 223 }; 224 225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 226 int len, const void *val); 227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 228 gpa_t addr, int len, const void *val, long cookie); 229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 230 int len, void *val); 231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 232 int len, struct kvm_io_device *dev); 233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 struct kvm_io_device *dev); 235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 236 gpa_t addr); 237 238 #ifdef CONFIG_KVM_ASYNC_PF 239 struct kvm_async_pf { 240 struct work_struct work; 241 struct list_head link; 242 struct list_head queue; 243 struct kvm_vcpu *vcpu; 244 gpa_t cr2_or_gpa; 245 unsigned long addr; 246 struct kvm_arch_async_pf arch; 247 bool wakeup_all; 248 bool notpresent_injected; 249 }; 250 251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 254 unsigned long hva, struct kvm_arch_async_pf *arch); 255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 256 #endif 257 258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 259 union kvm_mmu_notifier_arg { 260 unsigned long attributes; 261 }; 262 263 struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 bool may_block; 269 }; 270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273 #endif 274 275 enum { 276 OUTSIDE_GUEST_MODE, 277 IN_GUEST_MODE, 278 EXITING_GUEST_MODE, 279 READING_SHADOW_PAGE_TABLES, 280 }; 281 282 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 283 284 struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 * If 'pfn' is not managed by the host kernel, this field is 291 * initialized to KVM_UNMAPPED_PAGE. 292 */ 293 struct page *page; 294 void *hva; 295 kvm_pfn_t pfn; 296 kvm_pfn_t gfn; 297 }; 298 299 /* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304 { 305 return !!map->hva; 306 } 307 308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309 { 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311 } 312 313 /* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317 struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321 }; 322 323 struct kvm_vcpu { 324 struct kvm *kvm; 325 #ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327 #endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332 #ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334 #endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342 #ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344 #endif 345 struct pid __rcu *pid; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351 #ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358 #endif 359 360 #ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367 #endif 368 369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380 #endif 381 bool wants_to_run; 382 bool preempted; 383 bool ready; 384 bool scheduled_out; 385 struct kvm_vcpu_arch arch; 386 struct kvm_vcpu_stat stat; 387 char stats_id[KVM_STATS_NAME_SIZE]; 388 struct kvm_dirty_ring dirty_ring; 389 390 /* 391 * The most recently used memslot by this vCPU and the slots generation 392 * for which it is valid. 393 * No wraparound protection is needed since generations won't overflow in 394 * thousands of years, even assuming 1M memslot operations per second. 395 */ 396 struct kvm_memory_slot *last_used_slot; 397 u64 last_used_slot_gen; 398 }; 399 400 /* 401 * Start accounting time towards a guest. 402 * Must be called before entering guest context. 403 */ 404 static __always_inline void guest_timing_enter_irqoff(void) 405 { 406 /* 407 * This is running in ioctl context so its safe to assume that it's the 408 * stime pending cputime to flush. 409 */ 410 instrumentation_begin(); 411 vtime_account_guest_enter(); 412 instrumentation_end(); 413 } 414 415 /* 416 * Enter guest context and enter an RCU extended quiescent state. 417 * 418 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 419 * unsafe to use any code which may directly or indirectly use RCU, tracing 420 * (including IRQ flag tracing), or lockdep. All code in this period must be 421 * non-instrumentable. 422 */ 423 static __always_inline void guest_context_enter_irqoff(void) 424 { 425 /* 426 * KVM does not hold any references to rcu protected data when it 427 * switches CPU into a guest mode. In fact switching to a guest mode 428 * is very similar to exiting to userspace from rcu point of view. In 429 * addition CPU may stay in a guest mode for quite a long time (up to 430 * one time slice). Lets treat guest mode as quiescent state, just like 431 * we do with user-mode execution. 432 */ 433 if (!context_tracking_guest_enter()) { 434 instrumentation_begin(); 435 rcu_virt_note_context_switch(); 436 instrumentation_end(); 437 } 438 } 439 440 /* 441 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 442 * guest_state_enter_irqoff(). 443 */ 444 static __always_inline void guest_enter_irqoff(void) 445 { 446 guest_timing_enter_irqoff(); 447 guest_context_enter_irqoff(); 448 } 449 450 /** 451 * guest_state_enter_irqoff - Fixup state when entering a guest 452 * 453 * Entry to a guest will enable interrupts, but the kernel state is interrupts 454 * disabled when this is invoked. Also tell RCU about it. 455 * 456 * 1) Trace interrupts on state 457 * 2) Invoke context tracking if enabled to adjust RCU state 458 * 3) Tell lockdep that interrupts are enabled 459 * 460 * Invoked from architecture specific code before entering a guest. 461 * Must be called with interrupts disabled and the caller must be 462 * non-instrumentable. 463 * The caller has to invoke guest_timing_enter_irqoff() before this. 464 * 465 * Note: this is analogous to exit_to_user_mode(). 466 */ 467 static __always_inline void guest_state_enter_irqoff(void) 468 { 469 instrumentation_begin(); 470 trace_hardirqs_on_prepare(); 471 lockdep_hardirqs_on_prepare(); 472 instrumentation_end(); 473 474 guest_context_enter_irqoff(); 475 lockdep_hardirqs_on(CALLER_ADDR0); 476 } 477 478 /* 479 * Exit guest context and exit an RCU extended quiescent state. 480 * 481 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 482 * unsafe to use any code which may directly or indirectly use RCU, tracing 483 * (including IRQ flag tracing), or lockdep. All code in this period must be 484 * non-instrumentable. 485 */ 486 static __always_inline void guest_context_exit_irqoff(void) 487 { 488 /* 489 * Guest mode is treated as a quiescent state, see 490 * guest_context_enter_irqoff() for more details. 491 */ 492 if (!context_tracking_guest_exit()) { 493 instrumentation_begin(); 494 rcu_virt_note_context_switch(); 495 instrumentation_end(); 496 } 497 } 498 499 /* 500 * Stop accounting time towards a guest. 501 * Must be called after exiting guest context. 502 */ 503 static __always_inline void guest_timing_exit_irqoff(void) 504 { 505 instrumentation_begin(); 506 /* Flush the guest cputime we spent on the guest */ 507 vtime_account_guest_exit(); 508 instrumentation_end(); 509 } 510 511 /* 512 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 513 * guest_timing_exit_irqoff(). 514 */ 515 static __always_inline void guest_exit_irqoff(void) 516 { 517 guest_context_exit_irqoff(); 518 guest_timing_exit_irqoff(); 519 } 520 521 static inline void guest_exit(void) 522 { 523 unsigned long flags; 524 525 local_irq_save(flags); 526 guest_exit_irqoff(); 527 local_irq_restore(flags); 528 } 529 530 /** 531 * guest_state_exit_irqoff - Establish state when returning from guest mode 532 * 533 * Entry from a guest disables interrupts, but guest mode is traced as 534 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 535 * 536 * 1) Tell lockdep that interrupts are disabled 537 * 2) Invoke context tracking if enabled to reactivate RCU 538 * 3) Trace interrupts off state 539 * 540 * Invoked from architecture specific code after exiting a guest. 541 * Must be invoked with interrupts disabled and the caller must be 542 * non-instrumentable. 543 * The caller has to invoke guest_timing_exit_irqoff() after this. 544 * 545 * Note: this is analogous to enter_from_user_mode(). 546 */ 547 static __always_inline void guest_state_exit_irqoff(void) 548 { 549 lockdep_hardirqs_off(CALLER_ADDR0); 550 guest_context_exit_irqoff(); 551 552 instrumentation_begin(); 553 trace_hardirqs_off_finish(); 554 instrumentation_end(); 555 } 556 557 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 558 { 559 /* 560 * The memory barrier ensures a previous write to vcpu->requests cannot 561 * be reordered with the read of vcpu->mode. It pairs with the general 562 * memory barrier following the write of vcpu->mode in VCPU RUN. 563 */ 564 smp_mb__before_atomic(); 565 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 566 } 567 568 /* 569 * Some of the bitops functions do not support too long bitmaps. 570 * This number must be determined not to exceed such limits. 571 */ 572 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 573 574 /* 575 * Since at idle each memslot belongs to two memslot sets it has to contain 576 * two embedded nodes for each data structure that it forms a part of. 577 * 578 * Two memslot sets (one active and one inactive) are necessary so the VM 579 * continues to run on one memslot set while the other is being modified. 