1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_MAPLE_TREE_H 3 #define _LINUX_MAPLE_TREE_H 4 /* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com> 8 * Matthew Wilcox <willy@infradead.org> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/rcupdate.h> 13 #include <linux/spinlock.h> 14 /* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16 /* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28 /* 64bit sizes */ 29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33 #else 34 /* 32bit sizes */ 35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41 #define MAPLE_NODE_MASK 255UL 42 43 /* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a range 56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE 57 * flag. 58 * 59 * Node types: 60 * 0x??1 = Root 61 * 0x?00 = 16 bit nodes 62 * 0x010 = 32 bit nodes 63 * 0x110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0x??1 : Root 68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73 /* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77 struct maple_metadata { 78 unsigned char end; 79 unsigned char gap; 80 }; 81 82 /* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103 struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113 }; 114 115 /* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124 struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130 }; 131 132 struct maple_alloc { 133 unsigned long total; 134 unsigned char node_count; 135 unsigned int request_count; 136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 137 }; 138 139 struct maple_topiary { 140 struct maple_pnode *parent; 141 struct maple_enode *next; /* Overlaps the pivot */ 142 }; 143 144 enum maple_type { 145 maple_dense, 146 maple_leaf_64, 147 maple_range_64, 148 maple_arange_64, 149 }; 150 151 152 /** 153 * DOC: Maple tree flags 154 * 155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 156 * * MT_FLAGS_USE_RCU - Operate in RCU mode 157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 163 * 164 * MAPLE_HEIGHT_MAX The largest height that can be stored 165 */ 166 #define MT_FLAGS_ALLOC_RANGE 0x01 167 #define MT_FLAGS_USE_RCU 0x02 168 #define MT_FLAGS_HEIGHT_OFFSET 0x02 169 #define MT_FLAGS_HEIGHT_MASK 0x7C 170 #define MT_FLAGS_LOCK_MASK 0x300 171 #define MT_FLAGS_LOCK_IRQ 0x100 172 #define MT_FLAGS_LOCK_BH 0x200 173 #define MT_FLAGS_LOCK_EXTERN 0x300 174 #define MT_FLAGS_ALLOC_WRAPPED 0x0800 175 176 #define MAPLE_HEIGHT_MAX 31 177 178 179 #define MAPLE_NODE_TYPE_MASK 0x0F 180 #define MAPLE_NODE_TYPE_SHIFT 0x03 181 182 #define MAPLE_RESERVED_RANGE 4096 183 184 #ifdef CONFIG_LOCKDEP 185 typedef struct lockdep_map *lockdep_map_p; 186 #define mt_lock_is_held(mt) \ 187 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 188 189 #define mt_write_lock_is_held(mt) \ 190 (!(mt)->ma_external_lock || \ 191 lock_is_held_type((mt)->ma_external_lock, 0)) 192 193 #define mt_set_external_lock(mt, lock) \ 194 (mt)->ma_external_lock = &(lock)->dep_map 195 196 #define mt_on_stack(mt) (mt).ma_external_lock = NULL 197 #else 198 typedef struct { /* nothing */ } lockdep_map_p; 199 #define mt_lock_is_held(mt) 1 200 #define mt_write_lock_is_held(mt) 1 201 #define mt_set_external_lock(mt, lock) do { } while (0) 202 #define mt_on_stack(mt) do { } while (0) 203 #endif 204 205 /* 206 * If the tree contains a single entry at index 0, it is usually stored in 207 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 208 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 209 * stored in a node. Bits 3-6 are used to store enum maple_type. 210 * 211 * The flags are used both to store some immutable information about this tree 212 * (set at tree creation time) and dynamic information set under the spinlock. 