~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/list.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_LIST_H
  3 #define _LINUX_LIST_H
  4 
  5 #include <linux/container_of.h>
  6 #include <linux/types.h>
  7 #include <linux/stddef.h>
  8 #include <linux/poison.h>
  9 #include <linux/const.h>
 10 
 11 #include <asm/barrier.h>
 12 
 13 /*
 14  * Circular doubly linked list implementation.
 15  *
 16  * Some of the internal functions ("__xxx") are useful when
 17  * manipulating whole lists rather than single entries, as
 18  * sometimes we already know the next/prev entries and we can
 19  * generate better code by using them directly rather than
 20  * using the generic single-entry routines.
 21  */
 22 
 23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
 24 
 25 #define LIST_HEAD(name) \
 26         struct list_head name = LIST_HEAD_INIT(name)
 27 
 28 /**
 29  * INIT_LIST_HEAD - Initialize a list_head structure
 30  * @list: list_head structure to be initialized.
 31  *
 32  * Initializes the list_head to point to itself.  If it is a list header,
 33  * the result is an empty list.
 34  */
 35 static inline void INIT_LIST_HEAD(struct list_head *list)
 36 {
 37         WRITE_ONCE(list->next, list);
 38         WRITE_ONCE(list->prev, list);
 39 }
 40 
 41 #ifdef CONFIG_LIST_HARDENED
 42 
 43 #ifdef CONFIG_DEBUG_LIST
 44 # define __list_valid_slowpath
 45 #else
 46 # define __list_valid_slowpath __cold __preserve_most
 47 #endif
 48 
 49 /*
 50  * Performs the full set of list corruption checks before __list_add().
 51  * On list corruption reports a warning, and returns false.
 52  */
 53 extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,
 54                                                              struct list_head *prev,
 55                                                              struct list_head *next);
 56 
 57 /*
 58  * Performs list corruption checks before __list_add(). Returns false if a
 59  * corruption is detected, true otherwise.
 60  *
 61  * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
 62  * inline to catch non-faulting corruptions, and only if a corruption is
 63  * detected calls the reporting function __list_add_valid_or_report().
 64  */
 65 static __always_inline bool __list_add_valid(struct list_head *new,
 66                                              struct list_head *prev,
 67                                              struct list_head *next)
 68 {
 69         bool ret = true;
 70 
 71         if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
 72                 /*
 73                  * With the hardening version, elide checking if next and prev
 74                  * are NULL, since the immediate dereference of them below would
 75                  * result in a fault if NULL.
 76                  *
 77                  * With the reduced set of checks, we can afford to inline the
 78                  * checks, which also gives the compiler a chance to elide some
 79                  * of them completely if they can be proven at compile-time. If
 80                  * one of the pre-conditions does not hold, the slow-path will
 81                  * show a report which pre-condition failed.
 82                  */
 83                 if (likely(next->prev == prev && prev->next == next && new != prev && new != next))
 84                         return true;
 85                 ret = false;
 86         }
 87 
 88         ret &= __list_add_valid_or_report(new, prev, next);
 89         return ret;
 90 }
 91 
 92 /*
 93  * Performs the full set of list corruption checks before __list_del_entry().
 94  * On list corruption reports a warning, and returns false.
 95  */
 96 extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);
 97 
 98 /*
 99  * Performs list corruption checks before __list_del_entry(). Returns false if a
100  * corruption is detected, true otherwise.
101  *
102  * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
103  * inline to catch non-faulting corruptions, and only if a corruption is
104  * detected calls the reporting function __list_del_entry_valid_or_report().
105  */
106 static __always_inline bool __list_del_entry_valid(struct list_head *entry)
107 {
108         bool ret = true;
109 
110         if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
111                 struct list_head *prev = entry->prev;
112                 struct list_head *next = entry->next;
113 
114                 /*
115                  * With the hardening version, elide checking if next and prev
116                  * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate
117                  * dereference of them below would result in a fault.
118                  */
119                 if (likely(prev->next == entry && next->prev == entry))
120                         return true;
121                 ret = false;
122         }
123 
124         ret &= __list_del_entry_valid_or_report(entry);
125         return ret;
126 }
127 #else
128 static inline bool __list_add_valid(struct list_head *new,
129                                 struct list_head *prev,
130                                 struct list_head *next)
131 {
132         return true;
133 }
134 static inline bool __list_del_entry_valid(struct list_head *entry)
135 {
136         return true;
137 }
138 #endif
139 
140 /*
141  * Insert a new entry between two known consecutive entries.
142  *
143  * This is only for internal list manipulation where we know
144  * the prev/next entries already!
145  */
146 static inline void __list_add(struct list_head *new,
147                               struct list_head *prev,
148                               struct list_head *next)
149 {
150         if (!__list_add_valid(new, prev, next))
151                 return;
152 
153         next->prev = new;
154         new->next = next;
155         new->prev = prev;
156         WRITE_ONCE(prev->next, new);
157 }
158 
159 /**
160  * list_add - add a new entry
161  * @new: new entry to be added
162  * @head: list head to add it after
163  *
164  * Insert a new entry after the specified head.