580 * 581 * These two memslot sets normally point to the same set of memslots. 582 * They can, however, be desynchronized when performing a memslot management 583 * operation by replacing the memslot to be modified by its copy. 584 * After the operation is complete, both memslot sets once again point to 585 * the same, common set of memslot data. 586 * 587 * The memslots themselves are independent of each other so they can be 588 * individually added or deleted. 589 */ 590 struct kvm_memory_slot { 591 struct hlist_node id_node[2]; 592 struct interval_tree_node hva_node[2]; 593 struct rb_node gfn_node[2]; 594 gfn_t base_gfn; 595 unsigned long npages; 596 unsigned long *dirty_bitmap; 597 struct kvm_arch_memory_slot arch; 598 unsigned long userspace_addr; 599 u32 flags; 600 short id; 601 u16 as_id; 602 603 #ifdef CONFIG_KVM_PRIVATE_MEM 604 struct { 605 struct file __rcu *file; 606 pgoff_t pgoff; 607 } gmem; 608 #endif 609 }; 610 611 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 612 { 613 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 614 } 615 616 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 617 { 618 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 619 } 620 621 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 622 { 623 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 624 } 625 626 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 627 { 628 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 629 630 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 631 } 632 633 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 634 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 635 #endif 636 637 struct kvm_s390_adapter_int { 638 u64 ind_addr; 639 u64 summary_addr; 640 u64 ind_offset; 641 u32 summary_offset; 642 u32 adapter_id; 643 }; 644 645 struct kvm_hv_sint { 646 u32 vcpu; 647 u32 sint; 648 }; 649 650 struct kvm_xen_evtchn { 651 u32 port; 652 u32 vcpu_id; 653 int vcpu_idx; 654 u32 priority; 655 }; 656 657 struct kvm_kernel_irq_routing_entry { 658 u32 gsi; 659 u32 type; 660 int (*set)(struct kvm_kernel_irq_routing_entry *e, 661 struct kvm *kvm, int irq_source_id, int level, 662 bool line_status); 663 union { 664 struct { 665 unsigned irqchip; 666 unsigned pin; 667 } irqchip; 668 struct { 669 u32 address_lo; 670 u32 address_hi; 671 u32 data; 672 u32 flags; 673 u32 devid; 674 } msi; 675 struct kvm_s390_adapter_int adapter; 676 struct kvm_hv_sint hv_sint; 677 struct kvm_xen_evtchn xen_evtchn; 678 }; 679 struct hlist_node link; 680 }; 681 682 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 683 struct kvm_irq_routing_table { 684 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 685 u32 nr_rt_entries; 686 /* 687 * Array indexed by gsi. Each entry contains list of irq chips 688 * the gsi is connected to. 689 */ 690 struct hlist_head map[] __counted_by(nr_rt_entries); 691 }; 692 #endif 693 694 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 695 696 #ifndef KVM_INTERNAL_MEM_SLOTS 697 #define KVM_INTERNAL_MEM_SLOTS 0 698 #endif 699 700 #define KVM_MEM_SLOTS_NUM SHRT_MAX 701 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 702 703 #if KVM_MAX_NR_ADDRESS_SPACES == 1 704 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 705 { 706 return KVM_MAX_NR_ADDRESS_SPACES; 707 } 708 709 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 710 { 711 return 0; 712 } 713 #endif 714 715 /* 716 * Arch code must define kvm_arch_has_private_mem if support for private memory 717 * is enabled. 718 */ 719 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 720 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 721 { 722 return false; 723 } 724 #endif 725 726 #ifndef kvm_arch_has_readonly_mem 727 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 728 { 729 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 730 } 731 #endif 732 733 struct kvm_memslots { 734 u64 generation; 735 atomic_long_t last_used_slot; 736 struct rb_root_cached hva_tree; 737 struct rb_root gfn_tree; 738 /* 739 * The mapping table from slot id to memslot. 740 * 741 * 7-bit bucket count matches the size of the old id to index array for 742 * 512 slots, while giving good performance with this slot count. 743 * Higher bucket counts bring only small performance improvements but 744 * always result in higher memory usage (even for lower memslot counts). 745 */ 746 DECLARE_HASHTABLE(id_hash, 7); 747 int node_idx; 748 }; 749 750 struct kvm { 751 #ifdef KVM_HAVE_MMU_RWLOCK 752 rwlock_t mmu_lock; 753 #else 754 spinlock_t mmu_lock; 755 #endif /* KVM_HAVE_MMU_RWLOCK */ 756 757 struct mutex slots_lock; 758 759 /* 760 * Protects the arch-specific fields of struct kvm_memory_slots in 761 * use by the VM. To be used under the slots_lock (above) or in a 762 * kvm->srcu critical section where acquiring the slots_lock would 763 * lead to deadlock with the synchronize_srcu in 764 * kvm_swap_active_memslots(). 765 */ 766 struct mutex slots_arch_lock; 767 struct mm_struct *mm; /* userspace tied to this vm */ 768 unsigned long nr_memslot_pages; 769 /* The two memslot sets - active and inactive (per address space) */ 770 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 771 /* The current active memslot set for each address space */ 772 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 773 struct xarray vcpu_array; 774 /* 775 * Protected by slots_lock, but can be read outside if an 776 * incorrect answer is acceptable. 777 */ 778 atomic_t nr_memslots_dirty_logging; 779 780 /* Used to wait for completion of MMU notifiers. */ 781 spinlock_t mn_invalidate_lock; 782 unsigned long mn_active_invalidate_count; 783 struct rcuwait mn_memslots_update_rcuwait; 784 785 /* For management / invalidation of gfn_to_pfn_caches */ 786 spinlock_t gpc_lock; 787 struct list_head gpc_list; 788 789 /* 790 * created_vcpus is protected by kvm->lock, and is incremented 791 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 792 * incremented after storing the kvm_vcpu pointer in vcpus, 793 * and is accessed atomically. 794 */ 795 atomic_t online_vcpus; 796 int max_vcpus; 797 int created_vcpus; 798 int last_boosted_vcpu; 799 struct list_head vm_list; 800 struct mutex lock; 801 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 802 #ifdef CONFIG_HAVE_KVM_IRQCHIP 803 struct { 804 spinlock_t lock; 805 struct list_head items; 806 /* resampler_list update side is protected by resampler_lock. */ 807 struct list_head resampler_list; 808 struct mutex resampler_lock; 809 } irqfds; 810 #endif 811 struct list_head ioeventfds; 812 struct kvm_vm_stat stat; 813 struct kvm_arch arch; 814 refcount_t users_count; 815 #ifdef CONFIG_KVM_MMIO 816 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 817 spinlock_t ring_lock; 818 struct list_head coalesced_zones; 819 #endif 820 821 struct mutex irq_lock; 822 #ifdef CONFIG_HAVE_KVM_IRQCHIP 823 /* 824 * Update side is protected by irq_lock. 825 */ 826 struct kvm_irq_routing_table __rcu *irq_routing; 827 828 struct hlist_head irq_ack_notifier_list; 829 #endif 830 831 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 832 struct mmu_notifier mmu_notifier; 833 unsigned long mmu_invalidate_seq; 834 long mmu_invalidate_in_progress; 835 gfn_t mmu_invalidate_range_start; 836 gfn_t mmu_invalidate_range_end; 837 #endif 838 struct list_head devices; 839 u64 manual_dirty_log_protect; 840 struct dentry *debugfs_dentry; 841 struct kvm_stat_data **debugfs_stat_data; 842 struct srcu_struct srcu; 843 struct srcu_struct irq_srcu; 844 pid_t userspace_pid; 845 bool override_halt_poll_ns; 846 unsigned int max_halt_poll_ns; 847 u32 dirty_ring_size; 848 bool dirty_ring_with_bitmap; 849 bool vm_bugged; 850 bool vm_dead; 851 852 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 853 struct notifier_block pm_notifier; 854 #endif 855 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 856 /* Protected by slots_locks (for writes) and RCU (for reads) */ 857 struct xarray mem_attr_array; 858 #endif 859 char stats_id[KVM_STATS_NAME_SIZE]; 860 }; 861 862 #define kvm_err(fmt, ...) \ 863 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 864 #define kvm_info(fmt, ...) \ 865 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 866 #define kvm_debug(fmt, ...) \ 867 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 868 #define kvm_debug_ratelimited(fmt, ...) \ 869 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 870 ## __VA_ARGS__) 871 #define kvm_pr_unimpl(fmt, ...) \ 872 pr_err_ratelimited("kvm [%i]: " fmt, \ 873 task_tgid_nr(current), ## __VA_ARGS__) 874 875 /* The guest did something we don't support. */ 876 #define vcpu_unimpl(vcpu, fmt, ...) \ 877 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 878 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 879 880 #define vcpu_debug(vcpu, fmt, ...) \ 881 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 882 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 883 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 884 ## __VA_ARGS__) 885 #define vcpu_err(vcpu, fmt, ...) \ 886 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 887 888 static inline void kvm_vm_dead(struct kvm *kvm) 889 { 890 kvm->vm_dead = true; 891 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 892 } 893 894 static inline void kvm_vm_bugged(struct kvm *kvm) 895 { 896 kvm->vm_bugged = true; 897 kvm_vm_dead(kvm); 898 } 899 900 901 #define KVM_BUG(cond, kvm, fmt...) \ 902 ({ \ 903 bool __ret = !!