1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6 #ifndef __MTD_MTD_H__ 7 #define __MTD_MTD_H__ 8 9 #include <linux/types.h> 10 #include <linux/uio.h> 11 #include <linux/list.h> 12 #include <linux/notifier.h> 13 #include <linux/device.h> 14 #include <linux/of.h> 15 #include <linux/nvmem-provider.h> 16 17 #include <mtd/mtd-abi.h> 18 19 #include <asm/div64.h> 20 21 #define MTD_FAIL_ADDR_UNKNOWN -1LL 22 23 struct mtd_info; 24 25 /* 26 * If the erase fails, fail_addr might indicate exactly which block failed. If 27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 28 * or was not specific to any particular block. 29 */ 30 struct erase_info { 31 uint64_t addr; 32 uint64_t len; 33 uint64_t fail_addr; 34 }; 35 36 struct mtd_erase_region_info { 37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 38 uint32_t erasesize; /* For this region */ 39 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 40 unsigned long *lockmap; /* If keeping bitmap of locks */ 41 }; 42 43 struct mtd_req_stats { 44 unsigned int uncorrectable_errors; 45 unsigned int corrected_bitflips; 46 unsigned int max_bitflips; 47 }; 48 49 /** 50 * struct mtd_oob_ops - oob operation operands 51 * @mode: operation mode 52 * 53 * @len: number of data bytes to write/read 54 * 55 * @retlen: number of data bytes written/read 56 * 57 * @ooblen: number of oob bytes to write/read 58 * @oobretlen: number of oob bytes written/read 59 * @ooboffs: offset of oob data in the oob area (only relevant when 60 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 61 * @datbuf: data buffer - if NULL only oob data are read/written 62 * @oobbuf: oob data buffer 63 * 64 * Note, some MTD drivers do not allow you to write more than one OOB area at 65 * one go. If you try to do that on such an MTD device, -EINVAL will be 66 * returned. If you want to make your implementation portable on all kind of MTD 67 * devices you should split the write request into several sub-requests when the 68 * request crosses a page boundary. 69 */ 70 struct mtd_oob_ops { 71 unsigned int mode; 72 size_t len; 73 size_t retlen; 74 size_t ooblen; 75 size_t oobretlen; 76 uint32_t ooboffs; 77 uint8_t *datbuf; 78 uint8_t *oobbuf; 79 struct mtd_req_stats *stats; 80 }; 81 82 /** 83 * struct mtd_oob_region - oob region definition 84 * @offset: region offset 85 * @length: region length 86 * 87 * This structure describes a region of the OOB area, and is used 88 * to retrieve ECC or free bytes sections. 89 * Each section is defined by an offset within the OOB area and a 90 * length. 91 */ 92 struct mtd_oob_region { 93 u32 offset; 94 u32 length; 95 }; 96 97 /* 98 * struct mtd_ooblayout_ops - NAND OOB layout operations 99 * @ecc: function returning an ECC region in the OOB area. 100 * Should return -ERANGE if %section exceeds the total number of 101 * ECC sections. 102 * @free: function returning a free region in the OOB area. 103 * Should return -ERANGE if %section exceeds the total number of 104 * free sections. 105 */ 106 struct mtd_ooblayout_ops { 107 int (*ecc)(struct mtd_info *mtd, int section, 108 struct mtd_oob_region *oobecc); 109 int (*free)(struct mtd_info *mtd, int section, 110 struct mtd_oob_region *oobfree); 111 }; 112 113 /** 114 * struct mtd_pairing_info - page pairing information 115 * 116 * @pair: pair id 117 * @group: group id 118 * 119 * The term "pair" is used here, even though TLC NANDs might group pages by 3 120 * (3 bits in a single cell). A pair should regroup all pages that are sharing 121 * the same cell. Pairs are then indexed in ascending order. 122 * 123 * @group is defining the position of a page in a given pair. It can also be 124 * seen as the bit position in the cell: page attached to bit 0 belongs to 125 * group 0, page attached to bit 1 belongs to group 1, etc. 126 * 127 * Example: 128 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 129 * 130 * group-0 group-1 131 * 132 * pair-0 page-0 page-4 133 * pair-1 page-1 page-5 134 * pair-2 page-2 page-8 135 * ... 136 * pair-127 page-251 page-255 137 * 138 * 139 * Note that the "group" and "pair" terms were extracted from Samsung and 140 * Hynix datasheets, and might be referenced under other names in other 141 * datasheets (Micron is describing this concept as "shared pages"). 142 */ 143 struct mtd_pairing_info { 144 int pair; 145 int group; 146 }; 147 148 /** 149 * struct mtd_pairing_scheme - page pairing scheme description 150 * 151 * @ngroups: number of groups. Should be related to the number of bits 152 * per cell. 153 * @get_info: converts a write-unit (page number within an erase block) into 154 * mtd_pairing information (pair + group). This function should 155 * fill the info parameter based on the wunit index or return 156 * -EINVAL if the wunit parameter is invalid. 