~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/mtd/mtd.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
  4  */
  5 
  6 #ifndef __MTD_MTD_H__
  7 #define __MTD_MTD_H__
  8 
  9 #include <linux/types.h>
 10 #include <linux/uio.h>
 11 #include <linux/list.h>
 12 #include <linux/notifier.h>
 13 #include <linux/device.h>
 14 #include <linux/of.h>
 15 #include <linux/nvmem-provider.h>
 16 
 17 #include <mtd/mtd-abi.h>
 18 
 19 #include <asm/div64.h>
 20 
 21 #define MTD_FAIL_ADDR_UNKNOWN -1LL
 22 
 23 struct mtd_info;
 24 
 25 /*
 26  * If the erase fails, fail_addr might indicate exactly which block failed. If
 27  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
 28  * or was not specific to any particular block.
 29  */
 30 struct erase_info {
 31         uint64_t addr;
 32         uint64_t len;
 33         uint64_t fail_addr;
 34 };
 35 
 36 struct mtd_erase_region_info {
 37         uint64_t offset;                /* At which this region starts, from the beginning of the MTD */
 38         uint32_t erasesize;             /* For this region */
 39         uint32_t numblocks;             /* Number of blocks of erasesize in this region */
 40         unsigned long *lockmap;         /* If keeping bitmap of locks */
 41 };
 42 
 43 struct mtd_req_stats {
 44         unsigned int uncorrectable_errors;
 45         unsigned int corrected_bitflips;
 46         unsigned int max_bitflips;
 47 };
 48 
 49 /**
 50  * struct mtd_oob_ops - oob operation operands
 51  * @mode:       operation mode
 52  *
 53  * @len:        number of data bytes to write/read
 54  *
 55  * @retlen:     number of data bytes written/read
 56  *
 57  * @ooblen:     number of oob bytes to write/read
 58  * @oobretlen:  number of oob bytes written/read
 59  * @ooboffs:    offset of oob data in the oob area (only relevant when
 60  *              mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
 61  * @datbuf:     data buffer - if NULL only oob data are read/written
 62  * @oobbuf:     oob data buffer
 63  *
 64  * Note, some MTD drivers do not allow you to write more than one OOB area at
 65  * one go. If you try to do that on such an MTD device, -EINVAL will be
 66  * returned. If you want to make your implementation portable on all kind of MTD
 67  * devices you should split the write request into several sub-requests when the
 68  * request crosses a page boundary.
 69  */
 70 struct mtd_oob_ops {
 71         unsigned int    mode;
 72         size_t          len;
 73         size_t          retlen;
 74         size_t          ooblen;
 75         size_t          oobretlen;
 76         uint32_t        ooboffs;
 77         uint8_t         *datbuf;
 78         uint8_t         *oobbuf;
 79         struct mtd_req_stats *stats;
 80 };
 81 
 82 /**
 83  * struct mtd_oob_region - oob region definition
 84  * @offset: region offset
 85  * @length: region length
 86  *
 87  * This structure describes a region of the OOB area, and is used
 88  * to retrieve ECC or free bytes sections.
 89  * Each section is defined by an offset within the OOB area and a
 90  * length.
 91  */
 92 struct mtd_oob_region {
 93         u32 offset;
 94         u32 length;
 95 };
 96 
 97 /*
 98  * struct mtd_ooblayout_ops - NAND OOB layout operations
 99  * @ecc: function returning an ECC region in the OOB area.
100  *       Should return -ERANGE if %section exceeds the total number of
101  *       ECC sections.
102  * @free: function returning a free region in the OOB area.
103  *        Should return -ERANGE if %section exceeds the total number of
104  *        free sections.
105  */
106 struct mtd_ooblayout_ops {
107         int (*ecc)(struct mtd_info *mtd, int section,
108                    struct mtd_oob_region *oobecc);
109         int (*free)(struct mtd_info *mtd, int section,
110                     struct mtd_oob_region *oobfree);
111 };
112 
113 /**
114  * struct mtd_pairing_info - page pairing information
115  *
116  * @pair: pair id
117  * @group: group id
118  *
119  * The term "pair" is used here, even though TLC NANDs might group pages by 3
120  * (3 bits in a single cell). A pair should regroup all pages that are sharing
121  * the same cell. Pairs are then indexed in ascending order.
122  *
123  * @group is defining the position of a page in a given pair. It can also be
124  * seen as the bit position in the cell: page attached to bit 0 belongs to
125  * group 0, page attached to bit 1 belongs to group 1, etc.
