~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/mtd/nand.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  *  Copyright 2017 - Free Electrons
  4  *
  5  *  Authors:
  6  *      Boris Brezillon <boris.brezillon@free-electrons.com>
  7  *      Peter Pan <peterpandong@micron.com>
  8  */
  9 
 10 #ifndef __LINUX_MTD_NAND_H
 11 #define __LINUX_MTD_NAND_H
 12 
 13 #include <linux/mtd/mtd.h>
 14 
 15 struct nand_device;
 16 
 17 /**
 18  * struct nand_memory_organization - Memory organization structure
 19  * @bits_per_cell: number of bits per NAND cell
 20  * @pagesize: page size
 21  * @oobsize: OOB area size
 22  * @pages_per_eraseblock: number of pages per eraseblock
 23  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
 24  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
 25  * @planes_per_lun: number of planes per LUN
 26  * @luns_per_target: number of LUN per target (target is a synonym for die)
 27  * @ntargets: total number of targets exposed by the NAND device
 28  */
 29 struct nand_memory_organization {
 30         unsigned int bits_per_cell;
 31         unsigned int pagesize;
 32         unsigned int oobsize;
 33         unsigned int pages_per_eraseblock;
 34         unsigned int eraseblocks_per_lun;
 35         unsigned int max_bad_eraseblocks_per_lun;
 36         unsigned int planes_per_lun;
 37         unsigned int luns_per_target;
 38         unsigned int ntargets;
 39 };
 40 
 41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)   \
 42         {                                                       \
 43                 .bits_per_cell = (bpc),                         \
 44                 .pagesize = (ps),                               \
 45                 .oobsize = (os),                                \
 46                 .pages_per_eraseblock = (ppe),                  \
 47                 .eraseblocks_per_lun = (epl),                   \
 48                 .max_bad_eraseblocks_per_lun = (mbb),           \
 49                 .planes_per_lun = (ppl),                        \
 50                 .luns_per_target = (lpt),                       \
 51                 .ntargets = (nt),                               \
 52         }
 53 
 54 /**
 55  * struct nand_row_converter - Information needed to convert an absolute offset
 56  *                             into a row address
 57  * @lun_addr_shift: position of the LUN identifier in the row address
 58  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
 59  *                         address
 60  */
 61 struct nand_row_converter {
 62         unsigned int lun_addr_shift;
 63         unsigned int eraseblock_addr_shift;
 64 };
 65 
 66 /**
 67  * struct nand_pos - NAND position object
 68  * @target: the NAND target/die
 69  * @lun: the LUN identifier
 70  * @plane: the plane within the LUN
 71  * @eraseblock: the eraseblock within the LUN
 72  * @page: the page within the LUN
 73  *
 74  * These information are usually used by specific sub-layers to select the
 75  * appropriate target/die and generate a row address to pass to the device.
 76  */
 77 struct nand_pos {
 78         unsigned int target;
 79         unsigned int lun;
 80         unsigned int plane;
 81         unsigned int eraseblock;
 82         unsigned int page;
 83 };
 84 
 85 /**
 86  * enum nand_page_io_req_type - Direction of an I/O request
 87  * @NAND_PAGE_READ: from the chip, to the controller
 88  * @NAND_PAGE_WRITE: from the controller, to the chip
 89  */
 90 enum nand_page_io_req_type {
 91         NAND_PAGE_READ = 0,
 92         NAND_PAGE_WRITE,
 93 };
 94 
 95 /**
 96  * struct nand_page_io_req - NAND I/O request object
 97  * @type: the type of page I/O: read or write
 98  * @pos: the position this I/O request is targeting
 99  * @dataoffs: the offset within the page
100  * @datalen: number of data bytes to read from/write to this page
101  * @databuf: buffer to store data in or get data from
102  * @ooboffs: the OOB offset within the page
103  * @ooblen: the number of OOB bytes to read from/write to this page
104  * @oobbuf: buffer to store OOB data in or get OOB data from
105  * @mode: one of the %MTD_OPS_XXX mode
106  *
107  * This object is used to pass per-page I/O requests to NAND sub-layers. This
108  * way all useful information are already formatted in a useful way and
109  * specific NAND layers can focus on translating these information into
110  * specific commands/operations.