157 * @get_wunit: converts pairing information into a write-unit (page) number. 158 * This function should return the wunit index pointed by the 159 * pairing information described in the info argument. It should 160 * return -EINVAL, if there's no wunit corresponding to the 161 * passed pairing information. 162 * 163 * See mtd_pairing_info documentation for a detailed explanation of the 164 * pair and group concepts. 165 * 166 * The mtd_pairing_scheme structure provides a generic solution to represent 167 * NAND page pairing scheme. Instead of exposing two big tables to do the 168 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 169 * implement the ->get_info() and ->get_wunit() functions. 170 * 171 * MTD users will then be able to query these information by using the 172 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 173 * 174 * @ngroups is here to help MTD users iterating over all the pages in a 175 * given pair. This value can be retrieved by MTD users using the 176 * mtd_pairing_groups() helper. 177 * 178 * Examples are given in the mtd_pairing_info_to_wunit() and 179 * mtd_wunit_to_pairing_info() documentation. 180 */ 181 struct mtd_pairing_scheme { 182 int ngroups; 183 int (*get_info)(struct mtd_info *mtd, int wunit, 184 struct mtd_pairing_info *info); 185 int (*get_wunit)(struct mtd_info *mtd, 186 const struct mtd_pairing_info *info); 187 }; 188 189 struct module; /* only needed for owner field in mtd_info */ 190 191 /** 192 * struct mtd_debug_info - debugging information for an MTD device. 193 * 194 * @dfs_dir: direntry object of the MTD device debugfs directory 195 */ 196 struct mtd_debug_info { 197 struct dentry *dfs_dir; 198 }; 199 200 /** 201 * struct mtd_part - MTD partition specific fields 202 * 203 * @node: list node used to add an MTD partition to the parent partition list 204 * @offset: offset of the partition relatively to the parent offset 205 * @size: partition size. Should be equal to mtd->size unless 206 * MTD_SLC_ON_MLC_EMULATION is set 207 * @flags: original flags (before the mtdpart logic decided to tweak them based 208 * on flash constraints, like eraseblock/pagesize alignment) 209 * 210 * This struct is embedded in mtd_info and contains partition-specific 211 * properties/fields. 212 */ 213 struct mtd_part { 214 struct list_head node; 215 u64 offset; 216 u64 size; 217 u32 flags; 218 }; 219 220 /** 221 * struct mtd_master - MTD master specific fields 222 * 223 * @partitions_lock: lock protecting accesses to the partition list. Protects 224 * not only the master partition list, but also all 225 * sub-partitions. 226 * @suspended: set to 1 when the device is suspended, 0 otherwise 227 * 228 * This struct is embedded in mtd_info and contains master-specific 229 * properties/fields. The master is the root MTD device from the MTD partition 230 * point of view. 231 */ 232 struct mtd_master { 233 struct mutex partitions_lock; 234 struct mutex chrdev_lock; 235 unsigned int suspended : 1; 236 }; 237 238 struct mtd_info { 239 u_char type; 240 uint32_t flags; 241 uint64_t size; // Total size of the MTD 242 243 /* "Major" erase size for the device. Naïve users may take this 244 * to be the only erase size available, or may use the more detailed 245 * information below if they desire 246 */ 247 uint32_t erasesize; 248 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 249 * though individual bits can be cleared), in case of NAND flash it is 250 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 251 * it is of ECC block size, etc. It is illegal to have writesize = 0. 252 * Any driver registering a struct mtd_info must ensure a writesize of 253 * 1 or larger. 254 */ 255 uint32_t writesize; 256 257 /* 258 * Size of the write buffer used by the MTD. MTD devices having a write 259 * buffer can write multiple writesize chunks at a time. E.g. while 260 * writing 4 * writesize bytes to a device with 2 * writesize bytes 261 * buffer the MTD driver can (but doesn't have to) do 2 writesize 262 * operations, but not 4. Currently, all NANDs have writebufsize 263 * equivalent to writesize (NAND page size). Some NOR flashes do have 264 * writebufsize greater than writesize. 265 */ 266 uint32_t writebufsize; 267 268 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 269 uint32_t oobavail; // Available OOB bytes per block 270 271 /* 272 * If erasesize is a power of 2 then the shift is stored in 273 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 274 */ 275 unsigned int erasesize_shift; 276 unsigned int writesize_shift; 277 /* Masks based on erasesize_shift and writesize_shift */ 278 unsigned int erasesize_mask; 279 unsigned int writesize_mask; 280 281 /* 282 * read ops return -EUCLEAN if max number of bitflips corrected on any 283 * one region comprising an ecc step equals or exceeds this value. 