1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 4 * Steven J. Hill <sjhill@realitydiluted.com> 5 * Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Info: 8 * Contains standard defines and IDs for NAND flash devices 9 * 10 * Changelog: 11 * See git changelog. 12 */ 13 #ifndef __LINUX_MTD_RAWNAND_H 14 #define __LINUX_MTD_RAWNAND_H 15 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/nand.h> 18 #include <linux/mtd/flashchip.h> 19 #include <linux/mtd/bbm.h> 20 #include <linux/mtd/jedec.h> 21 #include <linux/mtd/onfi.h> 22 #include <linux/mutex.h> 23 #include <linux/of.h> 24 #include <linux/types.h> 25 26 struct nand_chip; 27 struct gpio_desc; 28 29 /* The maximum number of NAND chips in an array */ 30 #define NAND_MAX_CHIPS 8 31 32 /* 33 * Constants for hardware specific CLE/ALE/NCE function 34 * 35 * These are bits which can be or'ed to set/clear multiple 36 * bits in one go. 37 */ 38 /* Select the chip by setting nCE to low */ 39 #define NAND_NCE 0x01 40 /* Select the command latch by setting CLE to high */ 41 #define NAND_CLE 0x02 42 /* Select the address latch by setting ALE to high */ 43 #define NAND_ALE 0x04 44 45 #define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 46 #define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 47 #define NAND_CTRL_CHANGE 0x80 48 49 /* 50 * Standard NAND flash commands 51 */ 52 #define NAND_CMD_READ0 0 53 #define NAND_CMD_READ1 1 54 #define NAND_CMD_RNDOUT 5 55 #define NAND_CMD_PAGEPROG 0x10 56 #define NAND_CMD_READOOB 0x50 57 #define NAND_CMD_ERASE1 0x60 58 #define NAND_CMD_STATUS 0x70 59 #define NAND_CMD_SEQIN 0x80 60 #define NAND_CMD_RNDIN 0x85 61 #define NAND_CMD_READID 0x90 62 #define NAND_CMD_ERASE2 0xd0 63 #define NAND_CMD_PARAM 0xec 64 #define NAND_CMD_GET_FEATURES 0xee 65 #define NAND_CMD_SET_FEATURES 0xef 66 #define NAND_CMD_RESET 0xff 67 68 /* Extended commands for large page devices */ 69 #define NAND_CMD_READSTART 0x30 70 #define NAND_CMD_READCACHESEQ 0x31 71 #define NAND_CMD_READCACHEEND 0x3f 72 #define NAND_CMD_RNDOUTSTART 0xE0 73 #define NAND_CMD_CACHEDPROG 0x15 74 75 #define NAND_CMD_NONE -1 76 77 /* Status bits */ 78 #define NAND_STATUS_FAIL 0x01 79 #define NAND_STATUS_FAIL_N1 0x02 80 #define NAND_STATUS_TRUE_READY 0x20 81 #define NAND_STATUS_READY 0x40 82 #define NAND_STATUS_WP 0x80 83 84 #define NAND_DATA_IFACE_CHECK_ONLY -1 85 86 /* 87 * Constants for Hardware ECC 88 */ 89 /* Reset Hardware ECC for read */ 90 #define NAND_ECC_READ 0 91 /* Reset Hardware ECC for write */ 92 #define NAND_ECC_WRITE 1 93 /* Enable Hardware ECC before syndrome is read back from flash */ 94 #define NAND_ECC_READSYN 2 95 96 /* 97 * Enable generic NAND 'page erased' check. This check is only done when 98 * ecc.correct() returns -EBADMSG. 99 * Set this flag if your implementation does not fix bitflips in erased 100 * pages and you want to rely on the default implementation. 101 */ 102 #define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 103 104 /* 105 * Option constants for bizarre disfunctionality and real 106 * features. 107 */ 108 109 /* Buswidth is 16 bit */ 110 #define NAND_BUSWIDTH_16 BIT(1) 111 112 /* 113 * When using software implementation of Hamming, we can specify which byte 114 * ordering should be used. 115 */ 116 #define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) 117 118 /* Chip has cache program function */ 119 #define NAND_CACHEPRG BIT(3) 120 /* Options valid for Samsung large page devices */ 121 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 122 123 /* 124 * Chip requires ready check on read (for auto-incremented sequential read). 125 * True only for small page devices; large page devices do not support 126 * autoincrement. 127 */ 128 #define NAND_NEED_READRDY BIT(8) 129 130 /* Chip does not allow subpage writes */ 131 #define NAND_NO_SUBPAGE_WRITE BIT(9) 132 133 /* Device is one of 'new' xD cards that expose fake nand command set */ 134 #define NAND_BROKEN_XD BIT(10) 135 136 /* Device behaves just like nand, but is readonly */ 137 #define NAND_ROM BIT(11) 138 139 /* Device supports subpage reads */ 140 #define NAND_SUBPAGE_READ BIT(12) 141 /* Macros to identify the above */ 142 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 143 144 /* 145 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 146 * patterns. 147 */ 148 #define NAND_NEED_SCRAMBLING BIT(13) 149 150 /* Device needs 3rd row address cycle */ 151 #define NAND_ROW_ADDR_3 BIT(14) 152 153 /* Non chip related options */ 154 /* This option skips the bbt scan during initialization. */ 155 #define NAND_SKIP_BBTSCAN BIT(16) 156 /* Chip may not exist, so silence any errors in scan */ 157 #define NAND_SCAN_SILENT_NODEV BIT(18) 158 159 /* 160 * Autodetect nand buswidth with readid/onfi. 161 * This suppose the driver will configure the hardware in 8 bits mode 162 * when calling nand_scan_ident, and update its configuration 163 * before calling nand_scan_tail. 164 */ 165 #define NAND_BUSWIDTH_AUTO BIT(19) 166 167 /* 168 * This option could be defined by controller drivers to protect against 169 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 170 */ 171 #define NAND_USES_DMA BIT(20) 172 173 /* 174 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying 175 * on the default ->cmdfunc() implementation, you may want to let the core 176 * handle the tCCS delay which is required when a column change (RNDIN or 177 * RNDOUT) is requested. 178 * If your controller already takes care of this delay, you don't need to set 179 * this flag. 180 */ 181 #define NAND_WAIT_TCCS BIT(21) 182 183 /* 184 * Whether the NAND chip is a boot medium. Drivers might use this information 185 * to select ECC algorithms supported by the boot ROM or similar restrictions. 186 */ 187 #define NAND_IS_BOOT_MEDIUM BIT(22) 188 189 /* 190 * Do not try to tweak the timings at runtime. This is needed when the 191 * controller initializes the timings on itself or when it relies on 192 * configuration done by the bootloader. 193 */ 194 #define NAND_KEEP_TIMINGS BIT(23) 195 196 /* 197 * There are different places where the manufacturer stores the factory bad 198 * block markers. 199 * 200 * Position within the block: Each of these pages needs to be checked for a 201 * bad block marking pattern. 202 */ 203 #define NAND_BBM_FIRSTPAGE BIT(24) 204 #define NAND_BBM_SECONDPAGE BIT(25) 205 #define NAND_BBM_LASTPAGE BIT(26) 206 207 /* 208 * Some controllers with pipelined ECC engines override the BBM marker with 209 * data or ECC bytes, thus making bad block detection through bad block marker 210 * impossible. Let's flag those chips so the core knows it shouldn't check the 211 * BBM and consider all blocks good. 212 */ 213 #define NAND_NO_BBM_QUIRK BIT(27) 214 215 /* Cell info constants */ 216 #define NAND_CI_CHIPNR_MSK 0x03 217 #define NAND_CI_CELLTYPE_MSK 0x0C 218 #define NAND_CI_CELLTYPE_SHIFT 2 219 220 /* Position within the OOB data of the page */ 221 #define NAND_BBM_POS_SMALL 5 222 #define NAND_BBM_POS_LARGE 0 223 224 /** 225 * struct nand_parameters - NAND generic parameters from the parameter page 226 * @model: Model name 227 * @supports_set_get_features: The NAND chip supports setting/getting features 228 * @supports_read_cache: The NAND chip supports read cache operations 229 * @set_feature_list: Bitmap of features that can be set 230 * @get_feature_list: Bitmap of features that can be get 231 * @onfi: ONFI specific parameters 232 */ 233 struct nand_parameters { 234 /* Generic parameters */ 235 const char *model; 236 bool supports_set_get_features; 237 bool supports_read_cache; 238 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 239 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 240 241 /* ONFI parameters */ 242 struct onfi_params *onfi; 243 }; 244 245 /* The maximum expected count of bytes in the NAND ID sequence */ 246 #define NAND_MAX_ID_LEN 8 247 248 /** 249 * struct nand_id - NAND id structure 250 * @data: buffer containing the id bytes. 