126  *
127  * Example:
128  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
129  *
130  *              group-0         group-1
131  *
132  *  pair-0      page-0          page-4
133  *  pair-1      page-1          page-5
134  *  pair-2      page-2          page-8
135  *  ...
136  *  pair-127    page-251        page-255
137  *
138  *
139  * Note that the "group" and "pair" terms were extracted from Samsung and
140  * Hynix datasheets, and might be referenced under other names in other
141  * datasheets (Micron is describing this concept as "shared pages").
142  */
143 struct mtd_pairing_info {
144         int pair;
145         int group;
146 };
147 
148 /**
149  * struct mtd_pairing_scheme - page pairing scheme description
150  *
151  * @ngroups: number of groups. Should be related to the number of bits
152  *           per cell.
153  * @get_info: converts a write-unit (page number within an erase block) into
154  *            mtd_pairing information (pair + group). This function should
155  *            fill the info parameter based on the wunit index or return
156  *            -EINVAL if the wunit parameter is invalid.
157  * @get_wunit: converts pairing information into a write-unit (page) number.
158  *             This function should return the wunit index pointed by the
159  *             pairing information described in the info argument. It should
160  *             return -EINVAL, if there's no wunit corresponding to the
161  *             passed pairing information.
162  *
163  * See mtd_pairing_info documentation for a detailed explanation of the
164  * pair and group concepts.
165  *
166  * The mtd_pairing_scheme structure provides a generic solution to represent
167  * NAND page pairing scheme. Instead of exposing two big tables to do the
168  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
169  * implement the ->get_info() and ->get_wunit() functions.
170  *
171  * MTD users will then be able to query these information by using the
172  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
173  *
174  * @ngroups is here to help MTD users iterating over all the pages in a
175  * given pair. This value can be retrieved by MTD users using the
176  * mtd_pairing_groups() helper.
177  *
178  * Examples are given in the mtd_pairing_info_to_wunit() and
179  * mtd_wunit_to_pairing_info() documentation.
180  */
181 struct mtd_pairing_scheme {
182         int ngroups;
183         int (*get_info)(struct mtd_info *mtd, int wunit,
184                         struct mtd_pairing_info *info);
185         int (*get_wunit)(struct mtd_info *mtd,
186                          const struct mtd_pairing_info *info);
187 };
188 
189 struct module;  /* only needed for owner field in mtd_info */
190 
191 /**
192  * struct mtd_debug_info - debugging information for an MTD device.
193  *
194  * @dfs_dir: direntry object of the MTD device debugfs directory
195  */
196 struct mtd_debug_info {
197         struct dentry *dfs_dir;
198 };
199 
200 /**
201  * struct mtd_part - MTD partition specific fields
202  *
203  * @node: list node used to add an MTD partition to the parent partition list
204  * @offset: offset of the partition relatively to the parent offset
205  * @size: partition size. Should be equal to mtd->size unless
206  *        MTD_SLC_ON_MLC_EMULATION is set
207  * @flags: original flags (before the mtdpart logic decided to tweak them based
208  *         on flash constraints, like eraseblock/pagesize alignment)
209  *
210  * This struct is embedded in mtd_info and contains partition-specific
211  * properties/fields.
212  */
213 struct mtd_part {
214         struct list_head node;
215         u64 offset;
216         u64 size;
217         u32 flags;
218 };
219 
220 /**
221  * struct mtd_master - MTD master specific fields
222  *
223  * @partitions_lock: lock protecting accesses to the partition list. Protects
224  *                   not only the master partition list, but also all
225  *                   sub-partitions.
226  * @suspended: set to 1 when the device is suspended, 0 otherwise
227  *
228  * This struct is embedded in mtd_info and contains master-specific
229  * properties/fields. The master is the root MTD device from the MTD partition
230  * point of view.
231  */
232 struct mtd_master {
233         struct mutex partitions_lock;
234         struct mutex chrdev_lock;
235         unsigned int suspended : 1;
236 };
237 
238 struct mtd_info {
239         u_char type;
240         uint32_t flags;
241         uint64_t size;   // Total size of the MTD
242 
243         /* "Major" erase size for the device. Naïve users may take this
244          * to be the only erase size available, or may use the more detailed
245          * information below if they desire
246          */
247         uint32_t erasesize;
248         /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
249          * though individual bits can be cleared), in case of NAND flash it is
250          * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
251          * it is of ECC block size, etc. It is illegal to have writesize = 0.