213 * 214 * Another use of flags are to indicate global states of the tree. This is the 215 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in 216 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 217 * re-allocating and RCU freeing nodes when there is a single user. 218 */ 219 struct maple_tree { 220 union { 221 spinlock_t ma_lock; 222 lockdep_map_p ma_external_lock; 223 }; 224 unsigned int ma_flags; 225 void __rcu *ma_root; 226 }; 227 228 /** 229 * MTREE_INIT() - Initialize a maple tree 230 * @name: The maple tree name 231 * @__flags: The maple tree flags 232 * 233 */ 234 #define MTREE_INIT(name, __flags) { \ 235 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 236 .ma_flags = __flags, \ 237 .ma_root = NULL, \ 238 } 239 240 /** 241 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 242 * @name: The tree name 243 * @__flags: The maple tree flags 244 * @__lock: The external lock 245 */ 246 #ifdef CONFIG_LOCKDEP 247 #define MTREE_INIT_EXT(name, __flags, __lock) { \ 248 .ma_external_lock = &(__lock).dep_map, \ 249 .ma_flags = (__flags), \ 250 .ma_root = NULL, \ 251 } 252 #else 253 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 254 #endif 255 256 #define DEFINE_MTREE(name) \ 257 struct maple_tree name = MTREE_INIT(name, 0) 258 259 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 260 #define mtree_lock_nested(mas, subclass) \ 261 spin_lock_nested((&(mt)->ma_lock), subclass) 262 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 263 264 /* 265 * The Maple Tree squeezes various bits in at various points which aren't 266 * necessarily obvious. Usually, this is done by observing that pointers are 267 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 268 * don't use the high bits of pointers to store additional information because 269 * we don't know what bits are unused on any given architecture. 270 * 271 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 272 * low bits for our own purposes. Nodes are currently of 4 types: 273 * 1. Single pointer (Range is 0-0) 274 * 2. Non-leaf Allocation Range nodes 275 * 3. Non-leaf Range nodes 276 * 4. Leaf Range nodes All nodes consist of a number of node slots, 277 * pivots, and a parent pointer. 278 */ 279 280 struct maple_node { 281 union { 282 struct { 283 struct maple_pnode *parent; 284 void __rcu *slot[MAPLE_NODE_SLOTS]; 285 }; 286 struct { 287 void *pad; 288 struct rcu_head rcu; 289 struct maple_enode *piv_parent; 290 unsigned char parent_slot; 291 enum maple_type type; 292 unsigned char slot_len; 293 unsigned int ma_flags; 294 }; 295 struct maple_range_64 mr64; 296 struct maple_arange_64 ma64; 297 struct maple_alloc alloc; 298 }; 299 }; 300 301 /* 302 * More complicated stores can cause two nodes to become one or three and 303 * potentially alter the height of the tree. Either half of the tree may need 304 * to be rebalanced against the other. The ma_topiary struct is used to track 305 * which nodes have been 'cut' from the tree so that the change can be done 306 * safely at a later date. This is done to support RCU. 307 */ 308 struct ma_topiary { 309 struct maple_enode *head; 310 struct maple_enode *tail; 311 struct maple_tree *mtree; 312 }; 313 314 void *mtree_load(struct maple_tree *mt, unsigned long index); 315 316 int mtree_insert(struct maple_tree *mt, unsigned long index, 317 void *entry, gfp_t gfp); 318 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 319 unsigned long last, void *entry, gfp_t gfp); 320 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 321 void *entry, unsigned long size, unsigned long min, 322 unsigned long max, gfp_t gfp); 323 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 324 void *entry, unsigned long range_lo, unsigned long range_hi, 325 unsigned long *next, gfp_t gfp); 326 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 327 void *entry, unsigned long size, unsigned long min, 328 unsigned long max, gfp_t gfp); 329 330 int mtree_store_range(struct maple_tree *mt, unsigned long first, 331 unsigned long last, void *entry, gfp_t gfp); 332 int mtree_store(struct maple_tree *mt, unsigned long index, 333 void *entry, gfp_t gfp); 334 void *mtree_erase(struct maple_tree *mt, unsigned long index); 335 336 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 337 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 338 339 void mtree_destroy(struct maple_tree *mt); 340 void __mt_destroy(struct maple_tree *mt); 341 342 /** 343 * mtree_empty() - Determine if a tree has any present entries. 344 * @mt: Maple Tree. 345 * 346 * Context: Any context. 347 * Return: %true if the tree contains only NULL pointers. 348 */ 349 static inline bool mtree_empty(const struct maple_tree *mt) 350 { 351 return mt->ma_root == NULL; 352 } 353 354 /* Advanced API */ 355 356 /* 357 * Maple State Status 358 * ma_active means the maple state is pointing to a node and offset and can 359 * continue operating on the tree. 360 * ma_start means we have not searched the tree. 361 * ma_root means we have searched the tree and the entry we found lives in 362 * the root of the tree (ie it has index 0, length 1 and is the only entry in 363 * the tree). 