1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 #include <asm/local.h> 32 33 #include <linux/percpu.h> 34 #include <linux/rculist.h> 35 #include <linux/workqueue.h> 36 #include <linux/dynamic_queue_limits.h> 37 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 44 #include <linux/netdev_features.h> 45 #include <linux/neighbour.h> 46 #include <linux/netdevice_xmit.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <uapi/linux/netdev.h> 51 #include <linux/hashtable.h> 52 #include <linux/rbtree.h> 53 #include <net/net_trackers.h> 54 #include <net/net_debug.h> 55 #include <net/dropreason-core.h> 56 57 struct netpoll_info; 58 struct device; 59 struct ethtool_ops; 60 struct kernel_hwtstamp_config; 61 struct phy_device; 62 struct dsa_port; 63 struct ip_tunnel_parm_kern; 64 struct macsec_context; 65 struct macsec_ops; 66 struct netdev_name_node; 67 struct sd_flow_limit; 68 struct sfp_bus; 69 /* 802.11 specific */ 70 struct wireless_dev; 71 /* 802.15.4 specific */ 72 struct wpan_dev; 73 struct mpls_dev; 74 /* UDP Tunnel offloads */ 75 struct udp_tunnel_info; 76 struct udp_tunnel_nic_info; 77 struct udp_tunnel_nic; 78 struct bpf_prog; 79 struct xdp_buff; 80 struct xdp_frame; 81 struct xdp_metadata_ops; 82 struct xdp_md; 83 struct ethtool_netdev_state; 84 85 typedef u32 xdp_features_t; 86 87 void synchronize_net(void); 88 void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90 void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92 /* Backlog congestion levels */ 93 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94 #define NET_RX_DROP 1 /* packet dropped */ 95 96 #define MAX_NEST_DEV 8 97 98 /* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115 /* qdisc ->enqueue() return codes. */ 116 #define NET_XMIT_SUCCESS 0x00 117 #define NET_XMIT_DROP 0x01 /* skb dropped */ 118 #define NET_XMIT_CN 0x02 /* congestion notification */ 119 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127 /* Driver transmit return codes */ 128 #define NETDEV_TX_MASK 0xf0 129 130 enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134 }; 135 typedef enum netdev_tx netdev_tx_t; 136 137 /* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141 static inline bool dev_xmit_complete(int rc) 142 { 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153 } 154 155 /* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160 #if defined(CONFIG_HYPERV_NET) 161 # define LL_MAX_HEADER 128 162 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163 # if defined(CONFIG_MAC80211_MESH) 164 # define LL_MAX_HEADER 128 165 # else 166 # define LL_MAX_HEADER 96 167 # endif 168 #else 169 # define LL_MAX_HEADER 32 170 #endif 171 172 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174 #define MAX_HEADER LL_MAX_HEADER 175 #else 176 #define MAX_HEADER (LL_MAX_HEADER + 48) 177 #endif 178 179 /* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184 #define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190 struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214 }; 215 #undef NET_DEV_STAT 216 217 /* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220 struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225 } __aligned(4 * sizeof(unsigned long)); 226 227 #include <linux/cache.h> 228 #include <linux/skbuff.h> 229 230 struct neighbour; 231 struct neigh_parms; 232 struct sk_buff; 233 234 struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239 #define NETDEV_HW_ADDR_T_LAN 1 240 #define NETDEV_HW_ADDR_T_SAN 2 241 #define NETDEV_HW_ADDR_T_UNICAST 3 242 #define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248 }; 249 250 struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256 }; 257 258 #define netdev_hw_addr_list_count(l) ((l)->count) 259 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260 #define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265 #define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267 #define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273 #define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275 #define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279 struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284 #define HH_DATA_MOD 16 285 #define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287 #define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290 }; 291 292 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300 #define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307 struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318 }; 319 320 /* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325 enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332 }; 333 334 struct gro_list { 335 struct list_head list; 336 int count; 337 }; 338 339 /* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343 #define GRO_HASH_BUCKETS 8 344 345 /* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348 struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 u32 defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362 #ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365 #endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379 int irq; 380 }; 381 382 enum { 383 NAPI_STATE_SCHED, /* Poll is scheduled */ 384 NAPI_STATE_MISSED, /* reschedule a napi */ 385 NAPI_STATE_DISABLE, /* Disable pending */ 386 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 387 NAPI_STATE_LISTED, /* NAPI added to system lists */ 388 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 389 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 390 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 391 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 392 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 393 }; 394 395 enum { 396 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 397 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 398 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 399 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 400 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 401 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 402 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 403 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 404 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 405 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 406 }; 407 408 enum gro_result { 409 GRO_MERGED, 410 GRO_MERGED_FREE, 411 GRO_HELD, 412 GRO_NORMAL, 413 GRO_CONSUMED, 414 }; 415 typedef enum gro_result gro_result_t; 416 417 /* 418 * enum rx_handler_result - Possible return values for rx_handlers. 419 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 420 * further. 421 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 422 * case skb->dev was changed by rx_handler. 423 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 424 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 425 * 426 * rx_handlers are functions called from inside __netif_receive_skb(), to do 427 * special processing of the skb, prior to delivery to protocol handlers. 428 * 429 * Currently, a net_device can only have a single rx_handler registered. Trying 430 * to register a second rx_handler will return -EBUSY. 431 * 432 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 433 * To unregister a rx_handler on a net_device, use 434 * netdev_rx_handler_unregister(). 435 * 436 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 437 * do with the skb. 438 * 439 * If the rx_handler consumed the skb in some way, it should return 440 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 441 * the skb to be delivered in some other way. 442 * 443 * If the rx_handler changed skb->dev, to divert the skb to another 444 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 445 * new device will be called if it exists. 446 * 447 * If the rx_handler decides the skb should be ignored, it should return 448 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 449 * are registered on exact device (ptype->dev == skb->dev). 450 * 451 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 452 * delivered, it should return RX_HANDLER_PASS. 453 * 454 * A device without a registered rx_handler will behave as if rx_handler 455 * returned RX_HANDLER_PASS. 456 */ 457 458 enum rx_handler_result { 459 RX_HANDLER_CONSUMED, 460 RX_HANDLER_ANOTHER, 461 RX_HANDLER_EXACT, 462 RX_HANDLER_PASS, 463 }; 464 typedef enum rx_handler_result rx_handler_result_t; 465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 466 467 void __napi_schedule(struct napi_struct *n); 468 void __napi_schedule_irqoff(struct napi_struct *n); 469 470 static inline bool napi_disable_pending(struct napi_struct *n) 471 { 472 return test_bit(NAPI_STATE_DISABLE, &n->state); 473 } 474 475 static inline bool napi_prefer_busy_poll(struct napi_struct *n) 476 { 477 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 478 } 479 480 /** 481 * napi_is_scheduled - test if NAPI is scheduled 482 * @n: NAPI context 483 * 484 * This check is "best-effort". With no locking implemented, 485 * a NAPI can be scheduled or terminate right after this check 486 * and produce not precise results. 487 * 488 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 489 * should not be used normally and napi_schedule should be 490 * used instead. 491 * 492 * Use only if the driver really needs to check if a NAPI 493 * is scheduled for example in the context of delayed timer 494 * that can be skipped if a NAPI is already scheduled. 495 * 496 * Return True if NAPI is scheduled, False otherwise. 497 */ 498 static inline bool napi_is_scheduled(struct napi_struct *n) 499 { 500 return test_bit(NAPI_STATE_SCHED, &n->state); 501 } 502 503 bool napi_schedule_prep(struct napi_struct *n); 504 505 /** 506 * napi_schedule - schedule NAPI poll 507 * @n: NAPI context 508 * 509 * Schedule NAPI poll routine to be called if it is not already 510 * running. 511 * Return true if we schedule a NAPI or false if not. 512 * Refer to napi_schedule_prep() for additional reason on why 513 * a NAPI might not be scheduled. 514 */ 515 static inline bool napi_schedule(struct napi_struct *n) 516 { 517 if (napi_schedule_prep(n)) { 518 __napi_schedule(n); 519 return true; 520 } 521 522 return false; 523 } 524 525 /** 526 * napi_schedule_irqoff - schedule NAPI poll 527 * @n: NAPI context 528 * 529 * Variant of napi_schedule(), assuming hard irqs are masked. 530 */ 531 static inline void napi_schedule_irqoff(struct napi_struct *n) 532 { 533 if (napi_schedule_prep(n)) 534 __napi_schedule_irqoff(n); 535 } 536 537 /** 538 * napi_complete_done - NAPI processing complete 539 * @n: NAPI context 540 * @work_done: number of packets processed 541 * 542 * Mark NAPI processing as complete. Should only be called if poll budget 543 * has not been completely consumed. 544 * Prefer over napi_complete(). 545 * Return false if device should avoid rearming interrupts. 546 */ 547 bool napi_complete_done(struct napi_struct *n, int work_done); 548 549 static inline bool napi_complete(struct napi_struct *n) 550 { 551 return napi_complete_done(n, 0); 552 } 553 554 int dev_set_threaded(struct net_device *dev, bool threaded); 555 556 /** 557 * napi_disable - prevent NAPI from scheduling 558 * @n: NAPI context 559 * 560 * Stop NAPI from being scheduled on this context. 561 * Waits till any outstanding processing completes. 562 */ 563 void napi_disable(struct napi_struct *n); 564 565 void napi_enable(struct napi_struct *n); 566 567 /** 568 * napi_synchronize - wait until NAPI is not running 569 * @n: NAPI context 570 * 571 * Wait until NAPI is done being scheduled on this context. 572 * Waits till any outstanding processing completes but 573 * does not disable future activations. 574 */ 575 static inline void napi_synchronize(const struct napi_struct *n) 576 { 577 if (IS_ENABLED(CONFIG_SMP)) 578 while (test_bit(NAPI_STATE_SCHED, &n->state)) 579 msleep(1); 580 else 581 barrier(); 582 } 583 584 /** 585 * napi_if_scheduled_mark_missed - if napi is running, set the 586 * NAPIF_STATE_MISSED 587 * @n: NAPI context 588 * 589 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 590 * NAPI is scheduled. 591 **/ 592 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 593 { 594 unsigned long val, new; 595 596 val = READ_ONCE(n->state); 597 do { 598 if (val & NAPIF_STATE_DISABLE) 599 return true; 600 601 if (!(val & NAPIF_STATE_SCHED)) 602 return false; 603 604 new = val | NAPIF_STATE_MISSED; 605 } while (!try_cmpxchg(&n->state, &val, new)); 606 607 return true; 608 } 609 610 enum netdev_queue_state_t { 611 __QUEUE_STATE_DRV_XOFF, 612 __QUEUE_STATE_STACK_XOFF, 613 __QUEUE_STATE_FROZEN, 614 }; 615 616 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 617 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 618 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 619 620 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 621 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 622 QUEUE_STATE_FROZEN) 623 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 624 QUEUE_STATE_FROZEN) 625 626 /* 627 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 628 * netif_tx_* functions below are used to manipulate this flag. The 629 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 630 * queue independently. The netif_xmit_*stopped functions below are called 631 * to check if the queue has been stopped by the driver or stack (either 632 * of the XOFF bits are set in the state). Drivers should not need to call 633 * netif_xmit*stopped functions, they should only be using netif_tx_*. 634 */ 635 636 struct netdev_queue { 637 /* 638 * read-mostly part 639 */ 640 struct net_device *dev; 641 netdevice_tracker dev_tracker; 642 643 struct Qdisc __rcu *qdisc; 644 struct Qdisc __rcu *qdisc_sleeping; 645 #ifdef CONFIG_SYSFS 646 struct kobject kobj; 647 #endif 648 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 649 int numa_node; 650 #endif 651 unsigned long tx_maxrate; 652 /* 653 * Number of TX timeouts for this queue 654 * (/sys/class/net/DEV/Q/trans_timeout) 655 */ 656 atomic_long_t trans_timeout; 657 658 /* Subordinate device that the queue has been assigned to */ 659 struct net_device *sb_dev; 660 #ifdef CONFIG_XDP_SOCKETS 661 struct xsk_buff_pool *pool; 662 #endif 663 /* NAPI instance for the queue 664 * Readers and writers must hold RTNL 665 */ 666 struct napi_struct *napi; 667 /* 668 * write-mostly part 669 */ 670 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 671 int xmit_lock_owner; 672 /* 673 * Time (in jiffies) of last Tx 674 */ 675 unsigned long trans_start; 676 677 unsigned long state; 678 679 #ifdef CONFIG_BQL 680 struct dql dql; 681 #endif 682 } ____cacheline_aligned_in_smp; 683 684 extern int sysctl_fb_tunnels_only_for_init_net; 685 extern int sysctl_devconf_inherit_init_net; 686 687 /* 688 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 689 * == 1 : For initns only 690 * == 2 : For none. 691 */ 692 static inline bool net_has_fallback_tunnels(const struct net *net) 693 { 694 #if IS_ENABLED(CONFIG_SYSCTL) 695 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 696 697 return !fb_tunnels_only_for_init_net || 698 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 699 #else 700 return true; 701 #endif 702 } 703 704 static inline int net_inherit_devconf(void) 705 { 706 #if IS_ENABLED(CONFIG_SYSCTL) 707 return READ_ONCE(sysctl_devconf_inherit_init_net); 708 #else 709 return 0; 710 #endif 711 } 712 713 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 714 { 715 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 716 return q->numa_node; 717 #else 718 return NUMA_NO_NODE; 719 #endif 720 } 721 722 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 723 { 724 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 725 q->numa_node = node; 726 #endif 727 } 728 729 #ifdef CONFIG_RFS_ACCEL 730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732 #endif 733 734 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 735 enum xps_map_type { 736 XPS_CPUS = 0, 737 XPS_RXQS, 738 XPS_MAPS_MAX, 739 }; 740 741 #ifdef CONFIG_XPS 742 /* 743 * This structure holds an XPS map which can be of variable length. The 744 * map is an array of queues. 745 */ 746 struct xps_map { 747 unsigned int len; 748 unsigned int alloc_len; 749 struct rcu_head rcu; 750 u16 queues[]; 751 }; 752 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 753 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 754 - sizeof(struct xps_map)) / sizeof(u16)) 755 756 /* 757 * This structure holds all XPS maps for device. Maps are indexed by CPU. 758 * 759 * We keep track of the number of cpus/rxqs used when the struct is allocated, 760 * in nr_ids. This will help not accessing out-of-bound memory. 761 * 762 * We keep track of the number of traffic classes used when the struct is 763 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 764 * not crossing its upper bound, as the original dev->num_tc can be updated in 765 * the meantime. 766 */ 767 struct xps_dev_maps { 768 struct rcu_head rcu; 769 unsigned int nr_ids; 770 s16 num_tc; 771 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 772 }; 773 774 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 775 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 776 777 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 778 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 779 780 #endif /* CONFIG_XPS */ 781 782 #define TC_MAX_QUEUE 16 783 #define TC_BITMASK 15 784 /* HW offloaded queuing disciplines txq count and offset maps */ 785 struct netdev_tc_txq { 786 u16 count; 787 u16 offset; 788 }; 789 790 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 791 /* 792 * This structure is to hold information about the device 793 * configured to run FCoE protocol stack. 794 */ 795 struct netdev_fcoe_hbainfo { 796 char manufacturer[64]; 797 char serial_number[64]; 798 char hardware_version[64]; 799 char driver_version[64]; 800 char optionrom_version[64]; 801 char firmware_version[64]; 802 char model[256]; 803 char model_description[256]; 804 }; 805 #endif 806 807 #define MAX_PHYS_ITEM_ID_LEN 32 808 809 /* This structure holds a unique identifier to identify some 810 * physical item (port for example) used by a netdevice. 