(cond); \ 904 \ 905 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 906 kvm_vm_bugged(kvm); \ 907 unlikely(__ret); \ 908 }) 909 910 #define KVM_BUG_ON(cond, kvm) \ 911 ({ \ 912 bool __ret = !!(cond); \ 913 \ 914 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 915 kvm_vm_bugged(kvm); \ 916 unlikely(__ret); \ 917 }) 918 919 /* 920 * Note, "data corruption" refers to corruption of host kernel data structures, 921 * not guest data. Guest data corruption, suspected or confirmed, that is tied 922 * and contained to a single VM should *never* BUG() and potentially panic the 923 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 924 * is corrupted and that corruption can have a cascading effect to other parts 925 * of the hosts and/or to other VMs. 926 */ 927 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 928 ({ \ 929 bool __ret = !!(cond); \ 930 \ 931 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 932 BUG_ON(__ret); \ 933 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 934 kvm_vm_bugged(kvm); \ 935 unlikely(__ret); \ 936 }) 937 938 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 939 { 940 #ifdef CONFIG_PROVE_RCU 941 WARN_ONCE(vcpu->srcu_depth++, 942 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 943 #endif 944 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 945 } 946 947 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 948 { 949 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 950 951 #ifdef CONFIG_PROVE_RCU 952 WARN_ONCE(--vcpu->srcu_depth, 953 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 954 #endif 955 } 956 957 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 958 { 959 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 960 } 961 962 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 963 { 964 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 965 lockdep_is_held(&kvm->slots_lock) || 966 !refcount_read(&kvm->users_count)); 967 } 968 969 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 970 { 971 int num_vcpus = atomic_read(&kvm->online_vcpus); 972 i = array_index_nospec(i, num_vcpus); 973 974 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 975 smp_rmb(); 976 return xa_load(&kvm->vcpu_array, i); 977 } 978 979 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 980 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 981 (atomic_read(&kvm->online_vcpus) - 1)) 982 983 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 984 { 985 struct kvm_vcpu *vcpu = NULL; 986 unsigned long i; 987 988 if (id < 0) 989 return NULL; 990 if (id < KVM_MAX_VCPUS) 991 vcpu = kvm_get_vcpu(kvm, id); 992 if (vcpu && vcpu->vcpu_id == id) 993 return vcpu; 994 kvm_for_each_vcpu(i, vcpu, kvm) 995 if (vcpu->vcpu_id == id) 996 return vcpu; 997 return NULL; 998 } 999 1000 void kvm_destroy_vcpus(struct kvm *kvm); 1001 1002 void vcpu_load(struct kvm_vcpu *vcpu); 1003 void vcpu_put(struct kvm_vcpu *vcpu); 1004 1005 #ifdef __KVM_HAVE_IOAPIC 1006 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1007 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1008 #else 1009 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1010 { 1011 } 1012 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1013 { 1014 } 1015 #endif 1016 1017 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1018 int kvm_irqfd_init(void); 1019 void kvm_irqfd_exit(void); 1020 #else 1021 static inline int kvm_irqfd_init(void) 1022 { 1023 return 0; 1024 } 1025 1026 static inline void kvm_irqfd_exit(void) 1027 { 1028 } 1029 #endif 1030 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1031 void kvm_exit(void); 1032 1033 void kvm_get_kvm(struct kvm *kvm); 1034 bool kvm_get_kvm_safe(struct kvm *kvm); 1035 void kvm_put_kvm(struct kvm *kvm); 1036 bool file_is_kvm(struct file *file); 1037 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1038 1039 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1040 { 1041 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1042 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1043 lockdep_is_held(&kvm->slots_lock) || 1044 !refcount_read(&kvm->users_count)); 1045 } 1046 1047 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1048 { 1049 return __kvm_memslots(kvm, 0); 1050 } 1051 1052 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1053 { 1054 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1055 1056 return __kvm_memslots(vcpu->kvm, as_id); 1057 } 1058 1059 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1060 { 1061 return RB_EMPTY_ROOT(&slots->gfn_tree); 1062 } 1063 1064 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1065 1066 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1067 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1068 if (WARN_ON_ONCE(!memslot->npages)) { \ 1069 } else 1070 1071 static inline 1072 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1073 { 1074 struct kvm_memory_slot *slot; 1075 int idx = slots->node_idx; 1076 1077 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1078 if (slot->id == id) 1079 return slot; 1080 } 1081 1082 return NULL; 1083 } 1084 1085 /* Iterator used for walking memslots that overlap a gfn range. */ 1086 struct kvm_memslot_iter { 1087 struct kvm_memslots *slots; 1088 struct rb_node *node; 1089 struct kvm_memory_slot *slot; 1090 }; 1091 1092 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1093 { 1094 iter->node = rb_next(iter->node); 1095 if (!iter->node) 1096 return; 1097 1098 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1099 } 1100 1101 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1102 struct kvm_memslots *slots, 1103 gfn_t start) 1104 { 1105 int idx = slots->node_idx; 1106 struct rb_node *tmp; 1107 struct kvm_memory_slot *slot; 1108 1109 iter->slots = slots; 1110 1111 /* 1112 * Find the so called "upper bound" of a key - the first node that has 1113 * its key strictly greater than the searched one (the start gfn in our case). 1114 */ 1115 iter->node = NULL; 1116 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1117 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1118 if (start < slot->base_gfn) { 1119 iter->node = tmp; 1120 tmp = tmp->rb_left; 1121 } else { 1122 tmp = tmp->rb_right; 1123 } 1124 } 1125 1126 /* 1127 * Find the slot with the lowest gfn that can possibly intersect with 1128 * the range, so we'll ideally have slot start <= range start 1129 */ 1130 if (iter->node) { 1131 /* 1132 * A NULL previous node means that the very first slot 1133 * already has a higher start gfn. 1134 * In this case slot start > range start. 1135 */ 1136 tmp = rb_prev(iter->node); 1137 if (tmp) 1138 iter->node = tmp; 1139 } else { 1140 /* a NULL node below means no slots */ 1141 iter->node = rb_last(&slots->gfn_tree); 1142 } 1143 1144 if (iter->node) { 1145 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1146 1147 /* 1148 * It is possible in the slot start < range start case that the 1149 * found slot ends before or at range start (slot end <= range start) 1150 * and so it does not overlap the requested range. 1151 * 1152 * In such non-overlapping case the next slot (if it exists) will 1153 * already have slot start > range start, otherwise the logic above 1154 * would have found it instead of the current slot. 1155 */ 1156 if (iter->slot->base_gfn + iter->slot->npages <= start) 1157 kvm_memslot_iter_next(iter); 1158 } 1159 } 1160 1161 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1162 { 1163 if (!iter->node) 1164 return false; 1165 1166 /* 1167 * If this slot starts beyond or at the end of the range so does 1168 * every next one 1169 */ 1170 return iter->slot->base_gfn < end; 1171 } 1172 1173 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1174 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1175 for (kvm_memslot_iter_start(iter, slots, start); \ 1176 kvm_memslot_iter_is_valid(iter, end); \ 1177 kvm_memslot_iter_next(iter)) 1178 1179 /* 1180 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1181 * - create a new memory slot 1182 * - delete an existing memory slot 1183 * - modify an existing memory slot 1184 * -- move it in the guest physical memory space 1185 * -- just change its flags 1186 * 1187 * Since flags can be changed by some of these operations, the following 1188 * differentiation is the best we can do for __kvm_set_memory_region(): 1189 */ 1190 enum kvm_mr_change { 1191 KVM_MR_CREATE, 1192 KVM_MR_DELETE, 1193 KVM_MR_MOVE, 1194 KVM_MR_FLAGS_ONLY, 1195 }; 1196 1197 int kvm_set_memory_region(struct kvm *kvm, 1198 const struct kvm_userspace_memory_region2 *mem); 1199 int __kvm_set_memory_region(struct kvm *kvm, 1200 const struct kvm_userspace_memory_region2 *mem); 1201 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1202 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1203 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1204 const struct kvm_memory_slot *old, 1205 struct kvm_memory_slot *new, 1206 enum kvm_mr_change change); 1207 void kvm_arch_commit_memory_region(struct kvm *kvm, 1208 struct kvm_memory_slot *old, 1209 const struct kvm_memory_slot *new, 1210 enum kvm_mr_change change); 1211 /* flush all memory translations */ 1212 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1213 /* flush memory translations pointing to 'slot' */ 1214 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1215 struct kvm_memory_slot *slot); 1216 1217 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1218 struct page **pages, int nr_pages); 1219 1220 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1221 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1222 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1223 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1224 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1225 bool *writable); 1226 void kvm_release_page_clean(struct page *page); 1227 void kvm_release_page_dirty(struct page *page); 1228 1229 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1230 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1231 bool *writable); 1232 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1233 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1234 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1235 bool atomic, bool interruptible, bool *async, 1236 bool write_fault, bool *writable, hva_t *hva); 1237 1238 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1239 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1240 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1241 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1242 1243 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1244 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1245 int len); 1246 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1247 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1248 void *data, unsigned long len); 1249 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1250 void *data, unsigned int offset, 1251 unsigned long len); 1252 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1253 int offset, int len); 1254 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1255 unsigned long len); 1256 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1257 void *data, unsigned long len); 1258 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1259 void *data, unsigned int offset, 1260 unsigned long len); 1261 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1262 gpa_t gpa, unsigned long len); 1263 1264 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1265 ({ \ 1266 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1267 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1268 int __ret = -EFAULT; \ 1269 \ 1270 if (!kvm_is_error_hva(__addr)) \ 1271 __ret = get_user(v, __uaddr); \ 1272 __ret; \ 1273 }) 1274 1275 #define kvm_get_guest(kvm, gpa, v) \ 1276 ({ \ 1277 gpa_t __gpa = gpa; \ 1278 struct kvm *__kvm = kvm; \ 1279 \ 1280 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1281 offset_in_page(__gpa), v); \ 1282 }) 1283 1284 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1285 ({ \ 1286 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1287 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1288 int __ret = -EFAULT; \ 1289 \ 1290 if (!kvm_is_error_hva(__addr)) \ 1291 __ret = put_user(v, __uaddr); \ 1292 if (!__ret) \ 1293 mark_page_dirty(kvm, gfn); \ 1294 __ret; \ 1295 }) 1296 1297 #define kvm_put_guest(kvm, gpa, v) \ 1298 ({ \ 1299 gpa_t __gpa = gpa; \ 1300 struct kvm *__kvm = kvm; \ 1301 \ 1302 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1303 offset_in_page(__gpa), v); \ 1304 }) 1305 1306 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1308 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1309 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1310 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1311 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1312 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1313 1314 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1316 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1317 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1318 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1319 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1320 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1321 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1322 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1323 int len); 1324 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1325 unsigned long len); 1326 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1327 unsigned long len); 1328 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1329 int offset, int len); 1330 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1331 unsigned long len); 1332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1333 1334 /** 1335 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1336 * 1337 * @gpc: struct gfn_to_pfn_cache object. 1338 * @kvm: pointer to kvm instance. 1339 * 1340 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1341 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1342 * the caller before init). 1343 */ 1344 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1345 1346 /** 1347 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1348 * physical address. 1349 * 1350 * @gpc: struct gfn_to_pfn_cache object. 1351 * @gpa: guest physical address to map. 1352 * @len: sanity check; the range being access must fit a single page. 1353 * 1354 * @return: 0 for success. 1355 * -EINVAL for a mapping which would cross a page boundary. 1356 * -EFAULT for an untranslatable guest physical address. 1357 * 1358 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1359 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1360 * to ensure that the cache is valid before accessing the target page. 1361 */ 1362 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1363 1364 /** 1365 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1366 * 1367 * @gpc: struct gfn_to_pfn_cache object. 1368 * @hva: userspace virtual address to map. 1369 * @len: sanity check; the range being access must fit a single page. 1370 * 1371 * @return: 0 for success. 1372 * -EINVAL for a mapping which would cross a page boundary. 1373 * -EFAULT for an untranslatable guest physical address. 1374 * 1375 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1376 * merely bypasses a layer of address translation. 1377 */ 1378 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1379 1380 /** 1381 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1382 * 1383 * @gpc: struct gfn_to_pfn_cache object. 1384 * @len: sanity check; the range being access must fit a single page. 1385 * 1386 * @return: %true if the cache is still valid and the address matches. 1387 * %false if the cache is not valid. 1388 * 1389 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1390 * while calling this function, and then continue to hold the lock until the 1391 * access is complete. 1392 * 1393 * Callers in IN_GUEST_MODE may do so without locking, although they should 1394 * still hold a read lock on kvm->scru for the memslot checks. 1395 */ 1396 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1397 1398 /** 1399 * kvm_gpc_refresh - update a previously initialized cache. 1400 * 1401 * @gpc: struct gfn_to_pfn_cache object. 1402 * @len: sanity check; the range being access must fit a single page. 1403 * 1404 * @return: 0 for success. 1405 * -EINVAL for a mapping which would cross a page boundary. 1406 * -EFAULT for an untranslatable guest physical address. 1407 * 1408 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1409 * return from this function does not mean the page can be immediately 1410 * accessed because it may have raced with an invalidation. Callers must 1411 * still lock and check the cache status, as this function does not return 1412 * with the lock still held to permit access. 1413 */ 1414 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1415 1416 /** 1417 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1418 * 1419 * @gpc: struct gfn_to_pfn_cache object. 1420 * 1421 * This removes a cache from the VM's list to be processed on MMU notifier 1422 * invocation. 