252          * Any driver registering a struct mtd_info must ensure a writesize of
253          * 1 or larger.
254          */
255         uint32_t writesize;
256 
257         /*
258          * Size of the write buffer used by the MTD. MTD devices having a write
259          * buffer can write multiple writesize chunks at a time. E.g. while
260          * writing 4 * writesize bytes to a device with 2 * writesize bytes
261          * buffer the MTD driver can (but doesn't have to) do 2 writesize
262          * operations, but not 4. Currently, all NANDs have writebufsize
263          * equivalent to writesize (NAND page size). Some NOR flashes do have
264          * writebufsize greater than writesize.
265          */
266         uint32_t writebufsize;
267 
268         uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
269         uint32_t oobavail;  // Available OOB bytes per block
270 
271         /*
272          * If erasesize is a power of 2 then the shift is stored in
273          * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
274          */
275         unsigned int erasesize_shift;
276         unsigned int writesize_shift;
277         /* Masks based on erasesize_shift and writesize_shift */
278         unsigned int erasesize_mask;
279         unsigned int writesize_mask;
280 
281         /*
282          * read ops return -EUCLEAN if max number of bitflips corrected on any
283          * one region comprising an ecc step equals or exceeds this value.
284          * Settable by driver, else defaults to ecc_strength.  User can override
285          * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
286          * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
287          */
288         unsigned int bitflip_threshold;
289 
290         /* Kernel-only stuff starts here. */
291         const char *name;
292         int index;
293 
294         /* OOB layout description */
295         const struct mtd_ooblayout_ops *ooblayout;
296 
297         /* NAND pairing scheme, only provided for MLC/TLC NANDs */
298         const struct mtd_pairing_scheme *pairing;
299 
300         /* the ecc step size. */
301         unsigned int ecc_step_size;
302 
303         /* max number of correctible bit errors per ecc step */
304         unsigned int ecc_strength;
305 
306         /* Data for variable erase regions. If numeraseregions is zero,
307          * it means that the whole device has erasesize as given above.
308          */
309         int numeraseregions;
310         struct mtd_erase_region_info *eraseregions;
311 
312         /*
313          * Do not call via these pointers, use corresponding mtd_*()
314          * wrappers instead.
315          */
316         int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
317         int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
318                        size_t *retlen, void **virt, resource_size_t *phys);
319         int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
320         int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
321                       size_t *retlen, u_char *buf);
322         int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
323                        size_t *retlen, const u_char *buf);
324         int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
325                              size_t *retlen, const u_char *buf);
326         int (*_read_oob) (struct mtd_info *mtd, loff_t from,
327                           struct mtd_oob_ops *ops);
328         int (*_write_oob) (struct mtd_info *mtd, loff_t to,
329                            struct mtd_oob_ops *ops);
330         int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
331                                     size_t *retlen, struct otp_info *buf);
332         int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
333                                     size_t len, size_t *retlen, u_char *buf);
334         int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
335                                     size_t *retlen, struct otp_info *buf);
336         int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
337                                     size_t len, size_t *retlen, u_char *buf);
338         int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
339                                      size_t len, size_t *retlen,
340                                      const u_char *buf);
341         int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
342                                     size_t len);
343         int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from,
344                                      size_t len);
345         int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
346                         unsigned long count, loff_t to, size_t *retlen);
347         void (*_sync) (struct mtd_info *mtd);
348         int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
349         int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
350         int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
351         int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
352         int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
353         int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
354         int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
355         int (*_suspend) (struct mtd_info *mtd);
356         void (*_resume) (struct mtd_info *mtd);
357         void (*_reboot) (struct mtd_info *mtd);
358         /*
359          * If the driver is something smart, like UBI, it may need to maintain
360          * its own reference counting. The below functions are only for driver.
361          */
362         int (*_get_device) (struct mtd_info *mtd);
363         void (*_put_device) (struct mtd_info *mtd);
364 
365         /*
366          * flag indicates a panic write, low level drivers can take appropriate
367          * action if required to ensure writes go through
368          */
369         bool oops_panic_write;
370 
371         struct notifier_block reboot_notifier;  /* default mode before reboot */
372 
373         /* ECC status information */
374         struct mtd_ecc_stats ecc_stats;
375         /* Subpage shift (NAND) */
376         int subpage_sft;
377 
378         void *priv;
379 
380         struct module *owner;
381         struct device dev;
382         struct kref refcnt;
383         struct mtd_debug_info dbg;
384         struct nvmem_device *nvmem;
385         struct nvmem_device *otp_user_nvmem;
386         struct nvmem_device *otp_factory_nvmem;
387 
388         /*
389          * Parent device from the MTD partition point of view.