811 */ 812 struct netdev_phys_item_id { 813 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 814 unsigned char id_len; 815 }; 816 817 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 818 struct netdev_phys_item_id *b) 819 { 820 return a->id_len == b->id_len && 821 memcmp(a->id, b->id, a->id_len) == 0; 822 } 823 824 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 825 struct sk_buff *skb, 826 struct net_device *sb_dev); 827 828 enum net_device_path_type { 829 DEV_PATH_ETHERNET = 0, 830 DEV_PATH_VLAN, 831 DEV_PATH_BRIDGE, 832 DEV_PATH_PPPOE, 833 DEV_PATH_DSA, 834 DEV_PATH_MTK_WDMA, 835 }; 836 837 struct net_device_path { 838 enum net_device_path_type type; 839 const struct net_device *dev; 840 union { 841 struct { 842 u16 id; 843 __be16 proto; 844 u8 h_dest[ETH_ALEN]; 845 } encap; 846 struct { 847 enum { 848 DEV_PATH_BR_VLAN_KEEP, 849 DEV_PATH_BR_VLAN_TAG, 850 DEV_PATH_BR_VLAN_UNTAG, 851 DEV_PATH_BR_VLAN_UNTAG_HW, 852 } vlan_mode; 853 u16 vlan_id; 854 __be16 vlan_proto; 855 } bridge; 856 struct { 857 int port; 858 u16 proto; 859 } dsa; 860 struct { 861 u8 wdma_idx; 862 u8 queue; 863 u16 wcid; 864 u8 bss; 865 u8 amsdu; 866 } mtk_wdma; 867 }; 868 }; 869 870 #define NET_DEVICE_PATH_STACK_MAX 5 871 #define NET_DEVICE_PATH_VLAN_MAX 2 872 873 struct net_device_path_stack { 874 int num_paths; 875 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 876 }; 877 878 struct net_device_path_ctx { 879 const struct net_device *dev; 880 u8 daddr[ETH_ALEN]; 881 882 int num_vlans; 883 struct { 884 u16 id; 885 __be16 proto; 886 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 887 }; 888 889 enum tc_setup_type { 890 TC_QUERY_CAPS, 891 TC_SETUP_QDISC_MQPRIO, 892 TC_SETUP_CLSU32, 893 TC_SETUP_CLSFLOWER, 894 TC_SETUP_CLSMATCHALL, 895 TC_SETUP_CLSBPF, 896 TC_SETUP_BLOCK, 897 TC_SETUP_QDISC_CBS, 898 TC_SETUP_QDISC_RED, 899 TC_SETUP_QDISC_PRIO, 900 TC_SETUP_QDISC_MQ, 901 TC_SETUP_QDISC_ETF, 902 TC_SETUP_ROOT_QDISC, 903 TC_SETUP_QDISC_GRED, 904 TC_SETUP_QDISC_TAPRIO, 905 TC_SETUP_FT, 906 TC_SETUP_QDISC_ETS, 907 TC_SETUP_QDISC_TBF, 908 TC_SETUP_QDISC_FIFO, 909 TC_SETUP_QDISC_HTB, 910 TC_SETUP_ACT, 911 }; 912 913 /* These structures hold the attributes of bpf state that are being passed 914 * to the netdevice through the bpf op. 915 */ 916 enum bpf_netdev_command { 917 /* Set or clear a bpf program used in the earliest stages of packet 918 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 919 * is responsible for calling bpf_prog_put on any old progs that are 920 * stored. In case of error, the callee need not release the new prog 921 * reference, but on success it takes ownership and must bpf_prog_put 922 * when it is no longer used. 923 */ 924 XDP_SETUP_PROG, 925 XDP_SETUP_PROG_HW, 926 /* BPF program for offload callbacks, invoked at program load time. */ 927 BPF_OFFLOAD_MAP_ALLOC, 928 BPF_OFFLOAD_MAP_FREE, 929 XDP_SETUP_XSK_POOL, 930 }; 931 932 struct bpf_prog_offload_ops; 933 struct netlink_ext_ack; 934 struct xdp_umem; 935 struct xdp_dev_bulk_queue; 936 struct bpf_xdp_link; 937 938 enum bpf_xdp_mode { 939 XDP_MODE_SKB = 0, 940 XDP_MODE_DRV = 1, 941 XDP_MODE_HW = 2, 942 __MAX_XDP_MODE 943 }; 944 945 struct bpf_xdp_entity { 946 struct bpf_prog *prog; 947 struct bpf_xdp_link *link; 948 }; 949 950 struct netdev_bpf { 951 enum bpf_netdev_command command; 952 union { 953 /* XDP_SETUP_PROG */ 954 struct { 955 u32 flags; 956 struct bpf_prog *prog; 957 struct netlink_ext_ack *extack; 958 }; 959 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 960 struct { 961 struct bpf_offloaded_map *offmap; 962 }; 963 /* XDP_SETUP_XSK_POOL */ 964 struct { 965 struct xsk_buff_pool *pool; 966 u16 queue_id; 967 } xsk; 968 }; 969 }; 970 971 /* Flags for ndo_xsk_wakeup. */ 972 #define XDP_WAKEUP_RX (1 << 0) 973 #define XDP_WAKEUP_TX (1 << 1) 974 975 #ifdef CONFIG_XFRM_OFFLOAD 976 struct xfrmdev_ops { 977 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 978 void (*xdo_dev_state_delete) (struct xfrm_state *x); 979 void (*xdo_dev_state_free) (struct xfrm_state *x); 980 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 981 struct xfrm_state *x); 982 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 983 void (*xdo_dev_state_update_stats) (struct xfrm_state *x); 984 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 985 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 986 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 987 }; 988 #endif 989 990 struct dev_ifalias { 991 struct rcu_head rcuhead; 992 char ifalias[]; 993 }; 994 995 struct devlink; 996 struct tlsdev_ops; 997 998 struct netdev_net_notifier { 999 struct list_head list; 1000 struct notifier_block *nb; 1001 }; 1002 1003 /* 1004 * This structure defines the management hooks for network devices. 1005 * The following hooks can be defined; unless noted otherwise, they are 1006 * optional and can be filled with a null pointer. 1007 * 1008 * int (*ndo_init)(struct net_device *dev); 1009 * This function is called once when a network device is registered. 1010 * The network device can use this for any late stage initialization 1011 * or semantic validation. It can fail with an error code which will 1012 * be propagated back to register_netdev. 1013 * 1014 * void (*ndo_uninit)(struct net_device *dev); 1015 * This function is called when device is unregistered or when registration 1016 * fails. It is not called if init fails. 1017 * 1018 * int (*ndo_open)(struct net_device *dev); 1019 * This function is called when a network device transitions to the up 1020 * state. 1021 * 1022 * int (*ndo_stop)(struct net_device *dev); 1023 * This function is called when a network device transitions to the down 1024 * state. 1025 * 1026 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1027 * struct net_device *dev); 1028 * Called when a packet needs to be transmitted. 1029 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1030 * the queue before that can happen; it's for obsolete devices and weird 1031 * corner cases, but the stack really does a non-trivial amount 1032 * of useless work if you return NETDEV_TX_BUSY. 1033 * Required; cannot be NULL. 1034 * 1035 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1036 * struct net_device *dev 1037 * netdev_features_t features); 1038 * Called by core transmit path to determine if device is capable of 1039 * performing offload operations on a given packet. This is to give 1040 * the device an opportunity to implement any restrictions that cannot 1041 * be otherwise expressed by feature flags. The check is called with 1042 * the set of features that the stack has calculated and it returns 1043 * those the driver believes to be appropriate. 1044 * 1045 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1046 * struct net_device *sb_dev); 1047 * Called to decide which queue to use when device supports multiple 1048 * transmit queues. 1049 * 1050 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1051 * This function is called to allow device receiver to make 1052 * changes to configuration when multicast or promiscuous is enabled. 1053 * 1054 * void (*ndo_set_rx_mode)(struct net_device *dev); 1055 * This function is called device changes address list filtering. 1056 * If driver handles unicast address filtering, it should set 1057 * IFF_UNICAST_FLT in its priv_flags. 1058 * 1059 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1060 * This function is called when the Media Access Control address 1061 * needs to be changed. If this interface is not defined, the 1062 * MAC address can not be changed. 1063 * 1064 * int (*ndo_validate_addr)(struct net_device *dev); 1065 * Test if Media Access Control address is valid for the device. 1066 * 1067 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1068 * Old-style ioctl entry point. This is used internally by the 1069 * appletalk and ieee802154 subsystems but is no longer called by 1070 * the device ioctl handler. 1071 * 1072 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1073 * Used by the bonding driver for its device specific ioctls: 1074 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1075 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1076 * 1077 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1078 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1079 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1080 * 1081 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1082 * Used to set network devices bus interface parameters. This interface 1083 * is retained for legacy reasons; new devices should use the bus 1084 * interface (PCI) for low level management. 1085 * 1086 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1087 * Called when a user wants to change the Maximum Transfer Unit 1088 * of a device. 1089 * 1090 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1091 * Callback used when the transmitter has not made any progress 1092 * for dev->watchdog ticks. 1093 * 1094 * void (*ndo_get_stats64)(struct net_device *dev, 1095 * struct rtnl_link_stats64 *storage); 1096 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1097 * Called when a user wants to get the network device usage 1098 * statistics. Drivers must do one of the following: 1099 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1100 * rtnl_link_stats64 structure passed by the caller. 1101 * 2. Define @ndo_get_stats to update a net_device_stats structure 1102 * (which should normally be dev->stats) and return a pointer to 1103 * it. The structure may be changed asynchronously only if each 1104 * field is written atomically. 1105 * 3. Update dev->stats asynchronously and atomically, and define 1106 * neither operation. 1107 * 1108 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1109 * Return true if this device supports offload stats of this attr_id. 1110 * 1111 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1112 * void *attr_data) 1113 * Get statistics for offload operations by attr_id. Write it into the 1114 * attr_data pointer. 1115 * 1116 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1117 * If device supports VLAN filtering this function is called when a 1118 * VLAN id is registered. 1119 * 1120 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1121 * If device supports VLAN filtering this function is called when a 1122 * VLAN id is unregistered. 1123 * 1124 * void (*ndo_poll_controller)(struct net_device *dev); 1125 * 1126 * SR-IOV management functions. 1127 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1128 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1129 * u8 qos, __be16 proto); 1130 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1131 * int max_tx_rate); 1132 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1133 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1134 * int (*ndo_get_vf_config)(struct net_device *dev, 1135 * int vf, struct ifla_vf_info *ivf); 1136 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1137 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1138 * struct nlattr *port[]); 1139 * 1140 * Enable or disable the VF ability to query its RSS Redirection Table and 1141 * Hash Key. This is needed since on some devices VF share this information 1142 * with PF and querying it may introduce a theoretical security risk. 1143 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1144 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1145 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1146 * void *type_data); 1147 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1148 * This is always called from the stack with the rtnl lock held and netif 1149 * tx queues stopped. This allows the netdevice to perform queue 1150 * management safely. 1151 * 1152 * Fiber Channel over Ethernet (FCoE) offload functions. 1153 * int (*ndo_fcoe_enable)(struct net_device *dev); 1154 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1155 * so the underlying device can perform whatever needed configuration or 1156 * initialization to support acceleration of FCoE traffic. 1157 * 1158 * int (*ndo_fcoe_disable)(struct net_device *dev); 1159 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1160 * so the underlying device can perform whatever needed clean-ups to 1161 * stop supporting acceleration of FCoE traffic. 1162 * 1163 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1164 * struct scatterlist *sgl, unsigned int sgc); 1165 * Called when the FCoE Initiator wants to initialize an I/O that 1166 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1167 * perform necessary setup and returns 1 to indicate the device is set up 1168 * successfully to perform DDP on this I/O, otherwise this returns 0. 1169 * 1170 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1171 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1172 * indicated by the FC exchange id 'xid', so the underlying device can 1173 * clean up and reuse resources for later DDP requests. 1174 * 1175 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1176 * struct scatterlist *sgl, unsigned int sgc); 1177 * Called when the FCoE Target wants to initialize an I/O that 1178 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1179 * perform necessary setup and returns 1 to indicate the device is set up 1180 * successfully to perform DDP on this I/O, otherwise this returns 0. 1181 * 1182 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1183 * struct netdev_fcoe_hbainfo *hbainfo); 1184 * Called when the FCoE Protocol stack wants information on the underlying 1185 * device. This information is utilized by the FCoE protocol stack to 1186 * register attributes with Fiber Channel management service as per the 1187 * FC-GS Fabric Device Management Information(FDMI) specification. 1188 * 1189 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1190 * Called when the underlying device wants to override default World Wide 1191 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1192 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1193 * protocol stack to use. 1194 * 1195 * RFS acceleration. 1196 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1197 * u16 rxq_index, u32 flow_id); 1198 * Set hardware filter for RFS. rxq_index is the target queue index; 1199 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1200 * Return the filter ID on success, or a negative error code. 1201 * 1202 * Slave management functions (for bridge, bonding, etc). 1203 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1204 * Called to make another netdev an underling. 1205 * 1206 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1207 * Called to release previously enslaved netdev. 1208 * 1209 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1210 * struct sk_buff *skb, 1211 * bool all_slaves); 1212 * Get the xmit slave of master device. If all_slaves is true, function 1213 * assume all the slaves can transmit. 1214 * 1215 * Feature/offload setting functions. 1216 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1217 * netdev_features_t features); 1218 * Adjusts the requested feature flags according to device-specific 1219 * constraints, and returns the resulting flags. Must not modify 1220 * the device state. 1221 * 1222 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1223 * Called to update device configuration to new features. Passed 1224 * feature set might be less than what was returned by ndo_fix_features()). 1225 * Must return >0 or -errno if it changed dev->features itself. 1226 * 1227 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1228 * struct net_device *dev, 1229 * const unsigned char *addr, u16 vid, u16 flags, 1230 * struct netlink_ext_ack *extack); 1231 * Adds an FDB entry to dev for addr. 1232 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1233 * struct net_device *dev, 1234 * const unsigned char *addr, u16 vid) 1235 * Deletes the FDB entry from dev coresponding to addr. 1236 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1237 * struct netlink_ext_ack *extack); 1238 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1239 * struct net_device *dev, struct net_device *filter_dev, 1240 * int *idx) 1241 * Used to add FDB entries to dump requests. Implementers should add 1242 * entries to skb and update idx with the number of entries. 1243 * 1244 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1245 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1246 * Adds an MDB entry to dev. 1247 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1248 * struct netlink_ext_ack *extack); 1249 * Deletes the MDB entry from dev. 1250 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[], 1251 * struct netlink_ext_ack *extack); 1252 * Bulk deletes MDB entries from dev. 1253 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1254 * struct netlink_callback *cb); 1255 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1256 * callback is used by core rtnetlink code. 1257 * 1258 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1259 * u16 flags, struct netlink_ext_ack *extack) 1260 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1261 * struct net_device *dev, u32 filter_mask, 1262 * int nlflags) 1263 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1264 * u16 flags); 1265 * 1266 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1267 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1268 * which do not represent real hardware may define this to allow their 1269 * userspace components to manage their virtual carrier state. Devices 1270 * that determine carrier state from physical hardware properties (eg 1271 * network cables) or protocol-dependent mechanisms (eg 1272 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1273 * 1274 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1275 * struct netdev_phys_item_id *ppid); 1276 * Called to get ID of physical port of this device. If driver does 1277 * not implement this, it is assumed that the hw is not able to have 1278 * multiple net devices on single physical port. 1279 * 1280 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1281 * struct netdev_phys_item_id *ppid) 1282 * Called to get the parent ID of the physical port of this device. 1283 * 1284 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1285 * struct net_device *dev) 1286 * Called by upper layer devices to accelerate switching or other 1287 * station functionality into hardware. 'pdev is the lowerdev 1288 * to use for the offload and 'dev' is the net device that will 1289 * back the offload. Returns a pointer to the private structure 1290 * the upper layer will maintain. 1291 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1292 * Called by upper layer device to delete the station created 1293 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1294 * the station and priv is the structure returned by the add 1295 * operation. 