1423 */ 1424 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1425 1426 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1427 { 1428 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1429 } 1430 1431 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1432 { 1433 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1434 } 1435 1436 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1437 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1438 1439 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1440 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1441 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1442 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1443 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1444 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1445 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1446 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1447 1448 void kvm_flush_remote_tlbs(struct kvm *kvm); 1449 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1450 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1451 const struct kvm_memory_slot *memslot); 1452 1453 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1454 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1455 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1456 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1457 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1458 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1459 #endif 1460 1461 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1462 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1463 void kvm_mmu_invalidate_end(struct kvm *kvm); 1464 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1465 1466 long kvm_arch_dev_ioctl(struct file *filp, 1467 unsigned int ioctl, unsigned long arg); 1468 long kvm_arch_vcpu_ioctl(struct file *filp, 1469 unsigned int ioctl, unsigned long arg); 1470 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1471 1472 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1473 1474 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1475 struct kvm_memory_slot *slot, 1476 gfn_t gfn_offset, 1477 unsigned long mask); 1478 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1479 1480 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1481 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1482 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1483 int *is_dirty, struct kvm_memory_slot **memslot); 1484 #endif 1485 1486 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1487 bool line_status); 1488 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1489 struct kvm_enable_cap *cap); 1490 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1491 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1492 unsigned long arg); 1493 1494 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1495 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1496 1497 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1498 struct kvm_translation *tr); 1499 1500 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1501 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1503 struct kvm_sregs *sregs); 1504 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1505 struct kvm_sregs *sregs); 1506 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1507 struct kvm_mp_state *mp_state); 1508 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1509 struct kvm_mp_state *mp_state); 1510 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1511 struct kvm_guest_debug *dbg); 1512 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1513 1514 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1515 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1516 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1517 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1518 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1519 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1520 1521 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1522 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1523 #endif 1524 1525 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1526 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1527 #else 1528 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1529 #endif 1530 1531 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1532 int kvm_arch_hardware_enable(void); 1533 void kvm_arch_hardware_disable(void); 1534 #endif 1535 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1536 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1537 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1538 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1539 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1540 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1541 int kvm_arch_post_init_vm(struct kvm *kvm); 1542 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1543 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1544 1545 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1546 /* 1547 * All architectures that want to use vzalloc currently also 1548 * need their own kvm_arch_alloc_vm implementation. 1549 */ 1550 static inline struct kvm *kvm_arch_alloc_vm(void) 1551 { 1552 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1553 } 1554 #endif 1555 1556 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1557 { 1558 kvfree(kvm); 1559 } 1560 1561 #ifndef __KVM_HAVE_ARCH_VM_FREE 1562 static inline void kvm_arch_free_vm(struct kvm *kvm) 1563 { 1564 __kvm_arch_free_vm(kvm); 1565 } 1566 #endif 1567 1568 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1569 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1570 { 1571 return -ENOTSUPP; 1572 } 1573 #else 1574 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1575 #endif 1576 1577 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1578 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1579 gfn_t gfn, u64 nr_pages) 1580 { 1581 return -EOPNOTSUPP; 1582 } 1583 #else 1584 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1585 #endif 1586 1587 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1588 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1589 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1590 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1591 #else 1592 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1593 { 1594 } 1595 1596 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1597 { 1598 } 1599 1600 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1601 { 1602 return false; 1603 } 1604 #endif 1605 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1606 void kvm_arch_start_assignment(struct kvm *kvm); 1607 void kvm_arch_end_assignment(struct kvm *kvm); 1608 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1609 #else 1610 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1611 { 1612 } 1613 1614 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1615 { 1616 } 1617 1618 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1619 { 1620 return false; 1621 } 1622 #endif 1623 1624 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1625 { 1626 #ifdef __KVM_HAVE_ARCH_WQP 1627 return vcpu->arch.waitp; 1628 #else 1629 return &vcpu->wait; 1630 #endif 1631 } 1632 1633 /* 1634 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1635 * true if the vCPU was blocking and was awakened, false otherwise. 1636 */ 1637 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1638 { 1639 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1640 } 1641 1642 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1643 { 1644 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1645 } 1646 1647 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1648 /* 1649 * returns true if the virtual interrupt controller is initialized and 1650 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1651 * controller is dynamically instantiated and this is not always true. 1652 */ 1653 bool kvm_arch_intc_initialized(struct kvm *kvm); 1654 #else 1655 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1656 { 1657 return true; 1658 } 1659 #endif 1660 1661 #ifdef CONFIG_GUEST_PERF_EVENTS 1662 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1663 1664 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1665 void kvm_unregister_perf_callbacks(void); 1666 #else 1667 static inline void kvm_register_perf_callbacks(void *ign) {} 1668 static inline void kvm_unregister_perf_callbacks(void) {} 1669 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1670 1671 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1672 void kvm_arch_destroy_vm(struct kvm *kvm); 1673 void kvm_arch_sync_events(struct kvm *kvm); 1674 1675 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1676 1677 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1678 bool kvm_is_zone_device_page(struct page *page); 1679 1680 struct kvm_irq_ack_notifier { 1681 struct hlist_node link; 1682 unsigned gsi; 1683 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1684 }; 1685 1686 int kvm_irq_map_gsi(struct kvm *kvm, 1687 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1688 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1689 1690 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1691 bool line_status); 1692 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1693 int irq_source_id, int level, bool line_status); 1694 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1695 struct kvm *kvm, int irq_source_id, 1696 int level, bool line_status); 1697 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1698 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1699 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1700 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1701 struct kvm_irq_ack_notifier *kian); 1702 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1703 struct kvm_irq_ack_notifier *kian); 1704 int kvm_request_irq_source_id(struct kvm *kvm); 1705 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1706 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1707 1708 /* 1709 * Returns a pointer to the memslot if it contains gfn. 1710 * Otherwise returns NULL. 1711 */ 1712 static inline struct kvm_memory_slot * 1713 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1714 { 1715 if (!slot) 1716 return NULL; 1717 1718 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1719 return slot; 1720 else 1721 return NULL; 1722 } 1723 1724 /* 1725 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1726 * 1727 * With "approx" set returns the memslot also when the address falls 1728 * in a hole. In that case one of the memslots bordering the hole is 1729 * returned. 