251 * @len: ID length. 252 */ 253 struct nand_id { 254 u8 data[NAND_MAX_ID_LEN]; 255 int len; 256 }; 257 258 /** 259 * struct nand_ecc_step_info - ECC step information of ECC engine 260 * @stepsize: data bytes per ECC step 261 * @strengths: array of supported strengths 262 * @nstrengths: number of supported strengths 263 */ 264 struct nand_ecc_step_info { 265 int stepsize; 266 const int *strengths; 267 int nstrengths; 268 }; 269 270 /** 271 * struct nand_ecc_caps - capability of ECC engine 272 * @stepinfos: array of ECC step information 273 * @nstepinfos: number of ECC step information 274 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 275 */ 276 struct nand_ecc_caps { 277 const struct nand_ecc_step_info *stepinfos; 278 int nstepinfos; 279 int (*calc_ecc_bytes)(int step_size, int strength); 280 }; 281 282 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 283 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 284 static const int __name##_strengths[] = { __VA_ARGS__ }; \ 285 static const struct nand_ecc_step_info __name##_stepinfo = { \ 286 .stepsize = __step, \ 287 .strengths = __name##_strengths, \ 288 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 289 }; \ 290 static const struct nand_ecc_caps __name = { \ 291 .stepinfos = &__name##_stepinfo, \ 292 .nstepinfos = 1, \ 293 .calc_ecc_bytes = __calc, \ 294 } 295 296 /** 297 * struct nand_ecc_ctrl - Control structure for ECC 298 * @engine_type: ECC engine type 299 * @placement: OOB bytes placement 300 * @algo: ECC algorithm 301 * @steps: number of ECC steps per page 302 * @size: data bytes per ECC step 303 * @bytes: ECC bytes per step 304 * @strength: max number of correctible bits per ECC step 305 * @total: total number of ECC bytes per page 306 * @prepad: padding information for syndrome based ECC generators 307 * @postpad: padding information for syndrome based ECC generators 308 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 309 * @calc_buf: buffer for calculated ECC, size is oobsize. 310 * @code_buf: buffer for ECC read from flash, size is oobsize. 311 * @hwctl: function to control hardware ECC generator. Must only 312 * be provided if an hardware ECC is available 313 * @calculate: function for ECC calculation or readback from ECC hardware 314 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 315 * Should return a positive number representing the number of 316 * corrected bitflips, -EBADMSG if the number of bitflips exceed 317 * ECC strength, or any other error code if the error is not 318 * directly related to correction. 319 * If -EBADMSG is returned the input buffers should be left 320 * untouched. 321 * @read_page_raw: function to read a raw page without ECC. This function 322 * should hide the specific layout used by the ECC 323 * controller and always return contiguous in-band and 324 * out-of-band data even if they're not stored 325 * contiguously on the NAND chip (e.g. 326 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 327 * out-of-band data). 328 * @write_page_raw: function to write a raw page without ECC. This function 329 * should hide the specific layout used by the ECC 330 * controller and consider the passed data as contiguous 331 * in-band and out-of-band data. ECC controller is 332 * responsible for doing the appropriate transformations 333 * to adapt to its specific layout (e.g. 334 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 335 * out-of-band data). 336 * @read_page: function to read a page according to the ECC generator 337 * requirements; returns maximum number of bitflips corrected in 338 * any single ECC step, -EIO hw error 339 * @read_subpage: function to read parts of the page covered by ECC; 340 * returns same as read_page() 341 * @write_subpage: function to write parts of the page covered by ECC. 342 * @write_page: function to write a page according to the ECC generator 343 * requirements. 344 * @write_oob_raw: function to write chip OOB data without ECC 345 * @read_oob_raw: function to read chip OOB data without ECC 346 * @read_oob: function to read chip OOB data 347 * @write_oob: function to write chip OOB data 348 */ 349 struct nand_ecc_ctrl { 350 enum nand_ecc_engine_type engine_type; 351 enum nand_ecc_placement placement; 352 enum nand_ecc_algo algo; 353 int steps; 354 int size; 355 int bytes; 356 int total; 357 int strength; 358 int prepad; 359 int postpad; 360 unsigned int options; 361 u8 *calc_buf; 362 u8 *code_buf; 363 void (*hwctl)(struct nand_chip *chip, int mode); 364 int (*calculate)(struct nand_chip *chip, const uint8_t *dat, 365 uint8_t *ecc_code); 366 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, 367 uint8_t *calc_ecc); 368 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, 369 int oob_required, int page); 370 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, 371 int oob_required, int page); 372 int (*read_page)(struct nand_chip *chip, uint8_t *buf, 373 int oob_required, int page); 374 int (*read_subpage)(struct nand_chip *chip, uint32_t offs, 375 uint32_t len, uint8_t *buf, int page); 376 int (*write_subpage)(struct nand_chip *chip, uint32_t offset, 377 uint32_t data_len, const uint8_t *data_buf, 378 int oob_required, int page); 379 int (*write_page)(struct nand_chip *chip, const uint8_t *buf, 380 int oob_required, int page); 381 int (*write_oob_raw)(struct nand_chip *chip, int page); 382 int (*read_oob_raw)(struct nand_chip *chip, int page); 383 int (*read_oob)(struct nand_chip *chip, int page); 384 int (*write_oob)(struct nand_chip *chip, int page); 385 }; 386 387 /** 388 * struct nand_sdr_timings - SDR NAND chip timings 389 * 390 * This struct defines the timing requirements of a SDR NAND chip. 391 * These information can be found in every NAND datasheets and the timings 392 * meaning are described in the ONFI specifications: 393 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf 394 * (chapter 4.15 Timing Parameters) 395 * 396 * All these timings are expressed in picoseconds. 