390          *
391          * MTD masters do not have any parent, MTD partitions do. The parent
392          * MTD device can itself be a partition.
393          */
394         struct mtd_info *parent;
395 
396         /* List of partitions attached to this MTD device */
397         struct list_head partitions;
398 
399         struct mtd_part part;
400         struct mtd_master master;
401 };
402 
403 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
404 {
405         while (mtd->parent)
406                 mtd = mtd->parent;
407 
408         return mtd;
409 }
410 
411 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
412 {
413         while (mtd->parent) {
414                 ofs += mtd->part.offset;
415                 mtd = mtd->parent;
416         }
417 
418         return ofs;
419 }
420 
421 static inline bool mtd_is_partition(const struct mtd_info *mtd)
422 {
423         return mtd->parent;
424 }
425 
426 static inline bool mtd_has_partitions(const struct mtd_info *mtd)
427 {
428         return !list_empty(&mtd->partitions);
429 }
430 
431 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
432                       struct mtd_oob_region *oobecc);
433 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
434                                  int *section,
435                                  struct mtd_oob_region *oobregion);
436 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
437                                const u8 *oobbuf, int start, int nbytes);
438 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
439                                u8 *oobbuf, int start, int nbytes);
440 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
441                        struct mtd_oob_region *oobfree);
442 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
443                                 const u8 *oobbuf, int start, int nbytes);
444 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
445                                 u8 *oobbuf, int start, int nbytes);
446 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
447 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
448 
449 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
450                                      const struct mtd_ooblayout_ops *ooblayout)
451 {
452         mtd->ooblayout = ooblayout;
453 }
454 
455 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
456                                 const struct mtd_pairing_scheme *pairing)
457 {
458         mtd->pairing = pairing;
459 }
460 
461 static inline void mtd_set_of_node(struct mtd_info *mtd,
462                                    struct device_node *np)
463 {
464         mtd->dev.of_node = np;
465         if (!mtd->name)
466                 of_property_read_string(np, "label", &mtd->name);
467 }
468 
469 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
470 {
471         return dev_of_node(&mtd->dev);
472 }
473 
474 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
475 {
476         return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
477 }
478 
479 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
480                                      loff_t ofs, size_t len)
481 {
482         struct mtd_info *master = mtd_get_master(mtd);
483 
484         if (!master->_max_bad_blocks)
485                 return -ENOTSUPP;
486 
487         if (mtd->size < (len + ofs) || ofs < 0)
488                 return -EINVAL;
489 
490         return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
491                                        len);
492 }
493 
494 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
495                               struct mtd_pairing_info *info);
496 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
497                               const struct mtd_pairing_info *info);
498 int mtd_pairing_groups(struct mtd_info *mtd);
499 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
500 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
501               void **virt, resource_size_t *phys);
502 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
503 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
504                                     unsigned long offset, unsigned long flags);
505 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
506              u_char *buf);
507 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
508               const u_char *buf);
509 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
510                     const u_char *buf);
511 
512 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
513 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
514 
515 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
516                            struct otp_info *buf);
517 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
518                            size_t *retlen, u_char *buf);
519 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
520                            struct otp_info *buf);
521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
522                            size_t *retlen, u_char *buf);
523 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
524                             size_t *retlen, const u_char *buf);
525 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
526 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
527 
528 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
529                unsigned long count, loff_t to, size_t *retlen);
530 
531 static inline void mtd_sync(struct mtd_info *mtd)
532 {
533         struct mtd_info *master = mtd_get_master(mtd);
534 
535         if (master->_sync)
536                 master->_sync(master);
537 }
538 
539 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
540 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
541 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
542 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
543 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
544 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
545 
546 static inline int mtd_suspend(struct mtd_info *mtd)
547 {
548         struct mtd_info *master = mtd_get_master(mtd);
549         int ret;
550 
551         if (master->master.suspended)
552                 return 0;
553 
554         ret = master->_suspend ? master->_suspend(master) : 0;
555         if (ret)
556                 return ret;
557 
558         master->master.suspended = 1;
559         return 0;
560 }
561 
562 static inline void mtd_resume(struct mtd_info *mtd)
563 {
564         struct mtd_info *master = mtd_get_master(mtd);
565 
566         if (!master->master.suspended)
567                 return;
568 
569         if (master->_resume)
570                 master->_resume(master);
571 
572         master->master.suspended = 0;
573 }
574 
575 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
576 {
577         if (mtd->erasesize_shift)
578                 return sz >> mtd->erasesize_shift;
579         do_div(sz, mtd->erasesize);
580         return sz;
581 }
582 
583 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
584 {
585         if (mtd->erasesize_shift)
586                 return sz & mtd->erasesize_mask;
587         return do_div(sz, mtd->erasesize);
588 }
589 
590 /**
591  * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
592  *                       boundaries.