165  * This is good for implementing stacks.
166  */
167 static inline void list_add(struct list_head *new, struct list_head *head)
168 {
169         __list_add(new, head, head->next);
170 }
171 
172 
173 /**
174  * list_add_tail - add a new entry
175  * @new: new entry to be added
176  * @head: list head to add it before
177  *
178  * Insert a new entry before the specified head.
179  * This is useful for implementing queues.
180  */
181 static inline void list_add_tail(struct list_head *new, struct list_head *head)
182 {
183         __list_add(new, head->prev, head);
184 }
185 
186 /*
187  * Delete a list entry by making the prev/next entries
188  * point to each other.
189  *
190  * This is only for internal list manipulation where we know
191  * the prev/next entries already!
192  */
193 static inline void __list_del(struct list_head * prev, struct list_head * next)
194 {
195         next->prev = prev;
196         WRITE_ONCE(prev->next, next);
197 }
198 
199 /*
200  * Delete a list entry and clear the 'prev' pointer.
201  *
202  * This is a special-purpose list clearing method used in the networking code
203  * for lists allocated as per-cpu, where we don't want to incur the extra
204  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
205  * needs to check the node 'prev' pointer instead of calling list_empty().
206  */
207 static inline void __list_del_clearprev(struct list_head *entry)
208 {
209         __list_del(entry->prev, entry->next);
210         entry->prev = NULL;
211 }
212 
213 static inline void __list_del_entry(struct list_head *entry)
214 {
215         if (!__list_del_entry_valid(entry))
216                 return;
217 
218         __list_del(entry->prev, entry->next);
219 }
220 
221 /**
222  * list_del - deletes entry from list.
223  * @entry: the element to delete from the list.
224  * Note: list_empty() on entry does not return true after this, the entry is
225  * in an undefined state.
226  */
227 static inline void list_del(struct list_head *entry)
228 {
229         __list_del_entry(entry);
230         entry->next = LIST_POISON1;
231         entry->prev = LIST_POISON2;
232 }
233 
234 /**
235  * list_replace - replace old entry by new one
236  * @old : the element to be replaced
237  * @new : the new element to insert
238  *
239  * If @old was empty, it will be overwritten.
240  */
241 static inline void list_replace(struct list_head *old,
242                                 struct list_head *new)
243 {
244         new->next = old->next;
245         new->next->prev = new;
246         new->prev = old->prev;
247         new->prev->next = new;
248 }
249 
250 /**
251  * list_replace_init - replace old entry by new one and initialize the old one
252  * @old : the element to be replaced
253  * @new : the new element to insert
254  *
255  * If @old was empty, it will be overwritten.
256  */
257 static inline void list_replace_init(struct list_head *old,
258                                      struct list_head *new)
259 {
260         list_replace(old, new);
261         INIT_LIST_HEAD(old);
262 }
263 
264 /**
265  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
266  * @entry1: the location to place entry2
267  * @entry2: the location to place entry1
268  */
269 static inline void list_swap(struct list_head *entry1,
270                              struct list_head *entry2)
271 {
272         struct list_head *pos = entry2->prev;
273 
274         list_del(entry2);
275         list_replace(entry1, entry2);
276         if (pos == entry1)
277                 pos = entry2;
278         list_add(entry1, pos);
279 }
280 
281 /**
282  * list_del_init - deletes entry from list and reinitialize it.
283  * @entry: the element to delete from the list.
284  */
285 static inline void list_del_init(struct list_head *entry)
286 {
287         __list_del_entry(entry);
288         INIT_LIST_HEAD(entry);
289 }
290 
291 /**
292  * list_move - delete from one list and add as another's head
293  * @list: the entry to move
294  * @head: the head that will precede our entry
295  */
296 static inline void list_move(struct list_head *list, struct list_head *head)
297 {
298         __list_del_entry(list);
299         list_add(list, head);
300 }
301 
302 /**
303  * list_move_tail - delete from one list and add as another's tail
304  * @list: the entry to move
305  * @head: the head that will follow our entry
306  */
307 static inline void list_move_tail(struct list_head *list,
308                                   struct list_head *head)
309 {
310         __list_del_entry(list);
311         list_add_tail(list, head);
312 }
313 
314 /**
315  * list_bulk_move_tail - move a subsection of a list to its tail
316  * @head: the head that will follow our entry
317  * @first: first entry to move
318  * @last: last entry to move, can be the same as first
319  *
320  * Move all entries between @first and including @last before @head.
321  * All three entries must belong to the same linked list.