111  */
112 struct nand_page_io_req {
113         enum nand_page_io_req_type type;
114         struct nand_pos pos;
115         unsigned int dataoffs;
116         unsigned int datalen;
117         union {
118                 const void *out;
119                 void *in;
120         } databuf;
121         unsigned int ooboffs;
122         unsigned int ooblen;
123         union {
124                 const void *out;
125                 void *in;
126         } oobbuf;
127         int mode;
128 };
129 
130 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133 
134 /**
135  * enum nand_ecc_engine_type - NAND ECC engine type
136  * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137  * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138  * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139  * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140  * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141  */
142 enum nand_ecc_engine_type {
143         NAND_ECC_ENGINE_TYPE_INVALID,
144         NAND_ECC_ENGINE_TYPE_NONE,
145         NAND_ECC_ENGINE_TYPE_SOFT,
146         NAND_ECC_ENGINE_TYPE_ON_HOST,
147         NAND_ECC_ENGINE_TYPE_ON_DIE,
148 };
149 
150 /**
151  * enum nand_ecc_placement - NAND ECC bytes placement
152  * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153  * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154  * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155  *                                  interleaved with regular data in the main
156  *                                  area
157  */
158 enum nand_ecc_placement {
159         NAND_ECC_PLACEMENT_UNKNOWN,
160         NAND_ECC_PLACEMENT_OOB,
161         NAND_ECC_PLACEMENT_INTERLEAVED,
162 };
163 
164 /**
165  * enum nand_ecc_algo - NAND ECC algorithm
166  * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167  * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168  * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169  * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170  */
171 enum nand_ecc_algo {
172         NAND_ECC_ALGO_UNKNOWN,
173         NAND_ECC_ALGO_HAMMING,
174         NAND_ECC_ALGO_BCH,
175         NAND_ECC_ALGO_RS,
176 };
177 
178 /**
179  * struct nand_ecc_props - NAND ECC properties
180  * @engine_type: ECC engine type
181  * @placement: OOB placement (if relevant)
182  * @algo: ECC algorithm (if relevant)
183  * @strength: ECC strength
184  * @step_size: Number of bytes per step
185  * @flags: Misc properties
186  */
187 struct nand_ecc_props {
188         enum nand_ecc_engine_type engine_type;
189         enum nand_ecc_placement placement;
190         enum nand_ecc_algo algo;
191         unsigned int strength;
192         unsigned int step_size;
193         unsigned int flags;
194 };
195 
196 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197 
198 /* NAND ECC misc flags */
199 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200 
201 /**
202  * struct nand_bbt - bad block table object
203  * @cache: in memory BBT cache
204  */
205 struct nand_bbt {
206         unsigned long *cache;
207 };
208 
209 /**
210  * struct nand_ops - NAND operations
211  * @erase: erase a specific block. No need to check if the block is bad before
212  *         erasing, this has been taken care of by the generic NAND layer
213  * @markbad: mark a specific block bad. No need to check if the block is
214  *           already marked bad, this has been taken care of by the generic
215  *           NAND layer. This method should just write the BBM (Bad Block
216  *           Marker) so that future call to struct_nand_ops->isbad() return
217  *           true
218  * @isbad: check whether a block is bad or not. This method should just read
219  *         the BBM and return whether the block is bad or not based on what it
220  *         reads
221  *
222  * These are all low level operations that should be implemented by specialized
223  * NAND layers (SPI NAND, raw NAND, ...).
224  */
225 struct nand_ops {
226         int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
227         int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
228         bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
229 };
230 
231 /**
232  * struct nand_ecc_context - Context for the ECC engine
233  * @conf: basic ECC engine parameters
234  * @nsteps: number of ECC steps
235  * @total: total number of bytes used for storing ECC codes, this is used by
236  *         generic OOB layouts
237  * @priv: ECC engine driver private data
238  */
239 struct nand_ecc_context {
240         struct nand_ecc_props conf;
241         unsigned int nsteps;
242         unsigned int total;
243         void *priv;
244 };
245 
246 /**
247  * struct nand_ecc_engine_ops - ECC engine operations
248  * @init_ctx: given a desired user configuration for the pointed NAND device,
249  *            requests the ECC engine driver to setup a configuration with
250  *            values it supports.