284 * Settable by driver, else defaults to ecc_strength. User can override 285 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 286 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 287 */ 288 unsigned int bitflip_threshold; 289 290 /* Kernel-only stuff starts here. */ 291 const char *name; 292 int index; 293 294 /* OOB layout description */ 295 const struct mtd_ooblayout_ops *ooblayout; 296 297 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 298 const struct mtd_pairing_scheme *pairing; 299 300 /* the ecc step size. */ 301 unsigned int ecc_step_size; 302 303 /* max number of correctible bit errors per ecc step */ 304 unsigned int ecc_strength; 305 306 /* Data for variable erase regions. If numeraseregions is zero, 307 * it means that the whole device has erasesize as given above. 308 */ 309 int numeraseregions; 310 struct mtd_erase_region_info *eraseregions; 311 312 /* 313 * Do not call via these pointers, use corresponding mtd_*() 314 * wrappers instead. 315 */ 316 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 317 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 318 size_t *retlen, void **virt, resource_size_t *phys); 319 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 320 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 321 size_t *retlen, u_char *buf); 322 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 323 size_t *retlen, const u_char *buf); 324 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 325 size_t *retlen, const u_char *buf); 326 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 327 struct mtd_oob_ops *ops); 328 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 329 struct mtd_oob_ops *ops); 330 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 331 size_t *retlen, struct otp_info *buf); 332 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 333 size_t len, size_t *retlen, u_char *buf); 334 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 335 size_t *retlen, struct otp_info *buf); 336 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 337 size_t len, size_t *retlen, u_char *buf); 338 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 339 size_t len, size_t *retlen, 340 const u_char *buf); 341 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 342 size_t len); 343 int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from, 344 size_t len); 345 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 346 unsigned long count, loff_t to, size_t *retlen); 347 void (*_sync) (struct mtd_info *mtd); 348 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 349 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 350 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 351 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 352 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 353 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 354 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 355 int (*_suspend) (struct mtd_info *mtd); 356 void (*_resume) (struct mtd_info *mtd); 357 void (*_reboot) (struct mtd_info *mtd); 358 /* 359 * If the driver is something smart, like UBI, it may need to maintain 360 * its own reference counting. The below functions are only for driver. 361 */ 362 int (*_get_device) (struct mtd_info *mtd); 363 void (*_put_device) (struct mtd_info *mtd); 364 365 /* 366 * flag indicates a panic write, low level drivers can take appropriate 367 * action if required to ensure writes go through 368 */ 369 bool oops_panic_write; 370 371 struct notifier_block reboot_notifier; /* default mode before reboot */ 372 373 /* ECC status information */ 374 struct mtd_ecc_stats ecc_stats; 375 /* Subpage shift (NAND) */ 376 int subpage_sft; 377 378 void *priv; 379 380 struct module *owner; 381 struct device dev; 382 struct kref refcnt; 383 struct mtd_debug_info dbg; 384 struct nvmem_device *nvmem; 385 struct nvmem_device *otp_user_nvmem; 386 struct nvmem_device *otp_factory_nvmem; 387 388 /* 389 * Parent device from the MTD partition point of view. 390 * 391 * MTD masters do not have any parent, MTD partitions do. The parent 392 * MTD device can itself be a partition. 