1730 */ 1731 static inline struct kvm_memory_slot * 1732 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1733 { 1734 struct kvm_memory_slot *slot; 1735 struct rb_node *node; 1736 int idx = slots->node_idx; 1737 1738 slot = NULL; 1739 for (node = slots->gfn_tree.rb_node; node; ) { 1740 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1741 if (gfn >= slot->base_gfn) { 1742 if (gfn < slot->base_gfn + slot->npages) 1743 return slot; 1744 node = node->rb_right; 1745 } else 1746 node = node->rb_left; 1747 } 1748 1749 return approx ? slot : NULL; 1750 } 1751 1752 static inline struct kvm_memory_slot * 1753 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1754 { 1755 struct kvm_memory_slot *slot; 1756 1757 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1758 slot = try_get_memslot(slot, gfn); 1759 if (slot) 1760 return slot; 1761 1762 slot = search_memslots(slots, gfn, approx); 1763 if (slot) { 1764 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1765 return slot; 1766 } 1767 1768 return NULL; 1769 } 1770 1771 /* 1772 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1773 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1774 * because that would bloat other code too much. 1775 */ 1776 static inline struct kvm_memory_slot * 1777 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1778 { 1779 return ____gfn_to_memslot(slots, gfn, false); 1780 } 1781 1782 static inline unsigned long 1783 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1784 { 1785 /* 1786 * The index was checked originally in search_memslots. To avoid 1787 * that a malicious guest builds a Spectre gadget out of e.g. page 1788 * table walks, do not let the processor speculate loads outside 1789 * the guest's registered memslots. 1790 */ 1791 unsigned long offset = gfn - slot->base_gfn; 1792 offset = array_index_nospec(offset, slot->npages); 1793 return slot->userspace_addr + offset * PAGE_SIZE; 1794 } 1795 1796 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1797 { 1798 return gfn_to_memslot(kvm, gfn)->id; 1799 } 1800 1801 static inline gfn_t 1802 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1803 { 1804 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1805 1806 return slot->base_gfn + gfn_offset; 1807 } 1808 1809 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1810 { 1811 return (gpa_t)gfn << PAGE_SHIFT; 1812 } 1813 1814 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1815 { 1816 return (gfn_t)(gpa >> PAGE_SHIFT); 1817 } 1818 1819 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1820 { 1821 return (hpa_t)pfn << PAGE_SHIFT; 1822 } 1823 1824 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1825 { 1826 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1827 1828 return !kvm_is_error_hva(hva); 1829 } 1830 1831 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1832 { 1833 lockdep_assert_held(&gpc->lock); 1834 1835 if (!gpc->memslot) 1836 return; 1837 1838 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1839 } 1840 1841 enum kvm_stat_kind { 1842 KVM_STAT_VM, 1843 KVM_STAT_VCPU, 1844 }; 1845 1846 struct kvm_stat_data { 1847 struct kvm *kvm; 1848 const struct _kvm_stats_desc *desc; 1849 enum kvm_stat_kind kind; 1850 }; 1851 1852 struct _kvm_stats_desc { 1853 struct kvm_stats_desc desc; 1854 char name[KVM_STATS_NAME_SIZE]; 1855 }; 1856 1857 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1858 .flags = type | unit | base | \ 1859 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1860 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1861 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1862 .exponent = exp, \ 1863 .size = sz, \ 1864 .bucket_size = bsz 1865 1866 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1867 { \ 1868 { \ 1869 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1870 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1871 }, \ 1872 .name = #stat, \ 1873 } 1874 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1875 { \ 1876 { \ 1877 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1878 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1879 }, \ 1880 .name = #stat, \ 1881 } 1882 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1883 { \ 1884 { \ 1885 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1886 .offset = offsetof(struct kvm_vm_stat, stat) \ 1887 }, \ 1888 .name = #stat, \ 1889 } 1890 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1891 { \ 1892 { \ 1893 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1894 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1895 }, \ 1896 .name = #stat, \ 1897 } 1898 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1899 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1900 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1901 1902 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1903 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1904 unit, base, exponent, 1, 0) 1905 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1906 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1907 unit, base, exponent, 1, 0) 1908 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1909 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1910 unit, base, exponent, 1, 0) 1911 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1912 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1913 unit, base, exponent, sz, bsz) 1914 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1915 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1916 unit, base, exponent, sz, 0) 1917 1918 /* Cumulative counter, read/write */ 1919 #define STATS_DESC_COUNTER(SCOPE, name) \ 1920 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1921 KVM_STATS_BASE_POW10, 0) 1922 /* Instantaneous counter, read only */ 1923 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1924 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1925 KVM_STATS_BASE_POW10, 0) 1926 /* Peak counter, read/write */ 1927 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1928 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1929 KVM_STATS_BASE_POW10, 0) 1930 1931 /* Instantaneous boolean value, read only */ 1932 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1933 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1934 KVM_STATS_BASE_POW10, 0) 1935 /* Peak (sticky) boolean value, read/write */ 1936 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1937 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1938 KVM_STATS_BASE_POW10, 0) 1939 1940 /* Cumulative time in nanosecond */ 1941 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1942 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1943 KVM_STATS_BASE_POW10, -9) 1944 /* Linear histogram for time in nanosecond */ 1945 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1946 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1947 KVM_STATS_BASE_POW10, -9, sz, bsz) 1948 /* Logarithmic histogram for time in nanosecond */ 1949 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1950 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1951 KVM_STATS_BASE_POW10, -9, sz) 1952 1953 #define KVM_GENERIC_VM_STATS() \ 1954 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1955 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1956 1957 #define KVM_GENERIC_VCPU_STATS() \ 1958 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1959 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1960 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1961 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1962 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1963 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1964 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1965 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1966 HALT_POLL_HIST_COUNT), \ 1967 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1968 