251  * @cleanup_ctx: clean the context initialized by @init_ctx.
252  * @prepare_io_req: is called before reading/writing a page to prepare the I/O
253  *                  request to be performed with ECC correction.
254  * @finish_io_req: is called after reading/writing a page to terminate the I/O
255  *                 request and ensure proper ECC correction.
256  */
257 struct nand_ecc_engine_ops {
258         int (*init_ctx)(struct nand_device *nand);
259         void (*cleanup_ctx)(struct nand_device *nand);
260         int (*prepare_io_req)(struct nand_device *nand,
261                               struct nand_page_io_req *req);
262         int (*finish_io_req)(struct nand_device *nand,
263                              struct nand_page_io_req *req);
264 };
265 
266 /**
267  * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated
268  * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value
269  * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly
270  *                                         correction, does not need to copy
271  *                                         data around
272  * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the
273  *                                        data into its own area before use
274  */
275 enum nand_ecc_engine_integration {
276         NAND_ECC_ENGINE_INTEGRATION_INVALID,
277         NAND_ECC_ENGINE_INTEGRATION_PIPELINED,
278         NAND_ECC_ENGINE_INTEGRATION_EXTERNAL,
279 };
280 
281 /**
282  * struct nand_ecc_engine - ECC engine abstraction for NAND devices
283  * @dev: Host device
284  * @node: Private field for registration time
285  * @ops: ECC engine operations
286  * @integration: How the engine is integrated with the host
287  *               (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines)
288  * @priv: Private data
289  */
290 struct nand_ecc_engine {
291         struct device *dev;
292         struct list_head node;
293         struct nand_ecc_engine_ops *ops;
294         enum nand_ecc_engine_integration integration;
295         void *priv;
296 };
297 
298 void of_get_nand_ecc_user_config(struct nand_device *nand);
299 int nand_ecc_init_ctx(struct nand_device *nand);
300 void nand_ecc_cleanup_ctx(struct nand_device *nand);
301 int nand_ecc_prepare_io_req(struct nand_device *nand,
302                             struct nand_page_io_req *req);
303 int nand_ecc_finish_io_req(struct nand_device *nand,
304                            struct nand_page_io_req *req);
305 bool nand_ecc_is_strong_enough(struct nand_device *nand);
306 
307 #if IS_REACHABLE(CONFIG_MTD_NAND_CORE)
308 int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine);
309 int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine);
310 #else
311 static inline int
312 nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
313 {
314         return -ENOTSUPP;
315 }
316 static inline int
317 nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
318 {
319         return -ENOTSUPP;
320 }
321 #endif
322 
323 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
324 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
325 struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand);
326 void nand_ecc_put_on_host_hw_engine(struct nand_device *nand);
327 struct device *nand_ecc_get_engine_dev(struct device *host);
328 
329 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
330 struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
331 #else
332 static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
333 {
334         return NULL;
335 }
336 #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
337 
338 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
339 struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
340 #else
341 static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
342 {
343         return NULL;
344 }
345 #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
346 
347 /**
348  * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
349  * @orig_req: Pointer to the original IO request
350  * @nand: Related NAND device, to have access to its memory organization
351  * @page_buffer_size: Real size of the page buffer to use (can be set by the
352  *                    user before the tweaking mechanism initialization)
353  * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
354  *                   user before the tweaking mechanism initialization)
355  * @spare_databuf: Data bounce buffer
356  * @spare_oobbuf: OOB bounce buffer
357  * @bounce_data: Flag indicating a data bounce buffer is used
358  * @bounce_oob: Flag indicating an OOB bounce buffer is used
359  */
360 struct nand_ecc_req_tweak_ctx {
361         struct nand_page_io_req orig_req;
362         struct nand_device *nand;
363         unsigned int page_buffer_size;
364         unsigned int oob_buffer_size;