1296 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1297 * int queue_index, u32 maxrate); 1298 * Called when a user wants to set a max-rate limitation of specific 1299 * TX queue. 1300 * int (*ndo_get_iflink)(const struct net_device *dev); 1301 * Called to get the iflink value of this device. 1302 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1303 * This function is used to get egress tunnel information for given skb. 1304 * This is useful for retrieving outer tunnel header parameters while 1305 * sampling packet. 1306 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1307 * This function is used to specify the headroom that the skb must 1308 * consider when allocation skb during packet reception. Setting 1309 * appropriate rx headroom value allows avoiding skb head copy on 1310 * forward. Setting a negative value resets the rx headroom to the 1311 * default value. 1312 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1313 * This function is used to set or query state related to XDP on the 1314 * netdevice and manage BPF offload. See definition of 1315 * enum bpf_netdev_command for details. 1316 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1317 * u32 flags); 1318 * This function is used to submit @n XDP packets for transmit on a 1319 * netdevice. Returns number of frames successfully transmitted, frames 1320 * that got dropped are freed/returned via xdp_return_frame(). 1321 * Returns negative number, means general error invoking ndo, meaning 1322 * no frames were xmit'ed and core-caller will free all frames. 1323 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1324 * struct xdp_buff *xdp); 1325 * Get the xmit slave of master device based on the xdp_buff. 1326 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1327 * This function is used to wake up the softirq, ksoftirqd or kthread 1328 * responsible for sending and/or receiving packets on a specific 1329 * queue id bound to an AF_XDP socket. The flags field specifies if 1330 * only RX, only Tx, or both should be woken up using the flags 1331 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1332 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p, 1333 * int cmd); 1334 * Add, change, delete or get information on an IPv4 tunnel. 1335 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1336 * If a device is paired with a peer device, return the peer instance. 1337 * The caller must be under RCU read context. 1338 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1339 * Get the forwarding path to reach the real device from the HW destination address 1340 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1341 * const struct skb_shared_hwtstamps *hwtstamps, 1342 * bool cycles); 1343 * Get hardware timestamp based on normal/adjustable time or free running 1344 * cycle counter. This function is required if physical clock supports a 1345 * free running cycle counter. 1346 * 1347 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1348 * struct kernel_hwtstamp_config *kernel_config); 1349 * Get the currently configured hardware timestamping parameters for the 1350 * NIC device. 1351 * 1352 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1353 * struct kernel_hwtstamp_config *kernel_config, 1354 * struct netlink_ext_ack *extack); 1355 * Change the hardware timestamping parameters for NIC device. 1356 */ 1357 struct net_device_ops { 1358 int (*ndo_init)(struct net_device *dev); 1359 void (*ndo_uninit)(struct net_device *dev); 1360 int (*ndo_open)(struct net_device *dev); 1361 int (*ndo_stop)(struct net_device *dev); 1362 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1363 struct net_device *dev); 1364 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1365 struct net_device *dev, 1366 netdev_features_t features); 1367 u16 (*ndo_select_queue)(struct net_device *dev, 1368 struct sk_buff *skb, 1369 struct net_device *sb_dev); 1370 void (*ndo_change_rx_flags)(struct net_device *dev, 1371 int flags); 1372 void (*ndo_set_rx_mode)(struct net_device *dev); 1373 int (*ndo_set_mac_address)(struct net_device *dev, 1374 void *addr); 1375 int (*ndo_validate_addr)(struct net_device *dev); 1376 int (*ndo_do_ioctl)(struct net_device *dev, 1377 struct ifreq *ifr, int cmd); 1378 int (*ndo_eth_ioctl)(struct net_device *dev, 1379 struct ifreq *ifr, int cmd); 1380 int (*ndo_siocbond)(struct net_device *dev, 1381 struct ifreq *ifr, int cmd); 1382 int (*ndo_siocwandev)(struct net_device *dev, 1383 struct if_settings *ifs); 1384 int (*ndo_siocdevprivate)(struct net_device *dev, 1385 struct ifreq *ifr, 1386 void __user *data, int cmd); 1387 int (*ndo_set_config)(struct net_device *dev, 1388 struct ifmap *map); 1389 int (*ndo_change_mtu)(struct net_device *dev, 1390 int new_mtu); 1391 int (*ndo_neigh_setup)(struct net_device *dev, 1392 struct neigh_parms *); 1393 void (*ndo_tx_timeout) (struct net_device *dev, 1394 unsigned int txqueue); 1395 1396 void (*ndo_get_stats64)(struct net_device *dev, 1397 struct rtnl_link_stats64 *storage); 1398 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1399 int (*ndo_get_offload_stats)(int attr_id, 1400 const struct net_device *dev, 1401 void *attr_data); 1402 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1403 1404 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1405 __be16 proto, u16 vid); 1406 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1407 __be16 proto, u16 vid); 1408 #ifdef CONFIG_NET_POLL_CONTROLLER 1409 void (*ndo_poll_controller)(struct net_device *dev); 1410 int (*ndo_netpoll_setup)(struct net_device *dev, 1411 struct netpoll_info *info); 1412 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1413 #endif 1414 int (*ndo_set_vf_mac)(struct net_device *dev, 1415 int queue, u8 *mac); 1416 int (*ndo_set_vf_vlan)(struct net_device *dev, 1417 int queue, u16 vlan, 1418 u8 qos, __be16 proto); 1419 int (*ndo_set_vf_rate)(struct net_device *dev, 1420 int vf, int min_tx_rate, 1421 int max_tx_rate); 1422 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1423 int vf, bool setting); 1424 int (*ndo_set_vf_trust)(struct net_device *dev, 1425 int vf, bool setting); 1426 int (*ndo_get_vf_config)(struct net_device *dev, 1427 int vf, 1428 struct ifla_vf_info *ivf); 1429 int (*ndo_set_vf_link_state)(struct net_device *dev, 1430 int vf, int link_state); 1431 int (*ndo_get_vf_stats)(struct net_device *dev, 1432 int vf, 1433 struct ifla_vf_stats 1434 *vf_stats); 1435 int (*ndo_set_vf_port)(struct net_device *dev, 1436 int vf, 1437 struct nlattr *port[]); 1438 int (*ndo_get_vf_port)(struct net_device *dev, 1439 int vf, struct sk_buff *skb); 1440 int (*ndo_get_vf_guid)(struct net_device *dev, 1441 int vf, 1442 struct ifla_vf_guid *node_guid, 1443 struct ifla_vf_guid *port_guid); 1444 int (*ndo_set_vf_guid)(struct net_device *dev, 1445 int vf, u64 guid, 1446 int guid_type); 1447 int (*ndo_set_vf_rss_query_en)( 1448 struct net_device *dev, 1449 int vf, bool setting); 1450 int (*ndo_setup_tc)(struct net_device *dev, 1451 enum tc_setup_type type, 1452 void *type_data); 1453 #if IS_ENABLED(CONFIG_FCOE) 1454 int (*ndo_fcoe_enable)(struct net_device *dev); 1455 int (*ndo_fcoe_disable)(struct net_device *dev); 1456 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1457 u16 xid, 1458 struct scatterlist *sgl, 1459 unsigned int sgc); 1460 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1461 u16 xid); 1462 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1463 u16 xid, 1464 struct scatterlist *sgl, 1465 unsigned int sgc); 1466 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1467 struct netdev_fcoe_hbainfo *hbainfo); 1468 #endif 1469 1470 #if IS_ENABLED(CONFIG_LIBFCOE) 1471 #define NETDEV_FCOE_WWNN 0 1472 #define NETDEV_FCOE_WWPN 1 1473 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1474 u64 *wwn, int type); 1475 #endif 1476 1477 #ifdef CONFIG_RFS_ACCEL 1478 int (*ndo_rx_flow_steer)(struct net_device *dev, 1479 const struct sk_buff *skb, 1480 u16 rxq_index, 1481 u32 flow_id); 1482 #endif 1483 int (*ndo_add_slave)(struct net_device *dev, 1484 struct net_device *slave_dev, 1485 struct netlink_ext_ack *extack); 1486 int (*ndo_del_slave)(struct net_device *dev, 1487 struct net_device *slave_dev); 1488 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1489 struct sk_buff *skb, 1490 bool all_slaves); 1491 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1492 struct sock *sk); 1493 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1494 netdev_features_t features); 1495 int (*ndo_set_features)(struct net_device *dev, 1496 netdev_features_t features); 1497 int (*ndo_neigh_construct)(struct net_device *dev, 1498 struct neighbour *n); 1499 void (*ndo_neigh_destroy)(struct net_device *dev, 1500 struct neighbour *n); 1501 1502 int (*ndo_fdb_add)(struct ndmsg *ndm, 1503 struct nlattr *tb[], 1504 struct net_device *dev, 1505 const unsigned char *addr, 1506 u16 vid, 1507 u16 flags, 1508 struct netlink_ext_ack *extack); 1509 int (*ndo_fdb_del)(struct ndmsg *ndm, 1510 struct nlattr *tb[], 1511 struct net_device *dev, 1512 const unsigned char *addr, 1513 u16 vid, struct netlink_ext_ack *extack); 1514 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1515 struct net_device *dev, 1516 struct netlink_ext_ack *extack); 1517 int (*ndo_fdb_dump)(struct sk_buff *skb, 1518 struct netlink_callback *cb, 1519 struct net_device *dev, 1520 struct net_device *filter_dev, 1521 int *idx); 1522 int (*ndo_fdb_get)(struct sk_buff *skb, 1523 struct nlattr *tb[], 1524 struct net_device *dev, 1525 const unsigned char *addr, 1526 u16 vid, u32 portid, u32 seq, 1527 struct netlink_ext_ack *extack); 1528 int (*ndo_mdb_add)(struct net_device *dev, 1529 struct nlattr *tb[], 1530 u16 nlmsg_flags, 1531 struct netlink_ext_ack *extack); 1532 int (*ndo_mdb_del)(struct net_device *dev, 1533 struct nlattr *tb[], 1534 struct netlink_ext_ack *extack); 1535 int (*ndo_mdb_del_bulk)(struct net_device *dev, 1536 struct nlattr *tb[], 1537 struct netlink_ext_ack *extack); 1538 int (*ndo_mdb_dump)(struct net_device *dev, 1539 struct sk_buff *skb, 1540 struct netlink_callback *cb); 1541 int (*ndo_mdb_get)(struct net_device *dev, 1542 struct nlattr *tb[], u32 portid, 1543 u32 seq, 1544 struct netlink_ext_ack *extack); 1545 int (*ndo_bridge_setlink)(struct net_device *dev, 1546 struct nlmsghdr *nlh, 1547 u16 flags, 1548 struct netlink_ext_ack *extack); 1549 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1550 u32 pid, u32 seq, 1551 struct net_device *dev, 1552 u32 filter_mask, 1553 int nlflags); 1554 int (*ndo_bridge_dellink)(struct net_device *dev, 1555 struct nlmsghdr *nlh, 1556 u16 flags); 1557 int (*ndo_change_carrier)(struct net_device *dev, 1558 bool new_carrier); 1559 int (*ndo_get_phys_port_id)(struct net_device *dev, 1560 struct netdev_phys_item_id *ppid); 1561 int (*ndo_get_port_parent_id)(struct net_device *dev, 1562 struct netdev_phys_item_id *ppid); 1563 int (*ndo_get_phys_port_name)(struct net_device *dev, 1564 char *name, size_t len); 1565 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1566 struct net_device *dev); 1567 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1568 void *priv); 1569 1570 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1571 int queue_index, 1572 u32 maxrate); 1573 int (*ndo_get_iflink)(const struct net_device *dev); 1574 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1575 struct sk_buff *skb); 1576 void (*ndo_set_rx_headroom)(struct net_device *dev, 1577 int needed_headroom); 1578 int (*ndo_bpf)(struct net_device *dev, 1579 struct netdev_bpf *bpf); 1580 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1581 struct xdp_frame **xdp, 1582 u32 flags); 1583 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1584 struct xdp_buff *xdp); 1585 int (*ndo_xsk_wakeup)(struct net_device *dev, 1586 u32 queue_id, u32 flags); 1587 int (*ndo_tunnel_ctl)(struct net_device *dev, 1588 struct ip_tunnel_parm_kern *p, 1589 int cmd); 1590 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1591 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1592 struct net_device_path *path); 1593 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1594 const struct skb_shared_hwtstamps *hwtstamps, 1595 bool cycles); 1596 int (*ndo_hwtstamp_get)(struct net_device *dev, 1597 struct kernel_hwtstamp_config *kernel_config); 1598 int (*ndo_hwtstamp_set)(struct net_device *dev, 1599 struct kernel_hwtstamp_config *kernel_config, 1600 struct netlink_ext_ack *extack); 1601 }; 1602 1603 /** 1604 * enum netdev_priv_flags - &struct net_device priv_flags 1605 * 1606 * These are the &struct net_device, they are only set internally 1607 * by drivers and used in the kernel. These flags are invisible to 1608 * userspace; this means that the order of these flags can change 1609 * during any kernel release. 1610 * 1611 * You should have a pretty good reason to be extending these flags. 1612 * 1613 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1614 * @IFF_EBRIDGE: Ethernet bridging device 1615 * @IFF_BONDING: bonding master or slave 1616 * @IFF_ISATAP: ISATAP interface (RFC4214) 1617 * @IFF_WAN_HDLC: WAN HDLC device 1618 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1619 * release skb->dst 1620 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1621 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1622 * @IFF_MACVLAN_PORT: device used as macvlan port 1623 * @IFF_BRIDGE_PORT: device used as bridge port 1624 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1625 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1626 * @IFF_UNICAST_FLT: Supports unicast filtering 1627 * @IFF_TEAM_PORT: device used as team port 1628 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1629 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1630 * change when it's running 1631 * @IFF_MACVLAN: Macvlan device 1632 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1633 * underlying stacked devices 1634 * @IFF_L3MDEV_MASTER: device is an L3 master device 1635 * @IFF_NO_QUEUE: device can run without qdisc attached 1636 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1637 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1638 * @IFF_TEAM: device is a team device 1639 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1640 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1641 * entity (i.e. the master device for bridged veth) 1642 * @IFF_MACSEC: device is a MACsec device 1643 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1644 * @IFF_FAILOVER: device is a failover master device 1645 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1646 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1647 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1648 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1649 * skb_headlen(skb) == 0 (data starts from frag0) 1650 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1651 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1652 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1653 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1654 */ 1655 enum netdev_priv_flags { 1656 IFF_802_1Q_VLAN = 1<<0, 1657 IFF_EBRIDGE = 1<<1, 1658 IFF_BONDING = 1<<2, 1659 IFF_ISATAP = 1<<3, 1660 IFF_WAN_HDLC = 1<<4, 1661 IFF_XMIT_DST_RELEASE = 1<<5, 1662 IFF_DONT_BRIDGE = 1<<6, 1663 IFF_DISABLE_NETPOLL = 1<<7, 1664 IFF_MACVLAN_PORT = 1<<8, 1665 IFF_BRIDGE_PORT = 1<<9, 1666 IFF_OVS_DATAPATH = 1<<10, 1667 IFF_TX_SKB_SHARING = 1<<11, 1668 IFF_UNICAST_FLT = 1<<12, 1669 IFF_TEAM_PORT = 1<<13, 1670 IFF_SUPP_NOFCS = 1<<14, 1671 IFF_LIVE_ADDR_CHANGE = 1<<15, 1672 IFF_MACVLAN = 1<<16, 1673 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1674 IFF_L3MDEV_MASTER = 1<<18, 1675 IFF_NO_QUEUE = 1<<19, 1676 IFF_OPENVSWITCH = 1<<20, 1677 IFF_L3MDEV_SLAVE = 1<<21, 1678 IFF_TEAM = 1<<22, 1679 IFF_RXFH_CONFIGURED = 1<<23, 1680 IFF_PHONY_HEADROOM = 1<<24, 1681 IFF_MACSEC = 1<<25, 1682 IFF_NO_RX_HANDLER = 1<<26, 1683 IFF_FAILOVER = 1<<27, 1684 IFF_FAILOVER_SLAVE = 1<<28, 1685 IFF_L3MDEV_RX_HANDLER = 1<<29, 1686 IFF_NO_ADDRCONF = BIT_ULL(30), 1687 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1688 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1689 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1690 }; 1691 1692 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1693 #define IFF_EBRIDGE IFF_EBRIDGE 1694 #define IFF_BONDING IFF_BONDING 1695 #define IFF_ISATAP IFF_ISATAP 1696 #define IFF_WAN_HDLC IFF_WAN_HDLC 1697 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1698 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1699 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1700 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1701 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1702 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1703 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1704 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1705 #define IFF_TEAM_PORT IFF_TEAM_PORT 1706 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1707 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1708 #define IFF_MACVLAN IFF_MACVLAN 1709 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1710 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1711 #define IFF_NO_QUEUE IFF_NO_QUEUE 1712 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1713 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1714 #define IFF_TEAM IFF_TEAM 1715 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1716 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1717 #define IFF_MACSEC IFF_MACSEC 1718 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1719 #define IFF_FAILOVER IFF_FAILOVER 1720 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1721 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1722 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1723 1724 /* Specifies the type of the struct net_device::ml_priv pointer */ 1725 enum netdev_ml_priv_type { 1726 ML_PRIV_NONE, 1727 ML_PRIV_CAN, 1728 }; 1729 1730 enum netdev_stat_type { 1731 NETDEV_PCPU_STAT_NONE, 1732 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1733 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1734 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1735 }; 1736 1737 enum netdev_reg_state { 1738 NETREG_UNINITIALIZED = 0, 1739 NETREG_REGISTERED, /* completed register_netdevice */ 1740 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1741 NETREG_UNREGISTERED, /* completed unregister todo */ 1742 NETREG_RELEASED, /* called free_netdev */ 1743 NETREG_DUMMY, /* dummy device for NAPI poll */ 1744 }; 1745 1746 /** 1747 * struct net_device - The DEVICE structure. 