364 * ma_none means we have searched the tree and there is no node in the 365 * tree for this entry. For example, we searched for index 1 in an empty 366 * tree. Or we have a tree which points to a full leaf node and we 367 * searched for an entry which is larger than can be contained in that 368 * leaf node. 369 * ma_pause means the data within the maple state may be stale, restart the 370 * operation 371 * ma_overflow means the search has reached the upper limit of the search 372 * ma_underflow means the search has reached the lower limit of the search 373 * ma_error means there was an error, check the node for the error number. 374 */ 375 enum maple_status { 376 ma_active, 377 ma_start, 378 ma_root, 379 ma_none, 380 ma_pause, 381 ma_overflow, 382 ma_underflow, 383 ma_error, 384 }; 385 386 /* 387 * The maple state is defined in the struct ma_state and is used to keep track 388 * of information during operations, and even between operations when using the 389 * advanced API. 390 * 391 * If state->node has bit 0 set then it references a tree location which is not 392 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 393 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 394 * node type. 395 * 396 * state->alloc either has a request number of nodes or an allocated node. If 397 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 398 * and the remaining bits are the value. If state->alloc is a node, then the 399 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 400 * storing more allocated nodes, a total number of nodes allocated, and the 401 * node_count in this node. node_count is the number of allocated nodes in this 402 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 403 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 404 * by removing a node from the state->alloc node until state->alloc->node_count 405 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 406 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 407 * state->alloc into the pushed node's slot[0]. 408 * 409 * The state also contains the implied min/max of the state->node, the depth of 410 * this search, and the offset. The implied min/max are either from the parent 411 * node or are 0-oo for the root node. The depth is incremented or decremented 412 * every time a node is walked down or up. The offset is the slot/pivot of 413 * interest in the node - either for reading or writing. 414 * 415 * When returning a value the maple state index and last respectively contain 416 * the start and end of the range for the entry. Ranges are inclusive in the 417 * Maple Tree. 418 * 419 * The status of the state is used to determine how the next action should treat 420 * the state. For instance, if the status is ma_start then the next action 421 * should start at the root of the tree and walk down. If the status is 422 * ma_pause then the node may be stale data and should be discarded. If the 423 * status is ma_overflow, then the last action hit the upper limit. 424 * 425 */ 426 struct ma_state { 427 struct maple_tree *tree; /* The tree we're operating in */ 428 unsigned long index; /* The index we're operating on - range start */ 429 unsigned long last; /* The last index we're operating on - range end */ 430 struct maple_enode *node; /* The node containing this entry */ 431 unsigned long min; /* The minimum index of this node - implied pivot min */ 432 unsigned long max; /* The maximum index of this node - implied pivot max */ 433 struct maple_alloc *alloc; /* Allocated nodes for this operation */ 434 enum maple_status status; /* The status of the state (active, start, none, etc) */ 435 unsigned char depth; /* depth of tree descent during write */ 436 unsigned char offset; 437 unsigned char mas_flags; 438 unsigned char end; /* The end of the node */ 439 }; 440 441 struct ma_wr_state { 442 struct ma_state *mas; 443 struct maple_node *node; /* Decoded mas->node */ 444 unsigned long r_min; /* range min */ 445 unsigned long r_max; /* range max */ 446 enum maple_type type; /* mas->node type */ 447 unsigned char offset_end; /* The offset where the write ends */ 448 unsigned long *pivots; /* mas->node->pivots