397 * 398 * @tBERS_max: Block erase time 399 * @tCCS_min: Change column setup time 400 * @tPROG_max: Page program time 401 * @tR_max: Page read time 402 * @tALH_min: ALE hold time 403 * @tADL_min: ALE to data loading time 404 * @tALS_min: ALE setup time 405 * @tAR_min: ALE to RE# delay 406 * @tCEA_max: CE# access time 407 * @tCEH_min: CE# high hold time 408 * @tCH_min: CE# hold time 409 * @tCHZ_max: CE# high to output hi-Z 410 * @tCLH_min: CLE hold time 411 * @tCLR_min: CLE to RE# delay 412 * @tCLS_min: CLE setup time 413 * @tCOH_min: CE# high to output hold 414 * @tCS_min: CE# setup time 415 * @tDH_min: Data hold time 416 * @tDS_min: Data setup time 417 * @tFEAT_max: Busy time for Set Features and Get Features 418 * @tIR_min: Output hi-Z to RE# low 419 * @tITC_max: Interface and Timing Mode Change time 420 * @tRC_min: RE# cycle time 421 * @tREA_max: RE# access time 422 * @tREH_min: RE# high hold time 423 * @tRHOH_min: RE# high to output hold 424 * @tRHW_min: RE# high to WE# low 425 * @tRHZ_max: RE# high to output hi-Z 426 * @tRLOH_min: RE# low to output hold 427 * @tRP_min: RE# pulse width 428 * @tRR_min: Ready to RE# low (data only) 429 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 430 * rising edge of R/B#. 431 * @tWB_max: WE# high to SR[6] low 432 * @tWC_min: WE# cycle time 433 * @tWH_min: WE# high hold time 434 * @tWHR_min: WE# high to RE# low 435 * @tWP_min: WE# pulse width 436 * @tWW_min: WP# transition to WE# low 437 */ 438 struct nand_sdr_timings { 439 u64 tBERS_max; 440 u32 tCCS_min; 441 u64 tPROG_max; 442 u64 tR_max; 443 u32 tALH_min; 444 u32 tADL_min; 445 u32 tALS_min; 446 u32 tAR_min; 447 u32 tCEA_max; 448 u32 tCEH_min; 449 u32 tCH_min; 450 u32 tCHZ_max; 451 u32 tCLH_min; 452 u32 tCLR_min; 453 u32 tCLS_min; 454 u32 tCOH_min; 455 u32 tCS_min; 456 u32 tDH_min; 457 u32 tDS_min; 458 u32 tFEAT_max; 459 u32 tIR_min; 460 u32 tITC_max; 461 u32 tRC_min; 462 u32 tREA_max; 463 u32 tREH_min; 464 u32 tRHOH_min; 465 u32 tRHW_min; 466 u32 tRHZ_max; 467 u32 tRLOH_min; 468 u32 tRP_min; 469 u32 tRR_min; 470 u64 tRST_max; 471 u32 tWB_max; 472 u32 tWC_min; 473 u32 tWH_min; 474 u32 tWHR_min; 475 u32 tWP_min; 476 u32 tWW_min; 477 }; 478 479 /** 480 * struct nand_nvddr_timings - NV-DDR NAND chip timings 481 * 482 * This struct defines the timing requirements of a NV-DDR NAND data interface. 483 * These information can be found in every NAND datasheets and the timings 484 * meaning are described in the ONFI specifications: 485 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf 486 * (chapter 4.18.2 NV-DDR) 487 * 488 * All these timings are expressed in picoseconds. 489 * 490 * @tBERS_max: Block erase time 491 * @tCCS_min: Change column setup time 492 * @tPROG_max: Page program time 493 * @tR_max: Page read time 494 * @tAC_min: Access window of DQ[7:0] from CLK 495 * @tAC_max: Access window of DQ[7:0] from CLK 496 * @tADL_min: ALE to data loading time 497 * @tCAD_min: Command, Address, Data delay 498 * @tCAH_min: Command/Address DQ hold time 499 * @tCALH_min: W/R_n, CLE and ALE hold time 500 * @tCALS_min: W/R_n, CLE and ALE setup time 501 * @tCAS_min: Command/address DQ setup time 502 * @tCEH_min: CE# high hold time 503 * @tCH_min: CE# hold time 504 * @tCK_min: Average clock cycle time 505 * @tCS_min: CE# setup time 506 * @tDH_min: Data hold time 507 * @tDQSCK_min: Start of the access window of DQS from CLK 508 * @tDQSCK_max: End of the access window of DQS from CLK 509 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device 510 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device 511 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device 512 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access 513 * @tDS_min: Data setup time 514 * @tDSC_min: DQS cycle time 515 * @tFEAT_max: Busy time for Set Features and Get Features 516 * @tITC_max: Interface and Timing Mode Change time 517 * @tQHS_max: Data hold skew factor 518 * @tRHW_min: Data output cycle to command, address, or data input cycle 519 * @tRR_min: Ready to RE# low (data only) 520 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 521 * rising edge of R/B#. 522 * @tWB_max: WE# high to SR[6] low 523 * @tWHR_min: WE# high to RE# low 524 * @tWRCK_min: W/R_n low to data output cycle 525 * @tWW_min: WP# transition to WE# low 526 */ 527 struct nand_nvddr_timings { 528 u64 tBERS_max; 529 u32 tCCS_min; 530 u64 tPROG_max; 531 u64 tR_max; 532 u32 tAC_min; 533 u32 tAC_max; 534 u32 tADL_min; 535 u32 tCAD_min; 536 u32 tCAH_min; 537 u32 tCALH_min; 538 u32 tCALS_min; 539 u32 tCAS_min; 540 u32 tCEH_min; 541 u32 tCH_min; 542 u32 tCK_min; 543 u32 tCS_min; 544 u32 tDH_min; 545 u32 tDQSCK_min; 546 u32 tDQSCK_max; 547 u32 tDQSD_min; 548 u32 tDQSD_max; 549 u32 tDQSHZ_max; 550 u32 tDQSQ_max; 551 u32 tDS_min; 552 u32 tDSC_min; 553 u32 tFEAT_max; 554 u32 tITC_max; 555 u32 tQHS_max; 556 u32 tRHW_min; 557 u32 tRR_min; 558 u32 tRST_max; 559 u32 tWB_max; 560 u32 tWHR_min; 561 u32 tWRCK_min; 562 u32 tWW_min; 563 }; 564 565 /* 566 * While timings related to the data interface itself are mostly different 567 * between SDR and NV-DDR, timings related to the internal chip behavior are 568 * common. IOW, the following entries which describe the internal delays have 569 * the same definition and are shared in both SDR and NV-DDR timing structures: 570 * - tADL_min 571 * - tBERS_max 572 * - tCCS_min 573 * - tFEAT_max 574 * - tPROG_max 575 * - tR_max 576 * - tRR_min 577 * - tRST_max 578 * - tWB_max 579 * 580 * The below macros return the value of a given timing, no matter the interface. 581 */ 582 #define NAND_COMMON_TIMING_PS(conf, timing_name) \ 583 nand_interface_is_sdr(conf) ? \ 584 nand_get_sdr_timings(conf)->timing_name : \ 585 nand_get_nvddr_timings(conf)->timing_name 586 587 #define NAND_COMMON_TIMING_MS(conf, timing_name) \ 588 PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 589 590 #define NAND_COMMON_TIMING_NS(conf, timing_name) \ 591 PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 592 593 /** 594 * enum nand_interface_type - NAND interface type 595 * @NAND_SDR_IFACE: Single Data Rate interface 596 * @NAND_NVDDR_IFACE: Double Data Rate interface 597 */ 598 enum nand_interface_type { 599 NAND_SDR_IFACE, 600 NAND_NVDDR_IFACE, 601 }; 602 603 /** 604 * struct nand_interface_config - NAND interface timing 605 * @type: type of the timing 606 * @timings: The timing information 607 * @timings.mode: Timing mode as defined in the specification 608 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 609 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE. 610 */ 611 struct nand_interface_config { 612 enum nand_interface_type type; 613 struct nand_timings { 614 unsigned int mode; 615 union { 616 struct nand_sdr_timings sdr; 617 struct nand_nvddr_timings nvddr; 618 }; 619 } timings; 620 }; 621 622 /** 623 * nand_interface_is_sdr - get the interface type 624 * @conf: The data interface 625 */ 626 static bool nand_interface_is_sdr(const struct nand_interface_config *conf) 627 { 628 return conf->type == NAND_SDR_IFACE; 629 } 630 631 /** 632 * nand_interface_is_nvddr - get the interface type 633 * @conf: The data interface 634 */ 635 static bool nand_interface_is_nvddr(const struct nand_interface_config *conf) 636 { 637 return conf->type == NAND_NVDDR_IFACE; 638 } 639 640 /** 641 * nand_get_sdr_timings - get SDR timing from data interface 642 * @conf: The data interface 643 */ 644 static inline const struct nand_sdr_timings * 645 nand_get_sdr_timings(const