393 */ 394 struct mtd_info *parent; 395 396 /* List of partitions attached to this MTD device */ 397 struct list_head partitions; 398 399 struct mtd_part part; 400 struct mtd_master master; 401 }; 402 403 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) 404 { 405 while (mtd->parent) 406 mtd = mtd->parent; 407 408 return mtd; 409 } 410 411 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) 412 { 413 while (mtd->parent) { 414 ofs += mtd->part.offset; 415 mtd = mtd->parent; 416 } 417 418 return ofs; 419 } 420 421 static inline bool mtd_is_partition(const struct mtd_info *mtd) 422 { 423 return mtd->parent; 424 } 425 426 static inline bool mtd_has_partitions(const struct mtd_info *mtd) 427 { 428 return !list_empty(&mtd->partitions); 429 } 430 431 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 432 struct mtd_oob_region *oobecc); 433 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 434 int *section, 435 struct mtd_oob_region *oobregion); 436 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 437 const u8 *oobbuf, int start, int nbytes); 438 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 439 u8 *oobbuf, int start, int nbytes); 440 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 441 struct mtd_oob_region *oobfree); 442 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 443 const u8 *oobbuf, int start, int nbytes); 444 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 445 u8 *oobbuf, int start, int nbytes); 446 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 447 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 448 449 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 450 const struct mtd_ooblayout_ops *ooblayout) 451 { 452 mtd->ooblayout = ooblayout; 453 } 454 455 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 456 const struct mtd_pairing_scheme *pairing) 457 { 458 mtd->pairing = pairing; 459 } 460 461 static inline void mtd_set_of_node(struct mtd_info *mtd, 462 struct device_node *np) 463 { 464 mtd->dev.of_node = np; 465 if (!mtd->name) 466 of_property_read_string(np, "label", &mtd->name); 467 } 468 469 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 470 { 471 return dev_of_node(&mtd->dev); 472 } 473 474 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 475 { 476 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 477 } 478 479 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 480 loff_t ofs, size_t len) 481 { 482 struct mtd_info *master = mtd_get_master(mtd); 483 484 if (!master->_max_bad_blocks) 485 return -ENOTSUPP; 486 487 if (mtd->size < (len + ofs) || ofs < 0) 488 return -EINVAL; 489 490 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), 491 len); 492 } 493 494 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 495 struct mtd_pairing_info *info); 496 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 497 const struct mtd_pairing_info *info); 498 int mtd_pairing_groups(struct mtd_info *mtd); 499 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 500 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 501 void **virt, resource_size_t *phys); 502 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 503 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 504 unsigned long offset, unsigned long flags); 505 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 506 u_char *buf); 507 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 508 const u_char *buf); 509 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 510 const u_char *buf); 511 512 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 513 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 514 515 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 516 struct otp_info *buf); 517 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 518 size_t *retlen, u_char *buf); 519 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 520 struct otp_info *buf); 521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 522 size_t *retlen, u_char *buf); 523 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 524 size_t *retlen, const u_char *buf); 525 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 526 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 527 528 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 529 unsigned long count, loff_t to, size_t *retlen); 530 531 static inline void mtd_sync(struct mtd_info *mtd) 532 { 533 struct mtd_info *master = mtd_get_master(mtd); 534 535 if (master->_sync) 536 master->_sync(master); 537 } 538 539 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 540 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 541 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 542 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 543 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 544 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 545 546 static inline int mtd_suspend(struct mtd_info *mtd) 547 { 548 struct mtd_info *master = mtd_get_master(mtd); 549 int ret; 550 551 if (master->master.suspended) 552 