1748 * 1749 * Actually, this whole structure is a big mistake. It mixes I/O 1750 * data with strictly "high-level" data, and it has to know about 1751 * almost every data structure used in the INET module. 1752 * 1753 * @name: This is the first field of the "visible" part of this structure 1754 * (i.e. as seen by users in the "Space.c" file). It is the name 1755 * of the interface. 1756 * 1757 * @name_node: Name hashlist node 1758 * @ifalias: SNMP alias 1759 * @mem_end: Shared memory end 1760 * @mem_start: Shared memory start 1761 * @base_addr: Device I/O address 1762 * @irq: Device IRQ number 1763 * 1764 * @state: Generic network queuing layer state, see netdev_state_t 1765 * @dev_list: The global list of network devices 1766 * @napi_list: List entry used for polling NAPI devices 1767 * @unreg_list: List entry when we are unregistering the 1768 * device; see the function unregister_netdev 1769 * @close_list: List entry used when we are closing the device 1770 * @ptype_all: Device-specific packet handlers for all protocols 1771 * @ptype_specific: Device-specific, protocol-specific packet handlers 1772 * 1773 * @adj_list: Directly linked devices, like slaves for bonding 1774 * @features: Currently active device features 1775 * @hw_features: User-changeable features 1776 * 1777 * @wanted_features: User-requested features 1778 * @vlan_features: Mask of features inheritable by VLAN devices 1779 * 1780 * @hw_enc_features: Mask of features inherited by encapsulating devices 1781 * This field indicates what encapsulation 1782 * offloads the hardware is capable of doing, 1783 * and drivers will need to set them appropriately. 1784 * 1785 * @mpls_features: Mask of features inheritable by MPLS 1786 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1787 * 1788 * @ifindex: interface index 1789 * @group: The group the device belongs to 1790 * 1791 * @stats: Statistics struct, which was left as a legacy, use 1792 * rtnl_link_stats64 instead 1793 * 1794 * @core_stats: core networking counters, 1795 * do not use this in drivers 1796 * @carrier_up_count: Number of times the carrier has been up 1797 * @carrier_down_count: Number of times the carrier has been down 1798 * 1799 * @wireless_handlers: List of functions to handle Wireless Extensions, 1800 * instead of ioctl, 1801 * see <net/iw_handler.h> for details. 1802 * @wireless_data: Instance data managed by the core of wireless extensions 1803 * 1804 * @netdev_ops: Includes several pointers to callbacks, 1805 * if one wants to override the ndo_*() functions 1806 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1807 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks. 1808 * @ethtool_ops: Management operations 1809 * @l3mdev_ops: Layer 3 master device operations 1810 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1811 * discovery handling. Necessary for e.g. 6LoWPAN. 1812 * @xfrmdev_ops: Transformation offload operations 1813 * @tlsdev_ops: Transport Layer Security offload operations 1814 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1815 * of Layer 2 headers. 1816 * 1817 * @flags: Interface flags (a la BSD) 1818 * @xdp_features: XDP capability supported by the device 1819 * @priv_flags: Like 'flags' but invisible to userspace, 1820 * see if.h for the definitions 1821 * @gflags: Global flags ( kept as legacy ) 1822 * @priv_len: Size of the ->priv flexible array 1823 * @priv: Flexible array containing private data 1824 * @operstate: RFC2863 operstate 1825 * @link_mode: Mapping policy to operstate 1826 * @if_port: Selectable AUI, TP, ... 1827 * @dma: DMA channel 1828 * @mtu: Interface MTU value 1829 * @min_mtu: Interface Minimum MTU value 1830 * @max_mtu: Interface Maximum MTU value 1831 * @type: Interface hardware type 1832 * @hard_header_len: Maximum hardware header length. 1833 * @min_header_len: Minimum hardware header length 1834 * 1835 * @needed_headroom: Extra headroom the hardware may need, but not in all 1836 * cases can this be guaranteed 1837 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1838 * cases can this be guaranteed. Some cases also use 1839 * LL_MAX_HEADER instead to allocate the skb 1840 * 1841 * interface address info: 1842 * 1843 * @perm_addr: Permanent hw address 1844 * @addr_assign_type: Hw address assignment type 1845 * @addr_len: Hardware address length 1846 * @upper_level: Maximum depth level of upper devices. 1847 * @lower_level: Maximum depth level of lower devices. 1848 * @neigh_priv_len: Used in neigh_alloc() 1849 * @dev_id: Used to differentiate devices that share 1850 * the same link layer address 1851 * @dev_port: Used to differentiate devices that share 1852 * the same function 1853 * @addr_list_lock: XXX: need comments on this one 1854 * @name_assign_type: network interface name assignment type 1855 * @uc_promisc: Counter that indicates promiscuous mode 1856 * has been enabled due to the need to listen to 1857 * additional unicast addresses in a device that 1858 * does not implement ndo_set_rx_mode() 1859 * @uc: unicast mac addresses 1860 * @mc: multicast mac addresses 1861 * @dev_addrs: list of device hw addresses 1862 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1863 * @promiscuity: Number of times the NIC is told to work in 1864 * promiscuous mode; if it becomes 0 the NIC will 1865 * exit promiscuous mode 1866 * @allmulti: Counter, enables or disables allmulticast mode 1867 * 1868 * @vlan_info: VLAN info 1869 * @dsa_ptr: dsa specific data 1870 * @tipc_ptr: TIPC specific data 1871 * @atalk_ptr: AppleTalk link 1872 * @ip_ptr: IPv4 specific data 1873 * @ip6_ptr: IPv6 specific data 1874 * @ax25_ptr: AX.25 specific data 1875 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1876 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1877 * device struct 1878 * @mpls_ptr: mpls_dev struct pointer 1879 * @mctp_ptr: MCTP specific data 1880 * 1881 * @dev_addr: Hw address (before bcast, 1882 * because most packets are unicast) 1883 * 1884 * @_rx: Array of RX queues 1885 * @num_rx_queues: Number of RX queues 1886 * allocated at register_netdev() time 1887 * @real_num_rx_queues: Number of RX queues currently active in device 1888 * @xdp_prog: XDP sockets filter program pointer 1889 * @gro_flush_timeout: timeout for GRO layer in NAPI 1890 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1891 * allow to avoid NIC hard IRQ, on busy queues. 1892 * 1893 * @rx_handler: handler for received packets 1894 * @rx_handler_data: XXX: need comments on this one 1895 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1896 * @ingress_queue: XXX: need comments on this one 1897 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1898 * @broadcast: hw bcast address 1899 * 1900 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1901 * indexed by RX queue number. Assigned by driver. 1902 * This must only be set if the ndo_rx_flow_steer 1903 * operation is defined 1904 * @index_hlist: Device index hash chain 1905 * 1906 * @_tx: Array of TX queues 1907 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1908 * @real_num_tx_queues: Number of TX queues currently active in device 1909 * @qdisc: Root qdisc from userspace point of view 1910 * @tx_queue_len: Max frames per queue allowed 1911 * @tx_global_lock: XXX: need comments on this one 1912 * @xdp_bulkq: XDP device bulk queue 1913 * @xps_maps: all CPUs/RXQs maps for XPS device 1914 * 1915 * @xps_maps: XXX: need comments on this one 1916 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1917 * @nf_hooks_egress: netfilter hooks executed for egress packets 1918 * @qdisc_hash: qdisc hash table 1919 * @watchdog_timeo: Represents the timeout that is used by 1920 * the watchdog (see dev_watchdog()) 1921 * @watchdog_timer: List of timers 1922 * 1923 * @proto_down_reason: reason a netdev interface is held down 1924 * @pcpu_refcnt: Number of references to this device 1925 * @dev_refcnt: Number of references to this device 1926 * @refcnt_tracker: Tracker directory for tracked references to this device 1927 * @todo_list: Delayed register/unregister 1928 * @link_watch_list: XXX: need comments on this one 1929 * 1930 * @reg_state: Register/unregister state machine 1931 * @dismantle: Device is going to be freed 1932 * @rtnl_link_state: This enum represents the phases of creating 1933 * a new link 1934 * 1935 * @needs_free_netdev: Should unregister perform free_netdev? 1936 * @priv_destructor: Called from unregister 1937 * @npinfo: XXX: need comments on this one 1938 * @nd_net: Network namespace this network device is inside 1939 * 1940 * @ml_priv: Mid-layer private 1941 * @ml_priv_type: Mid-layer private type 1942 * 1943 * @pcpu_stat_type: Type of device statistics which the core should 1944 * allocate/free: none, lstats, tstats, dstats. none 1945 * means the driver is handling statistics allocation/ 1946 * freeing internally. 1947 * @lstats: Loopback statistics: packets, bytes 1948 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 1949 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 1950 * 1951 * @garp_port: GARP 1952 * @mrp_port: MRP 1953 * 1954 * @dm_private: Drop monitor private 1955 * 1956 * @dev: Class/net/name entry 1957 * @sysfs_groups: Space for optional device, statistics and wireless 1958 * sysfs groups 1959 * 1960 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1961 * @rtnl_link_ops: Rtnl_link_ops 1962 * @stat_ops: Optional ops for queue-aware statistics 1963 * @queue_mgmt_ops: Optional ops for queue management 1964 * 1965 * @gso_max_size: Maximum size of generic segmentation offload 1966 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1967 * @gso_max_segs: Maximum number of segments that can be passed to the 1968 * NIC for GSO 1969 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 1970 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 1971 * for IPv4. 1972 * 1973 * @dcbnl_ops: Data Center Bridging netlink ops 1974 * @num_tc: Number of traffic classes in the net device 1975 * @tc_to_txq: XXX: need comments on this one 1976 * @prio_tc_map: XXX: need comments on this one 1977 * 1978 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1979 * 1980 * @priomap: XXX: need comments on this one 1981 * @phydev: Physical device may attach itself 1982 * for hardware timestamping 1983 * @sfp_bus: attached &struct sfp_bus structure. 1984 * 1985 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1986 * 1987 * @proto_down: protocol port state information can be sent to the 1988 * switch driver and used to set the phys state of the 1989 * switch port. 1990 * 1991 * @threaded: napi threaded mode is enabled 1992 * 1993 * @net_notifier_list: List of per-net netdev notifier block 1994 * that follow this device when it is moved 1995 * to another network namespace. 1996 * 1997 * @macsec_ops: MACsec offloading ops 1998 * 1999 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2000 * offload capabilities of the device 2001 * @udp_tunnel_nic: UDP tunnel offload state 2002 * @ethtool: ethtool related state 2003 * @xdp_state: stores info on attached XDP BPF programs 2004 * 2005 * @nested_level: Used as a parameter of spin_lock_nested() of 2006 * dev->addr_list_lock. 2007 * @unlink_list: As netif_addr_lock() can be called recursively, 2008 * keep a list of interfaces to be deleted. 2009 * @gro_max_size: Maximum size of aggregated packet in generic 2010 * receive offload (GRO) 2011 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2012 * receive offload (GRO), for IPv4. 2013 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2014 * zero copy driver 2015 * 2016 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2017 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2018 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2019 * @dev_registered_tracker: tracker for reference held while 2020 * registered 2021 * @offload_xstats_l3: L3 HW stats for this netdevice. 2022 * 2023 * @devlink_port: Pointer to related devlink port structure. 2024 * Assigned by a driver before netdev registration using 2025 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2026 * during the time netdevice is registered. 2027 * 2028 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2029 * where the clock is recovered. 2030 * 2031 * FIXME: cleanup struct net_device such that network protocol info 2032 * moves out. 2033 */ 2034 2035 struct net_device { 2036 /* Cacheline organization can be found documented in 2037 * Documentation/networking/net_cachelines/net_device.rst. 2038 * Please update the document when adding new fields. 2039 */ 2040 2041 /* TX read-mostly hotpath */ 2042 __cacheline_group_begin(net_device_read_tx); 2043 unsigned long long priv_flags; 2044 const struct net_device_ops *netdev_ops; 2045 const struct header_ops *header_ops; 2046 struct netdev_queue *_tx; 2047 netdev_features_t gso_partial_features; 2048 unsigned int real_num_tx_queues; 2049 unsigned int gso_max_size; 2050 unsigned int gso_ipv4_max_size; 2051 u16 gso_max_segs; 2052 s16 num_tc; 2053 /* Note : dev->mtu is often read without holding a lock. 2054 * Writers usually hold RTNL. 2055 * It is recommended to use READ_ONCE() to annotate the reads, 2056 * and to use WRITE_ONCE() to annotate the writes. 2057 */ 2058 unsigned int mtu; 2059 unsigned short needed_headroom; 2060 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2061 #ifdef CONFIG_XPS 2062 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2063 #endif 2064 #ifdef CONFIG_NETFILTER_EGRESS 2065 struct nf_hook_entries __rcu *nf_hooks_egress; 2066 #endif 2067 #ifdef CONFIG_NET_XGRESS 2068 struct bpf_mprog_entry __rcu *tcx_egress; 2069 #endif 2070 __cacheline_group_end(net_device_read_tx); 2071 2072 /* TXRX read-mostly hotpath */ 2073 __cacheline_group_begin(net_device_read_txrx); 2074 union { 2075 struct pcpu_lstats __percpu *lstats; 2076 struct pcpu_sw_netstats __percpu *tstats; 2077 struct pcpu_dstats __percpu *dstats; 2078 }; 2079 unsigned long state; 2080 unsigned int flags; 2081 unsigned short hard_header_len; 2082 netdev_features_t features; 2083 struct inet6_dev __rcu *ip6_ptr; 2084 __cacheline_group_end(net_device_read_txrx); 2085 2086 /* RX read-mostly hotpath */ 2087 __cacheline_group_begin(net_device_read_rx); 2088 struct bpf_prog __rcu *xdp_prog; 2089 struct list_head ptype_specific; 2090 int ifindex; 2091 unsigned int real_num_rx_queues; 2092 struct netdev_rx_queue *_rx; 2093 unsigned long gro_flush_timeout; 2094 u32 napi_defer_hard_irqs; 2095 unsigned int gro_max_size; 2096 unsigned int gro_ipv4_max_size; 2097 rx_handler_func_t __rcu *rx_handler; 2098 void __rcu *rx_handler_data; 2099 possible_net_t nd_net; 2100 #ifdef CONFIG_NETPOLL 2101 struct netpoll_info __rcu *npinfo; 2102 #endif 2103 #ifdef CONFIG_NET_XGRESS 2104 struct bpf_mprog_entry __rcu *tcx_ingress; 2105 #endif 2106 __cacheline_group_end(net_device_read_rx); 2107 2108 char name[IFNAMSIZ]; 2109 struct netdev_name_node *name_node; 2110 struct dev_ifalias __rcu *ifalias; 2111 /* 2112 * I/O specific fields 2113 * FIXME: Merge these and struct ifmap into one 2114 */ 2115 unsigned long mem_end; 2116 unsigned long mem_start; 2117 unsigned long base_addr; 2118 2119 /* 2120 * Some hardware also needs these fields (state,dev_list, 2121 * napi_list,unreg_list,close_list) but they are not 2122 * part of the usual set specified in Space.c. 2123 */ 2124 2125 2126 struct list_head dev_list; 2127 struct list_head napi_list; 2128 struct list_head unreg_list; 2129 struct list_head close_list; 2130 struct list_head ptype_all; 2131 2132 struct { 2133 struct list_head upper; 2134 struct list_head lower; 2135 } adj_list; 2136 2137 /* Read-mostly cache-line for fast-path access */ 2138 xdp_features_t xdp_features; 2139 const struct xdp_metadata_ops *xdp_metadata_ops; 2140 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops; 2141 unsigned short gflags; 2142 2143 unsigned short needed_tailroom; 2144 2145 netdev_features_t hw_features; 2146 netdev_features_t wanted_features; 2147 netdev_features_t vlan_features; 2148 netdev_features_t hw_enc_features; 2149 netdev_features_t mpls_features; 2150 2151 unsigned int min_mtu; 2152 unsigned int max_mtu; 2153 unsigned short type; 2154 unsigned char min_header_len; 2155 unsigned char name_assign_type; 2156 2157 int group; 2158 2159 struct net_device_stats stats; /* not used by modern drivers */ 2160 2161 struct net_device_core_stats __percpu *core_stats; 2162 2163 /* Stats to monitor link on/off, flapping */ 2164 atomic_t carrier_up_count; 2165 atomic_t carrier_down_count; 2166 2167 #ifdef CONFIG_WIRELESS_EXT 2168 const struct iw_handler_def *wireless_handlers; 2169 struct iw_public_data *wireless_data; 2170 #endif 2171 const struct ethtool_ops *ethtool_ops; 2172 #ifdef CONFIG_NET_L3_MASTER_DEV 2173 const struct l3mdev_ops *l3mdev_ops; 2174 #endif 2175 #if IS_ENABLED(CONFIG_IPV6) 2176 const struct ndisc_ops *ndisc_ops; 2177 #endif 2178 2179 #ifdef CONFIG_XFRM_OFFLOAD 2180 const struct xfrmdev_ops *xfrmdev_ops; 2181 #endif 2182 2183 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2184 const struct tlsdev_ops *tlsdev_ops; 2185 #endif 2186 2187 unsigned int operstate; 2188 unsigned char link_mode; 2189 2190 unsigned char if_port; 2191 unsigned char dma; 2192 2193 /* Interface address info. */ 2194 unsigned char perm_addr[MAX_ADDR_LEN]; 2195 unsigned char addr_assign_type; 2196 unsigned char addr_len; 2197 unsigned char upper_level; 2198 unsigned char lower_level; 2199 2200 unsigned short neigh_priv_len; 2201 unsigned short dev_id; 2202 unsigned short dev_port; 2203 int irq; 2204 u32 priv_len; 2205 2206 spinlock_t addr_list_lock; 2207 2208 struct netdev_hw_addr_list uc; 2209 struct netdev_hw_addr_list mc; 2210 struct netdev_hw_addr_list dev_addrs; 2211 2212 #ifdef CONFIG_SYSFS 2213 struct kset *queues_kset; 2214 #endif 2215 #ifdef CONFIG_LOCKDEP 2216 struct list_head unlink_list; 2217 #endif 2218 unsigned int promiscuity; 2219 unsigned int allmulti; 2220 bool uc_promisc; 2221 #ifdef CONFIG_LOCKDEP 2222 unsigned char nested_level; 2223 #endif 2224 2225 2226 /* Protocol-specific pointers */ 2227 struct in_device __rcu *ip_ptr; 2228 #if IS_ENABLED(CONFIG_VLAN_8021Q) 2229 struct vlan_info __rcu *vlan_info; 2230 #endif 2231 #if IS_ENABLED(CONFIG_NET_DSA) 2232 struct dsa_port *dsa_ptr; 2233 #endif 2234 #if IS_ENABLED(CONFIG_TIPC) 2235 struct tipc_bearer __rcu *tipc_ptr; 2236 #endif 2237 #if IS_ENABLED(CONFIG_ATALK) 2238 void *atalk_ptr; 2239 #endif 2240 #if IS_ENABLED(CONFIG_AX25) 2241 void *ax25_ptr; 2242 #endif 2243 #if IS_ENABLED(CONFIG_CFG80211) 2244 struct wireless_dev *ieee80211_ptr; 2245 #endif 2246 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2247 struct wpan_dev *ieee802154_ptr; 2248 #endif 2249 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 2250 struct mpls_dev __rcu *mpls_ptr; 2251 #endif 2252 #if IS_ENABLED(CONFIG_MCTP) 2253 struct mctp_dev __rcu *mctp_ptr; 2254 #endif 2255 2256 /* 2257 * Cache lines mostly used on receive path (including eth_type_trans()) 2258 */ 2259 /* Interface address info used in eth_type_trans() */ 2260 const unsigned char *dev_addr; 2261 2262 unsigned int num_rx_queues; 2263 #define GRO_LEGACY_MAX_SIZE 65536u 2264 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2265 * and shinfo->gso_segs is a 16bit field. 