struct nand_interface_config *conf) 646 { 647 if (!nand_interface_is_sdr(conf)) 648 return ERR_PTR(-EINVAL); 649 650 return &conf->timings.sdr; 651 } 652 653 /** 654 * nand_get_nvddr_timings - get NV-DDR timing from data interface 655 * @conf: The data interface 656 */ 657 static inline const struct nand_nvddr_timings * 658 nand_get_nvddr_timings(const struct nand_interface_config *conf) 659 { 660 if (!nand_interface_is_nvddr(conf)) 661 return ERR_PTR(-EINVAL); 662 663 return &conf->timings.nvddr; 664 } 665 666 /** 667 * struct nand_op_cmd_instr - Definition of a command instruction 668 * @opcode: the command to issue in one cycle 669 */ 670 struct nand_op_cmd_instr { 671 u8 opcode; 672 }; 673 674 /** 675 * struct nand_op_addr_instr - Definition of an address instruction 676 * @naddrs: length of the @addrs array 677 * @addrs: array containing the address cycles to issue 678 */ 679 struct nand_op_addr_instr { 680 unsigned int naddrs; 681 const u8 *addrs; 682 }; 683 684 /** 685 * struct nand_op_data_instr - Definition of a data instruction 686 * @len: number of data bytes to move 687 * @buf: buffer to fill 688 * @buf.in: buffer to fill when reading from the NAND chip 689 * @buf.out: buffer to read from when writing to the NAND chip 690 * @force_8bit: force 8-bit access 691 * 692 * Please note that "in" and "out" are inverted from the ONFI specification 693 * and are from the controller perspective, so a "in" is a read from the NAND 694 * chip while a "out" is a write to the NAND chip. 695 */ 696 struct nand_op_data_instr { 697 unsigned int len; 698 union { 699 void *in; 700 const void *out; 701 } buf; 702 bool force_8bit; 703 }; 704 705 /** 706 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 707 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 708 */ 709 struct nand_op_waitrdy_instr { 710 unsigned int timeout_ms; 711 }; 712 713 /** 714 * enum nand_op_instr_type - Definition of all instruction types 715 * @NAND_OP_CMD_INSTR: command instruction 716 * @NAND_OP_ADDR_INSTR: address instruction 717 * @NAND_OP_DATA_IN_INSTR: data in instruction 718 * @NAND_OP_DATA_OUT_INSTR: data out instruction 719 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 720 */ 721 enum nand_op_instr_type { 722 NAND_OP_CMD_INSTR, 723 NAND_OP_ADDR_INSTR, 724 NAND_OP_DATA_IN_INSTR, 725 NAND_OP_DATA_OUT_INSTR, 726 NAND_OP_WAITRDY_INSTR, 727 }; 728 729 /** 730 * struct nand_op_instr - Instruction object 731 * @type: the instruction type 732 * @ctx: extra data associated to the instruction. You'll have to use the 733 * appropriate element depending on @type 734 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 735 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 736 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 737 * or %NAND_OP_DATA_OUT_INSTR 738 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 739 * @delay_ns: delay the controller should apply after the instruction has been 740 * issued on the bus. Most modern controllers have internal timings 741 * control logic, and in this case, the controller driver can ignore 742 * this field. 743 */ 744 struct nand_op_instr { 745 enum nand_op_instr_type type; 746 union { 747 struct nand_op_cmd_instr cmd; 748 struct nand_op_addr_instr addr; 749 struct nand_op_data_instr data; 750 struct nand_op_waitrdy_instr waitrdy; 751 } ctx; 752 unsigned int delay_ns; 753 }; 754 755 /* 756 * Special handling must be done for the WAITRDY timeout parameter as it usually 757 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 758 * tBERS (during an erase) which all of them are u64 values that cannot be 759 * divided by usual kernel macros and must be handled with the special 760 * DIV_ROUND_UP_ULL() macro. 761 * 762 * Cast to type of dividend is needed here to guarantee that the result won't 763 * be an unsigned long long when the dividend is an unsigned long (or smaller), 764 * which is what the compiler does when it sees ternary operator with 2 765 * different return types (picks the largest type to make sure there's no 766 * loss). 767 */ 768 #define __DIVIDE(dividend, divisor) ({ \ 769 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 770 DIV_ROUND_UP(dividend, divisor) : \ 771 DIV_ROUND_UP_ULL(dividend, divisor)); \ 772 }) 773 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 774 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 775 776 #define NAND_OP_CMD(id, ns) \ 777 { \ 778 .type = NAND_OP_CMD_INSTR, \ 779 .ctx.cmd.opcode = id, \ 780 .delay_ns = ns, \ 781 } 782 783 #define NAND_OP_ADDR(ncycles, cycles, ns) \ 784 { \ 785 .type = NAND_OP_ADDR_INSTR, \ 786 .ctx.addr = { \ 787 .naddrs = ncycles, \ 788 .addrs = cycles, \ 789 }, \ 790 .delay_ns = ns, \ 791 } 792 793 #define NAND_OP_DATA_IN(l, b, ns) \ 794 { \ 795 .type = NAND_OP_DATA_IN_INSTR, \ 796 .ctx.data = { \ 797 .len = l, \ 798 .buf.in = b, \ 799 .force_8bit = false, \ 800 }, \ 801 .delay_ns = ns, \ 802 } 803 804 #define NAND_OP_DATA_OUT(l, b, ns) \ 805 { \ 806 .type = NAND_OP_DATA_OUT_INSTR, \ 807 .ctx.data = { \ 808 .len = l, \ 809 .buf.out = b, \ 810 .force_8bit = false, \ 811 }, \ 812 .delay_ns = ns, \ 813 } 814 815 #define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 816 { \ 817 .type = NAND_OP_DATA_IN_INSTR, \ 818 .ctx.data = { \ 819 .len = l, \ 820 .buf.in = b, \ 821 .force_8bit = true, \ 822 }, \ 823 .delay_ns = ns, \ 824 } 825 826 #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 827 { \ 828 .type = NAND_OP_DATA_OUT_INSTR, \ 829 .ctx.data = { \ 830 .len = l, \ 831 .buf.out = b, \ 832 .force_8bit = true, \ 833 }, \ 834 .delay_ns = ns, \ 835 } 836 837 #define NAND_OP_WAIT_RDY(tout_ms, ns) \ 838 { \ 839 .type = NAND_OP_WAITRDY_INSTR, \ 840 .ctx.waitrdy.timeout_ms = tout_ms, \ 841 .delay_ns = ns, \ 842 } 843 844 /** 845 * struct nand_subop - a sub operation 846 * @cs: the CS line to select for this NAND sub-operation 847 * @instrs: array of instructions 848 * @ninstrs: length of the @instrs array 849 * @first_instr_start_off: offset to start from for the first instruction 850 * of the sub-operation 851 * @last_instr_end_off: offset to end at (excluded) for the last instruction 852 * of the sub-operation 853 * 854 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 855 * address instructions. 856 * 857 * When an operation cannot be handled as is by the NAND controller, it will 858 * be split by the parser into sub-operations which will be passed to the 859 * controller driver. 