pointer */ 449 unsigned long end_piv; /* The pivot at the offset end */ 450 void __rcu **slots; /* mas->node->slots pointer */ 451 void *entry; /* The entry to write */ 452 void *content; /* The existing entry that is being overwritten */ 453 }; 454 455 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 456 #define mas_lock_nested(mas, subclass) \ 457 spin_lock_nested(&((mas)->tree->ma_lock), subclass) 458 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 459 460 /* 461 * Special values for ma_state.node. 462 * MA_ERROR represents an errno. After dropping the lock and attempting 463 * to resolve the error, the walk would have to be restarted from the 464 * top of the tree as the tree may have been modified. 465 */ 466 #define MA_ERROR(err) \ 467 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 468 469 #define MA_STATE(name, mt, first, end) \ 470 struct ma_state name = { \ 471 .tree = mt, \ 472 .index = first, \ 473 .last = end, \ 474 .node = NULL, \ 475 .status = ma_start, \ 476 .min = 0, \ 477 .max = ULONG_MAX, \ 478 .alloc = NULL, \ 479 .mas_flags = 0, \ 480 } 481 482 #define MA_WR_STATE(name, ma_state, wr_entry) \ 483 struct ma_wr_state name = { \ 484 .mas = ma_state, \ 485 .content = NULL, \ 486 .entry = wr_entry, \ 487 } 488 489 #define MA_TOPIARY(name, tree) \ 490 struct ma_topiary name = { \ 491 .head = NULL, \ 492 .tail = NULL, \ 493 .mtree = tree, \ 494 } 495 496 void *mas_walk(struct ma_state *mas); 497 void *mas_store(struct ma_state *mas, void *entry); 498 void *mas_erase(struct ma_state *mas); 499 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 500 void mas_store_prealloc(struct ma_state *mas, void *entry); 501 void *mas_find(struct ma_state *mas, unsigned long max); 502 void *mas_find_range(struct ma_state *mas, unsigned long max); 503 void *mas_find_rev(struct ma_state *mas, unsigned long min); 504 void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 505 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp); 506 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 507 void *entry, unsigned long range_lo, unsigned long range_hi, 508 unsigned long *next, gfp_t gfp); 509 510 bool mas_nomem(struct ma_state *mas, gfp_t gfp); 511 void mas_pause(struct ma_state *mas); 512 void maple_tree_init(void); 513 void mas_destroy(struct ma_state *mas); 514 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 515 516 void *mas_prev(struct ma_state *mas, unsigned long min); 517 void *mas_prev_range(struct ma_state *mas, unsigned long max); 518 void *mas_next(struct ma_state *mas, unsigned long max); 519 void *mas_next_range(struct ma_state *mas, unsigned long max); 520 521 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 522 unsigned long size); 523 /* 524 * This finds an empty area from the highest address to the lowest. 525 * AKA "Topdown" version, 526 */ 527 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 528 unsigned long max, unsigned long size); 529 530 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 531 unsigned long addr) 532 { 533 memset(mas, 0, sizeof(struct ma_state)); 534 mas->tree = tree; 535 mas->index = mas->last = addr; 536 mas->max = ULONG_MAX; 537 mas->status = ma_start; 538 mas->node = NULL; 539 } 540 541 static inline bool mas_is_active(struct ma_state *mas) 542 { 543 return mas->status == ma_active; 544 } 545 546 static inline bool mas_is_err(struct ma_state *mas) 547 { 548 return mas->status == ma_error; 549 } 550 551 /** 552 * mas_reset() - Reset a Maple Tree operation state. 553 * @mas: Maple Tree operation state. 554 * 555 * Resets the error or walk state of the @mas so future walks of the 556 * array will start from the root. Use this if you have dropped the 557 * lock and want to reuse the ma_state. 558 * 559 * Context: Any context. 560 */ 561 static __always_inline void mas_reset(struct ma_state *mas) 562 { 563 mas->status = ma_start; 564 mas->node = NULL; 565 } 566 567 /** 568 * mas_for_each() - Iterate over a range of the maple tree. 569 * @__mas: Maple Tree operation state (maple_state) 570 * @__entry: Entry retrieved from the tree 571 * @__max: maximum index to retrieve from the tree 572 * 573 * When returned, mas->index and mas->last will hold the entire range for the 574 * entry. 575 * 576 * Note: may return the zero entry. 