365         void *spare_databuf;
366         void *spare_oobbuf;
367         bool bounce_data;
368         bool bounce_oob;
369 };
370 
371 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
372                                struct nand_device *nand);
373 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
374 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
375                         struct nand_page_io_req *req);
376 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
377                           struct nand_page_io_req *req);
378 
379 /**
380  * struct nand_ecc - Information relative to the ECC
381  * @defaults: Default values, depend on the underlying subsystem
382  * @requirements: ECC requirements from the NAND chip perspective
383  * @user_conf: User desires in terms of ECC parameters
384  * @ctx: ECC context for the ECC engine, derived from the device @requirements
385  *       the @user_conf and the @defaults
386  * @ondie_engine: On-die ECC engine reference, if any
387  * @engine: ECC engine actually bound
388  */
389 struct nand_ecc {
390         struct nand_ecc_props defaults;
391         struct nand_ecc_props requirements;
392         struct nand_ecc_props user_conf;
393         struct nand_ecc_context ctx;
394         struct nand_ecc_engine *ondie_engine;
395         struct nand_ecc_engine *engine;
396 };
397 
398 /**
399  * struct nand_device - NAND device
400  * @mtd: MTD instance attached to the NAND device
401  * @memorg: memory layout
402  * @ecc: NAND ECC object attached to the NAND device
403  * @rowconv: position to row address converter
404  * @bbt: bad block table info
405  * @ops: NAND operations attached to the NAND device
406  *
407  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
408  * should declare their own NAND object embedding a nand_device struct (that's
409  * how inheritance is done).
410  * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
411  * be filled at device detection time to reflect the NAND device
412  * capabilities/requirements. Once this is done nanddev_init() can be called.
413  * It will take care of converting NAND information into MTD ones, which means
414  * the specialized NAND layers should never manually tweak
415  * struct_nand_device->mtd except for the ->_read/write() hooks.
416  */
417 struct nand_device {
418         struct mtd_info mtd;
419         struct nand_memory_organization memorg;
420         struct nand_ecc ecc;
421         struct nand_row_converter rowconv;
422         struct nand_bbt bbt;
423         const struct nand_ops *ops;
424 };
425 
426 /**
427  * struct nand_io_iter - NAND I/O iterator
428  * @req: current I/O request
429  * @oobbytes_per_page: maximum number of OOB bytes per page
430  * @dataleft: remaining number of data bytes to read/write
431  * @oobleft: remaining number of OOB bytes to read/write
432  *
433  * Can be used by specialized NAND layers to iterate over all pages covered
434  * by an MTD I/O request, which should greatly simplifies the boiler-plate
435  * code needed to read/write data from/to a NAND device.
436  */
437 struct nand_io_iter {
438         struct nand_page_io_req req;
439         unsigned int oobbytes_per_page;
440         unsigned int dataleft;
441         unsigned int oobleft;
442 };
443 
444 /**
445  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
446  * @mtd: MTD instance
447  *
448  * Return: the NAND device embedding @mtd.
449  */
450 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
451 {
452         return container_of(mtd, struct nand_device, mtd);
453 }
454 
455 /**
456  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
457  * @nand: NAND device
458  *
459  * Return: the MTD device embedded in @nand.
460  */
461 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
462 {
463         return &nand->mtd;
464 }
465 
466 /*
467  * nanddev_bits_per_cell() - Get the number of bits per cell
468  * @nand: NAND device
469  *
470  * Return: the number of bits per cell.
471  */
472 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
473 {
474         return nand->memorg.bits_per_cell;
475 }
476 
477 /**
478  * nanddev_page_size() - Get NAND page size
479  * @nand: NAND device
480  *
481  * Return: the page size.
482  */
483 static inline size_t nanddev_page_size(const struct nand_device *nand)
484 {
485         return nand->memorg.pagesize;
486 }
487 
488 /**
489  * nanddev_per_page_oobsize() - Get NAND OOB size
490  * @nand: NAND device
491  *
492  * Return: the OOB size.
493  */
494 static inline unsigned int
495 nanddev_per_page_oobsize(const struct nand_device *nand)
496 {
497         return nand->memorg.oobsize;
498 }
499 
500 /**
501  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
502  * @nand: NAND device
503  *
504  * Return: the number of pages per eraseblock.
