~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/math.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_MATH_H
  3 #define _LINUX_MATH_H
  4 
  5 #include <linux/types.h>
  6 #include <asm/div64.h>
  7 #include <uapi/linux/kernel.h>
  8 
  9 /*
 10  * This looks more complex than it should be. But we need to
 11  * get the type for the ~ right in round_down (it needs to be
 12  * as wide as the result!), and we want to evaluate the macro
 13  * arguments just once each.
 14  */
 15 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
 16 
 17 /**
 18  * round_up - round up to next specified power of 2
 19  * @x: the value to round
 20  * @y: multiple to round up to (must be a power of 2)
 21  *
 22  * Rounds @x up to next multiple of @y (which must be a power of 2).
 23  * To perform arbitrary rounding up, use roundup() below.
 24  */
 25 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
 26 
 27 /**
 28  * round_down - round down to next specified power of 2
 29  * @x: the value to round
 30  * @y: multiple to round down to (must be a power of 2)
 31  *
 32  * Rounds @x down to next multiple of @y (which must be a power of 2).
 33  * To perform arbitrary rounding down, use rounddown() below.
 34  */
 35 #define round_down(x, y) ((x) & ~__round_mask(x, y))
 36 
 37 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
 38 
 39 #define DIV_ROUND_DOWN_ULL(ll, d) \
 40         ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
 41 
 42 #define DIV_ROUND_UP_ULL(ll, d) \
 43         DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
 44 
 45 #if BITS_PER_LONG == 32
 46 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
 47 #else
 48 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 49 #endif
 50 
 51 /**
 52  * roundup - round up to the next specified multiple
 53  * @x: the value to up
 54  * @y: multiple to round up to
 55  *
 56  * Rounds @x up to next multiple of @y. If @y will always be a power
 57  * of 2, consider using the faster round_up().
 58  */
 59 #define roundup(x, y) (                                 \
 60 {                                                       \
 61         typeof(y) __y = y;                              \
 62         (((x) + (__y - 1)) / __y) * __y;                \
 63 }                                                       \
 64 )
 65 /**
 66  * rounddown - round down to next specified multiple
 67  * @x: the value to round
 68  * @y: multiple to round down to
 69  *
 70  * Rounds @x down to next multiple of @y. If @y will always be a power
 71  * of 2, consider using the faster round_down().
 72  */
 73 #define rounddown(x, y) (                               \
 74 {                                                       \
 75         typeof(x) __x = (x);                            \
 76         __x - (__x % (y));                              \
 77 }                                                       \
 78 )
 79 
 80 /*
 81  * Divide positive or negative dividend by positive or negative divisor
 82  * and round to closest integer. Result is undefined for negative
 83  * divisors if the dividend variable type is unsigned and for negative
 84  * dividends if the divisor variable type is unsigned.
 85  */
 86 #define DIV_ROUND_CLOSEST(x, divisor)(                  \
 87 {                                                       \
 88         typeof(x) __x = x;                              \
 89         typeof(divisor) __d = divisor;                  \
 90         (((typeof(x))-1) > 0 ||                         \
 91          ((typeof(divisor))-1) > 0 ||                   \
 92          (((__x) > 0) == ((__d) > 0))) ?                \
 93                 (((__x) + ((__d) / 2)) / (__d)) :       \
 94                 (((__x) - ((__d) / 2)) / (__d));        \
 95 }                                                       \
 96 )
 97 /*
 98  * Same as above but for u64 dividends. divisor must be a 32-bit
 99  * number.
100  */
101 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
102 {                                                       \
103         typeof(divisor) __d = divisor;                  \
104         unsigned long long _tmp = (x) + (__d) / 2;      \
105         do_div(_tmp, __d);                              \
106         _tmp;                                           \
107 }                                                       \
108 )
109 
110 #define __STRUCT_FRACT(type)                            \
111 struct type##_fract {                                   \
112         __##type numerator;                             \
113         __##type denominator;                           \
114 };
115 __STRUCT_FRACT(s8)
116 __STRUCT_FRACT(u8)
117 __STRUCT_FRACT(s16)
118 __STRUCT_FRACT(u16)
119 __STRUCT_FRACT(s32)
120 __STRUCT_FRACT(u32)
121 #undef __STRUCT_FRACT
122 
123 /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
124 #define mult_frac(x, n, d)      \
125 ({                              \
126         typeof(x) x_ = (x);     \
127         typeof(n) n_ = (n);     \
128         typeof(d) d_ = (d);     \
129                                 \
130         typeof(x_) q = x_ / d_; \
131         typeof(x_) r = x_ % d_; \
132         q * n_ + r * n_ / d_;   \
133 })
134 
135 #define sector_div(a, b) do_div(a, b)
136 
137 /**
138  * abs - return absolute value of an argument
139  * @x: the value.  If it is unsigned type, it is converted to signed type first.
140  *     char is treated as if it was signed (regardless of whether it really is)
141  *     but the macro's return type is preserved as char.
142  *
143  * Return: an absolute value of x.
144  */
145 #define abs(x)  __abs_choose_expr(x, long long,                         \
146                 __abs_choose_expr(x, long,                              \
147                 __abs_choose_expr(x, int,                               \
148                 __abs_choose_expr(x, short,                             \
149                 __abs_choose_expr(x, char,                              \
150                 __builtin_choose_expr(                                  \
151                         __builtin_types_compatible_p(typeof(x), char),  \
152                         (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
153                         ((void)0)))))))
154 
155 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
156         __builtin_types_compatible_p(typeof(x),   signed type) ||       \
157         __builtin_types_compatible_p(typeof(x), unsigned type),         \
158         ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
159 
160 /**
161  * abs_diff - return absolute value of the difference between the arguments
162  * @a: the first argument
163  * @b: the second argument
164  *
165  * @a and @b have to be of the same type. With this restriction we compare
166  * signed to signed and unsigned to unsigned. The result is the subtraction
167  * the smaller of the two from the bigger, hence result is always a positive
168  * value.
169  *
170  * Return: an absolute value of the difference between the @a and @b.
171  */
172 #define abs_diff(a, b) ({                       \
173         typeof(a) __a = (a);                    \
174         typeof(b) __b = (b);                    \
175         (void)(&__a == &__b);                   \
176         __a > __b ? (__a - __b) : (__b - __a);  \
177 })
178 
179 /**
180  * reciprocal_scale - "scale" a value into range [0, ep_ro)
181  * @val: value
182  * @ep_ro: right open interval endpoint
183  *
184  * Perform a "reciprocal multiplication" in order to "scale" a value into
185  * range [0, @ep_ro), where the upper interval endpoint is right-open.
186  * This is useful, e.g. for accessing a index of an array containing
187  * @ep_ro elements, for example. Think of it as sort of modulus, only that
188  * the result isn't that of modulo. ;) Note that if initial input is a
189  * small value, then result will return 0.
190  *
191  * Return: a result based on @val in interval [0, @ep_ro).
192  */
193 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
194 {
195         return (u32)(((u64) val * ep_ro) >> 32);
196 }
197 
198 u64 int_pow(u64 base, unsigned int exp);
199 unsigned long int_sqrt(unsigned long);
200 
201 #if BITS_PER_LONG < 64
202 u32 int_sqrt64(u64 x);
203 #else
204 static inline u32 int_sqrt64(u64 x)
205 {
206         return (u32)int_sqrt(x);
207 }
208 #endif
209 
210 #endif  /* _LINUX_MATH_H */
211 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php