860 */ 861 struct nand_subop { 862 unsigned int cs; 863 const struct nand_op_instr *instrs; 864 unsigned int ninstrs; 865 unsigned int first_instr_start_off; 866 unsigned int last_instr_end_off; 867 }; 868 869 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 870 unsigned int op_id); 871 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 872 unsigned int op_id); 873 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 874 unsigned int op_id); 875 unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 876 unsigned int op_id); 877 878 /** 879 * struct nand_op_parser_addr_constraints - Constraints for address instructions 880 * @maxcycles: maximum number of address cycles the controller can issue in a 881 * single step 882 */ 883 struct nand_op_parser_addr_constraints { 884 unsigned int maxcycles; 885 }; 886 887 /** 888 * struct nand_op_parser_data_constraints - Constraints for data instructions 889 * @maxlen: maximum data length that the controller can handle in a single step 890 */ 891 struct nand_op_parser_data_constraints { 892 unsigned int maxlen; 893 }; 894 895 /** 896 * struct nand_op_parser_pattern_elem - One element of a pattern 897 * @type: the instructuction type 898 * @optional: whether this element of the pattern is optional or mandatory 899 * @ctx: address or data constraint 900 * @ctx.addr: address constraint (number of cycles) 901 * @ctx.data: data constraint (data length) 902 */ 903 struct nand_op_parser_pattern_elem { 904 enum nand_op_instr_type type; 905 bool optional; 906 union { 907 struct nand_op_parser_addr_constraints addr; 908 struct nand_op_parser_data_constraints data; 909 } ctx; 910 }; 911 912 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 913 { \ 914 .type = NAND_OP_CMD_INSTR, \ 915 .optional = _opt, \ 916 } 917 918 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 919 { \ 920 .type = NAND_OP_ADDR_INSTR, \ 921 .optional = _opt, \ 922 .ctx.addr.maxcycles = _maxcycles, \ 923 } 924 925 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 926 { \ 927 .type = NAND_OP_DATA_IN_INSTR, \ 928 .optional = _opt, \ 929 .ctx.data.maxlen = _maxlen, \ 930 } 931 932 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 933 { \ 934 .type = NAND_OP_DATA_OUT_INSTR, \ 935 .optional = _opt, \ 936 .ctx.data.maxlen = _maxlen, \ 937 } 938 939 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 940 { \ 941 .type = NAND_OP_WAITRDY_INSTR, \ 942 .optional = _opt, \ 943 } 944 945 /** 946 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 947 * @elems: array of pattern elements 948 * @nelems: number of pattern elements in @elems array 949 * @exec: the function that will issue a sub-operation 950 * 951 * A pattern is a list of elements, each element reprensenting one instruction 952 * with its constraints. The pattern itself is used by the core to match NAND 953 * chip operation with NAND controller operations. 954 * Once a match between a NAND controller operation pattern and a NAND chip 955 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 956 * hook is called so that the controller driver can issue the operation on the 957 * bus. 958 * 959 * Controller drivers should declare as many patterns as they support and pass 960 * this list of patterns (created with the help of the following macro) to 961 * the nand_op_parser_exec_op() helper. 962 */ 963 struct nand_op_parser_pattern { 964 const struct nand_op_parser_pattern_elem *elems; 965 unsigned int nelems; 966 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 967 }; 968 969 #define NAND_OP_PARSER_PATTERN(_exec, ...) \ 970 { \ 971 .exec = _exec, \ 972 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 973 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 974 sizeof(struct nand_op_parser_pattern_elem), \ 975 } 976 977 /** 978 * struct nand_op_parser - NAND controller operation parser descriptor 979 * @patterns: array of supported patterns 980 * @npatterns: length of the @patterns array 981 * 982 * The parser descriptor is just an array of supported patterns which will be 983 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 984 * NAND operation (or tries to determine if a specific operation is supported). 985 * 986 * It is worth mentioning that patterns will be tested in their declaration 987 * order, and the first match will be taken, so it's important to order patterns 988 * appropriately so that simple/inefficient patterns are placed at the end of 989 * the list. Usually, this is where you put single instruction patterns. 990 */ 991 struct nand_op_parser { 992 const struct nand_op_parser_pattern *patterns; 993 unsigned int npatterns; 994 }; 995 996 #define NAND_OP_PARSER(...) \ 997 { \ 998 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 999 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 1000 sizeof(struct nand_op_parser_pattern), \ 1001 } 1002 1003 /** 1004 * struct nand_operation - NAND operation descriptor 1005 * @cs: the CS line to select for this NAND operation 1006 * @deassert_wp: set to true when the operation requires the WP pin to be 1007 * de-asserted (ERASE, PROG, ...) 1008 * @instrs: array of instructions to execute 1009 * @ninstrs: length of the @instrs array 1010 * 1011 * The actual operation structure that will be passed to chip->exec_op(). 1012 */ 1013 struct nand_operation { 1014 unsigned int cs; 1015 bool deassert_wp; 1016 const struct nand_op_instr *instrs; 1017 unsigned int ninstrs; 1018 }; 1019 1020 #define NAND_OPERATION(_cs, _instrs) \ 1021 { \ 1022 .cs = _cs, \ 1023 .instrs = _instrs, \ 1024 .ninstrs = ARRAY_SIZE(_instrs), \ 1025 } 1026 1027 #define NAND_DESTRUCTIVE_OPERATION(_cs, _instrs) \ 1028 { \ 1029 .cs = _cs, \ 1030 .deassert_wp = true, \ 1031 .instrs = _instrs, \ 1032 .ninstrs = ARRAY_SIZE(_instrs), \ 1033 } 1034 1035 int nand_op_parser_exec_op(struct nand_chip *chip, 1036 const struct nand_op_parser *parser, 1037 const struct nand_operation *op, bool check_only); 1038 1039 static inline void nand_op_trace(const char *prefix, 1040 const struct nand_op_instr *instr) 1041 { 1042 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 1043 switch (instr->type) { 1044 case NAND_OP_CMD_INSTR: 1045 pr_debug("%sCMD [0x%02x]\n", prefix, 1046 instr->ctx.cmd.opcode); 1047 break; 1048 case NAND_OP_ADDR_INSTR: 1049 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 1050 instr->ctx.addr.naddrs, 1051 instr->ctx.addr.naddrs < 64 ? 1052 instr->ctx.addr.naddrs : 64, 1053 instr->ctx.addr.addrs); 1054 break; 1055 case NAND_OP_DATA_IN_INSTR: 1056 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 1057 instr->ctx.data.len, 1058 instr->ctx.data.force_8bit ? 1059 ", force 8-bit" : ""); 1060 break; 1061 case NAND_OP_DATA_OUT_INSTR: 1062 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 1063 instr->ctx.data.len, 1064 instr->ctx.data.force_8bit ? 1065 ", force 8-bit" : ""); 1066 break; 1067 case NAND_OP_WAITRDY_INSTR: 1068 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 1069 instr->ctx.waitrdy.timeout_ms); 1070 break; 1071 } 1072 #endif 1073 } 1074 1075 /** 1076 * struct nand_controller_ops - Controller operations 1077 * 1078 * @attach_chip: this method is called after the NAND detection phase after 1079 * flash ID and MTD fields such as erase size, page size and OOB 1080 * size have been set up. ECC requirements are available if 1081 * provided by the NAND chip or device tree. Typically used to 1082 * choose the appropriate ECC configuration and allocate 1083 * associated resources. 1084 * This hook is optional. 1085 * @detach_chip: free all resources allocated/claimed in 1086 * nand_controller_ops->attach_chip(). 1087 * This hook is optional. 1088 * @exec_op: controller specific method to execute NAND operations. 1089 * This method replaces chip->legacy.cmdfunc(), 1090 * chip->legacy.