505  */
506 static inline unsigned int
507 nanddev_pages_per_eraseblock(const struct nand_device *nand)
508 {
509         return nand->memorg.pages_per_eraseblock;
510 }
511 
512 /**
513  * nanddev_pages_per_target() - Get the number of pages per target
514  * @nand: NAND device
515  *
516  * Return: the number of pages per target.
517  */
518 static inline unsigned int
519 nanddev_pages_per_target(const struct nand_device *nand)
520 {
521         return nand->memorg.pages_per_eraseblock *
522                nand->memorg.eraseblocks_per_lun *
523                nand->memorg.luns_per_target;
524 }
525 
526 /**
527  * nanddev_per_page_oobsize() - Get NAND erase block size
528  * @nand: NAND device
529  *
530  * Return: the eraseblock size.
531  */
532 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
533 {
534         return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
535 }
536 
537 /**
538  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
539  * @nand: NAND device
540  *
541  * Return: the number of eraseblocks per LUN.
542  */
543 static inline unsigned int
544 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
545 {
546         return nand->memorg.eraseblocks_per_lun;
547 }
548 
549 /**
550  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
551  * @nand: NAND device
552  *
553  * Return: the number of eraseblocks per target.
554  */
555 static inline unsigned int
556 nanddev_eraseblocks_per_target(const struct nand_device *nand)
557 {
558         return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
559 }
560 
561 /**
562  * nanddev_target_size() - Get the total size provided by a single target/die
563  * @nand: NAND device
564  *
565  * Return: the total size exposed by a single target/die in bytes.
566  */
567 static inline u64 nanddev_target_size(const struct nand_device *nand)
568 {
569         return (u64)nand->memorg.luns_per_target *
570                nand->memorg.eraseblocks_per_lun *
571                nand->memorg.pages_per_eraseblock *
572                nand->memorg.pagesize;
573 }
574 
575 /**
576  * nanddev_ntarget() - Get the total of targets
577  * @nand: NAND device
578  *
579  * Return: the number of targets/dies exposed by @nand.
580  */
581 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
582 {
583         return nand->memorg.ntargets;
584 }
585 
586 /**
587  * nanddev_neraseblocks() - Get the total number of eraseblocks
588  * @nand: NAND device
589  *
590  * Return: the total number of eraseblocks exposed by @nand.
591  */
592 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
593 {
594         return nand->memorg.ntargets * nand->memorg.luns_per_target *
595                nand->memorg.eraseblocks_per_lun;
596 }
597 
598 /**
599  * nanddev_size() - Get NAND size
600  * @nand: NAND device
601  *
602  * Return: the total size (in bytes) exposed by @nand.
603  */
604 static inline u64 nanddev_size(const struct nand_device *nand)
605 {
606         return nanddev_target_size(nand) * nanddev_ntargets(nand);
607 }
608 
609 /**
610  * nanddev_get_memorg() - Extract memory organization info from a NAND device
611  * @nand: NAND device
612  *
613  * This can be used by the upper layer to fill the memorg info before calling
614  * nanddev_init().
615  *
616  * Return: the memorg object embedded in the NAND device.
617  */
618 static inline struct nand_memory_organization *
619 nanddev_get_memorg(struct nand_device *nand)
620 {
621         return &nand->memorg;
622 }
623 
624 /**
625  * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
626  * @nand: NAND device
627  */
628 static inline const struct nand_ecc_props *
629 nanddev_get_ecc_conf(struct nand_device *nand)
630 {
631         return &nand->ecc.ctx.conf;
632 }
633 
634 /**
635  * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
636  * @nand: NAND device
637  */
638 static inline unsigned int
639 nanddev_get_ecc_nsteps(struct nand_device *nand)
640 {
641         return nand->ecc.ctx.nsteps;
642 }
643 
644 /**
645  * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
646  * @nand: NAND device
647  */
648 static inline unsigned int
649 nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
650 {
651         return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
652 }
653 
654 /**
655  * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
656  *                                  device
657  * @nand: NAND device
658  */
659 static inline const struct nand_ecc_props *
660 nanddev_get_ecc_requirements(struct nand_device *nand)
661 {
662         return &nand->ecc.requirements;
663 }
664 
665 /**
666  * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
667  *                                  device
668  * @nand: NAND device
669  * @reqs: Requirements
670  */
671 static inline void
672 nanddev_set_ecc_requirements(struct nand_device *nand,
673                              const struct nand_ecc_props *reqs)
674 {
675         nand->ecc.requirements = *reqs;
676 }
677 
678 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
679                  struct module *owner);
680 void nanddev_cleanup(struct nand_device *nand);
681 
682 /**
683  * nanddev_register() - Register a NAND device
684  * @nand: NAND device
685  *
686  * Register a NAND device.