HALT_POLL_HIST_COUNT), \ 1969 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1970 HALT_POLL_HIST_COUNT), \ 1971 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1972 1973 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1974 const struct _kvm_stats_desc *desc, 1975 void *stats, size_t size_stats, 1976 char __user *user_buffer, size_t size, loff_t *offset); 1977 1978 /** 1979 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1980 * statistics data. 1981 * 1982 * @data: start address of the stats data 1983 * @size: the number of bucket of the stats data 1984 * @value: the new value used to update the linear histogram's bucket 1985 * @bucket_size: the size (width) of a bucket 1986 */ 1987 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1988 u64 value, size_t bucket_size) 1989 { 1990 size_t index = div64_u64(value, bucket_size); 1991 1992 index = min(index, size - 1); 1993 ++data[index]; 1994 } 1995 1996 /** 1997 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1998 * statistics data. 1999 * 2000 * @data: start address of the stats data 2001 * @size: the number of bucket of the stats data 2002 * @value: the new value used to update the logarithmic histogram's bucket 2003 */ 2004 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2005 { 2006 size_t index = fls64(value); 2007 2008 index = min(index, size - 1); 2009 ++data[index]; 2010 } 2011 2012 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2013 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2014 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2015 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2016 2017 2018 extern const struct kvm_stats_header kvm_vm_stats_header; 2019 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2020 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2021 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2022 2023 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2024 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2025 { 2026 if (unlikely(kvm->mmu_invalidate_in_progress)) 2027 return 1; 2028 /* 2029 * Ensure the read of mmu_invalidate_in_progress happens before 2030 * the read of mmu_invalidate_seq. This interacts with the 2031 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2032 * that the caller either sees the old (non-zero) value of 2033 * mmu_invalidate_in_progress or the new (incremented) value of 2034 * mmu_invalidate_seq. 2035 * 2036 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2037 * than under kvm->mmu_lock, for scalability, so can't rely on 2038 * kvm->mmu_lock to keep things ordered. 2039 */ 2040 smp_rmb(); 2041 if (kvm->mmu_invalidate_seq != mmu_seq) 2042 return 1; 2043 return 0; 2044 } 2045 2046 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2047 unsigned long mmu_seq, 2048 gfn_t gfn) 2049 { 2050 lockdep_assert_held(&kvm->mmu_lock); 2051 /* 2052 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2053 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2054 * that might be being invalidated. Note that it may include some false 2055 * positives, due to shortcuts when handing concurrent invalidations. 2056 */ 2057 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2058 /* 2059 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2060 * but before updating the range is a KVM bug. 2061 */ 2062 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2063 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2064 return 1; 2065 2066 if (gfn >= kvm->mmu_invalidate_range_start && 2067 gfn < kvm->mmu_invalidate_range_end) 2068 return 1; 2069 } 2070 2071 if (kvm->mmu_invalidate_seq != mmu_seq) 2072 return 1; 2073 return 0; 2074 } 2075 2076 /* 2077 * This lockless version of the range-based retry check *must* be paired with a 2078 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2079 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2080 * get false negatives and false positives. 2081 */ 2082 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2083 unsigned long mmu_seq, 2084 gfn_t gfn) 2085 { 2086 /* 2087 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2088 * are always read from memory, e.g. so that checking for retry in a 2089 * loop won't result in an infinite retry loop. Don't force loads for 2090 * start+end, as the key to avoiding infinite retry loops is observing 2091 * the 1=>0 transition of in-progress, i.e. getting false negatives 2092 * due to stale start+end values is acceptable. 2093 */ 2094 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2095 gfn >= kvm->mmu_invalidate_range_start && 2096 gfn < kvm->mmu_invalidate_range_end) 2097 return true; 2098 2099 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2100 } 2101 #endif 2102 2103 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2104 2105 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2106 2107 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2108 int kvm_set_irq_routing(struct kvm *kvm, 2109 const struct kvm_irq_routing_entry *entries, 2110 unsigned nr, 2111 unsigned flags); 2112 int kvm_init_irq_routing(struct kvm *kvm); 2113 int kvm_set_routing_entry(struct kvm *kvm, 2114 struct kvm_kernel_irq_routing_entry *e, 2115 const struct kvm_irq_routing_entry *ue); 2116 void kvm_free_irq_routing(struct kvm *kvm); 2117 2118 #else 2119 2120 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2121 2122 static inline int kvm_init_irq_routing(struct kvm *kvm) 2123 { 2124 return 0; 2125 } 2126 2127 #endif 2128 2129 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2130 2131 void kvm_eventfd_init(struct kvm *kvm); 2132 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2133 2134 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2135 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2136 void kvm_irqfd_release(struct kvm *kvm); 2137 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2138 unsigned int irqchip, 2139 unsigned int pin); 2140 void kvm_irq_routing_update(struct kvm *); 2141 #else 2142 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2143 { 2144 return -EINVAL; 2145 } 2146 2147 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2148 2149 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2150 unsigned int irqchip, 2151 unsigned int pin) 2152 { 2153 return false; 2154 } 2155 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2156 2157 void kvm_arch_irq_routing_update(struct kvm *kvm); 2158 2159 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2160 { 2161 /* 2162 * Ensure the rest of the request is published to kvm_check_request's 2163 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2164 */ 2165 smp_wmb(); 2166 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2167 } 2168 2169 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2170 { 2171 /* 2172 * Request that don't require vCPU action should never be logged in 2173 * vcpu->requests. The vCPU won't clear the request, so it will stay 2174 * logged indefinitely and prevent the vCPU from entering the guest. 2175 */ 2176 BUILD_BUG_ON(!__builtin_constant_p(req) || 2177 (req & KVM_REQUEST_NO_ACTION)); 2178 2179 __kvm_make_request(req, vcpu); 2180 } 2181 2182 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2183 { 2184 return READ_ONCE(vcpu->requests); 2185 } 2186 2187 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2188 { 2189 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2190 } 2191 2192 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2193 { 2194 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2195 } 2196 2197 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2198 { 2199 if (kvm_test_request(req, vcpu)) { 2200 kvm_clear_request(req, vcpu); 2201 2202 /* 2203 * Ensure the rest of the request is visible to kvm_check_request's 2204 * caller. Paired with the smp_wmb in kvm_make_request. 2205 */ 2206 smp_mb__after_atomic(); 2207 return true; 2208 } else { 2209 return false; 2210 } 2211 } 2212 2213 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2214 extern bool kvm_rebooting; 2215 #endif 2216 2217 extern unsigned int halt_poll_ns; 2218 extern unsigned int halt_poll_ns_grow; 2219 extern unsigned int halt_poll_ns_grow_start; 2220 extern unsigned int halt_poll_ns_shrink; 2221 2222 struct kvm_device { 2223 const struct kvm_device_ops *ops; 2224 struct kvm *kvm; 2225 void *private; 2226 struct list_head vm_node; 2227 }; 2228 2229 /* create, destroy, and name are mandatory */ 2230 struct kvm_device_ops { 2231 const char *name; 2232 2233 /* 2234 * create is called holding kvm->lock and any operations not suitable 2235 * to do while holding the lock should be deferred to init (see 2236 * below). 