322  */
323 static inline void list_bulk_move_tail(struct list_head *head,
324                                        struct list_head *first,
325                                        struct list_head *last)
326 {
327         first->prev->next = last->next;
328         last->next->prev = first->prev;
329 
330         head->prev->next = first;
331         first->prev = head->prev;
332 
333         last->next = head;
334         head->prev = last;
335 }
336 
337 /**
338  * list_is_first -- tests whether @list is the first entry in list @head
339  * @list: the entry to test
340  * @head: the head of the list
341  */
342 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
343 {
344         return list->prev == head;
345 }
346 
347 /**
348  * list_is_last - tests whether @list is the last entry in list @head
349  * @list: the entry to test
350  * @head: the head of the list
351  */
352 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
353 {
354         return list->next == head;
355 }
356 
357 /**
358  * list_is_head - tests whether @list is the list @head
359  * @list: the entry to test
360  * @head: the head of the list
361  */
362 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
363 {
364         return list == head;
365 }
366 
367 /**
368  * list_empty - tests whether a list is empty
369  * @head: the list to test.
370  */
371 static inline int list_empty(const struct list_head *head)
372 {
373         return READ_ONCE(head->next) == head;
374 }
375 
376 /**
377  * list_del_init_careful - deletes entry from list and reinitialize it.
378  * @entry: the element to delete from the list.
379  *
380  * This is the same as list_del_init(), except designed to be used
381  * together with list_empty_careful() in a way to guarantee ordering
382  * of other memory operations.
383  *
384  * Any memory operations done before a list_del_init_careful() are
385  * guaranteed to be visible after a list_empty_careful() test.
386  */
387 static inline void list_del_init_careful(struct list_head *entry)
388 {
389         __list_del_entry(entry);
390         WRITE_ONCE(entry->prev, entry);
391         smp_store_release(&entry->next, entry);
392 }
393 
394 /**
395  * list_empty_careful - tests whether a list is empty and not being modified
396  * @head: the list to test
397  *
398  * Description:
399  * tests whether a list is empty _and_ checks that no other CPU might be
400  * in the process of modifying either member (next or prev)
401  *
402  * NOTE: using list_empty_careful() without synchronization
403  * can only be safe if the only activity that can happen
404  * to the list entry is list_del_init(). Eg. it cannot be used
405  * if another CPU could re-list_add() it.
406  */
407 static inline int list_empty_careful(const struct list_head *head)
408 {
409         struct list_head *next = smp_load_acquire(&head->next);
410         return list_is_head(next, head) && (next == READ_ONCE(head->prev));
411 }
412 
413 /**
414  * list_rotate_left - rotate the list to the left
415  * @head: the head of the list
416  */
417 static inline void list_rotate_left(struct list_head *head)
418 {
419         struct list_head *first;
420 
421         if (!list_empty(head)) {
422                 first = head->next;
423                 list_move_tail(first, head);
424         }
425 }
426 
427 /**
428  * list_rotate_to_front() - Rotate list to specific item.
429  * @list: The desired new front of the list.
430  * @head: The head of the list.
431  *
432  * Rotates list so that @list becomes the new front of the list.
433  */
434 static inline void list_rotate_to_front(struct list_head *list,
435                                         struct list_head *head)
436 {
437         /*
438          * Deletes the list head from the list denoted by @head and
439          * places it as the tail of @list, this effectively rotates the
440          * list so that @list is at the front.
441          */
442         list_move_tail(head, list);
443 }
444 
445 /**
446  * list_is_singular - tests whether a list has just one entry.
447  * @head: the list to test.
448  */
449 static inline int list_is_singular(const struct list_head *head)
450 {
451         return !list_empty(head) && (head->next == head->prev);
452 }
453 
454 static inline void __list_cut_position(struct list_head *list,
455                 struct list_head *head, struct list_head *entry)
456 {
457         struct list_head *new_first = entry->next;
458         list->next = head->next;
459         list->next->prev = list;
460         list->prev = entry;
461         entry->next = list;
462         head->next = new_first;
463         new_first->prev = head;
464 }
465 
466 /**
467  * list_cut_position - cut a list into two
468  * @list: a new list to add all removed entries
469  * @head: a list with entries
470  * @entry: an entry within head, could be the head itself
471  *      and if so we won't cut the list
472  *
473  * This helper moves the initial part of @head, up to and
474  * including @entry, from @head to @list. You should
475  * pass on @entry an element you know is on @head. @list
476  * should be an empty list or a list you do not care about
477  * losing its data.
478  *
479  */
480 static inline void list_cut_position(struct list_head *list,
481                 struct list_head *head, struct list_head *entry)
482 {
483         if (list_empty(head))
484                 return;
485         if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
486                 return;
487         if (list_is_head(entry, head))
488                 INIT_LIST_HEAD(list);
489         else
490                 __list_cut_position(list, head, entry);
491 }
492 
493 /**
494  * list_cut_before - cut a list into two, before given entry
495  * @list: a new list to add all removed entries
496  * @head: a list with entries
497  * @entry: an entry within head, could be the head itself
498  *
499  * This helper moves the initial part of @head, up to but
500  * excluding @entry, from @head to @list.  You should pass
501  * in @entry an element you know is on @head.  @list should
502  * be an empty list or a list you do not care about losing
503  * its data.