687  * This function is just a wrapper around mtd_device_register()
688  * registering the MTD device embedded in @nand.
689  *
690  * Return: 0 in case of success, a negative error code otherwise.
691  */
692 static inline int nanddev_register(struct nand_device *nand)
693 {
694         return mtd_device_register(&nand->mtd, NULL, 0);
695 }
696 
697 /**
698  * nanddev_unregister() - Unregister a NAND device
699  * @nand: NAND device
700  *
701  * Unregister a NAND device.
702  * This function is just a wrapper around mtd_device_unregister()
703  * unregistering the MTD device embedded in @nand.
704  *
705  * Return: 0 in case of success, a negative error code otherwise.
706  */
707 static inline int nanddev_unregister(struct nand_device *nand)
708 {
709         return mtd_device_unregister(&nand->mtd);
710 }
711 
712 /**
713  * nanddev_set_of_node() - Attach a DT node to a NAND device
714  * @nand: NAND device
715  * @np: DT node
716  *
717  * Attach a DT node to a NAND device.
718  */
719 static inline void nanddev_set_of_node(struct nand_device *nand,
720                                        struct device_node *np)
721 {
722         mtd_set_of_node(&nand->mtd, np);
723 }
724 
725 /**
726  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
727  * @nand: NAND device
728  *
729  * Return: the DT node attached to @nand.
730  */
731 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
732 {
733         return mtd_get_of_node(&nand->mtd);
734 }
735 
736 /**
737  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
738  * @nand: NAND device
739  * @offs: absolute NAND offset (usually passed by the MTD layer)
740  * @pos: a NAND position object to fill in
741  *
742  * Converts @offs into a nand_pos representation.
743  *
744  * Return: the offset within the NAND page pointed by @pos.
745  */
746 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
747                                                loff_t offs,
748                                                struct nand_pos *pos)
749 {
750         unsigned int pageoffs;
751         u64 tmp = offs;
752 
753         pageoffs = do_div(tmp, nand->memorg.pagesize);
754         pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
755         pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
756         pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
757         pos->lun = do_div(tmp, nand->memorg.luns_per_target);
758         pos->target = tmp;
759 
760         return pageoffs;
761 }
762 
763 /**
764  * nanddev_pos_cmp() - Compare two NAND positions
765  * @a: First NAND position
766  * @b: Second NAND position
767  *
768  * Compares two NAND positions.
769  *
770  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
771  */
772 static inline int nanddev_pos_cmp(const struct nand_pos *a,
773                                   const struct nand_pos *b)
774 {
775         if (a->target != b->target)
776                 return a->target < b->target ? -1 : 1;
777 
778         if (a->lun != b->lun)
779                 return a->lun < b->lun ? -1 : 1;
780 
781         if (a->eraseblock != b->eraseblock)
782                 return a->eraseblock < b->eraseblock ? -1 : 1;
783 
784         if (a->page != b->page)
785                 return a->page < b->page ? -1 : 1;
786 
787         return 0;
788 }
789 
790 /**
791  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
792  * @nand: NAND device
793  * @pos: the NAND position to convert
794  *
795  * Converts @pos NAND position into an absolute offset.
796  *
797  * Return: the absolute offset. Note that @pos points to the beginning of a
798  *         page, if one wants to point to a specific offset within this page
799  *         the returned offset has to be adjusted manually.
800  */
801 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
802                                          const struct nand_pos *pos)
803 {
804         unsigned int npages;
805 
806         npages = pos->page +
807                  ((pos->eraseblock +
808                    (pos->lun +
809                     (pos->target * nand->memorg.luns_per_target)) *
810                    nand->memorg.eraseblocks_per_lun) *
811                   nand->memorg.pages_per_eraseblock);
812 
813         return (loff_t)npages * nand->memorg.pagesize;
814 }
815 
816 /**
817  * nanddev_pos_to_row() - Extract a row address from a NAND position
818  * @nand: NAND device
819  * @pos: the position to convert
820  *
821  * Converts a NAND position into a row address that can then be passed to the
822  * device.