2266 */ 2267 #define GRO_MAX_SIZE (8 * 65535u) 2268 unsigned int xdp_zc_max_segs; 2269 struct netdev_queue __rcu *ingress_queue; 2270 #ifdef CONFIG_NETFILTER_INGRESS 2271 struct nf_hook_entries __rcu *nf_hooks_ingress; 2272 #endif 2273 2274 unsigned char broadcast[MAX_ADDR_LEN]; 2275 #ifdef CONFIG_RFS_ACCEL 2276 struct cpu_rmap *rx_cpu_rmap; 2277 #endif 2278 struct hlist_node index_hlist; 2279 2280 /* 2281 * Cache lines mostly used on transmit path 2282 */ 2283 unsigned int num_tx_queues; 2284 struct Qdisc __rcu *qdisc; 2285 unsigned int tx_queue_len; 2286 spinlock_t tx_global_lock; 2287 2288 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2289 2290 #ifdef CONFIG_NET_SCHED 2291 DECLARE_HASHTABLE (qdisc_hash, 4); 2292 #endif 2293 /* These may be needed for future network-power-down code. */ 2294 struct timer_list watchdog_timer; 2295 int watchdog_timeo; 2296 2297 u32 proto_down_reason; 2298 2299 struct list_head todo_list; 2300 2301 #ifdef CONFIG_PCPU_DEV_REFCNT 2302 int __percpu *pcpu_refcnt; 2303 #else 2304 refcount_t dev_refcnt; 2305 #endif 2306 struct ref_tracker_dir refcnt_tracker; 2307 2308 struct list_head link_watch_list; 2309 2310 u8 reg_state; 2311 2312 bool dismantle; 2313 2314 enum { 2315 RTNL_LINK_INITIALIZED, 2316 RTNL_LINK_INITIALIZING, 2317 } rtnl_link_state:16; 2318 2319 bool needs_free_netdev; 2320 void (*priv_destructor)(struct net_device *dev); 2321 2322 /* mid-layer private */ 2323 void *ml_priv; 2324 enum netdev_ml_priv_type ml_priv_type; 2325 2326 enum netdev_stat_type pcpu_stat_type:8; 2327 2328 #if IS_ENABLED(CONFIG_GARP) 2329 struct garp_port __rcu *garp_port; 2330 #endif 2331 #if IS_ENABLED(CONFIG_MRP) 2332 struct mrp_port __rcu *mrp_port; 2333 #endif 2334 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2335 struct dm_hw_stat_delta __rcu *dm_private; 2336 #endif 2337 struct device dev; 2338 const struct attribute_group *sysfs_groups[4]; 2339 const struct attribute_group *sysfs_rx_queue_group; 2340 2341 const struct rtnl_link_ops *rtnl_link_ops; 2342 2343 const struct netdev_stat_ops *stat_ops; 2344 2345 const struct netdev_queue_mgmt_ops *queue_mgmt_ops; 2346 2347 /* for setting kernel sock attribute on TCP connection setup */ 2348 #define GSO_MAX_SEGS 65535u 2349 #define GSO_LEGACY_MAX_SIZE 65536u 2350 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2351 * and shinfo->gso_segs is a 16bit field. 2352 */ 2353 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2354 2355 #define TSO_LEGACY_MAX_SIZE 65536 2356 #define TSO_MAX_SIZE UINT_MAX 2357 unsigned int tso_max_size; 2358 #define TSO_MAX_SEGS U16_MAX 2359 u16 tso_max_segs; 2360 2361 #ifdef CONFIG_DCB 2362 const struct dcbnl_rtnl_ops *dcbnl_ops; 2363 #endif 2364 u8 prio_tc_map[TC_BITMASK + 1]; 2365 2366 #if IS_ENABLED(CONFIG_FCOE) 2367 unsigned int fcoe_ddp_xid; 2368 #endif 2369 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2370 struct netprio_map __rcu *priomap; 2371 #endif 2372 struct phy_device *phydev; 2373 struct sfp_bus *sfp_bus; 2374 struct lock_class_key *qdisc_tx_busylock; 2375 bool proto_down; 2376 bool threaded; 2377 2378 struct list_head net_notifier_list; 2379 2380 #if IS_ENABLED(CONFIG_MACSEC) 2381 /* MACsec management functions */ 2382 const struct macsec_ops *macsec_ops; 2383 #endif 2384 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2385 struct udp_tunnel_nic *udp_tunnel_nic; 2386 2387 struct ethtool_netdev_state *ethtool; 2388 2389 /* protected by rtnl_lock */ 2390 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2391 2392 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2393 netdevice_tracker linkwatch_dev_tracker; 2394 netdevice_tracker watchdog_dev_tracker; 2395 netdevice_tracker dev_registered_tracker; 2396 struct rtnl_hw_stats64 *offload_xstats_l3; 2397 2398 struct devlink_port *devlink_port; 2399 2400 #if IS_ENABLED(CONFIG_DPLL) 2401 struct dpll_pin __rcu *dpll_pin; 2402 #endif 2403 #if IS_ENABLED(CONFIG_PAGE_POOL) 2404 /** @page_pools: page pools created for this netdevice */ 2405 struct hlist_head page_pools; 2406 #endif 2407 2408 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */ 2409 struct dim_irq_moder *irq_moder; 2410 2411 u8 priv[] ____cacheline_aligned 2412 __counted_by(priv_len); 2413 } ____cacheline_aligned; 2414 #define to_net_dev(d) container_of(d, struct net_device, dev) 2415 2416 /* 2417 * Driver should use this to assign devlink port instance to a netdevice 2418 * before it registers the netdevice. Therefore devlink_port is static 2419 * during the netdev lifetime after it is registered. 2420 */ 2421 #define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2422 ({ \ 2423 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2424 ((dev)->devlink_port = (port)); \ 2425 }) 2426 2427 static inline bool netif_elide_gro(const struct net_device *dev) 2428 { 2429 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2430 return true; 2431 return false; 2432 } 2433 2434 #define NETDEV_ALIGN 32 2435 2436 static inline 2437 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2438 { 2439 return dev->prio_tc_map[prio & TC_BITMASK]; 2440 } 2441 2442 static inline 2443 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2444 { 2445 if (tc >= dev->num_tc) 2446 return -EINVAL; 2447 2448 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2449 return 0; 2450 } 2451 2452 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2453 void netdev_reset_tc(struct net_device *dev); 2454 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2455 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2456 2457 static inline 2458 int netdev_get_num_tc(struct net_device *dev) 2459 { 2460 return dev->num_tc; 2461 } 2462 2463 static inline void net_prefetch(void *p) 2464 { 2465 prefetch(p); 2466 #if L1_CACHE_BYTES < 128 2467 prefetch((u8 *)p + L1_CACHE_BYTES); 2468 #endif 2469 } 2470 2471 static inline void net_prefetchw(void *p) 2472 { 2473 prefetchw(p); 2474 #if L1_CACHE_BYTES < 128 2475 prefetchw((u8 *)p + L1_CACHE_BYTES); 2476 #endif 2477 } 2478 2479 void netdev_unbind_sb_channel(struct net_device *dev, 2480 struct net_device *sb_dev); 2481 int netdev_bind_sb_channel_queue(struct net_device *dev, 2482 struct net_device *sb_dev, 2483 u8 tc, u16 count, u16 offset); 2484 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2485 static inline int netdev_get_sb_channel(struct net_device *dev) 2486 { 2487 return max_t(int, -dev->num_tc, 0); 2488 } 2489 2490 static inline 2491 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2492 unsigned int index) 2493 { 2494 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2495 return &dev->_tx[index]; 2496 } 2497 2498 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2499 const struct sk_buff *skb) 2500 { 2501 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2502 } 2503 2504 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2505 void (*f)(struct net_device *, 2506 struct netdev_queue *, 2507 void *), 2508 void *arg) 2509 { 2510 unsigned int i; 2511 2512 for (i = 0; i < dev->num_tx_queues; i++) 2513 f(dev, &dev->_tx[i], arg); 2514 } 2515 2516 #define netdev_lockdep_set_classes(dev) \ 2517 { \ 2518 static struct lock_class_key qdisc_tx_busylock_key; \ 2519 static struct lock_class_key qdisc_xmit_lock_key; \ 2520 static struct lock_class_key dev_addr_list_lock_key; \ 2521 unsigned int i; \ 2522 \ 2523 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2524 lockdep_set_class(&(dev)->addr_list_lock, \ 2525 &dev_addr_list_lock_key); \ 2526 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2527 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2528 &qdisc_xmit_lock_key); \ 2529 } 2530 2531 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2532 struct net_device *sb_dev); 2533 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2534 struct sk_buff *skb, 2535 struct net_device *sb_dev); 2536 2537 /* returns the headroom that the master device needs to take in account 2538 * when forwarding to this dev 2539 */ 2540 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2541 { 2542 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2543 } 2544 2545 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2546 { 2547 if (dev->netdev_ops->ndo_set_rx_headroom) 2548 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2549 } 2550 2551 /* set the device rx headroom to the dev's default */ 2552 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2553 { 2554 netdev_set_rx_headroom(dev, -1); 2555 } 2556 2557 static inline void *netdev_get_ml_priv(struct net_device *dev, 2558 enum netdev_ml_priv_type type) 2559 { 2560 if (dev->ml_priv_type != type) 2561 return NULL; 2562 2563 return dev->ml_priv; 2564 } 2565 2566 static inline void netdev_set_ml_priv(struct net_device *dev, 2567 void *ml_priv, 2568 enum netdev_ml_priv_type type) 2569 { 2570 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2571 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2572 dev->ml_priv_type, type); 2573 WARN(!dev->ml_priv_type && dev->ml_priv, 2574 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2575 2576 dev->ml_priv = ml_priv; 2577 dev->ml_priv_type = type; 2578 } 2579 2580 /* 2581 * Net namespace inlines 2582 */ 2583 static inline 2584 struct net *dev_net(const struct net_device *dev) 2585 { 2586 return read_pnet(&dev->nd_net); 2587 } 2588 2589 static inline 2590 void dev_net_set(struct net_device *dev, struct net *net) 2591 { 2592 write_pnet(&dev->nd_net, net); 2593 } 2594 2595 /** 2596 * netdev_priv - access network device private data 2597 * @dev: network device 2598 * 2599 * Get network device private data 2600 */ 2601 static inline void *netdev_priv(const struct net_device *dev) 2602 { 2603 return (void *)dev->priv; 2604 } 2605 2606 /* Set the sysfs physical device reference for the network logical device 2607 * if set prior to registration will cause a symlink during initialization. 2608 */ 2609 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2610 2611 /* Set the sysfs device type for the network logical device to allow 2612 * fine-grained identification of different network device types. For 2613 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2614 */ 2615 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2616 2617 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 2618 enum netdev_queue_type type, 2619 struct napi_struct *napi); 2620 2621 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq) 2622 { 2623 napi->irq = irq; 2624 } 2625 2626 /* Default NAPI poll() weight 2627 * Device drivers are strongly advised to not use bigger value 2628 */ 2629 #define NAPI_POLL_WEIGHT 64 2630 2631 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2632 int (*poll)(struct napi_struct *, int), int weight); 2633 2634 /** 2635 * netif_napi_add() - initialize a NAPI context 2636 * @dev: network device 2637 * @napi: NAPI context 2638 * @poll: polling function 2639 * 2640 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2641 * *any* of the other NAPI-related functions. 2642 */ 2643 static inline void 2644 netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2645 int (*poll)(struct napi_struct *, int)) 2646 { 2647 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2648 } 2649 2650 static inline void 2651 netif_napi_add_tx_weight(struct net_device *dev, 2652 struct napi_struct *napi, 2653 int (*poll)(struct napi_struct *, int), 2654 int weight) 2655 { 2656 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2657 netif_napi_add_weight(dev, napi, poll, weight); 2658 } 2659 2660 /** 2661 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2662 * @dev: network device 2663 * @napi: NAPI context 2664 * @poll: polling function 2665 * 2666 * This variant of netif_napi_add() should be used from drivers using NAPI 2667 * to exclusively poll a TX queue. 2668 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2669 */ 2670 static inline void netif_napi_add_tx(struct net_device *dev, 2671 struct napi_struct *napi, 2672 int (*poll)(struct napi_struct *, int)) 2673 { 2674 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2675 } 2676 2677 /** 2678 * __netif_napi_del - remove a NAPI context 2679 * @napi: NAPI context 2680 * 2681 * Warning: caller must observe RCU grace period before freeing memory 2682 * containing @napi. Drivers might want to call this helper to combine 2683 * all the needed RCU grace periods into a single one. 2684 */ 2685 void __netif_napi_del(struct napi_struct *napi); 2686 2687 /** 2688 * netif_napi_del - remove a NAPI context 2689 * @napi: NAPI context 2690 * 2691 * netif_napi_del() removes a NAPI context from the network device NAPI list 2692 */ 2693 static inline void netif_napi_del(struct napi_struct *napi) 2694 { 2695 __netif_napi_del(napi); 2696 synchronize_net(); 2697 } 2698 2699 struct packet_type { 2700 __be16 type; /* This is really htons(ether_type). */ 2701 bool ignore_outgoing; 2702 struct net_device *dev; /* NULL is wildcarded here */ 2703 netdevice_tracker dev_tracker; 2704 int (*func) (struct sk_buff *, 2705 struct net_device *, 2706 struct packet_type *, 2707 struct net_device *); 2708 void (*list_func) (struct list_head *, 2709 struct packet_type *, 2710 struct net_device *); 2711 bool (*id_match)(struct packet_type *ptype, 2712 struct sock *sk); 2713 struct net *af_packet_net; 2714 void *af_packet_priv; 2715 struct list_head list; 2716 }; 2717 2718 struct offload_callbacks { 2719 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2720 netdev_features_t features); 2721 struct sk_buff *(*gro_receive)(struct list_head *head, 2722 struct sk_buff *skb); 2723 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2724 }; 2725 2726 struct packet_offload { 2727 __be16 type; /* This is really htons(ether_type). */ 2728 u16 priority; 2729 struct offload_callbacks callbacks; 2730 struct list_head list; 2731 }; 2732 2733 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2734 struct pcpu_sw_netstats { 2735 u64_stats_t rx_packets; 2736 u64_stats_t rx_bytes; 2737 u64_stats_t tx_packets; 2738 u64_stats_t tx_bytes; 2739 struct u64_stats_sync syncp; 2740 } __aligned(4 * sizeof(u64)); 2741 2742 struct pcpu_dstats { 2743 u64_stats_t rx_packets; 2744 u64_stats_t rx_bytes; 2745 u64_stats_t rx_drops; 2746 u64_stats_t tx_packets; 2747 u64_stats_t tx_bytes; 2748 u64_stats_t tx_drops; 2749 struct u64_stats_sync syncp; 2750 } __aligned(8 * sizeof(u64)); 2751 2752 struct pcpu_lstats { 2753 u64_stats_t packets; 2754 u64_stats_t bytes; 2755 struct u64_stats_sync syncp; 2756 } __aligned(2 * sizeof(u64)); 2757 2758 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2759 2760 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2761 { 2762 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2763 2764 u64_stats_update_begin(&tstats->syncp); 2765 u64_stats_add(&tstats->rx_bytes, len); 2766 u64_stats_inc(&tstats->rx_packets); 2767 u64_stats_update_end(&tstats->syncp); 2768 } 2769 2770 static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2771 unsigned int packets, 2772 unsigned int len) 2773 { 2774 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2775 2776 u64_stats_update_begin(&tstats->syncp); 2777 u64_stats_add(&tstats->tx_bytes, len); 2778 u64_stats_add(&tstats->tx_packets, packets); 2779 u64_stats_update_end(&tstats->syncp); 2780 } 2781 2782 static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2783 { 2784 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2785 2786 u64_stats_update_begin(&lstats->syncp); 2787 u64_stats_add(&lstats->bytes, len); 2788 u64_stats_inc(&lstats->packets); 2789 u64_stats_update_end(&lstats->syncp); 2790 } 2791 2792 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2793 ({ \ 2794 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2795 if (pcpu_stats) { \ 2796 int __cpu; \ 2797 for_each_possible_cpu(__cpu) { \ 2798 typeof(type) *stat; \ 2799 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2800 u64_stats_init(&stat->syncp); \ 2801 } \ 2802 } \ 2803 pcpu_stats; \ 2804 }) 2805 2806 #define netdev_alloc_pcpu_stats(type) \ 2807 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2808 2809 #define devm_netdev_alloc_pcpu_stats(dev, type) \ 2810 ({ \ 2811 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2812 if (pcpu_stats) { \ 2813 int __cpu; \ 2814 for_each_possible_cpu(__cpu) { \ 2815 typeof(type) *stat; \ 2816 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2817 u64_stats_init(&stat->syncp); \ 2818 } \ 2819 } \ 2820 pcpu_stats; \ 2821 }) 2822 2823 enum netdev_lag_tx_type { 2824 NETDEV_LAG_TX_TYPE_UNKNOWN, 2825 NETDEV_LAG_TX_TYPE_RANDOM, 2826 NETDEV_LAG_TX_TYPE_BROADCAST, 2827 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2828 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2829 NETDEV_LAG_TX_TYPE_HASH, 2830 }; 2831 2832 enum netdev_lag_hash { 2833 NETDEV_LAG_HASH_NONE, 2834 NETDEV_LAG_HASH_L2, 2835 NETDEV_LAG_HASH_L34, 2836 NETDEV_LAG_HASH_L23, 2837 NETDEV_LAG_HASH_E23, 2838 NETDEV_LAG_HASH_E34, 2839 NETDEV_LAG_HASH_VLAN_SRCMAC, 2840 NETDEV_LAG_HASH_UNKNOWN, 2841 }; 2842 2843 struct netdev_lag_upper_info { 2844 enum netdev_lag_tx_type tx_type; 2845 enum netdev_lag_hash hash_type; 2846 }; 2847 2848 struct netdev_lag_lower_state_info { 2849 u8 link_up : 1, 2850 tx_enabled : 1; 2851 }; 2852 2853 #include <linux/notifier.h> 2854 2855 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2856 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2857 * adding new types. 