504  * If @entry == @head, all entries on @head are moved to
505  * @list.
506  */
507 static inline void list_cut_before(struct list_head *list,
508                                    struct list_head *head,
509                                    struct list_head *entry)
510 {
511         if (head->next == entry) {
512                 INIT_LIST_HEAD(list);
513                 return;
514         }
515         list->next = head->next;
516         list->next->prev = list;
517         list->prev = entry->prev;
518         list->prev->next = list;
519         head->next = entry;
520         entry->prev = head;
521 }
522 
523 static inline void __list_splice(const struct list_head *list,
524                                  struct list_head *prev,
525                                  struct list_head *next)
526 {
527         struct list_head *first = list->next;
528         struct list_head *last = list->prev;
529 
530         first->prev = prev;
531         prev->next = first;
532 
533         last->next = next;
534         next->prev = last;
535 }
536 
537 /**
538  * list_splice - join two lists, this is designed for stacks
539  * @list: the new list to add.
540  * @head: the place to add it in the first list.
541  */
542 static inline void list_splice(const struct list_head *list,
543                                 struct list_head *head)
544 {
545         if (!list_empty(list))
546                 __list_splice(list, head, head->next);
547 }
548 
549 /**
550  * list_splice_tail - join two lists, each list being a queue
551  * @list: the new list to add.
552  * @head: the place to add it in the first list.
553  */
554 static inline void list_splice_tail(struct list_head *list,
555                                 struct list_head *head)
556 {
557         if (!list_empty(list))
558                 __list_splice(list, head->prev, head);
559 }
560 
561 /**
562  * list_splice_init - join two lists and reinitialise the emptied list.
563  * @list: the new list to add.
564  * @head: the place to add it in the first list.
565  *
566  * The list at @list is reinitialised
567  */
568 static inline void list_splice_init(struct list_head *list,
569                                     struct list_head *head)
570 {
571         if (!list_empty(list)) {
572                 __list_splice(list, head, head->next);
573                 INIT_LIST_HEAD(list);
574         }
575 }
576 
577 /**
578  * list_splice_tail_init - join two lists and reinitialise the emptied list
579  * @list: the new list to add.
580  * @head: the place to add it in the first list.
581  *
582  * Each of the lists is a queue.
583  * The list at @list is reinitialised
584  */
585 static inline void list_splice_tail_init(struct list_head *list,
586                                          struct list_head *head)
587 {
588         if (!list_empty(list)) {
589                 __list_splice(list, head->prev, head);
590                 INIT_LIST_HEAD(list);
591         }
592 }
593 
594 /**
595  * list_entry - get the struct for this entry
596  * @ptr:        the &struct list_head pointer.
597  * @type:       the type of the struct this is embedded in.
598  * @member:     the name of the list_head within the struct.
599  */
600 #define list_entry(ptr, type, member) \
601         container_of(ptr, type, member)
602 
603 /**
604  * list_first_entry - get the first element from a list
605  * @ptr:        the list head to take the element from.
606  * @type:       the type of the struct this is embedded in.
607  * @member:     the name of the list_head within the struct.
608  *
609  * Note, that list is expected to be not empty.
610  */
611 #define list_first_entry(ptr, type, member) \
612         list_entry((ptr)->next, type, member)
613 
614 /**
615  * list_last_entry - get the last element from a list
616  * @ptr:        the list head to take the element from.
617  * @type:       the type of the struct this is embedded in.
618  * @member:     the name of the list_head within the struct.
619  *
620  * Note, that list is expected to be not empty.
621  */
622 #define list_last_entry(ptr, type, member) \
623         list_entry((ptr)->prev, type, member)
624 
625 /**
626  * list_first_entry_or_null - get the first element from a list
627  * @ptr:        the list head to take the element from.
628  * @type:       the type of the struct this is embedded in.
629  * @member:     the name of the list_head within the struct.
630  *
631  * Note that if the list is empty, it returns NULL.
632  */
633 #define list_first_entry_or_null(ptr, type, member) ({ \
634         struct list_head *head__ = (ptr); \
635         struct list_head *pos__ = READ_ONCE(head__->next); \
636         pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
637 })
638 
639 /**
640  * list_next_entry - get the next element in list
641  * @pos:        the type * to cursor
642  * @member:     the name of the list_head within the struct.
643  */
644 #define list_next_entry(pos, member) \
645         list_entry((pos)->member.next, typeof(*(pos)), member)
646 
647 /**
648  * list_next_entry_circular - get the next element in list
649  * @pos:        the type * to cursor.
650  * @head:       the list head to take the element from.
651  * @member:     the name of the list_head within the struct.