823  *
824  * Return: the row address extracted from @pos.
825  */
826 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
827                                               const struct nand_pos *pos)
828 {
829         return (pos->lun << nand->rowconv.lun_addr_shift) |
830                (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
831                pos->page;
832 }
833 
834 /**
835  * nanddev_pos_next_target() - Move a position to the next target/die
836  * @nand: NAND device
837  * @pos: the position to update
838  *
839  * Updates @pos to point to the start of the next target/die. Useful when you
840  * want to iterate over all targets/dies of a NAND device.
841  */
842 static inline void nanddev_pos_next_target(struct nand_device *nand,
843                                            struct nand_pos *pos)
844 {
845         pos->page = 0;
846         pos->plane = 0;
847         pos->eraseblock = 0;
848         pos->lun = 0;
849         pos->target++;
850 }
851 
852 /**
853  * nanddev_pos_next_lun() - Move a position to the next LUN
854  * @nand: NAND device
855  * @pos: the position to update
856  *
857  * Updates @pos to point to the start of the next LUN. Useful when you want to
858  * iterate over all LUNs of a NAND device.
859  */
860 static inline void nanddev_pos_next_lun(struct nand_device *nand,
861                                         struct nand_pos *pos)
862 {
863         if (pos->lun >= nand->memorg.luns_per_target - 1)
864                 return nanddev_pos_next_target(nand, pos);
865 
866         pos->lun++;
867         pos->page = 0;
868         pos->plane = 0;
869         pos->eraseblock = 0;
870 }
871 
872 /**
873  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
874  * @nand: NAND device
875  * @pos: the position to update
876  *
877  * Updates @pos to point to the start of the next eraseblock. Useful when you
878  * want to iterate over all eraseblocks of a NAND device.
879  */
880 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
881                                                struct nand_pos *pos)
882 {
883         if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
884                 return nanddev_pos_next_lun(nand, pos);
885 
886         pos->eraseblock++;
887         pos->page = 0;
888         pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
889 }
890 
891 /**
892  * nanddev_pos_next_page() - Move a position to the next page
893  * @nand: NAND device
894  * @pos: the position to update
895  *
896  * Updates @pos to point to the start of the next page. Useful when you want to
897  * iterate over all pages of a NAND device.
898  */
899 static inline void nanddev_pos_next_page(struct nand_device *nand,
900                                          struct nand_pos *pos)
901 {
902         if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
903                 return nanddev_pos_next_eraseblock(nand, pos);
904 
905         pos->page++;
906 }
907 
908 /**
909  * nand_io_iter_init - Initialize a NAND I/O iterator
910  * @nand: NAND device
911  * @offs: absolute offset
912  * @req: MTD request
913  * @iter: NAND I/O iterator
914  *
915  * Initializes a NAND iterator based on the information passed by the MTD
916  * layer.
917  */
918 static inline void nanddev_io_iter_init(struct nand_device *nand,
919                                         enum nand_page_io_req_type reqtype,
920                                         loff_t offs, struct mtd_oob_ops *req,
921                                         struct nand_io_iter *iter)
922 {
923         struct mtd_info *mtd = nanddev_to_mtd(nand);
924 
925         iter->req.type = reqtype;
926         iter->req.mode = req->mode;
927         iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
928         iter->req.ooboffs = req->ooboffs;
929         iter->oobbytes_per_page = mtd_oobavail(mtd, req);
930         iter->dataleft = req->len;
931         iter->oobleft = req->ooblen;
932         iter->req.databuf.in = req->datbuf;
933         iter->req.datalen = min_t(unsigned int,
934                                   nand->memorg.pagesize - iter->req.dataoffs,
935                                   iter->dataleft);
936         iter->req.oobbuf.in = req->oobbuf;
937         iter->req.ooblen = min_t(unsigned int,
938                                  iter->oobbytes_per_page - iter->req.ooboffs,
939                                  iter->oobleft);
940 }
941 
942 /**
943  * nand_io_iter_next_page - Move to the next page
944  * @nand: NAND device
945  * @iter: NAND I/O iterator
946  *
947  * Updates the @iter to point to the next page.