2858 */ 2859 enum netdev_cmd { 2860 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2861 NETDEV_DOWN, 2862 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2863 detected a hardware crash and restarted 2864 - we can use this eg to kick tcp sessions 2865 once done */ 2866 NETDEV_CHANGE, /* Notify device state change */ 2867 NETDEV_REGISTER, 2868 NETDEV_UNREGISTER, 2869 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2870 NETDEV_CHANGEADDR, /* notify after the address change */ 2871 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2872 NETDEV_GOING_DOWN, 2873 NETDEV_CHANGENAME, 2874 NETDEV_FEAT_CHANGE, 2875 NETDEV_BONDING_FAILOVER, 2876 NETDEV_PRE_UP, 2877 NETDEV_PRE_TYPE_CHANGE, 2878 NETDEV_POST_TYPE_CHANGE, 2879 NETDEV_POST_INIT, 2880 NETDEV_PRE_UNINIT, 2881 NETDEV_RELEASE, 2882 NETDEV_NOTIFY_PEERS, 2883 NETDEV_JOIN, 2884 NETDEV_CHANGEUPPER, 2885 NETDEV_RESEND_IGMP, 2886 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2887 NETDEV_CHANGEINFODATA, 2888 NETDEV_BONDING_INFO, 2889 NETDEV_PRECHANGEUPPER, 2890 NETDEV_CHANGELOWERSTATE, 2891 NETDEV_UDP_TUNNEL_PUSH_INFO, 2892 NETDEV_UDP_TUNNEL_DROP_INFO, 2893 NETDEV_CHANGE_TX_QUEUE_LEN, 2894 NETDEV_CVLAN_FILTER_PUSH_INFO, 2895 NETDEV_CVLAN_FILTER_DROP_INFO, 2896 NETDEV_SVLAN_FILTER_PUSH_INFO, 2897 NETDEV_SVLAN_FILTER_DROP_INFO, 2898 NETDEV_OFFLOAD_XSTATS_ENABLE, 2899 NETDEV_OFFLOAD_XSTATS_DISABLE, 2900 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2901 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2902 NETDEV_XDP_FEAT_CHANGE, 2903 }; 2904 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2905 2906 int register_netdevice_notifier(struct notifier_block *nb); 2907 int unregister_netdevice_notifier(struct notifier_block *nb); 2908 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2909 int unregister_netdevice_notifier_net(struct net *net, 2910 struct notifier_block *nb); 2911 int register_netdevice_notifier_dev_net(struct net_device *dev, 2912 struct notifier_block *nb, 2913 struct netdev_net_notifier *nn); 2914 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2915 struct notifier_block *nb, 2916 struct netdev_net_notifier *nn); 2917 2918 struct netdev_notifier_info { 2919 struct net_device *dev; 2920 struct netlink_ext_ack *extack; 2921 }; 2922 2923 struct netdev_notifier_info_ext { 2924 struct netdev_notifier_info info; /* must be first */ 2925 union { 2926 u32 mtu; 2927 } ext; 2928 }; 2929 2930 struct netdev_notifier_change_info { 2931 struct netdev_notifier_info info; /* must be first */ 2932 unsigned int flags_changed; 2933 }; 2934 2935 struct netdev_notifier_changeupper_info { 2936 struct netdev_notifier_info info; /* must be first */ 2937 struct net_device *upper_dev; /* new upper dev */ 2938 bool master; /* is upper dev master */ 2939 bool linking; /* is the notification for link or unlink */ 2940 void *upper_info; /* upper dev info */ 2941 }; 2942 2943 struct netdev_notifier_changelowerstate_info { 2944 struct netdev_notifier_info info; /* must be first */ 2945 void *lower_state_info; /* is lower dev state */ 2946 }; 2947 2948 struct netdev_notifier_pre_changeaddr_info { 2949 struct netdev_notifier_info info; /* must be first */ 2950 const unsigned char *dev_addr; 2951 }; 2952 2953 enum netdev_offload_xstats_type { 2954 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2955 }; 2956 2957 struct netdev_notifier_offload_xstats_info { 2958 struct netdev_notifier_info info; /* must be first */ 2959 enum netdev_offload_xstats_type type; 2960 2961 union { 2962 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2963 struct netdev_notifier_offload_xstats_rd *report_delta; 2964 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2965 struct netdev_notifier_offload_xstats_ru *report_used; 2966 }; 2967 }; 2968 2969 int netdev_offload_xstats_enable(struct net_device *dev, 2970 enum netdev_offload_xstats_type type, 2971 struct netlink_ext_ack *extack); 2972 int netdev_offload_xstats_disable(struct net_device *dev, 2973 enum netdev_offload_xstats_type type); 2974 bool netdev_offload_xstats_enabled(const struct net_device *dev, 2975 enum netdev_offload_xstats_type type); 2976 int netdev_offload_xstats_get(struct net_device *dev, 2977 enum netdev_offload_xstats_type type, 2978 struct rtnl_hw_stats64 *stats, bool *used, 2979 struct netlink_ext_ack *extack); 2980 void 2981 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2982 const struct rtnl_hw_stats64 *stats); 2983 void 2984 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2985 void netdev_offload_xstats_push_delta(struct net_device *dev, 2986 enum netdev_offload_xstats_type type, 2987 const struct rtnl_hw_stats64 *stats); 2988 2989 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2990 struct net_device *dev) 2991 { 2992 info->dev = dev; 2993 info->extack = NULL; 2994 } 2995 2996 static inline struct net_device * 2997 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2998 { 2999 return info->dev; 3000 } 3001 3002 static inline struct netlink_ext_ack * 3003 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3004 { 3005 return info->extack; 3006 } 3007 3008 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3009 int call_netdevice_notifiers_info(unsigned long val, 3010 struct netdev_notifier_info *info); 3011 3012 #define for_each_netdev(net, d) \ 3013 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3014 #define for_each_netdev_reverse(net, d) \ 3015 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3016 #define for_each_netdev_rcu(net, d) \ 3017 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3018 #define for_each_netdev_safe(net, d, n) \ 3019 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3020 #define for_each_netdev_continue(net, d) \ 3021 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3022 #define for_each_netdev_continue_reverse(net, d) \ 3023 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3024 dev_list) 3025 #define for_each_netdev_continue_rcu(net, d) \ 3026 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3027 #define for_each_netdev_in_bond_rcu(bond, slave) \ 3028 for_each_netdev_rcu(&init_net, slave) \ 3029 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3030 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3031 3032 #define for_each_netdev_dump(net, d, ifindex) \ 3033 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \ 3034 ULONG_MAX, XA_PRESENT)); ifindex++) 3035 3036 static inline struct net_device *next_net_device(struct net_device *dev) 3037 { 3038 struct list_head *lh; 3039 struct net *net; 3040 3041 net = dev_net(dev); 3042 lh = dev->dev_list.next; 3043 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3044 } 3045 3046 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3047 { 3048 struct list_head *lh; 3049 struct net *net; 3050 3051 net = dev_net(dev); 3052 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3053 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3054 } 3055 3056 static inline struct net_device *first_net_device(struct net *net) 3057 { 3058 return list_empty(&net->dev_base_head) ? NULL : 3059 net_device_entry(net->dev_base_head.next); 3060 } 3061 3062 static inline struct net_device *first_net_device_rcu(struct net *net) 3063 { 3064 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3065 3066 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3067 } 3068 3069 int netdev_boot_setup_check(struct net_device *dev); 3070 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3071 const char *hwaddr); 3072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3073 void dev_add_pack(struct packet_type *pt); 3074 void dev_remove_pack(struct packet_type *pt); 3075 void __dev_remove_pack(struct packet_type *pt); 3076 void dev_add_offload(struct packet_offload *po); 3077 void dev_remove_offload(struct packet_offload *po); 3078 3079 int dev_get_iflink(const struct net_device *dev); 3080 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3081 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3082 struct net_device_path_stack *stack); 3083 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3084 unsigned short mask); 3085 struct net_device *dev_get_by_name(struct net *net, const char *name); 3086 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3087 struct net_device *__dev_get_by_name(struct net *net, const char *name); 3088 bool netdev_name_in_use(struct net *net, const char *name); 3089 int dev_alloc_name(struct net_device *dev, const char *name); 3090 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3091 void dev_close(struct net_device *dev); 3092 void dev_close_many(struct list_head *head, bool unlink); 3093 void dev_disable_lro(struct net_device *dev); 3094 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3095 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3096 struct net_device *sb_dev); 3097 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3098 struct net_device *sb_dev); 3099 3100 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3101 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3102 3103 static inline int dev_queue_xmit(struct sk_buff *skb) 3104 { 3105 return __dev_queue_xmit(skb, NULL); 3106 } 3107 3108 static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3109 struct net_device *sb_dev) 3110 { 3111 return __dev_queue_xmit(skb, sb_dev); 3112 } 3113 3114 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3115 { 3116 int ret; 3117 3118 ret = __dev_direct_xmit(skb, queue_id); 3119 if (!dev_xmit_complete(ret)) 3120 kfree_skb(skb); 3121 return ret; 3122 } 3123 3124 int register_netdevice(struct net_device *dev); 3125 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3126 void unregister_netdevice_many(struct list_head *head); 3127 static inline void unregister_netdevice(struct net_device *dev) 3128 { 3129 unregister_netdevice_queue(dev, NULL); 3130 } 3131 3132 int netdev_refcnt_read(const struct net_device *dev); 3133 void free_netdev(struct net_device *dev); 3134 void init_dummy_netdev(struct net_device *dev); 3135 3136 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3137 struct sk_buff *skb, 3138 bool all_slaves); 3139 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3140 struct sock *sk); 3141 struct net_device *dev_get_by_index(struct net *net, int ifindex); 3142 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3143 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3144 netdevice_tracker *tracker, gfp_t gfp); 3145 struct net_device *netdev_get_by_name(struct net *net, const char *name, 3146 netdevice_tracker *tracker, gfp_t gfp); 3147 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3148 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3149 void netdev_copy_name(struct net_device *dev, char *name); 3150 3151 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3152 unsigned short type, 3153 const void *daddr, const void *saddr, 3154 unsigned int len) 3155 { 3156 if (!dev->header_ops || !dev->header_ops->create) 3157 return 0; 3158 3159 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3160 } 3161 3162 static inline int dev_parse_header(const struct sk_buff *skb, 3163 unsigned char *haddr) 3164 { 3165 const struct net_device *dev = skb->dev; 3166 3167 if (!dev->header_ops || !dev->header_ops->parse) 3168 return 0; 3169 return dev->header_ops->parse(skb, haddr); 3170 } 3171 3172 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3173 { 3174 const struct net_device *dev = skb->dev; 3175 3176 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3177 return 0; 3178 return dev->header_ops->parse_protocol(skb); 3179 } 3180 3181 /* ll_header must have at least hard_header_len allocated */ 3182 static inline bool dev_validate_header(const struct net_device *dev, 3183 char *ll_header, int len) 3184 { 3185 if (likely(len >= dev->hard_header_len)) 3186 return true; 3187 if (len < dev->min_header_len) 3188 return false; 3189 3190 if (capable(CAP_SYS_RAWIO)) { 3191 memset(ll_header + len, 0, dev->hard_header_len - len); 3192 return true; 3193 } 3194 3195 if (dev->header_ops && dev->header_ops->validate) 3196 return dev->header_ops->validate(ll_header, len); 3197 3198 return false; 3199 } 3200 3201 static inline bool dev_has_header(const struct net_device *dev) 3202 { 3203 return dev->header_ops && dev->header_ops->create; 3204 } 3205 3206 /* 3207 * Incoming packets are placed on per-CPU queues 3208 */ 3209 struct softnet_data { 3210 struct list_head poll_list; 3211 struct sk_buff_head process_queue; 3212 local_lock_t process_queue_bh_lock; 3213 3214 /* stats */ 3215 unsigned int processed; 3216 unsigned int time_squeeze; 3217 #ifdef CONFIG_RPS 3218 struct softnet_data *rps_ipi_list; 3219 #endif 3220 3221 unsigned int received_rps; 3222 bool in_net_rx_action; 3223 bool in_napi_threaded_poll; 3224 3225 #ifdef CONFIG_NET_FLOW_LIMIT 3226 struct sd_flow_limit __rcu *flow_limit; 3227 #endif 3228 struct Qdisc *output_queue; 3229 struct Qdisc **output_queue_tailp; 3230 struct sk_buff *completion_queue; 3231 #ifdef CONFIG_XFRM_OFFLOAD 3232 struct sk_buff_head xfrm_backlog; 3233 #endif 3234 /* written and read only by owning cpu: */ 3235 struct netdev_xmit xmit; 3236 #ifdef CONFIG_RPS 3237 /* input_queue_head should be written by cpu owning this struct, 3238 * and only read by other cpus. Worth using a cache line. 3239 */ 3240 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3241 3242 /* Elements below can be accessed between CPUs for RPS/RFS */ 3243 call_single_data_t csd ____cacheline_aligned_in_smp; 3244 struct softnet_data *rps_ipi_next; 3245 unsigned int cpu; 3246 unsigned int input_queue_tail; 3247 #endif 3248 struct sk_buff_head input_pkt_queue; 3249 struct napi_struct backlog; 3250 3251 atomic_t dropped ____cacheline_aligned_in_smp; 3252 3253 /* Another possibly contended cache line */ 3254 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3255 int defer_count; 3256 int defer_ipi_scheduled; 3257 struct sk_buff *defer_list; 3258 call_single_data_t defer_csd; 3259 }; 3260 3261 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3262 3263 #ifndef CONFIG_PREEMPT_RT 3264 static inline int dev_recursion_level(void) 3265 { 3266 return this_cpu_read(softnet_data.xmit.recursion); 3267 } 3268 #else 3269 static inline int dev_recursion_level(void) 3270 { 3271 return current->net_xmit.recursion; 3272 } 3273 3274 #endif 3275 3276 void __netif_schedule(struct Qdisc *q); 3277 void netif_schedule_queue(struct netdev_queue *txq); 3278 3279 static inline void netif_tx_schedule_all(struct net_device *dev) 3280 { 3281 unsigned int i; 3282 3283 for (i = 0; i < dev->num_tx_queues; i++) 3284 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3285 } 3286 3287 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3288 { 3289 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3290 } 3291 3292 /** 3293 * netif_start_queue - allow transmit 3294 * @dev: network device 3295 * 3296 * Allow upper layers to call the device hard_start_xmit routine. 3297 */ 3298 static inline void netif_start_queue(struct net_device *dev) 3299 { 3300 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3301 } 3302 3303 static inline void netif_tx_start_all_queues(struct net_device *dev) 3304 { 3305 unsigned int i; 3306 3307 for (i = 0; i < dev->num_tx_queues; i++) { 3308 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3309 netif_tx_start_queue(txq); 3310 } 3311 } 3312 3313 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3314 3315 /** 3316 * netif_wake_queue - restart transmit 3317 * @dev: network device 3318 * 3319 * Allow upper layers to call the device hard_start_xmit routine. 3320 * Used for flow control when transmit resources are available. 3321 */ 3322 static inline void netif_wake_queue(struct net_device *dev) 3323 { 3324 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3325 } 3326 3327 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3328 { 3329 unsigned int i; 3330 3331 for (i = 0; i < dev->num_tx_queues; i++) { 3332 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3333 netif_tx_wake_queue(txq); 3334 } 3335 } 3336 3337 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3338 { 3339 /* Must be an atomic op see netif_txq_try_stop() */ 3340 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3341 } 3342 3343 /** 3344 * netif_stop_queue - stop transmitted packets 3345 * @dev: network device 3346 * 3347 * Stop upper layers calling the device hard_start_xmit routine. 3348 * Used for flow control when transmit resources are unavailable. 3349 */ 3350 static inline void netif_stop_queue(struct net_device *dev) 3351 { 3352 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3353 } 3354 3355 void netif_tx_stop_all_queues(struct net_device *dev); 3356 3357 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3358 { 3359 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3360 } 3361 3362 /** 3363 * netif_queue_stopped - test if transmit queue is flowblocked 3364 * @dev: network device 3365 * 3366 * Test if transmit queue on device is currently unable to send. 3367 */ 3368 static inline bool netif_queue_stopped(const struct net_device *dev) 3369 { 3370 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3371 } 3372 3373 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3374 { 3375 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3376 } 3377 3378 static inline bool 3379 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3380 { 3381 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3382 } 3383 3384 static inline bool 3385 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3386 { 3387 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3388 } 3389 3390 /** 3391 * netdev_queue_set_dql_min_limit - set dql minimum limit 3392 * @dev_queue: pointer to transmit queue 3393 * @min_limit: dql minimum limit 3394 * 3395 * Forces xmit_more() to return true until the minimum threshold 3396 * defined by @min_limit is reached (or until the tx queue is 3397 * empty). Warning: to be use with care, misuse will impact the 3398 * latency. 