577 */ 578 #define mas_for_each(__mas, __entry, __max) \ 579 while (((__entry) = mas_find((__mas), (__max))) != NULL) 580 581 #ifdef CONFIG_DEBUG_MAPLE_TREE 582 enum mt_dump_format { 583 mt_dump_dec, 584 mt_dump_hex, 585 }; 586 587 extern atomic_t maple_tree_tests_run; 588 extern atomic_t maple_tree_tests_passed; 589 590 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 591 void mas_dump(const struct ma_state *mas); 592 void mas_wr_dump(const struct ma_wr_state *wr_mas); 593 void mt_validate(struct maple_tree *mt); 594 void mt_cache_shrink(void); 595 #define MT_BUG_ON(__tree, __x) do { \ 596 atomic_inc(&maple_tree_tests_run); \ 597 if (__x) { \ 598 pr_info("BUG at %s:%d (%u)\n", \ 599 __func__, __LINE__, __x); \ 600 mt_dump(__tree, mt_dump_hex); \ 601 pr_info("Pass: %u Run:%u\n", \ 602 atomic_read(&maple_tree_tests_passed), \ 603 atomic_read(&maple_tree_tests_run)); \ 604 dump_stack(); \ 605 } else { \ 606 atomic_inc(&maple_tree_tests_passed); \ 607 } \ 608 } while (0) 609 610 #define MAS_BUG_ON(__mas, __x) do { \ 611 atomic_inc(&maple_tree_tests_run); \ 612 if (__x) { \ 613 pr_info("BUG at %s:%d (%u)\n", \ 614 __func__, __LINE__, __x); \ 615 mas_dump(__mas); \ 616 mt_dump((__mas)->tree, mt_dump_hex); \ 617 pr_info("Pass: %u Run:%u\n", \ 618 atomic_read(&maple_tree_tests_passed), \ 619 atomic_read(&maple_tree_tests_run)); \ 620 dump_stack(); \ 621 } else { \ 622 atomic_inc(&maple_tree_tests_passed); \ 623 } \ 624 } while (0) 625 626 #define MAS_WR_BUG_ON(__wrmas, __x) do { \ 627 atomic_inc(&maple_tree_tests_run); \ 628 if (__x) { \ 629 pr_info("BUG at %s:%d (%u)\n", \ 630 __func__, __LINE__, __x); \ 631 mas_wr_dump(__wrmas); \ 632 mas_dump((__wrmas)->mas); \ 633 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 634 pr_info("Pass: %u Run:%u\n", \ 635 atomic_read(&maple_tree_tests_passed), \ 636 atomic_read(&maple_tree_tests_run)); \ 637 dump_stack(); \ 638 } else { \ 639 atomic_inc(&maple_tree_tests_passed); \ 640 } \ 641 } while (0) 642 643 #define MT_WARN_ON(__tree, __x) ({ \ 644 int ret = !!(__x); \ 645 atomic_inc(&maple_tree_tests_run); \ 646 if (ret) { \ 647 pr_info("WARN at %s:%d (%u)\n", \ 648 __func__, __LINE__, __x); \ 649 mt_dump(__tree, mt_dump_hex); \ 650 pr_info("Pass: %u Run:%u\n", \ 651 atomic_read(&maple_tree_tests_passed), \ 652 atomic_read(&maple_tree_tests_run)); \ 653 dump_stack(); \ 654 } else { \ 655 atomic_inc(&maple_tree_tests_passed); \ 656 } \ 657 unlikely(ret); \ 658 }) 659 660 #define MAS_WARN_ON(__mas, __x) ({ \ 661 int ret = !!(__x); \ 662 atomic_inc(&maple_tree_tests_run); \ 663 if (ret) { \ 664 pr_info("WARN at %s:%d (%u)\n", \ 665 __func__, __LINE__, __x); \ 666 mas_dump(__mas); \ 667 mt_dump((__mas)->tree, mt_dump_hex); \ 668 pr_info("Pass: %u Run:%u\n", \ 669 atomic_read(&maple_tree_tests_passed), \ 670 atomic_read(&maple_tree_tests_run)); \ 671 dump_stack(); \ 672 } else { \ 673 atomic_inc(&maple_tree_tests_passed); \ 674 } \ 675 unlikely(ret); \ 676 }) 677 678 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 679 int ret = !!(__x); \ 680 atomic_inc(&maple_tree_tests_run); \ 681 if (ret) { \ 682 pr_info("WARN at %s:%d (%u)\n", \ 683 __func__, __LINE__, __x); \ 684 mas_wr_dump(__wrmas); \ 685 mas_dump((__wrmas)->mas); \ 686 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 687 pr_info("Pass: %u Run:%u\n", \ 688 atomic_read(&maple_tree_tests_passed), \ 689 atomic_read(&maple_tree_tests_run)); \ 690 dump_stack(); \ 691 } else { \ 692 atomic_inc(&maple_tree_tests_passed); \ 693 } \ 694 unlikely(ret); \ 695 }) 696 #else 697 #define MT_BUG_ON(__tree, __x) BUG_ON(__x) 698 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 699 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 700 #define MT_WARN_ON(__tree, __x) WARN_ON(__x) 701 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 702 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 703 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 704 705 /** 706 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the 707 * current location. 708 * @mas: Maple Tree operation state. 709 * @start: New start of range in the Maple Tree. 710 * @last: New end of range in the Maple Tree. 711 * 712 * set the internal maple state values to a sub-range. 