948  */
949 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
950                                              struct nand_io_iter *iter)
951 {
952         nanddev_pos_next_page(nand, &iter->req.pos);
953         iter->dataleft -= iter->req.datalen;
954         iter->req.databuf.in += iter->req.datalen;
955         iter->oobleft -= iter->req.ooblen;
956         iter->req.oobbuf.in += iter->req.ooblen;
957         iter->req.dataoffs = 0;
958         iter->req.ooboffs = 0;
959         iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
960                                   iter->dataleft);
961         iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
962                                  iter->oobleft);
963 }
964 
965 /**
966  * nand_io_iter_end - Should end iteration or not
967  * @nand: NAND device
968  * @iter: NAND I/O iterator
969  *
970  * Check whether @iter has reached the end of the NAND portion it was asked to
971  * iterate on or not.
972  *
973  * Return: true if @iter has reached the end of the iteration request, false
974  *         otherwise.
975  */
976 static inline bool nanddev_io_iter_end(struct nand_device *nand,
977                                        const struct nand_io_iter *iter)
978 {
979         if (iter->dataleft || iter->oobleft)
980                 return false;
981 
982         return true;
983 }
984 
985 /**
986  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
987  *                         request
988  * @nand: NAND device
989  * @start: start address to read/write from
990  * @req: MTD I/O request
991  * @iter: NAND I/O iterator
992  *
993  * Should be used for iterate over pages that are contained in an MTD request.
994  */
995 #define nanddev_io_for_each_page(nand, type, start, req, iter)          \
996         for (nanddev_io_iter_init(nand, type, start, req, iter);        \
997              !nanddev_io_iter_end(nand, iter);                          \
998              nanddev_io_iter_next_page(nand, iter))
999 
1000 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
1001 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
1002 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
1003 
1004 /* ECC related functions */
1005 int nanddev_ecc_engine_init(struct nand_device *nand);
1006 void nanddev_ecc_engine_cleanup(struct nand_device *nand);
1007 
1008 static inline void *nand_to_ecc_ctx(struct nand_device *nand)
1009 {
1010         return nand->ecc.ctx.priv;
1011 }
1012 
1013 /* BBT related functions */
1014 enum nand_bbt_block_status {
1015         NAND_BBT_BLOCK_STATUS_UNKNOWN,
1016         NAND_BBT_BLOCK_GOOD,
1017         NAND_BBT_BLOCK_WORN,
1018         NAND_BBT_BLOCK_RESERVED,
1019         NAND_BBT_BLOCK_FACTORY_BAD,
1020         NAND_BBT_BLOCK_NUM_STATUS,
1021 };
1022 
1023 int nanddev_bbt_init(struct nand_device *nand);
1024 void nanddev_bbt_cleanup(struct nand_device *nand);
1025 int nanddev_bbt_update(struct nand_device *nand);
1026 int nanddev_bbt_get_block_status(const struct nand_device *nand,
1027                                  unsigned int entry);
1028 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
1029                                  enum nand_bbt_block_status status);
1030 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
1031 
1032 /**
1033  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
1034  * @nand: NAND device
1035  * @pos: the NAND position we want to get BBT entry for
1036  *
1037  * Return the BBT entry used to store information about the eraseblock pointed
1038  * by @pos.
1039  *
1040  * Return: the BBT entry storing information about eraseblock pointed by @pos.
1041  */
1042 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
1043                                                     const struct nand_pos *pos)
1044 {
1045         return pos->eraseblock +
1046                ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
1047                 nand->memorg.eraseblocks_per_lun);
1048 }
1049 
1050 /**
1051  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1052  * @nand: NAND device
1053  *
1054  * Return: true if the BBT has been initialized, false otherwise.
1055  */
1056 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1057 {
1058         return !!nand->bbt.cache;
1059 }
1060 
1061 /* MTD -> NAND helper functions. */
1062 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1063 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1064 
1065 #endif /* __LINUX_MTD_NAND_H */
1066 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php