3399 */ 3400 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3401 unsigned int min_limit) 3402 { 3403 #ifdef CONFIG_BQL 3404 dev_queue->dql.min_limit = min_limit; 3405 #endif 3406 } 3407 3408 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq) 3409 { 3410 #ifdef CONFIG_BQL 3411 /* Non-BQL migrated drivers will return 0, too. */ 3412 return dql_avail(&txq->dql); 3413 #else 3414 return 0; 3415 #endif 3416 } 3417 3418 /** 3419 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3420 * @dev_queue: pointer to transmit queue 3421 * 3422 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3423 * to give appropriate hint to the CPU. 3424 */ 3425 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3426 { 3427 #ifdef CONFIG_BQL 3428 prefetchw(&dev_queue->dql.num_queued); 3429 #endif 3430 } 3431 3432 /** 3433 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3434 * @dev_queue: pointer to transmit queue 3435 * 3436 * BQL enabled drivers might use this helper in their TX completion path, 3437 * to give appropriate hint to the CPU. 3438 */ 3439 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3440 { 3441 #ifdef CONFIG_BQL 3442 prefetchw(&dev_queue->dql.limit); 3443 #endif 3444 } 3445 3446 /** 3447 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3448 * @dev_queue: network device queue 3449 * @bytes: number of bytes queued to the device queue 3450 * 3451 * Report the number of bytes queued for sending/completion to the network 3452 * device hardware queue. @bytes should be a good approximation and should 3453 * exactly match netdev_completed_queue() @bytes. 3454 * This is typically called once per packet, from ndo_start_xmit(). 3455 */ 3456 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3457 unsigned int bytes) 3458 { 3459 #ifdef CONFIG_BQL 3460 dql_queued(&dev_queue->dql, bytes); 3461 3462 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3463 return; 3464 3465 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3466 3467 /* 3468 * The XOFF flag must be set before checking the dql_avail below, 3469 * because in netdev_tx_completed_queue we update the dql_completed 3470 * before checking the XOFF flag. 3471 */ 3472 smp_mb(); 3473 3474 /* check again in case another CPU has just made room avail */ 3475 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3476 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3477 #endif 3478 } 3479 3480 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3481 * that they should not test BQL status themselves. 3482 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3483 * skb of a batch. 3484 * Returns true if the doorbell must be used to kick the NIC. 3485 */ 3486 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3487 unsigned int bytes, 3488 bool xmit_more) 3489 { 3490 if (xmit_more) { 3491 #ifdef CONFIG_BQL 3492 dql_queued(&dev_queue->dql, bytes); 3493 #endif 3494 return netif_tx_queue_stopped(dev_queue); 3495 } 3496 netdev_tx_sent_queue(dev_queue, bytes); 3497 return true; 3498 } 3499 3500 /** 3501 * netdev_sent_queue - report the number of bytes queued to hardware 3502 * @dev: network device 3503 * @bytes: number of bytes queued to the hardware device queue 3504 * 3505 * Report the number of bytes queued for sending/completion to the network 3506 * device hardware queue#0. @bytes should be a good approximation and should 3507 * exactly match netdev_completed_queue() @bytes. 3508 * This is typically called once per packet, from ndo_start_xmit(). 3509 */ 3510 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3511 { 3512 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3513 } 3514 3515 static inline bool __netdev_sent_queue(struct net_device *dev, 3516 unsigned int bytes, 3517 bool xmit_more) 3518 { 3519 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3520 xmit_more); 3521 } 3522 3523 /** 3524 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3525 * @dev_queue: network device queue 3526 * @pkts: number of packets (currently ignored) 3527 * @bytes: number of bytes dequeued from the device queue 3528 * 3529 * Must be called at most once per TX completion round (and not per 3530 * individual packet), so that BQL can adjust its limits appropriately. 3531 */ 3532 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3533 unsigned int pkts, unsigned int bytes) 3534 { 3535 #ifdef CONFIG_BQL 3536 if (unlikely(!bytes)) 3537 return; 3538 3539 dql_completed(&dev_queue->dql, bytes); 3540 3541 /* 3542 * Without the memory barrier there is a small possiblity that 3543 * netdev_tx_sent_queue will miss the update and cause the queue to 3544 * be stopped forever 3545 */ 3546 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3547 3548 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3549 return; 3550 3551 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3552 netif_schedule_queue(dev_queue); 3553 #endif 3554 } 3555 3556 /** 3557 * netdev_completed_queue - report bytes and packets completed by device 3558 * @dev: network device 3559 * @pkts: actual number of packets sent over the medium 3560 * @bytes: actual number of bytes sent over the medium 3561 * 3562 * Report the number of bytes and packets transmitted by the network device 3563 * hardware queue over the physical medium, @bytes must exactly match the 3564 * @bytes amount passed to netdev_sent_queue() 3565 */ 3566 static inline void netdev_completed_queue(struct net_device *dev, 3567 unsigned int pkts, unsigned int bytes) 3568 { 3569 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3570 } 3571 3572 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3573 { 3574 #ifdef CONFIG_BQL 3575 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3576 dql_reset(&q->dql); 3577 #endif 3578 } 3579 3580 /** 3581 * netdev_reset_queue - reset the packets and bytes count of a network device 3582 * @dev_queue: network device 3583 * 3584 * Reset the bytes and packet count of a network device and clear the 3585 * software flow control OFF bit for this network device 3586 */ 3587 static inline void netdev_reset_queue(struct net_device *dev_queue) 3588 { 3589 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3590 } 3591 3592 /** 3593 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3594 * @dev: network device 3595 * @queue_index: given tx queue index 3596 * 3597 * Returns 0 if given tx queue index >= number of device tx queues, 3598 * otherwise returns the originally passed tx queue index. 3599 */ 3600 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3601 { 3602 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3603 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3604 dev->name, queue_index, 3605 dev->real_num_tx_queues); 3606 return 0; 3607 } 3608 3609 return queue_index; 3610 } 3611 3612 /** 3613 * netif_running - test if up 3614 * @dev: network device 3615 * 3616 * Test if the device has been brought up. 3617 */ 3618 static inline bool netif_running(const struct net_device *dev) 3619 { 3620 return test_bit(__LINK_STATE_START, &dev->state); 3621 } 3622 3623 /* 3624 * Routines to manage the subqueues on a device. We only need start, 3625 * stop, and a check if it's stopped. All other device management is 3626 * done at the overall netdevice level. 3627 * Also test the device if we're multiqueue. 3628 */ 3629 3630 /** 3631 * netif_start_subqueue - allow sending packets on subqueue 3632 * @dev: network device 3633 * @queue_index: sub queue index 3634 * 3635 * Start individual transmit queue of a device with multiple transmit queues. 3636 */ 3637 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3638 { 3639 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3640 3641 netif_tx_start_queue(txq); 3642 } 3643 3644 /** 3645 * netif_stop_subqueue - stop sending packets on subqueue 3646 * @dev: network device 3647 * @queue_index: sub queue index 3648 * 3649 * Stop individual transmit queue of a device with multiple transmit queues. 3650 */ 3651 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3652 { 3653 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3654 netif_tx_stop_queue(txq); 3655 } 3656 3657 /** 3658 * __netif_subqueue_stopped - test status of subqueue 3659 * @dev: network device 3660 * @queue_index: sub queue index 3661 * 3662 * Check individual transmit queue of a device with multiple transmit queues. 3663 */ 3664 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3665 u16 queue_index) 3666 { 3667 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3668 3669 return netif_tx_queue_stopped(txq); 3670 } 3671 3672 /** 3673 * netif_subqueue_stopped - test status of subqueue 3674 * @dev: network device 3675 * @skb: sub queue buffer pointer 3676 * 3677 * Check individual transmit queue of a device with multiple transmit queues. 3678 */ 3679 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3680 struct sk_buff *skb) 3681 { 3682 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3683 } 3684 3685 /** 3686 * netif_wake_subqueue - allow sending packets on subqueue 3687 * @dev: network device 3688 * @queue_index: sub queue index 3689 * 3690 * Resume individual transmit queue of a device with multiple transmit queues. 3691 */ 3692 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3693 { 3694 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3695 3696 netif_tx_wake_queue(txq); 3697 } 3698 3699 #ifdef CONFIG_XPS 3700 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3701 u16 index); 3702 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3703 u16 index, enum xps_map_type type); 3704 3705 /** 3706 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3707 * @j: CPU/Rx queue index 3708 * @mask: bitmask of all cpus/rx queues 3709 * @nr_bits: number of bits in the bitmask 3710 * 3711 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3712 */ 3713 static inline bool netif_attr_test_mask(unsigned long j, 3714 const unsigned long *mask, 3715 unsigned int nr_bits) 3716 { 3717 cpu_max_bits_warn(j, nr_bits); 3718 return test_bit(j, mask); 3719 } 3720 3721 /** 3722 * netif_attr_test_online - Test for online CPU/Rx queue 3723 * @j: CPU/Rx queue index 3724 * @online_mask: bitmask for CPUs/Rx queues that are online 3725 * @nr_bits: number of bits in the bitmask 3726 * 3727 * Returns true if a CPU/Rx queue is online. 3728 */ 3729 static inline bool netif_attr_test_online(unsigned long j, 3730 const unsigned long *online_mask, 3731 unsigned int nr_bits) 3732 { 3733 cpu_max_bits_warn(j, nr_bits); 3734 3735 if (online_mask) 3736 return test_bit(j, online_mask); 3737 3738 return (j < nr_bits); 3739 } 3740 3741 /** 3742 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3743 * @n: CPU/Rx queue index 3744 * @srcp: the cpumask/Rx queue mask pointer 3745 * @nr_bits: number of bits in the bitmask 3746 * 3747 * Returns >= nr_bits if no further CPUs/Rx queues set. 3748 */ 3749 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3750 unsigned int nr_bits) 3751 { 3752 /* -1 is a legal arg here. */ 3753 if (n != -1) 3754 cpu_max_bits_warn(n, nr_bits); 3755 3756 if (srcp) 3757 return find_next_bit(srcp, nr_bits, n + 1); 3758 3759 return n + 1; 3760 } 3761 3762 /** 3763 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3764 * @n: CPU/Rx queue index 3765 * @src1p: the first CPUs/Rx queues mask pointer 3766 * @src2p: the second CPUs/Rx queues mask pointer 3767 * @nr_bits: number of bits in the bitmask 3768 * 3769 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3770 */ 3771 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3772 const unsigned long *src2p, 3773 unsigned int nr_bits) 3774 { 3775 /* -1 is a legal arg here. */ 3776 if (n != -1) 3777 cpu_max_bits_warn(n, nr_bits); 3778 3779 if (src1p && src2p) 3780 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3781 else if (src1p) 3782 return find_next_bit(src1p, nr_bits, n + 1); 3783 else if (src2p) 3784 return find_next_bit(src2p, nr_bits, n + 1); 3785 3786 return n + 1; 3787 } 3788 #else 3789 static inline int netif_set_xps_queue(struct net_device *dev, 3790 const struct cpumask *mask, 3791 u16 index) 3792 { 3793 return 0; 3794 } 3795 3796 static inline int __netif_set_xps_queue(struct net_device *dev, 3797 const unsigned long *mask, 3798 u16 index, enum xps_map_type type) 3799 { 3800 return 0; 3801 } 3802 #endif 3803 3804 /** 3805 * netif_is_multiqueue - test if device has multiple transmit queues 3806 * @dev: network device 3807 * 3808 * Check if device has multiple transmit queues 3809 */ 3810 static inline bool netif_is_multiqueue(const struct net_device *dev) 3811 { 3812 return dev->num_tx_queues > 1; 3813 } 3814 3815 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3816 3817 #ifdef CONFIG_SYSFS 3818 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3819 #else 3820 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3821 unsigned int rxqs) 3822 { 3823 dev->real_num_rx_queues = rxqs; 3824 return 0; 3825 } 3826 #endif 3827 int netif_set_real_num_queues(struct net_device *dev, 3828 unsigned int txq, unsigned int rxq); 3829 3830 int netif_get_num_default_rss_queues(void); 3831 3832 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3833 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3834 3835 /* 3836 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3837 * interrupt context or with hardware interrupts being disabled. 3838 * (in_hardirq() || irqs_disabled()) 3839 * 3840 * We provide four helpers that can be used in following contexts : 3841 * 3842 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3843 * replacing kfree_skb(skb) 3844 * 3845 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3846 * Typically used in place of consume_skb(skb) in TX completion path 3847 * 3848 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3849 * replacing kfree_skb(skb) 3850 * 3851 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3852 * and consumed a packet. Used in place of consume_skb(skb) 3853 */ 3854 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3855 { 3856 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3857 } 3858 3859 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3860 { 3861 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3862 } 3863 3864 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3865 { 3866 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3867 } 3868 3869 static inline void dev_consume_skb_any(struct sk_buff *skb) 3870 { 3871 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3872 } 3873 3874 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3875 struct bpf_prog *xdp_prog); 3876 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3877 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb); 3878 int netif_rx(struct sk_buff *skb); 3879 int __netif_rx(struct sk_buff *skb); 3880 3881 int netif_receive_skb(struct sk_buff *skb); 3882 int netif_receive_skb_core(struct sk_buff *skb); 3883 void netif_receive_skb_list_internal(struct list_head *head); 3884 void netif_receive_skb_list(struct list_head *head); 3885 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3886 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3887 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3888 void napi_get_frags_check(struct napi_struct *napi); 3889 gro_result_t napi_gro_frags(struct napi_struct *napi); 3890 3891 static inline void napi_free_frags(struct napi_struct *napi) 3892 { 3893 kfree_skb(napi->skb); 3894 napi->skb = NULL; 3895 } 3896 3897 bool netdev_is_rx_handler_busy(struct net_device *dev); 3898 int netdev_rx_handler_register(struct net_device *dev, 3899 rx_handler_func_t *rx_handler, 3900 void *rx_handler_data); 3901 void netdev_rx_handler_unregister(struct net_device *dev); 3902 3903 bool dev_valid_name(const char *name); 3904 static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3905 { 3906 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3907 } 3908 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3909 int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3910 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3911 void __user *data, bool *need_copyout); 3912 int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3913 int generic_hwtstamp_get_lower(struct net_device *dev, 3914 struct kernel_hwtstamp_config *kernel_cfg); 3915 int generic_hwtstamp_set_lower(struct net_device *dev, 3916 struct kernel_hwtstamp_config *kernel_cfg, 3917 struct netlink_ext_ack *extack); 3918 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3919 unsigned int dev_get_flags(const struct net_device *); 3920 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3921 struct netlink_ext_ack *extack); 3922 int dev_change_flags(struct net_device *dev, unsigned int flags, 3923 struct netlink_ext_ack *extack); 3924 int dev_set_alias(struct net_device *, const char *, size_t); 3925 int dev_get_alias(const struct net_device *, char *, size_t); 3926 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3927 const char *pat, int new_ifindex); 3928 static inline 3929 int dev_change_net_namespace(struct net_device *dev, struct net *net, 3930 const char *pat) 3931 { 3932 return __dev_change_net_namespace(dev, net, pat, 0); 3933 } 3934 int __dev_set_mtu(struct net_device *, int); 3935 int dev_set_mtu(struct net_device *, int); 3936 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3937 struct netlink_ext_ack *extack); 3938 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3939 struct netlink_ext_ack *extack); 3940 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3941 struct netlink_ext_ack *extack); 3942 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3943 int dev_get_port_parent_id(struct net_device *dev, 3944 struct netdev_phys_item_id *ppid, bool recurse); 3945 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3946 3947 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3948 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3949 struct netdev_queue *txq, int *ret); 3950 3951 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3952 u8 dev_xdp_prog_count(struct net_device *dev); 3953 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3954 3955 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3957 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3958 bool is_skb_forwardable(const struct net_device *dev, 3959 const struct sk_buff *skb); 3960 3961 static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3962 const struct sk_buff *skb, 3963 const bool check_mtu) 3964 { 3965 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3966 unsigned int len; 3967 3968 if (!