return 0; 553 554 ret = master->_suspend ? master->_suspend(master) : 0; 555 if (ret) 556 return ret; 557 558 master->master.suspended = 1; 559 return 0; 560 } 561 562 static inline void mtd_resume(struct mtd_info *mtd) 563 { 564 struct mtd_info *master = mtd_get_master(mtd); 565 566 if (!master->master.suspended) 567 return; 568 569 if (master->_resume) 570 master->_resume(master); 571 572 master->master.suspended = 0; 573 } 574 575 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 576 { 577 if (mtd->erasesize_shift) 578 return sz >> mtd->erasesize_shift; 579 do_div(sz, mtd->erasesize); 580 return sz; 581 } 582 583 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 584 { 585 if (mtd->erasesize_shift) 586 return sz & mtd->erasesize_mask; 587 return do_div(sz, mtd->erasesize); 588 } 589 590 /** 591 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 592 * boundaries. 593 * @mtd: the MTD device this erase request applies on 594 * @req: the erase request to adjust 595 * 596 * This function will adjust @req->addr and @req->len to align them on 597 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 598 */ 599 static inline void mtd_align_erase_req(struct mtd_info *mtd, 600 struct erase_info *req) 601 { 602 u32 mod; 603 604 if (WARN_ON(!mtd->erasesize)) 605 return; 606 607 mod = mtd_mod_by_eb(req->addr, mtd); 608 if (mod) { 609 req->addr -= mod; 610 req->len += mod; 611 } 612 613 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 614 if (mod) 615 req->len += mtd->erasesize - mod; 616 } 617 618 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 619 { 620 if (mtd->writesize_shift) 621 return sz >> mtd->writesize_shift; 622 do_div(sz, mtd->writesize); 623 return sz; 624 } 625 626 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 627 { 628 if (mtd->writesize_shift) 629 return sz & mtd->writesize_mask; 630 return do_div(sz, mtd->writesize); 631 } 632 633 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 634 { 635 struct mtd_info *master = mtd_get_master(mtd); 636 637 return master->erasesize / mtd->writesize; 638 } 639 640 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 641 { 642 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 643 } 644 645 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 646 int wunit) 647 { 648 return base + (wunit * mtd->writesize); 649 } 650 651 652 static inline int mtd_has_oob(const struct mtd_info *mtd) 653 { 654 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 655 656 return master->_read_oob && master->_write_oob; 657 } 658 659 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 660 { 661 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 662 } 663 664 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 665 { 666 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 667 668 return !!master->_block_isbad; 669 } 670 671 /* Kernel-side ioctl definitions */ 672 673 struct mtd_partition; 674 struct mtd_part_parser_data; 675 676 extern int mtd_device_parse_register(struct mtd_info *mtd, 677 const char * const *part_probe_types, 678 struct mtd_part_parser_data *parser_data, 679 const struct mtd_partition *defparts, 680 int defnr_parts); 681 #define mtd_device_register(master, parts, nr_parts) \ 682 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 683 extern int mtd_device_unregister(struct mtd_info *master); 684 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 685 extern int __get_mtd_device(struct mtd_info *mtd); 686 extern void __put_mtd_device(struct mtd_info *mtd); 687 extern struct mtd_info *of_get_mtd_device_by_node(struct device_node *np); 688 extern struct mtd_info *get_mtd_device_nm(const char *name); 689 extern void put_mtd_device(struct mtd_info *mtd); 690 691 692 struct mtd_notifier { 693 void (*add)(struct mtd_info *mtd); 694 void (*remove)(struct mtd_info *mtd); 695 struct list_head list; 696 }; 697 698 699 extern void register_mtd_user (struct mtd_notifier *new); 700 extern int unregister_mtd_user (struct mtd_notifier *old); 701 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 702 703 static inline int mtd_is_bitflip(int err) { 704 return err == -EUCLEAN; 705 } 706 707 static inline int mtd_is_eccerr(int err) { 708 return err == -EBADMSG; 709 } 710 711 static inline int mtd_is_bitflip_or_eccerr(int err) { 712 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 713 } 714 715 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 716 717 #ifdef CONFIG_DEBUG_FS 718 bool mtd_check_expert_analysis_mode(void); 719 #else 720 static inline bool mtd_check_expert_analysis_mode(void) { return false; } 721 #endif 722 723 724 #endif /* __MTD_MTD_H__ */ 725
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.