1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 */ 8 #ifndef __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 10 11 #include <linux/mutex.h> 12 #include <linux/bitops.h> 13 #include <linux/device.h> 14 #include <linux/mtd/mtd.h> 15 #include <linux/mtd/nand.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/spi-mem.h> 18 19 /** 20 * Standard SPI NAND flash operations 21 */ 22 23 #define SPINAND_RESET_OP \ 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 25 SPI_MEM_OP_NO_ADDR, \ 26 SPI_MEM_OP_NO_DUMMY, \ 27 SPI_MEM_OP_NO_DATA) 28 29 #define SPINAND_WR_EN_DIS_OP(enable) \ 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 31 SPI_MEM_OP_NO_ADDR, \ 32 SPI_MEM_OP_NO_DUMMY, \ 33 SPI_MEM_OP_NO_DATA) 34 35 #define SPINAND_READID_OP(naddr, ndummy, buf, len) \ 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 37 SPI_MEM_OP_ADDR(naddr, 0, 1), \ 38 SPI_MEM_OP_DUMMY(ndummy, 1), \ 39 SPI_MEM_OP_DATA_IN(len, buf, 1)) 40 41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \ 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 43 SPI_MEM_OP_ADDR(1, reg, 1), \ 44 SPI_MEM_OP_NO_DUMMY, \ 45 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 46 47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \ 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 49 SPI_MEM_OP_ADDR(1, reg, 1), \ 50 SPI_MEM_OP_NO_DUMMY, \ 51 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 52 53 #define SPINAND_BLK_ERASE_OP(addr) \ 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 55 SPI_MEM_OP_ADDR(3, addr, 1), \ 56 SPI_MEM_OP_NO_DUMMY, \ 57 SPI_MEM_OP_NO_DATA) 58 59 #define SPINAND_PAGE_READ_OP(addr) \ 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 61 SPI_MEM_OP_ADDR(3, addr, 1), \ 62 SPI_MEM_OP_NO_DUMMY, \ 63 SPI_MEM_OP_NO_DATA) 64 65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 67 SPI_MEM_OP_ADDR(2, addr, 1), \ 68 SPI_MEM_OP_DUMMY(ndummy, 1), \ 69 SPI_MEM_OP_DATA_IN(len, buf, 1)) 70 71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \ 72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 73 SPI_MEM_OP_ADDR(3, addr, 1), \ 74 SPI_MEM_OP_DUMMY(ndummy, 1), \ 75 SPI_MEM_OP_DATA_IN(len, buf, 1)) 76 77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 79 SPI_MEM_OP_ADDR(2, addr, 1), \ 80 SPI_MEM_OP_DUMMY(ndummy, 1), \ 81 SPI_MEM_OP_DATA_IN(len, buf, 2)) 82 83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \ 84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 85 SPI_MEM_OP_ADDR(3, addr, 1), \ 86 SPI_MEM_OP_DUMMY(ndummy, 1), \ 87 SPI_MEM_OP_DATA_IN(len, buf, 2)) 88 89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 91 SPI_MEM_OP_ADDR(2, addr, 1), \ 92 SPI_MEM_OP_DUMMY(ndummy, 1), \ 93 SPI_MEM_OP_DATA_IN(len, buf, 4)) 94 95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \ 96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 97 SPI_MEM_OP_ADDR(3, addr, 1), \ 98 SPI_MEM_OP_DUMMY(ndummy, 1), \ 99 SPI_MEM_OP_DATA_IN(len, buf, 4)) 100 101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 103 SPI_MEM_OP_ADDR(2, addr, 2), \ 104 SPI_MEM_OP_DUMMY(ndummy, 2), \ 105 SPI_MEM_OP_DATA_IN(len, buf, 2)) 106 107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \ 108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 109 SPI_MEM_OP_ADDR(3, addr, 2), \ 110 SPI_MEM_OP_DUMMY(ndummy, 2), \ 111 SPI_MEM_OP_DATA_IN(len, buf, 2)) 112 113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 115 SPI_MEM_OP_ADDR(2, addr, 4), \ 116 SPI_MEM_OP_DUMMY(ndummy, 4), \ 117 SPI_MEM_OP_DATA_IN(len, buf, 4)) 118 119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \ 120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 121 SPI_MEM_OP_ADDR(3, addr, 4), \ 122 SPI_MEM_OP_DUMMY(ndummy, 4), \ 123 SPI_MEM_OP_DATA_IN(len, buf, 4)) 124 125 #define SPINAND_PROG_EXEC_OP(addr) \ 126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 127 SPI_MEM_OP_ADDR(3, addr, 1), \ 128 SPI_MEM_OP_NO_DUMMY, \ 129 SPI_MEM_OP_NO_DATA) 130 131 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 133 SPI_MEM_OP_ADDR(2, addr, 1), \ 134 SPI_MEM_OP_NO_DUMMY, \ 135 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 136 137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 139 SPI_MEM_OP_ADDR(2, addr, 1), \ 140 SPI_MEM_OP_NO_DUMMY, \ 141 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 