2237 */ 2238 int (*create)(struct kvm_device *dev, u32 type); 2239 2240 /* 2241 * init is called after create if create is successful and is called 2242 * outside of holding kvm->lock. 2243 */ 2244 void (*init)(struct kvm_device *dev); 2245 2246 /* 2247 * Destroy is responsible for freeing dev. 2248 * 2249 * Destroy may be called before or after destructors are called 2250 * on emulated I/O regions, depending on whether a reference is 2251 * held by a vcpu or other kvm component that gets destroyed 2252 * after the emulated I/O. 2253 */ 2254 void (*destroy)(struct kvm_device *dev); 2255 2256 /* 2257 * Release is an alternative method to free the device. It is 2258 * called when the device file descriptor is closed. Once 2259 * release is called, the destroy method will not be called 2260 * anymore as the device is removed from the device list of 2261 * the VM. kvm->lock is held. 2262 */ 2263 void (*release)(struct kvm_device *dev); 2264 2265 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2266 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2267 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2268 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2269 unsigned long arg); 2270 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2271 }; 2272 2273 struct kvm_device *kvm_device_from_filp(struct file *filp); 2274 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2275 void kvm_unregister_device_ops(u32 type); 2276 2277 extern struct kvm_device_ops kvm_mpic_ops; 2278 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2279 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2280 2281 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2282 2283 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2284 { 2285 vcpu->spin_loop.in_spin_loop = val; 2286 } 2287 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2288 { 2289 vcpu->spin_loop.dy_eligible = val; 2290 } 2291 2292 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2293 2294 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2295 { 2296 } 2297 2298 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2299 { 2300 } 2301 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2302 2303 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2304 { 2305 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2306 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2307 } 2308 2309 struct kvm_vcpu *kvm_get_running_vcpu(void); 2310 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2311 2312 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2313 bool kvm_arch_has_irq_bypass(void); 2314 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2315 struct irq_bypass_producer *); 2316 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2317 struct irq_bypass_producer *); 2318 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2319 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2320 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2321 uint32_t guest_irq, bool set); 2322 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2323 struct kvm_kernel_irq_routing_entry *); 2324 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2325 2326 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2327 /* If we wakeup during the poll time, was it a sucessful poll? */ 2328 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2329 { 2330 return vcpu->valid_wakeup; 2331 } 2332 2333 #else 2334 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2335 { 2336 return true; 2337 } 2338 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2339 2340 #ifdef CONFIG_HAVE_KVM_NO_POLL 2341 /* Callback that tells if we must not poll */ 2342 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2343 #else 2344 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2345 { 2346 return false; 2347 } 2348 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2349 2350 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2351 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2352 unsigned int ioctl, unsigned long arg); 2353 #else 2354 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2355 unsigned int ioctl, 2356 unsigned long arg) 2357 { 2358 return -ENOIOCTLCMD; 2359 } 2360 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2361 2362 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2363 2364 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2365 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2366 #else 2367 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2368 { 2369 return 0; 2370 } 2371 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2372 2373 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2374 2375 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2376 uintptr_t data, const char *name, 2377 struct task_struct **thread_ptr); 2378 2379 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2380 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2381 { 2382 vcpu->run->exit_reason = KVM_EXIT_INTR; 2383 vcpu->stat.signal_exits++; 2384 } 2385 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2386 2387 /* 2388 * If more than one page is being (un)accounted, @virt must be the address of 2389 * the first page of a block of pages what were allocated together (i.e 2390 * accounted together). 2391 * 2392 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2393 * is thread-safe. 2394 */ 2395 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2396 { 2397 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2398 } 2399 2400 /* 2401 * This defines how many reserved entries we want to keep before we 2402 * kick the vcpu to the userspace to avoid dirty ring full. This 2403 * value can be tuned to higher if e.g. PML is enabled on the host. 2404 */ 2405 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2406 2407 /* Max number of entries allowed for each kvm dirty ring */ 2408 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2409 2410 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2411 gpa_t gpa, gpa_t size, 2412 bool is_write, bool is_exec, 2413 bool is_private) 2414 { 2415 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2416 vcpu->run->memory_fault.gpa = gpa; 2417 vcpu->run->memory_fault.size = size; 2418 2419 /* RWX flags are not (yet) defined or communicated to userspace. */ 2420 vcpu->run->memory_fault.flags = 0; 2421 if (is_private) 2422 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2423 } 2424 2425 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2426 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2427 { 2428 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2429 } 2430 2431 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2432 unsigned long mask, unsigned long attrs); 2433 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2434 struct kvm_gfn_range *range); 2435 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2436 struct kvm_gfn_range *range); 2437 2438 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2439 { 2440 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2441 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2442 } 2443 #else 2444 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2445 { 2446 return false; 2447 } 2448 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2449 2450 #ifdef CONFIG_KVM_PRIVATE_MEM 2451 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2452 gfn_t gfn, kvm_pfn_t *pfn, int *max_order); 2453 #else 2454 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2455 struct kvm_memory_slot *slot, gfn_t gfn, 2456 kvm_pfn_t *pfn, int *max_order) 2457 { 2458 KVM_BUG_ON(1, kvm); 2459 return -EIO; 2460 } 2461 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2462 2463 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2464 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2465 #endif 2466 2467 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2468 /** 2469 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2470 * 2471 * @kvm: KVM instance 2472 * @gfn: starting GFN to be populated 2473 * @src: userspace-provided buffer containing data to copy into GFN range 2474 * (passed to @post_populate, and incremented on each iteration 2475 * if not NULL) 2476 * @npages: number of pages to copy from userspace-buffer 2477 * @post_populate: callback to issue for each gmem page that backs the GPA 2478 * range 2479 * @opaque: opaque data to pass to @post_populate callback 2480 * 2481 * This is primarily intended for cases where a gmem-backed GPA range needs 2482 * to be initialized with userspace-provided data prior to being mapped into 2483 * the guest as a private page. This should be called with the slots->lock 2484 * held so that caller-enforced invariants regarding the expected memory 2485 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2486 * 2487 * Returns the number of pages that were populated. 2488 */ 2489 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2490 void __user *src, int order, void *opaque); 2491 2492 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2493 kvm_gmem_populate_cb post_populate, void *opaque); 2494 #endif 2495 2496 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2497 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2498 #endif 2499 2500 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2501 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2502 struct kvm_pre_fault_memory *range); 2503 #endif 2504 2505 #endif 2506
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.