652  *
653  * Wraparound if pos is the last element (return the first element).
654  * Note, that list is expected to be not empty.
655  */
656 #define list_next_entry_circular(pos, head, member) \
657         (list_is_last(&(pos)->member, head) ? \
658         list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))
659 
660 /**
661  * list_prev_entry - get the prev element in list
662  * @pos:        the type * to cursor
663  * @member:     the name of the list_head within the struct.
664  */
665 #define list_prev_entry(pos, member) \
666         list_entry((pos)->member.prev, typeof(*(pos)), member)
667 
668 /**
669  * list_prev_entry_circular - get the prev element in list
670  * @pos:        the type * to cursor.
671  * @head:       the list head to take the element from.
672  * @member:     the name of the list_head within the struct.
673  *
674  * Wraparound if pos is the first element (return the last element).
675  * Note, that list is expected to be not empty.
676  */
677 #define list_prev_entry_circular(pos, head, member) \
678         (list_is_first(&(pos)->member, head) ? \
679         list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))
680 
681 /**
682  * list_for_each        -       iterate over a list
683  * @pos:        the &struct list_head to use as a loop cursor.
684  * @head:       the head for your list.
685  */
686 #define list_for_each(pos, head) \
687         for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
688 
689 /**
690  * list_for_each_reverse - iterate backwards over a list
691  * @pos:        the &struct list_head to use as a loop cursor.
692  * @head:       the head for your list.
693  */
694 #define list_for_each_reverse(pos, head) \
695         for (pos = (head)->prev; pos != (head); pos = pos->prev)
696 
697 /**
698  * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
699  * @pos:        the &struct list_head to use as a loop cursor.
700  * @head:       the head for your list.
701  */
702 #define list_for_each_rcu(pos, head)              \
703         for (pos = rcu_dereference((head)->next); \
704              !list_is_head(pos, (head)); \
705              pos = rcu_dereference(pos->next))
706 
707 /**
708  * list_for_each_continue - continue iteration over a list
709  * @pos:        the &struct list_head to use as a loop cursor.
710  * @head:       the head for your list.
711  *
712  * Continue to iterate over a list, continuing after the current position.
713  */
714 #define list_for_each_continue(pos, head) \
715         for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
716 
717 /**
718  * list_for_each_prev   -       iterate over a list backwards
719  * @pos:        the &struct list_head to use as a loop cursor.
720  * @head:       the head for your list.
721  */
722 #define list_for_each_prev(pos, head) \
723         for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
724 
725 /**
726  * list_for_each_safe - iterate over a list safe against removal of list entry
727  * @pos:        the &struct list_head to use as a loop cursor.
728  * @n:          another &struct list_head to use as temporary storage
729  * @head:       the head for your list.
730  */
731 #define list_for_each_safe(pos, n, head) \
732         for (pos = (head)->next, n = pos->next; \
733              !list_is_head(pos, (head)); \
734              pos = n, n = pos->next)
735 
736 /**
737  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
738  * @pos:        the &struct list_head to use as a loop cursor.
739  * @n:          another &struct list_head to use as temporary storage
740  * @head:       the head for your list.
741  */
742 #define list_for_each_prev_safe(pos, n, head) \
743         for (pos = (head)->prev, n = pos->prev; \
744              !list_is_head(pos, (head)); \
745              pos = n, n = pos->prev)
746 
747 /**
748  * list_count_nodes - count nodes in the list
749  * @head:       the head for your list.
750  */
751 static inline size_t list_count_nodes(struct list_head *head)
752 {
753         struct list_head *pos;
754         size_t count = 0;
755 
756         list_for_each(pos, head)
757                 count++;
758 
759         return count;
760 }
761 
762 /**
763  * list_entry_is_head - test if the entry points to the head of the list
764  * @pos:        the type * to cursor
765  * @head:       the head for your list.
766  * @member:     the name of the list_head within the struct.
767  */
768 #define list_entry_is_head(pos, head, member)                           \
769         list_is_head(&pos->member, (head))
770 
771 /**
772  * list_for_each_entry  -       iterate over list of given type
773  * @pos:        the type * to use as a loop cursor.
774  * @head:       the head for your list.
775  * @member:     the name of the list_head within the struct.
776  */
777 #define list_for_each_entry(pos, head, member)                          \
778         for (pos = list_first_entry(head, typeof(*pos), member);        \
779              !list_entry_is_head(pos, head, member);                    \
780              pos = list_next_entry(pos, member))
781 
782 /**
783  * list_for_each_entry_reverse - iterate backwards over list of given type.
784  * @pos:        the type * to use as a loop cursor.
785  * @head:       the head for your list.
786  * @member:     the name of the list_head within the struct.
787  */
788 #define list_for_each_entry_reverse(pos, head, member)                  \
789         for (pos = list_last_entry(head, typeof(*pos), member);         \
790              !list_entry_is_head(pos, head, member);                    \
791              pos = list_prev_entry(pos, member))
792 
793 /**
794  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
795  * @pos:        the type * to use as a start point
796  * @head:       the head of the list
797  * @member:     the name of the list_head within the struct.