{read,write}_{buf,byte,word}(), 1091 * chip->legacy.dev_ready() and chip->legacy.waitfunc(). 1092 * @setup_interface: setup the data interface and timing. If chipnr is set to 1093 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration 1094 * should not be applied but only checked. 1095 * This hook is optional. 1096 */ 1097 struct nand_controller_ops { 1098 int (*attach_chip)(struct nand_chip *chip); 1099 void (*detach_chip)(struct nand_chip *chip); 1100 int (*exec_op)(struct nand_chip *chip, 1101 const struct nand_operation *op, 1102 bool check_only); 1103 int (*setup_interface)(struct nand_chip *chip, int chipnr, 1104 const struct nand_interface_config *conf); 1105 }; 1106 1107 /** 1108 * struct nand_controller - Structure used to describe a NAND controller 1109 * 1110 * @lock: lock used to serialize accesses to the NAND controller 1111 * @ops: NAND controller operations. 1112 * @supported_op: NAND controller known-to-be-supported operations, 1113 * only writable by the core after initial checking. 1114 * @supported_op.data_only_read: The controller supports reading more data from 1115 * the bus without restarting an entire read operation nor 1116 * changing the column. 1117 * @supported_op.cont_read: The controller supports sequential cache reads. 1118 * @controller_wp: the controller is in charge of handling the WP pin. 1119 */ 1120 struct nand_controller { 1121 struct mutex lock; 1122 const struct nand_controller_ops *ops; 1123 struct { 1124 unsigned int data_only_read: 1; 1125 unsigned int cont_read: 1; 1126 } supported_op; 1127 bool controller_wp; 1128 }; 1129 1130 static inline void nand_controller_init(struct nand_controller *nfc) 1131 { 1132 mutex_init(&nfc->lock); 1133 } 1134 1135 /** 1136 * struct nand_legacy - NAND chip legacy fields/hooks 1137 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device 1138 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device 1139 * @select_chip: select/deselect a specific target/die 1140 * @read_byte: read one byte from the chip 1141 * @write_byte: write a single byte to the chip on the low 8 I/O lines 1142 * @write_buf: write data from the buffer to the chip 1143 * @read_buf: read data from the chip into the buffer 1144 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used 1145 * to write command and address 1146 * @cmdfunc: hardware specific function for writing commands to the chip. 1147 * @dev_ready: hardware specific function for accessing device ready/busy line. 1148 * If set to NULL no access to ready/busy is available and the 1149 * ready/busy information is read from the chip status register. 1150 * @waitfunc: hardware specific function for wait on ready. 1151 * @block_bad: check if a block is bad, using OOB markers 1152 * @block_markbad: mark a block bad 1153 * @set_features: set the NAND chip features 1154 * @get_features: get the NAND chip features 1155 * @chip_delay: chip dependent delay for transferring data from array to read 1156 * regs (tR). 1157 * @dummy_controller: dummy controller implementation for drivers that can 1158 * only control a single chip 1159 * 1160 * If you look at this structure you're already wrong. These fields/hooks are 1161 * all deprecated. 1162 */ 1163 struct nand_legacy { 1164 void __iomem *IO_ADDR_R; 1165 void __iomem *IO_ADDR_W; 1166 void (*select_chip)(struct nand_chip *chip, int cs); 1167 u8 (*read_byte)(struct nand_chip *chip); 1168 void (*write_byte)(struct nand_chip *chip, u8 byte); 1169 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); 1170 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); 1171 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); 1172 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, 1173 int page_addr); 1174 int (*dev_ready)(struct nand_chip *chip); 1175 int (*waitfunc)(struct nand_chip *chip); 1176 int (*block_bad)(struct nand_chip *chip, loff_t ofs); 1177 int (*block_markbad)(struct nand_chip *chip, loff_t ofs); 1178 int (*set_features)(struct nand_chip *chip, int feature_addr, 1179 u8 *subfeature_para); 1180 int (*get_features)(struct nand_chip *chip, int feature_addr, 1181 u8 *subfeature_para); 1182 int chip_delay; 1183 struct nand_controller dummy_controller; 1184 }; 1185 1186 /** 1187 * struct nand_chip_ops - NAND chip operations 1188 * @suspend: Suspend operation 1189 * @resume: Resume operation 1190 * @lock_area: Lock operation 1191 * @unlock_area: Unlock operation 1192 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs) 1193 * @choose_interface_config: Choose the best interface configuration 1194 */ 1195 struct nand_chip_ops { 1196 int (*suspend)(struct nand_chip *chip); 1197 void (*resume)(struct nand_chip *chip); 1198 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1199 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1200 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); 1201 int (*choose_interface_config)(struct nand_chip *chip, 1202 struct nand_interface_config *iface); 1203 }; 1204 1205 /** 1206 * struct nand_manufacturer - NAND manufacturer structure 1207 * @desc: The manufacturer description 1208 * @priv: Private information for the manufacturer driver 1209 */ 1210 struct nand_manufacturer { 1211 const struct nand_manufacturer_desc *desc; 1212 void *priv; 1213 }; 1214 1215 /** 1216 * struct nand_secure_region - NAND secure region structure 1217 * @offset: Offset of the start of the secure region 1218 * @size: Size of the secure region 1219 */ 1220 struct nand_secure_region { 1221 u64 offset; 1222 u64 size; 1223 }; 1224 1225 /** 1226 * struct nand_chip - NAND Private Flash Chip Data 1227 * @base: Inherit from the generic NAND device 1228 * @id: Holds NAND ID 1229 * @parameters: Holds generic parameters under an easily readable form 1230 * @manufacturer: Manufacturer information 1231 * @ops: NAND chip operations 1232 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try 1233 * to use any of these fields/hooks, and if you're modifying an 1234 * existing driver that is using those fields/hooks, you should 1235 * consider reworking the driver and avoid using them. 1236 * @options: Various chip options. They can partly be set to inform nand_scan 1237 * about special functionality. See the defines for further 1238 * explanation. 