142 143 /** 144 * Standard SPI NAND flash commands 145 */ 146 #define SPINAND_CMD_PROG_LOAD_X4 0x32 147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 148 149 /* feature register */ 150 #define REG_BLOCK_LOCK 0xa0 151 #define BL_ALL_UNLOCKED 0x00 152 153 /* configuration register */ 154 #define REG_CFG 0xb0 155 #define CFG_OTP_ENABLE BIT(6) 156 #define CFG_ECC_ENABLE BIT(4) 157 #define CFG_QUAD_ENABLE BIT(0) 158 159 /* status register */ 160 #define REG_STATUS 0xc0 161 #define STATUS_BUSY BIT(0) 162 #define STATUS_ERASE_FAILED BIT(2) 163 #define STATUS_PROG_FAILED BIT(3) 164 #define STATUS_ECC_MASK GENMASK(5, 4) 165 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 166 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 167 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 168 169 struct spinand_op; 170 struct spinand_device; 171 172 #define SPINAND_MAX_ID_LEN 5 173 /* 174 * For erase, write and read operation, we got the following timings : 175 * tBERS (erase) 1ms to 4ms 176 * tPROG 300us to 400us 177 * tREAD 25us to 100us 178 * In order to minimize latency, the min value is divided by 4 for the 179 * initial delay, and dividing by 20 for the poll delay. 180 * For reset, 5us/10us/500us if the device is respectively 181 * reading/programming/erasing when the RESET occurs. Since we always 182 * issue a RESET when the device is IDLE, 5us is selected for both initial 183 * and poll delay. 184 */ 185 #define SPINAND_READ_INITIAL_DELAY_US 6 186 #define SPINAND_READ_POLL_DELAY_US 5 187 #define SPINAND_RESET_INITIAL_DELAY_US 5 188 #define SPINAND_RESET_POLL_DELAY_US 5 189 #define SPINAND_WRITE_INITIAL_DELAY_US 75 190 #define SPINAND_WRITE_POLL_DELAY_US 15 191 #define SPINAND_ERASE_INITIAL_DELAY_US 250 192 #define SPINAND_ERASE_POLL_DELAY_US 50 193 194 #define SPINAND_WAITRDY_TIMEOUT_MS 400 195 196 /** 197 * struct spinand_id - SPI NAND id structure 198 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 199 * be extended if required 200 * @len: ID length 201 */ 202 struct spinand_id { 203 u8 data[SPINAND_MAX_ID_LEN]; 204 int len; 205 }; 206 207 enum spinand_readid_method { 208 SPINAND_READID_METHOD_OPCODE, 209 SPINAND_READID_METHOD_OPCODE_ADDR, 210 SPINAND_READID_METHOD_OPCODE_DUMMY, 211 }; 212 213 /** 214 * struct spinand_devid - SPI NAND device id structure 215 * @id: device id of current chip 216 * @len: number of bytes in device id 217 * @method: method to read chip id 218 * There are 3 possible variants: 219 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately 220 * after read_id opcode. 221 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after 222 * read_id opcode + 1-byte address. 223 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after 224 * read_id opcode + 1 dummy byte. 225 */ 226 struct spinand_devid { 227 const u8 *id; 228 const u8 len; 229 const enum spinand_readid_method method; 230 }; 231 232 /** 233 * struct manufacurer_ops - SPI NAND manufacturer specific operations 234 * @init: initialize a SPI NAND device 235 * @cleanup: cleanup a SPI NAND device 236 * 237 * Each SPI NAND manufacturer driver should implement this interface so that 238 * NAND chips coming from this vendor can be initialized properly. 239 */ 240 struct spinand_manufacturer_ops { 241 int (*init)(struct spinand_device *spinand); 242 void (*cleanup)(struct spinand_device *spinand); 243 }; 244 245 /** 246 * struct spinand_manufacturer - SPI NAND manufacturer instance 247 * @id: manufacturer ID 248 * @name: manufacturer name 249 * @devid_len: number of bytes in device ID 250 * @chips: supported SPI NANDs under current manufacturer 251 * @nchips: number of SPI NANDs available in chips array 252 * @ops: manufacturer operations 253 */ 254 struct spinand_manufacturer { 255 u8 id; 256 char *name; 257 const struct spinand_info *chips; 258 const size_t nchips; 259 const struct spinand_manufacturer_ops *ops; 260 }; 261 262 /* SPI NAND manufacturers */ 263 extern const struct spinand_manufacturer alliancememory_spinand_manufacturer; 264 extern const struct spinand_manufacturer ato_spinand_manufacturer; 265 extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer; 266 extern const struct spinand_manufacturer foresee_spinand_manufacturer; 267 