798  *
799  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
800  */
801 #define list_prepare_entry(pos, head, member) \
802         ((pos) ? : list_entry(head, typeof(*pos), member))
803 
804 /**
805  * list_for_each_entry_continue - continue iteration over list of given type
806  * @pos:        the type * to use as a loop cursor.
807  * @head:       the head for your list.
808  * @member:     the name of the list_head within the struct.
809  *
810  * Continue to iterate over list of given type, continuing after
811  * the current position.
812  */
813 #define list_for_each_entry_continue(pos, head, member)                 \
814         for (pos = list_next_entry(pos, member);                        \
815              !list_entry_is_head(pos, head, member);                    \
816              pos = list_next_entry(pos, member))
817 
818 /**
819  * list_for_each_entry_continue_reverse - iterate backwards from the given point
820  * @pos:        the type * to use as a loop cursor.
821  * @head:       the head for your list.
822  * @member:     the name of the list_head within the struct.
823  *
824  * Start to iterate over list of given type backwards, continuing after
825  * the current position.
826  */
827 #define list_for_each_entry_continue_reverse(pos, head, member)         \
828         for (pos = list_prev_entry(pos, member);                        \
829              !list_entry_is_head(pos, head, member);                    \
830              pos = list_prev_entry(pos, member))
831 
832 /**
833  * list_for_each_entry_from - iterate over list of given type from the current point
834  * @pos:        the type * to use as a loop cursor.
835  * @head:       the head for your list.
836  * @member:     the name of the list_head within the struct.
837  *
838  * Iterate over list of given type, continuing from current position.
839  */
840 #define list_for_each_entry_from(pos, head, member)                     \
841         for (; !list_entry_is_head(pos, head, member);                  \
842              pos = list_next_entry(pos, member))
843 
844 /**
845  * list_for_each_entry_from_reverse - iterate backwards over list of given type
846  *                                    from the current point
847  * @pos:        the type * to use as a loop cursor.
848  * @head:       the head for your list.
849  * @member:     the name of the list_head within the struct.
850  *
851  * Iterate backwards over list of given type, continuing from current position.
852  */
853 #define list_for_each_entry_from_reverse(pos, head, member)             \
854         for (; !list_entry_is_head(pos, head, member);                  \
855              pos = list_prev_entry(pos, member))
856 
857 /**
858  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
859  * @pos:        the type * to use as a loop cursor.
860  * @n:          another type * to use as temporary storage
861  * @head:       the head for your list.
862  * @member:     the name of the list_head within the struct.
863  */
864 #define list_for_each_entry_safe(pos, n, head, member)                  \
865         for (pos = list_first_entry(head, typeof(*pos), member),        \
866                 n = list_next_entry(pos, member);                       \
867              !list_entry_is_head(pos, head, member);                    \
868              pos = n, n = list_next_entry(n, member))
869 
870 /**
871  * list_for_each_entry_safe_continue - continue list iteration safe against removal
872  * @pos:        the type * to use as a loop cursor.
873  * @n:          another type * to use as temporary storage
874  * @head:       the head for your list.
875  * @member:     the name of the list_head within the struct.
876  *
877  * Iterate over list of given type, continuing after current point,
878  * safe against removal of list entry.
879  */
880 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
881         for (pos = list_next_entry(pos, member),                                \
882                 n = list_next_entry(pos, member);                               \
883              !list_entry_is_head(pos, head, member);                            \
884              pos = n, n = list_next_entry(n, member))
885 
886 /**
887  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
888  * @pos:        the type * to use as a loop cursor.
889  * @n:          another type * to use as temporary storage
890  * @head:       the head for your list.
891  * @member:     the name of the list_head within the struct.
892  *
893  * Iterate over list of given type from current point, safe against
894  * removal of list entry.
895  */
896 #define list_for_each_entry_safe_from(pos, n, head, member)                     \
897         for (n = list_next_entry(pos, member);                                  \
898              !list_entry_is_head(pos, head, member);                            \
899              pos = n, n = list_next_entry(n, member))
900 
901 /**
902  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
903  * @pos:        the type * to use as a loop cursor.
904  * @n:          another type * to use as temporary storage
905  * @head:       the head for your list.
906  * @member:     the name of the list_head within the struct.
907  *
908  * Iterate backwards over list of given type, safe against removal
909  * of list entry.
910  */
911 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
912         for (pos = list_last_entry(head, typeof(*pos), member),         \
913                 n = list_prev_entry(pos, member);                       \
914              !list_entry_is_head(pos, head, member);                    \
915              pos = n, n = list_prev_entry(n, member))
916 
917 /**
918  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
919  * @pos:        the loop cursor used in the list_for_each_entry_safe loop
920  * @n:          temporary storage used in list_for_each_entry_safe
921  * @member:     the name of the list_head within the struct.