1239 * @current_interface_config: The currently used NAND interface configuration 1240 * @best_interface_config: The best NAND interface configuration which fits both 1241 * the NAND chip and NAND controller constraints. If 1242 * unset, the default reset interface configuration must 1243 * be used. 1244 * @bbt_erase_shift: Number of address bits in a bbt entry 1245 * @bbt_options: Bad block table specific options. All options used here must 1246 * come from bbm.h. By default, these options will be copied to 1247 * the appropriate nand_bbt_descr's. 1248 * @badblockpos: Bad block marker position in the oob area 1249 * @badblockbits: Minimum number of set bits in a good block's bad block marker 1250 * position; i.e., BBM = 11110111b is good when badblockbits = 7 1251 * @bbt_td: Bad block table descriptor for flash lookup 1252 * @bbt_md: Bad block table mirror descriptor 1253 * @badblock_pattern: Bad block scan pattern used for initial bad block scan 1254 * @bbt: Bad block table pointer 1255 * @page_shift: Number of address bits in a page (column address bits) 1256 * @phys_erase_shift: Number of address bits in a physical eraseblock 1257 * @chip_shift: Number of address bits in one chip 1258 * @pagemask: Page number mask = number of (pages / chip) - 1 1259 * @subpagesize: Holds the subpagesize 1260 * @data_buf: Buffer for data, size is (page size + oobsize) 1261 * @oob_poi: pointer on the OOB area covered by data_buf 1262 * @pagecache: Structure containing page cache related fields 1263 * @pagecache.bitflips: Number of bitflips of the cached page 1264 * @pagecache.page: Page number currently in the cache. -1 means no page is 1265 * currently cached 1266 * @buf_align: Minimum buffer alignment required by a platform 1267 * @lock: Lock protecting the suspended field. Also used to serialize accesses 1268 * to the NAND device 1269 * @suspended: Set to 1 when the device is suspended, 0 when it's not 1270 * @resume_wq: wait queue to sleep if rawnand is in suspended state. 1271 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we 1272 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets(). 1273 * NAND Controller drivers should not modify this value, but they're 1274 * allowed to read it. 1275 * @read_retries: The number of read retry modes supported 1276 * @secure_regions: Structure containing the secure regions info 1277 * @nr_secure_regions: Number of secure regions 1278 * @cont_read: Sequential page read internals 1279 * @cont_read.ongoing: Whether a continuous read is ongoing or not 1280 * @cont_read.first_page: Start of the continuous read operation 1281 * @cont_read.pause_page: End of the current sequential cache read operation 1282 * @cont_read.last_page: End of the continuous read operation 1283 * @controller: The hardware controller structure which is shared among multiple 1284 * independent devices 1285 * @ecc: The ECC controller structure 1286 * @priv: Chip private data 1287 */ 1288 struct nand_chip { 1289 struct nand_device base; 1290 struct nand_id id; 1291 struct nand_parameters parameters; 1292 struct nand_manufacturer manufacturer; 1293 struct nand_chip_ops ops; 1294 struct nand_legacy legacy; 1295 unsigned int options; 1296 1297 /* Data interface */ 1298 const struct nand_interface_config *current_interface_config; 1299 struct nand_interface_config *best_interface_config; 1300 1301 /* Bad block information */ 1302 unsigned int bbt_erase_shift; 1303 unsigned int bbt_options; 1304 unsigned int badblockpos; 1305 unsigned int badblockbits; 1306 struct nand_bbt_descr *bbt_td; 1307 struct nand_bbt_descr *bbt_md; 1308 struct nand_bbt_descr *badblock_pattern; 1309 u8 *bbt; 1310 1311 /* Device internal layout */ 1312 unsigned int page_shift; 1313 unsigned int phys_erase_shift; 1314 unsigned int chip_shift; 1315 unsigned int pagemask; 1316 unsigned int subpagesize; 1317 1318 /* Buffers */ 1319 u8 *data_buf; 1320 u8 *oob_poi; 1321 struct { 1322 unsigned int bitflips; 1323 int page; 1324 } pagecache; 1325 unsigned long buf_align; 1326 1327 /* Internals */ 1328 struct mutex lock; 1329 unsigned int suspended : 1; 1330 wait_queue_head_t resume_wq; 1331 int cur_cs; 1332 int read_retries; 1333 struct nand_secure_region *secure_regions; 1334 u8 nr_secure_regions; 1335 struct { 1336 bool ongoing; 1337 unsigned int first_page; 1338 unsigned int pause_page; 1339 unsigned int last_page; 1340 } cont_read; 1341 1342 /* Externals */ 1343 struct nand_controller *controller; 1344 struct nand_ecc_ctrl ecc; 1345 void *priv; 1346 }; 1347 1348 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1349 { 1350 return container_of(mtd, struct nand_chip, base.mtd); 1351 } 1352 1353 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1354 { 1355 return &chip->base.mtd; 1356 } 1357 1358 static inline void *nand_get_controller_data(struct nand_chip *chip) 1359 { 1360 return chip->priv; 1361 } 1362 1363 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1364 { 1365 chip->priv = priv; 1366 } 1367 1368 static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1369 void *priv) 1370 { 1371 chip->manufacturer.priv = priv; 1372 } 1373 1374 static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1375 { 1376 return chip->manufacturer.priv; 1377 } 1378 1379 static inline void nand_set_flash_node(struct nand_chip *chip, 1380 struct device_node *np) 1381 { 1382 mtd_set_of_node(nand_to_mtd(chip), np); 1383 } 1384 1385 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1386 { 1387 return mtd_get_of_node(nand_to_mtd(chip)); 1388 } 1389 1390 /** 1391 * nand_get_interface_config - Retrieve the current interface configuration 1392 * of a NAND chip 1393 * @chip: The NAND chip 1394 */ 1395 static inline const struct nand_interface_config * 1396 nand_get_interface_config(struct nand_chip *chip) 1397 { 1398 return chip->current_interface_config; 1399 } 1400 1401 /* 1402 * A helper for defining older NAND chips where the second ID byte fully 1403 * defined the chip, including the geometry (chip size, eraseblock size, page 1404 * size). All these chips have 512 bytes NAND page size. 1405 */ 1406 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1407 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1408 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1409 1410 /* 1411 * A helper for defining newer chips which report their page size and 1412 * eraseblock size via the extended ID bytes. 1413 * 1414 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1415 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1416 * device ID now only represented a particular total chip size (and voltage, 1417 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1418 * using the same device ID. 1419 */ 1420 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1421 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1422 .options = (opts) } 1423 1424 #define NAND_ECC_INFO(_strength, _step) \ 1425 { .strength_ds = (_strength), .step_ds = (_step) } 1426 #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1427 #define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1428 1429 /** 1430 * struct nand_flash_dev - NAND Flash Device ID Structure 1431 * @name: a human-readable name of the NAND chip 1432 * @dev_id: the device ID (the second byte of the full chip ID array) 1433 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same 1434 * memory address as ``id[0]``) 1435 * @dev_id: device ID part of the full chip ID array (refers the same memory 1436 * address as ``id[1]``) 1437 * @id: full device ID array 1438 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1439 * well as the eraseblock size) is determined from the extended NAND 1440 * chip ID array) 1441 * @chipsize: total chip size in MiB 1442 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1443 * @options: stores various chip bit options 1444 * @id_len: The valid length of the @id. 1445 * @oobsize: OOB size 1446 * @ecc: ECC correctability and step information from the datasheet. 1447 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1448 * @ecc_strength_ds in nand_chip{}. 