713 * Please use mas_set_range() if you do not know where you are in the tree. 714 */ 715 static inline void __mas_set_range(struct ma_state *mas, unsigned long start, 716 unsigned long last) 717 { 718 /* Ensure the range starts within the current slot */ 719 MAS_WARN_ON(mas, mas_is_active(mas) && 720 (mas->index > start || mas->last < start)); 721 mas->index = start; 722 mas->last = last; 723 } 724 725 /** 726 * mas_set_range() - Set up Maple Tree operation state for a different index. 727 * @mas: Maple Tree operation state. 728 * @start: New start of range in the Maple Tree. 729 * @last: New end of range in the Maple Tree. 730 * 731 * Move the operation state to refer to a different range. This will 732 * have the effect of starting a walk from the top; see mas_next() 733 * to move to an adjacent index. 734 */ 735 static inline 736 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 737 { 738 mas_reset(mas); 739 __mas_set_range(mas, start, last); 740 } 741 742 /** 743 * mas_set() - Set up Maple Tree operation state for a different index. 744 * @mas: Maple Tree operation state. 745 * @index: New index into the Maple Tree. 746 * 747 * Move the operation state to refer to a different index. This will 748 * have the effect of starting a walk from the top; see mas_next() 749 * to move to an adjacent index. 750 */ 751 static inline void mas_set(struct ma_state *mas, unsigned long index) 752 { 753 754 mas_set_range(mas, index, index); 755 } 756 757 static inline bool mt_external_lock(const struct maple_tree *mt) 758 { 759 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 760 } 761 762 /** 763 * mt_init_flags() - Initialise an empty maple tree with flags. 764 * @mt: Maple Tree 765 * @flags: maple tree flags. 766 * 767 * If you need to initialise a Maple Tree with special flags (eg, an 768 * allocation tree), use this function. 769 * 770 * Context: Any context. 771 */ 772 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 773 { 774 mt->ma_flags = flags; 775 if (!mt_external_lock(mt)) 776 spin_lock_init(&mt->ma_lock); 777 rcu_assign_pointer(mt->ma_root, NULL); 778 } 779 780 /** 781 * mt_init() - Initialise an empty maple tree. 782 * @mt: Maple Tree 783 * 784 * An empty Maple Tree. 785 * 786 * Context: Any context. 787 */ 788 static inline void mt_init(struct maple_tree *mt) 789 { 790 mt_init_flags(mt, 0); 791 } 792 793 static inline bool mt_in_rcu(struct maple_tree *mt) 794 { 795 #ifdef CONFIG_MAPLE_RCU_DISABLED 796 return false; 797 #endif 798 return mt->ma_flags & MT_FLAGS_USE_RCU; 799 } 800 801 /** 802 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 803 * @mt: The Maple Tree 804 */ 805 static inline void mt_clear_in_rcu(struct maple_tree *mt) 806 { 807 if (!mt_in_rcu(mt)) 808 return; 809 810 if (mt_external_lock(mt)) { 811 WARN_ON(!mt_lock_is_held(mt)); 812 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 813 } else { 814 mtree_lock(mt); 815 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 816 mtree_unlock(mt); 817 } 818 } 819 820 /** 821 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 822 * @mt: The Maple Tree 823 */ 824 static inline void mt_set_in_rcu(struct maple_tree *mt) 825 { 826 if (mt_in_rcu(mt)) 827 return; 828 829 if (mt_external_lock(mt)) { 830 WARN_ON(!mt_lock_is_held(mt)); 831 mt->ma_flags |= MT_FLAGS_USE_RCU; 832 } else { 833 mtree_lock(mt); 834 mt->ma_flags |= MT_FLAGS_USE_RCU; 835 mtree_unlock(mt); 836 } 837 } 838 839 static inline unsigned int mt_height(const struct maple_tree *mt) 840 { 841 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 842 } 843 844 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 845 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 846 unsigned long max); 847 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 848 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 849 850 /** 851 * mt_for_each - Iterate over each entry starting at index until max. 852 * @__tree: The Maple Tree 853 * @__entry: The current entry 854 * @__index: The index to start the search from. Subsequently used as iterator. 855 * @__max: The maximum limit for @index 856 * 857 * This iterator skips all entries, which resolve to a NULL pointer, 858 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 859 */ 860 #define mt_for_each(__tree, __entry, __index, __max) \ 861 for (__entry = mt_find(__tree, &(__index), __max); \ 862 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 863 864 #endif /*_LINUX_MAPLE_TREE_H */ 865
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.