922  *
923  * list_safe_reset_next is not safe to use in general if the list may be
924  * modified concurrently (eg. the lock is dropped in the loop body). An
925  * exception to this is if the cursor element (pos) is pinned in the list,
926  * and list_safe_reset_next is called after re-taking the lock and before
927  * completing the current iteration of the loop body.
928  */
929 #define list_safe_reset_next(pos, n, member)                            \
930         n = list_next_entry(pos, member)
931 
932 /*
933  * Double linked lists with a single pointer list head.
934  * Mostly useful for hash tables where the two pointer list head is
935  * too wasteful.
936  * You lose the ability to access the tail in O(1).
937  */
938 
939 #define HLIST_HEAD_INIT { .first = NULL }
940 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
941 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
942 static inline void INIT_HLIST_NODE(struct hlist_node *h)
943 {
944         h->next = NULL;
945         h->pprev = NULL;
946 }
947 
948 /**
949  * hlist_unhashed - Has node been removed from list and reinitialized?
950  * @h: Node to be checked
951  *
952  * Not that not all removal functions will leave a node in unhashed
953  * state.  For example, hlist_nulls_del_init_rcu() does leave the
954  * node in unhashed state, but hlist_nulls_del() does not.
955  */
956 static inline int hlist_unhashed(const struct hlist_node *h)
957 {
958         return !h->pprev;
959 }
960 
961 /**
962  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
963  * @h: Node to be checked
964  *
965  * This variant of hlist_unhashed() must be used in lockless contexts
966  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
967  * various WRITE_ONCE() in hlist helpers that are defined below.
968  */
969 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
970 {
971         return !READ_ONCE(h->pprev);
972 }
973 
974 /**
975  * hlist_empty - Is the specified hlist_head structure an empty hlist?
976  * @h: Structure to check.
977  */
978 static inline int hlist_empty(const struct hlist_head *h)
979 {
980         return !READ_ONCE(h->first);
981 }
982 
983 static inline void __hlist_del(struct hlist_node *n)
984 {
985         struct hlist_node *next = n->next;
986         struct hlist_node **pprev = n->pprev;
987 
988         WRITE_ONCE(*pprev, next);
989         if (next)
990                 WRITE_ONCE(next->pprev, pprev);
991 }
992 
993 /**
994  * hlist_del - Delete the specified hlist_node from its list
995  * @n: Node to delete.
996  *
997  * Note that this function leaves the node in hashed state.  Use
998  * hlist_del_init() or similar instead to unhash @n.
999  */
1000 static inline void hlist_del(struct hlist_node *n)
1001 {
1002         __hlist_del(n);
1003         n->next = LIST_POISON1;
1004         n->pprev = LIST_POISON2;
1005 }
1006 
1007 /**
1008  * hlist_del_init - Delete the specified hlist_node from its list and initialize
1009  * @n: Node to delete.
1010  *
1011  * Note that this function leaves the node in unhashed state.
1012  */
1013 static inline void hlist_del_init(struct hlist_node *n)
1014 {
1015         if (!hlist_unhashed(n)) {
1016                 __hlist_del(n);
1017                 INIT_HLIST_NODE(n);
1018         }
1019 }
1020 
1021 /**
1022  * hlist_add_head - add a new entry at the beginning of the hlist
1023  * @n: new entry to be added
1024  * @h: hlist head to add it after
1025  *
1026  * Insert a new entry after the specified head.
1027  * This is good for implementing stacks.
1028  */
1029 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1030 {
1031         struct hlist_node *first = h->first;
1032         WRITE_ONCE(n->next, first);
1033         if (first)
1034                 WRITE_ONCE(first->pprev, &n->next);
1035         WRITE_ONCE(h->first, n);
1036         WRITE_ONCE(n->pprev, &h->first);
1037 }
1038 
1039 /**
1040  * hlist_add_before - add a new entry before the one specified
1041  * @n: new entry to be added
1042  * @next: hlist node to add it before, which must be non-NULL
1043  */
1044 static inline void hlist_add_before(struct hlist_node *n,
1045                                     struct hlist_node *next)
1046 {
1047         WRITE_ONCE(n->pprev, next->pprev);
1048         WRITE_ONCE(n->next, next);
1049         WRITE_ONCE(next->pprev, &n->next);
1050         WRITE_ONCE(*(n->pprev), n);
1051 }
1052 
1053 /**
1054  * hlist_add_behind - add a new entry after the one specified
1055  * @n: new entry to be added
1056  * @prev: hlist node to add it after, which must be non-NULL
1057  */
1058 static inline void hlist_add_behind(struct hlist_node *n,
1059                                     struct hlist_node *prev)
1060 {
1061         WRITE_ONCE(n->next, prev->next);
1062         WRITE_ONCE(prev->next, n);
1063         WRITE_ONCE(n->pprev, &prev->next);
1064 
1065         if (n->next)
1066                 WRITE_ONCE(n->next->pprev, &n->next);
1067 }
1068 
1069 /**
1070  * hlist_add_fake - create a fake hlist consisting of a single headless node
1071  * @n: Node to make a fake list out of
1072  *
1073  * This makes @n appear to be its own predecessor on a headless hlist.