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 268 extern const struct spinand_manufacturer macronix_spinand_manufacturer; 269 extern const struct spinand_manufacturer micron_spinand_manufacturer; 270 extern const struct spinand_manufacturer paragon_spinand_manufacturer; 271 extern const struct spinand_manufacturer toshiba_spinand_manufacturer; 272 extern const struct spinand_manufacturer winbond_spinand_manufacturer; 273 extern const struct spinand_manufacturer xtx_spinand_manufacturer; 274 275 /** 276 * struct spinand_op_variants - SPI NAND operation variants 277 * @ops: the list of variants for a given operation 278 * @nops: the number of variants 279 * 280 * Some operations like read-from-cache/write-to-cache have several variants 281 * depending on the number of IO lines you use to transfer data or address 282 * cycles. This structure is a way to describe the different variants supported 283 * by a chip and let the core pick the best one based on the SPI mem controller 284 * capabilities. 285 */ 286 struct spinand_op_variants { 287 const struct spi_mem_op *ops; 288 unsigned int nops; 289 }; 290 291 #define SPINAND_OP_VARIANTS(name, ...) \ 292 const struct spinand_op_variants name = { \ 293 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 294 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 295 sizeof(struct spi_mem_op), \ 296 } 297 298 /** 299 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 300 * chip 301 * @get_status: get the ECC status. Should return a positive number encoding 302 * the number of corrected bitflips if correction was possible or 303 * -EBADMSG if there are uncorrectable errors. I can also return 304 * other negative error codes if the error is not caused by 305 * uncorrectable bitflips 306 * @ooblayout: the OOB layout used by the on-die ECC implementation 307 */ 308 struct spinand_ecc_info { 309 int (*get_status)(struct spinand_device *spinand, u8 status); 310 const struct mtd_ooblayout_ops *ooblayout; 311 }; 312 313 #define SPINAND_HAS_QE_BIT BIT(0) 314 #define SPINAND_HAS_CR_FEAT_BIT BIT(1) 315 316 /** 317 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure 318 * @status: status of the last wait operation that will be used in case 319 * ->get_status() is not populated by the spinand device. 320 */ 321 struct spinand_ondie_ecc_conf { 322 u8 status; 323 }; 324 325 /** 326 * struct spinand_info - Structure used to describe SPI NAND chips 327 * @model: model name 328 * @devid: device ID 329 * @flags: OR-ing of the SPINAND_XXX flags 330 * @memorg: memory organization 331 * @eccreq: ECC requirements 332 * @eccinfo: on-die ECC info 333 * @op_variants: operations variants 334 * @op_variants.read_cache: variants of the read-cache operation 335 * @op_variants.write_cache: variants of the write-cache operation 336 * @op_variants.update_cache: variants of the update-cache operation 337 * @select_target: function used to select a target/die. Required only for 338 * multi-die chips 339 * 340 * Each SPI NAND manufacturer driver should have a spinand_info table 341 * describing all the chips supported by the driver. 342 */ 343 struct spinand_info { 344 const char *model; 345 struct spinand_devid devid; 346 u32 flags; 347 struct nand_memory_organization memorg; 348 struct nand_ecc_props eccreq; 349 struct spinand_ecc_info eccinfo; 350 struct { 351 const struct spinand_op_variants *read_cache; 352 const struct spinand_op_variants *write_cache; 353 const struct spinand_op_variants *update_cache; 354 } op_variants; 355 int (*select_target)(struct spinand_device *spinand, 356 unsigned int target); 357 }; 358 359 #define SPINAND_ID(__method, ...) \ 360 { \ 361 .id = (const u8[]){ __VA_ARGS__ }, \ 362 .len = sizeof((u8[]){ __VA_ARGS__ }), \ 363 .method = __method, \ 364 } 365 366 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 367 { \ 368 .read_cache = __read, \ 369 .write_cache = __write, \ 370 .update_cache = __update, \ 371 } 372 373 #define SPINAND_ECCINFO(__ooblayout, __get_status) \ 374 .eccinfo = { \ 375 .ooblayout = __ooblayout, \ 376 .get_status = __get_status, \ 377 } 378 379 #define SPINAND_SELECT_TARGET(__func) \ 380 .select_target = __func, 381 382 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 383 __flags, ...) \ 