1449 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1450 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1451 * For example, the "4bit ECC for each 512Byte" can be set with 1452 * NAND_ECC_INFO(4, 512). 1453 */ 1454 struct nand_flash_dev { 1455 char *name; 1456 union { 1457 struct { 1458 uint8_t mfr_id; 1459 uint8_t dev_id; 1460 }; 1461 uint8_t id[NAND_MAX_ID_LEN]; 1462 }; 1463 unsigned int pagesize; 1464 unsigned int chipsize; 1465 unsigned int erasesize; 1466 unsigned int options; 1467 uint16_t id_len; 1468 uint16_t oobsize; 1469 struct { 1470 uint16_t strength_ds; 1471 uint16_t step_ds; 1472 } ecc; 1473 }; 1474 1475 int nand_create_bbt(struct nand_chip *chip); 1476 1477 /* 1478 * Check if it is a SLC nand. 1479 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1480 * We do not distinguish the MLC and TLC now. 1481 */ 1482 static inline bool nand_is_slc(struct nand_chip *chip) 1483 { 1484 WARN(nanddev_bits_per_cell(&chip->base) == 0, 1485 "chip->bits_per_cell is used uninitialized\n"); 1486 return nanddev_bits_per_cell(&chip->base) == 1; 1487 } 1488 1489 /** 1490 * nand_opcode_8bits - Check if the opcode's address should be sent only on the 1491 * lower 8 bits 1492 * @command: opcode to check 1493 */ 1494 static inline int nand_opcode_8bits(unsigned int command) 1495 { 1496 switch (command) { 1497 case NAND_CMD_READID: 1498 case NAND_CMD_PARAM: 1499 case NAND_CMD_GET_FEATURES: 1500 case NAND_CMD_SET_FEATURES: 1501 return 1; 1502 default: 1503 break; 1504 } 1505 return 0; 1506 } 1507 1508 int rawnand_sw_hamming_init(struct nand_chip *chip); 1509 int rawnand_sw_hamming_calculate(struct nand_chip *chip, 1510 const unsigned char *buf, 1511 unsigned char *code); 1512 int rawnand_sw_hamming_correct(struct nand_chip *chip, 1513 unsigned char *buf, 1514 unsigned char *read_ecc, 1515 unsigned char *calc_ecc); 1516 void rawnand_sw_hamming_cleanup(struct nand_chip *chip); 1517 int rawnand_sw_bch_init(struct nand_chip *chip); 1518 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 1519 unsigned char *read_ecc, unsigned char *calc_ecc); 1520 void rawnand_sw_bch_cleanup(struct nand_chip *chip); 1521 1522 int nand_check_erased_ecc_chunk(void *data, int datalen, 1523 void *ecc, int ecclen, 1524 void *extraoob, int extraooblen, 1525 int threshold); 1526 1527 int nand_ecc_choose_conf(struct nand_chip *chip, 1528 const struct nand_ecc_caps *caps, int oobavail); 1529 1530 /* Default write_oob implementation */ 1531 int nand_write_oob_std(struct nand_chip *chip, int page); 1532 1533 /* Default read_oob implementation */ 1534 int nand_read_oob_std(struct nand_chip *chip, int page); 1535 1536 /* Stub used by drivers that do not support GET/SET FEATURES operations */ 1537 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 1538 u8 *subfeature_param); 1539 1540 /* read_page_raw implementations */ 1541 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 1542 int page); 1543 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1544 int oob_required, int page); 1545 1546 /* write_page_raw implementations */ 1547 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1548 int oob_required, int page); 1549 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1550 int oob_required, int page); 1551 1552 /* Reset and initialize a NAND device */ 1553 int nand_reset(struct nand_chip *chip, int chipnr); 1554 1555 /* NAND operation helpers */ 1556 int nand_reset_op(struct nand_chip *chip); 1557 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1558 unsigned int len); 1559 int nand_status_op(struct nand_chip *chip, u8 *status); 1560 int nand_exit_status_op(struct nand_chip *chip); 1561 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1562 int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1563 unsigned int offset_in_page, void *buf, unsigned int len); 1564 int nand_change_read_column_op(struct nand_chip *chip, 1565 unsigned int offset_in_page, void *buf, 1566 unsigned int len, bool force_8bit); 1567 int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1568 unsigned int offset_in_page, void *buf, unsigned int len); 1569 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1570 unsigned int offset_in_page, const void *buf, 1571 unsigned int len); 1572 int nand_prog_page_end_op(struct nand_chip *chip); 1573 int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1574 unsigned int offset_in_page, const void *buf, 1575 unsigned int len); 1576 int nand_change_write_column_op(struct nand_chip *chip, 1577 unsigned int offset_in_page, const void *buf, 1578 unsigned int len, bool force_8bit); 1579 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1580 bool force_8bit, bool check_only); 1581 int nand_write_data_op(struct nand_chip *chip, const void *buf, 1582 unsigned int len, bool force_8bit); 1583 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 1584 int oob_required, int page); 1585 1586 /* Scan and identify a NAND device */ 1587 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, 1588 struct nand_flash_dev *ids); 1589 1590 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) 1591 { 1592 return nand_scan_with_ids(chip, max_chips, NULL); 1593 } 1594 1595 /* Internal helper for board drivers which need to override command function */ 1596 void nand_wait_ready(struct nand_chip *chip); 1597 1598 /* 1599 * Free resources held by the NAND device, must be called on error after a 1600 * sucessful nand_scan(). 1601 */ 1602 void nand_cleanup(struct nand_chip *chip); 1603 1604 /* 1605 * External helper for controller drivers that have to implement the WAITRDY 1606 * instruction and have no physical pin to check it. 1607 */ 1608 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1609 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 1610 unsigned long timeout_ms); 1611 1612 /* Select/deselect a NAND target. */ 1613 void nand_select_target(struct nand_chip *chip, unsigned int cs); 1614 void nand_deselect_target(struct nand_chip *chip); 1615 1616 /* Bitops */ 1617 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 1618 unsigned int src_off, unsigned int nbits); 1619 1620 /** 1621 * nand_get_data_buf() - Get the internal page buffer 1622 * @chip: NAND chip object 1623 * 1624 * Returns the pre-allocated page buffer after invalidating the cache. This 1625 * function should be used by drivers that do not want to allocate their own 1626 * bounce buffer and still need such a buffer for specific operations (most 1627 * commonly when reading OOB data only). 1628 * 1629 * Be careful to never call this function in the write/write_oob path, because 1630 * the core may have placed the data to be written out in this buffer. 1631 * 1632 * Return: pointer to the page cache buffer 1633 */ 1634 static inline void *nand_get_data_buf(struct nand_chip *chip) 1635 { 1636 chip->pagecache.page = -1; 1637 1638 return chip->data_buf; 1639 } 1640 1641 /* Parse the gpio-cs property */ 1642 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 1643 unsigned int *ncs_array); 1644 1645 #endif /* __LINUX_MTD_RAWNAND_H */ 1646
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.