1074  * The point of this is to allow things like hlist_del() to work correctly
1075  * in cases where there is no list.
1076  */
1077 static inline void hlist_add_fake(struct hlist_node *n)
1078 {
1079         n->pprev = &n->next;
1080 }
1081 
1082 /**
1083  * hlist_fake: Is this node a fake hlist?
1084  * @h: Node to check for being a self-referential fake hlist.
1085  */
1086 static inline bool hlist_fake(struct hlist_node *h)
1087 {
1088         return h->pprev == &h->next;
1089 }
1090 
1091 /**
1092  * hlist_is_singular_node - is node the only element of the specified hlist?
1093  * @n: Node to check for singularity.
1094  * @h: Header for potentially singular list.
1095  *
1096  * Check whether the node is the only node of the head without
1097  * accessing head, thus avoiding unnecessary cache misses.
1098  */
1099 static inline bool
1100 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
1101 {
1102         return !n->next && n->pprev == &h->first;
1103 }
1104 
1105 /**
1106  * hlist_move_list - Move an hlist
1107  * @old: hlist_head for old list.
1108  * @new: hlist_head for new list.
1109  *
1110  * Move a list from one list head to another. Fixup the pprev
1111  * reference of the first entry if it exists.
1112  */
1113 static inline void hlist_move_list(struct hlist_head *old,
1114                                    struct hlist_head *new)
1115 {
1116         new->first = old->first;
1117         if (new->first)
1118                 new->first->pprev = &new->first;
1119         old->first = NULL;
1120 }
1121 
1122 /**
1123  * hlist_splice_init() - move all entries from one list to another
1124  * @from: hlist_head from which entries will be moved
1125  * @last: last entry on the @from list
1126  * @to:   hlist_head to which entries will be moved
1127  *
1128  * @to can be empty, @from must contain at least @last.
1129  */
1130 static inline void hlist_splice_init(struct hlist_head *from,
1131                                      struct hlist_node *last,
1132                                      struct hlist_head *to)
1133 {
1134         if (to->first)
1135                 to->first->pprev = &last->next;
1136         last->next = to->first;
1137         to->first = from->first;
1138         from->first->pprev = &to->first;
1139         from->first = NULL;
1140 }
1141 
1142 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1143 
1144 #define hlist_for_each(pos, head) \
1145         for (pos = (head)->first; pos ; pos = pos->next)
1146 
1147 #define hlist_for_each_safe(pos, n, head) \
1148         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1149              pos = n)
1150 
1151 #define hlist_entry_safe(ptr, type, member) \
1152         ({ typeof(ptr) ____ptr = (ptr); \
1153            ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1154         })
1155 
1156 /**
1157  * hlist_for_each_entry - iterate over list of given type
1158  * @pos:        the type * to use as a loop cursor.
1159  * @head:       the head for your list.
1160  * @member:     the name of the hlist_node within the struct.
1161  */
1162 #define hlist_for_each_entry(pos, head, member)                         \
1163         for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1164              pos;                                                       \
1165              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1166 
1167 /**
1168  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1169  * @pos:        the type * to use as a loop cursor.
1170  * @member:     the name of the hlist_node within the struct.
1171  */
1172 #define hlist_for_each_entry_continue(pos, member)                      \
1173         for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1174              pos;                                                       \
1175              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1176 
1177 /**
1178  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1179  * @pos:        the type * to use as a loop cursor.
1180  * @member:     the name of the hlist_node within the struct.
1181  */
1182 #define hlist_for_each_entry_from(pos, member)                          \
1183         for (; pos;                                                     \
1184              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1185 
1186 /**
1187  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1188  * @pos:        the type * to use as a loop cursor.
1189  * @n:          a &struct hlist_node to use as temporary storage
1190  * @head:       the head for your list.
1191  * @member:     the name of the hlist_node within the struct.
1192  */
1193 #define hlist_for_each_entry_safe(pos, n, head, member)                 \
1194         for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1195              pos && ({ n = pos->member.next; 1; });                     \
1196              pos = hlist_entry_safe(n, typeof(*pos), member))
1197 
1198 /**
1199  * hlist_count_nodes - count nodes in the hlist
1200  * @head:       the head for your hlist.
1201  */
1202 static inline size_t hlist_count_nodes(struct hlist_head *head)
1203 {
1204         struct hlist_node *pos;
1205         size_t count = 0;
1206 
1207         hlist_for_each(pos, head)
1208                 count++;
1209 
1210         return count;
1211 }
1212 
1213 #endif
1214 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php