384 { \ 385 .model = __model, \ 386 .devid = __id, \ 387 .memorg = __memorg, \ 388 .eccreq = __eccreq, \ 389 .op_variants = __op_variants, \ 390 .flags = __flags, \ 391 __VA_ARGS__ \ 392 } 393 394 struct spinand_dirmap { 395 struct spi_mem_dirmap_desc *wdesc; 396 struct spi_mem_dirmap_desc *rdesc; 397 struct spi_mem_dirmap_desc *wdesc_ecc; 398 struct spi_mem_dirmap_desc *rdesc_ecc; 399 }; 400 401 /** 402 * struct spinand_device - SPI NAND device instance 403 * @base: NAND device instance 404 * @spimem: pointer to the SPI mem object 405 * @lock: lock used to serialize accesses to the NAND 406 * @id: NAND ID as returned by READ_ID 407 * @flags: NAND flags 408 * @op_templates: various SPI mem op templates 409 * @op_templates.read_cache: read cache op template 410 * @op_templates.write_cache: write cache op template 411 * @op_templates.update_cache: update cache op template 412 * @select_target: select a specific target/die. Usually called before sending 413 * a command addressing a page or an eraseblock embedded in 414 * this die. Only required if your chip exposes several dies 415 * @cur_target: currently selected target/die 416 * @eccinfo: on-die ECC information 417 * @cfg_cache: config register cache. One entry per die 418 * @databuf: bounce buffer for data 419 * @oobbuf: bounce buffer for OOB data 420 * @scratchbuf: buffer used for everything but page accesses. This is needed 421 * because the spi-mem interface explicitly requests that buffers 422 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 423 * the stack 424 * @manufacturer: SPI NAND manufacturer information 425 * @priv: manufacturer private data 426 */ 427 struct spinand_device { 428 struct nand_device base; 429 struct spi_mem *spimem; 430 struct mutex lock; 431 struct spinand_id id; 432 u32 flags; 433 434 struct { 435 const struct spi_mem_op *read_cache; 436 const struct spi_mem_op *write_cache; 437 const struct spi_mem_op *update_cache; 438 } op_templates; 439 440 struct spinand_dirmap *dirmaps; 441 442 int (*select_target)(struct spinand_device *spinand, 443 unsigned int target); 444 unsigned int cur_target; 445 446 struct spinand_ecc_info eccinfo; 447 448 u8 *cfg_cache; 449 u8 *databuf; 450 u8 *oobbuf; 451 u8 *scratchbuf; 452 const struct spinand_manufacturer *manufacturer; 453 void *priv; 454 }; 455 456 /** 457 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 458 * @mtd: MTD instance 459 * 460 * Return: the SPI NAND device attached to @mtd. 461 */ 462 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 463 { 464 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 465 } 466 467 /** 468 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 469 * @spinand: SPI NAND device 470 * 471 * Return: the MTD device embedded in @spinand. 472 */ 473 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 474 { 475 return nanddev_to_mtd(&spinand->base); 476 } 477 478 /** 479 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 480 * @nand: NAND object 481 * 482 * Return: the SPI NAND device embedding @nand. 483 */ 484 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 485 { 486 return container_of(nand, struct spinand_device, base); 487 } 488 489 /** 490 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 491 * @spinand: SPI NAND device 492 * 493 * Return: the NAND device embedded in @spinand. 494 */ 495 static inline struct nand_device * 496 spinand_to_nand(struct spinand_device *spinand) 497 { 498 return &spinand->base; 499 } 500 501 /** 502 * spinand_set_of_node - Attach a DT node to a SPI NAND device 503 * @spinand: SPI NAND device 504 * @np: DT node 505 * 506 * Attach a DT node to a SPI NAND device. 507 */ 508 static inline void spinand_set_of_node(struct spinand_device *spinand, 509 struct device_node *np) 510 { 511 nanddev_set_of_node(&spinand->base, np); 512 } 513 514 int spinand_match_and_init(struct spinand_device *spinand, 515 const struct spinand_info *table, 516 unsigned int table_size, 517 enum spinand_readid_method rdid_method); 518 519 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 520 int spinand_select_target(struct spinand_device *spinand, unsigned int target); 521 522 #endif /* __LINUX_MTD_SPINAND_H */ 523
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.