593  * @mtd: the MTD device this erase request applies on
594  * @req: the erase request to adjust
595  *
596  * This function will adjust @req->addr and @req->len to align them on
597  * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
598  */
599 static inline void mtd_align_erase_req(struct mtd_info *mtd,
600                                        struct erase_info *req)
601 {
602         u32 mod;
603 
604         if (WARN_ON(!mtd->erasesize))
605                 return;
606 
607         mod = mtd_mod_by_eb(req->addr, mtd);
608         if (mod) {
609                 req->addr -= mod;
610                 req->len += mod;
611         }
612 
613         mod = mtd_mod_by_eb(req->addr + req->len, mtd);
614         if (mod)
615                 req->len += mtd->erasesize - mod;
616 }
617 
618 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
619 {
620         if (mtd->writesize_shift)
621                 return sz >> mtd->writesize_shift;
622         do_div(sz, mtd->writesize);
623         return sz;
624 }
625 
626 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
627 {
628         if (mtd->writesize_shift)
629                 return sz & mtd->writesize_mask;
630         return do_div(sz, mtd->writesize);
631 }
632 
633 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
634 {
635         struct mtd_info *master = mtd_get_master(mtd);
636 
637         return master->erasesize / mtd->writesize;
638 }
639 
640 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
641 {
642         return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
643 }
644 
645 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
646                                          int wunit)
647 {
648         return base + (wunit * mtd->writesize);
649 }
650 
651 
652 static inline int mtd_has_oob(const struct mtd_info *mtd)
653 {
654         struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
655 
656         return master->_read_oob && master->_write_oob;
657 }
658 
659 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
660 {
661         return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
662 }
663 
664 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
665 {
666         struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
667 
668         return !!master->_block_isbad;
669 }
670 
671         /* Kernel-side ioctl definitions */
672 
673 struct mtd_partition;
674 struct mtd_part_parser_data;
675 
676 extern int mtd_device_parse_register(struct mtd_info *mtd,
677                                      const char * const *part_probe_types,
678                                      struct mtd_part_parser_data *parser_data,
679                                      const struct mtd_partition *defparts,
680                                      int defnr_parts);
681 #define mtd_device_register(master, parts, nr_parts)    \
682         mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
683 extern int mtd_device_unregister(struct mtd_info *master);
684 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
685 extern int __get_mtd_device(struct mtd_info *mtd);
686 extern void __put_mtd_device(struct mtd_info *mtd);
687 extern struct mtd_info *of_get_mtd_device_by_node(struct device_node *np);
688 extern struct mtd_info *get_mtd_device_nm(const char *name);
689 extern void put_mtd_device(struct mtd_info *mtd);
690 
691 
692 struct mtd_notifier {
693         void (*add)(struct mtd_info *mtd);
694         void (*remove)(struct mtd_info *mtd);
695         struct list_head list;
696 };
697 
698 
699 extern void register_mtd_user (struct mtd_notifier *new);
700 extern int unregister_mtd_user (struct mtd_notifier *old);
701 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
702 
703 static inline int mtd_is_bitflip(int err) {
704         return err == -EUCLEAN;
705 }
706 
707 static inline int mtd_is_eccerr(int err) {
708         return err == -EBADMSG;
709 }
710 
711 static inline int mtd_is_bitflip_or_eccerr(int err) {
712         return mtd_is_bitflip(err) || mtd_is_eccerr(err);
713 }
714 
715 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
716 
717 #ifdef CONFIG_DEBUG_FS
718 bool mtd_check_expert_analysis_mode(void);
719 #else
720 static inline bool mtd_check_expert_analysis_mode(void) { return false; }
721 #endif
722 
723 
724 #endif /* __MTD_MTD_H__ */
725 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php