(dev->flags & IFF_UP)) 3969 return false; 3970 3971 if (!check_mtu) 3972 return true; 3973 3974 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3975 if (skb->len <= len) 3976 return true; 3977 3978 /* if TSO is enabled, we don't care about the length as the packet 3979 * could be forwarded without being segmented before 3980 */ 3981 if (skb_is_gso(skb)) 3982 return true; 3983 3984 return false; 3985 } 3986 3987 void netdev_core_stats_inc(struct net_device *dev, u32 offset); 3988 3989 #define DEV_CORE_STATS_INC(FIELD) \ 3990 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 3991 { \ 3992 netdev_core_stats_inc(dev, \ 3993 offsetof(struct net_device_core_stats, FIELD)); \ 3994 } 3995 DEV_CORE_STATS_INC(rx_dropped) 3996 DEV_CORE_STATS_INC(tx_dropped) 3997 DEV_CORE_STATS_INC(rx_nohandler) 3998 DEV_CORE_STATS_INC(rx_otherhost_dropped) 3999 #undef DEV_CORE_STATS_INC 4000 4001 static __always_inline int ____dev_forward_skb(struct net_device *dev, 4002 struct sk_buff *skb, 4003 const bool check_mtu) 4004 { 4005 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4006 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4007 dev_core_stats_rx_dropped_inc(dev); 4008 kfree_skb(skb); 4009 return NET_RX_DROP; 4010 } 4011 4012 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4013 skb->priority = 0; 4014 return 0; 4015 } 4016 4017 bool dev_nit_active(struct net_device *dev); 4018 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4019 4020 static inline void __dev_put(struct net_device *dev) 4021 { 4022 if (dev) { 4023 #ifdef CONFIG_PCPU_DEV_REFCNT 4024 this_cpu_dec(*dev->pcpu_refcnt); 4025 #else 4026 refcount_dec(&dev->dev_refcnt); 4027 #endif 4028 } 4029 } 4030 4031 static inline void __dev_hold(struct net_device *dev) 4032 { 4033 if (dev) { 4034 #ifdef CONFIG_PCPU_DEV_REFCNT 4035 this_cpu_inc(*dev->pcpu_refcnt); 4036 #else 4037 refcount_inc(&dev->dev_refcnt); 4038 #endif 4039 } 4040 } 4041 4042 static inline void __netdev_tracker_alloc(struct net_device *dev, 4043 netdevice_tracker *tracker, 4044 gfp_t gfp) 4045 { 4046 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4047 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4048 #endif 4049 } 4050 4051 /* netdev_tracker_alloc() can upgrade a prior untracked reference 4052 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4053 */ 4054 static inline void netdev_tracker_alloc(struct net_device *dev, 4055 netdevice_tracker *tracker, gfp_t gfp) 4056 { 4057 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4058 refcount_dec(&dev->refcnt_tracker.no_tracker); 4059 __netdev_tracker_alloc(dev, tracker, gfp); 4060 #endif 4061 } 4062 4063 static inline void netdev_tracker_free(struct net_device *dev, 4064 netdevice_tracker *tracker) 4065 { 4066 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4067 ref_tracker_free(&dev->refcnt_tracker, tracker); 4068 #endif 4069 } 4070 4071 static inline void netdev_hold(struct net_device *dev, 4072 netdevice_tracker *tracker, gfp_t gfp) 4073 { 4074 if (dev) { 4075 __dev_hold(dev); 4076 __netdev_tracker_alloc(dev, tracker, gfp); 4077 } 4078 } 4079 4080 static inline void netdev_put(struct net_device *dev, 4081 netdevice_tracker *tracker) 4082 { 4083 if (dev) { 4084 netdev_tracker_free(dev, tracker); 4085 __dev_put(dev); 4086 } 4087 } 4088 4089 /** 4090 * dev_hold - get reference to device 4091 * @dev: network device 4092 * 4093 * Hold reference to device to keep it from being freed. 4094 * Try using netdev_hold() instead. 4095 */ 4096 static inline void dev_hold(struct net_device *dev) 4097 { 4098 netdev_hold(dev, NULL, GFP_ATOMIC); 4099 } 4100 4101 /** 4102 * dev_put - release reference to device 4103 * @dev: network device 4104 * 4105 * Release reference to device to allow it to be freed. 4106 * Try using netdev_put() instead. 4107 */ 4108 static inline void dev_put(struct net_device *dev) 4109 { 4110 netdev_put(dev, NULL); 4111 } 4112 4113 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T)) 4114 4115 static inline void netdev_ref_replace(struct net_device *odev, 4116 struct net_device *ndev, 4117 netdevice_tracker *tracker, 4118 gfp_t gfp) 4119 { 4120 if (odev) 4121 netdev_tracker_free(odev, tracker); 4122 4123 __dev_hold(ndev); 4124 __dev_put(odev); 4125 4126 if (ndev) 4127 __netdev_tracker_alloc(ndev, tracker, gfp); 4128 } 4129 4130 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 4131 * and _off may be called from IRQ context, but it is caller 4132 * who is responsible for serialization of these calls. 4133 * 4134 * The name carrier is inappropriate, these functions should really be 4135 * called netif_lowerlayer_*() because they represent the state of any 4136 * kind of lower layer not just hardware media. 4137 */ 4138 void linkwatch_fire_event(struct net_device *dev); 4139 4140 /** 4141 * linkwatch_sync_dev - sync linkwatch for the given device 4142 * @dev: network device to sync linkwatch for 4143 * 4144 * Sync linkwatch for the given device, removing it from the 4145 * pending work list (if queued). 4146 */ 4147 void linkwatch_sync_dev(struct net_device *dev); 4148 4149 /** 4150 * netif_carrier_ok - test if carrier present 4151 * @dev: network device 4152 * 4153 * Check if carrier is present on device 4154 */ 4155 static inline bool netif_carrier_ok(const struct net_device *dev) 4156 { 4157 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4158 } 4159 4160 unsigned long dev_trans_start(struct net_device *dev); 4161 4162 void __netdev_watchdog_up(struct net_device *dev); 4163 4164 void netif_carrier_on(struct net_device *dev); 4165 void netif_carrier_off(struct net_device *dev); 4166 void netif_carrier_event(struct net_device *dev); 4167 4168 /** 4169 * netif_dormant_on - mark device as dormant. 4170 * @dev: network device 4171 * 4172 * Mark device as dormant (as per RFC2863). 4173 * 4174 * The dormant state indicates that the relevant interface is not 4175 * actually in a condition to pass packets (i.e., it is not 'up') but is 4176 * in a "pending" state, waiting for some external event. For "on- 4177 * demand" interfaces, this new state identifies the situation where the 4178 * interface is waiting for events to place it in the up state. 4179 */ 4180 static inline void netif_dormant_on(struct net_device *dev) 4181 { 4182 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4183 linkwatch_fire_event(dev); 4184 } 4185 4186 /** 4187 * netif_dormant_off - set device as not dormant. 4188 * @dev: network device 4189 * 4190 * Device is not in dormant state. 4191 */ 4192 static inline void netif_dormant_off(struct net_device *dev) 4193 { 4194 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4195 linkwatch_fire_event(dev); 4196 } 4197 4198 /** 4199 * netif_dormant - test if device is dormant 4200 * @dev: network device 4201 * 4202 * Check if device is dormant. 4203 */ 4204 static inline bool netif_dormant(const struct net_device *dev) 4205 { 4206 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4207 } 4208 4209 4210 /** 4211 * netif_testing_on - mark device as under test. 4212 * @dev: network device 4213 * 4214 * Mark device as under test (as per RFC2863). 4215 * 4216 * The testing state indicates that some test(s) must be performed on 4217 * the interface. After completion, of the test, the interface state 4218 * will change to up, dormant, or down, as appropriate. 4219 */ 4220 static inline void netif_testing_on(struct net_device *dev) 4221 { 4222 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4223 linkwatch_fire_event(dev); 4224 } 4225 4226 /** 4227 * netif_testing_off - set device as not under test. 4228 * @dev: network device 4229 * 4230 * Device is not in testing state. 4231 */ 4232 static inline void netif_testing_off(struct net_device *dev) 4233 { 4234 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4235 linkwatch_fire_event(dev); 4236 } 4237 4238 /** 4239 * netif_testing - test if device is under test 4240 * @dev: network device 4241 * 4242 * Check if device is under test 4243 */ 4244 static inline bool netif_testing(const struct net_device *dev) 4245 { 4246 return test_bit(__LINK_STATE_TESTING, &dev->state); 4247 } 4248 4249 4250 /** 4251 * netif_oper_up - test if device is operational 4252 * @dev: network device 4253 * 4254 * Check if carrier is operational 4255 */ 4256 static inline bool netif_oper_up(const struct net_device *dev) 4257 { 4258 unsigned int operstate = READ_ONCE(dev->operstate); 4259 4260 return operstate == IF_OPER_UP || 4261 operstate == IF_OPER_UNKNOWN /* backward compat */; 4262 } 4263 4264 /** 4265 * netif_device_present - is device available or removed 4266 * @dev: network device 4267 * 4268 * Check if device has not been removed from system. 4269 */ 4270 static inline bool netif_device_present(const struct net_device *dev) 4271 { 4272 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4273 } 4274 4275 void netif_device_detach(struct net_device *dev); 4276 4277 void netif_device_attach(struct net_device *dev); 4278 4279 /* 4280 * Network interface message level settings 4281 */ 4282 4283 enum { 4284 NETIF_MSG_DRV_BIT, 4285 NETIF_MSG_PROBE_BIT, 4286 NETIF_MSG_LINK_BIT, 4287 NETIF_MSG_TIMER_BIT, 4288 NETIF_MSG_IFDOWN_BIT, 4289 NETIF_MSG_IFUP_BIT, 4290 NETIF_MSG_RX_ERR_BIT, 4291 NETIF_MSG_TX_ERR_BIT, 4292 NETIF_MSG_TX_QUEUED_BIT, 4293 NETIF_MSG_INTR_BIT, 4294 NETIF_MSG_TX_DONE_BIT, 4295 NETIF_MSG_RX_STATUS_BIT, 4296 NETIF_MSG_PKTDATA_BIT, 4297 NETIF_MSG_HW_BIT, 4298 NETIF_MSG_WOL_BIT, 4299 4300 /* When you add a new bit above, update netif_msg_class_names array 4301 * in net/ethtool/common.c 4302 */ 4303 NETIF_MSG_CLASS_COUNT, 4304 }; 4305 /* Both ethtool_ops interface and internal driver implementation use u32 */ 4306 static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4307 4308 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4309 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4310 4311 #define NETIF_MSG_DRV __NETIF_MSG(DRV) 4312 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4313 #define NETIF_MSG_LINK __NETIF_MSG(LINK) 4314 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4315 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4316 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4317 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4318 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4319 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4320 #define NETIF_MSG_INTR __NETIF_MSG(INTR) 4321 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4322 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4323 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4324 #define NETIF_MSG_HW __NETIF_MSG(HW) 4325 #define NETIF_MSG_WOL __NETIF_MSG(WOL) 4326 4327 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4328 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4329 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4330 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4331 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4332 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4333 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4334 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4335 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4336 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4337 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4338 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4339 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4340 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4341 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4342 4343 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4344 { 4345 /* use default */ 4346 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4347 return default_msg_enable_bits; 4348 if (debug_value == 0) /* no output */ 4349 return 0; 4350 /* set low N bits */ 4351 return (1U << debug_value) - 1; 4352 } 4353 4354 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4355 { 4356 spin_lock(&txq->_xmit_lock); 4357 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4358 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4359 } 4360 4361 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4362 { 4363 __acquire(&txq->_xmit_lock); 4364 return true; 4365 } 4366 4367 static inline void __netif_tx_release(struct netdev_queue *txq) 4368 { 4369 __release(&txq->_xmit_lock); 4370 } 4371 4372 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4373 { 4374 spin_lock_bh(&txq->_xmit_lock); 4375 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4376 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4377 } 4378 4379 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4380 { 4381 bool ok = spin_trylock(&txq->_xmit_lock); 4382 4383 if (likely(ok)) { 4384 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4385 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4386 } 4387 return ok; 4388 } 4389 4390 static inline void __netif_tx_unlock(struct netdev_queue *txq) 4391 { 4392 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4393 WRITE_ONCE(txq->xmit_lock_owner, -1); 4394 spin_unlock(&txq->_xmit_lock); 4395 } 4396 4397 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4398 { 4399 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4400 WRITE_ONCE(txq->xmit_lock_owner, -1); 4401 spin_unlock_bh(&txq->_xmit_lock); 4402 } 4403 4404 /* 4405 * txq->trans_start can be read locklessly from dev_watchdog() 4406 */ 4407 static inline void txq_trans_update(struct netdev_queue *txq) 4408 { 4409 if (txq->xmit_lock_owner != -1) 4410 WRITE_ONCE(txq->trans_start, jiffies); 4411 } 4412 4413 static inline void txq_trans_cond_update(struct netdev_queue *txq) 4414 { 4415 unsigned long now = jiffies; 4416 4417 if (READ_ONCE(txq->trans_start) != now) 4418 WRITE_ONCE(txq->trans_start, now); 4419 } 4420 4421 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4422 static inline void netif_trans_update(struct net_device *dev) 4423 { 4424 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4425 4426 txq_trans_cond_update(txq); 4427 } 4428 4429 /** 4430 * netif_tx_lock - grab network device transmit lock 4431 * @dev: network device 4432 * 4433 * Get network device transmit lock 4434 */ 4435 void netif_tx_lock(struct net_device *dev); 4436 4437 static inline void netif_tx_lock_bh(struct net_device *dev) 4438 { 4439 local_bh_disable(); 4440 netif_tx_lock(dev); 4441 } 4442 4443 void netif_tx_unlock(struct net_device *dev); 4444 4445 static inline void netif_tx_unlock_bh(struct net_device *dev) 4446 { 4447 netif_tx_unlock(dev); 4448 local_bh_enable(); 4449 } 4450 4451 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4452 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4453 __netif_tx_lock(txq, cpu); \ 4454 } else { \ 4455 __netif_tx_acquire(txq); \ 4456 } \ 4457 } 4458 4459 #define HARD_TX_TRYLOCK(dev, txq) \ 4460 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4461 __netif_tx_trylock(txq) : \ 4462 __netif_tx_acquire(txq)) 4463 4464 #define HARD_TX_UNLOCK(dev, txq) { \ 4465 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4466 __netif_tx_unlock(txq); \ 4467 } else { \ 4468 __netif_tx_release(txq); \ 4469 } \ 4470 } 4471 4472 static inline void netif_tx_disable(struct net_device *dev) 4473 { 4474 unsigned int i; 4475 int cpu; 4476 4477 local_bh_disable(); 4478 cpu = smp_processor_id(); 4479 spin_lock(&dev->tx_global_lock); 4480 for (i = 0; i < dev->num_tx_queues; i++) { 4481 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4482 4483 __netif_tx_lock(txq, cpu); 4484 netif_tx_stop_queue(txq); 4485 __netif_tx_unlock(txq); 4486 } 4487 spin_unlock(&dev->tx_global_lock); 4488 local_bh_enable(); 4489 } 4490 4491 static inline void netif_addr_lock(struct net_device *dev) 4492 { 4493 unsigned char nest_level = 0; 4494 4495 #ifdef CONFIG_LOCKDEP 4496 nest_level = dev->nested_level; 4497 #endif 4498 spin_lock_nested(&dev->addr_list_lock, nest_level); 4499 } 4500 4501 static inline void netif_addr_lock_bh(struct net_device *dev) 4502 { 4503 unsigned char nest_level = 0; 4504 4505 #ifdef CONFIG_LOCKDEP 4506 nest_level = dev->nested_level; 4507 #endif 4508 local_bh_disable(); 4509 spin_lock_nested(&dev->addr_list_lock, nest_level); 4510 } 4511 4512 static inline void netif_addr_unlock(struct net_device *dev) 4513 { 4514 spin_unlock(&dev->addr_list_lock); 4515 } 4516 4517 static inline void netif_addr_unlock_bh(struct net_device *dev) 4518 { 4519 spin_unlock_bh(&dev->addr_list_lock); 4520 } 4521 4522 /* 4523 * dev_addrs walker. Should be used only for read access. Call with 4524 * rcu_read_lock held. 4525 */ 4526 #define for_each_dev_addr(dev, ha) \ 4527 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4528 4529 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4530 4531 void ether_setup(struct net_device *dev); 4532 4533 /* Allocate dummy net_device */ 4534 struct net_device *alloc_netdev_dummy(int sizeof_priv); 4535 4536 /* Support for loadable net-drivers */ 4537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4538 unsigned char name_assign_type, 4539 void (*setup)(struct net_device *), 4540 unsigned int txqs, unsigned int rxqs); 4541 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4542 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4543 4544 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4545 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4546 count) 4547 4548 int register_netdev(struct net_device *dev); 4549 void unregister_netdev(struct net_device *dev); 4550 4551 int devm_register_netdev(struct device *dev, struct net_device *ndev); 4552 4553 /* General hardware address lists handling functions */ 4554 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4555 struct netdev_hw_addr_list *from_list, int addr_len); 4556 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4557 struct netdev_hw_addr_list *from_list, int addr_len); 4558 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4559 struct net_device *dev, 4560 int (*sync)(struct net_device *, const unsigned char *), 4561 int (*unsync)(struct net_device *, 4562 const unsigned char *)); 4563 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4564 struct net_device *dev, 4565 int (*sync)(struct net_device *, 4566 const unsigned char *, int), 4567 int (*unsync)(struct net_device *, 4568 const unsigned char *, int)); 4569 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4570 struct net_device *dev, 4571 int (*unsync)(struct net_device *, 4572 const unsigned char *, int)); 4573 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4574 struct net_device *dev, 4575 int (*unsync)(struct net_device *, 4576 const unsigned char *)); 4577 void __hw_addr_init(struct netdev_hw_addr_list *list); 4578 4579 /* Functions used for device addresses handling */ 4580 void dev_addr_mod(struct net_device *dev, unsigned int offset, 4581 const void *addr, size_t len); 4582 4583 static inline void 4584 __dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4585 { 4586 dev_addr_mod(dev, 0, addr, len); 4587 } 4588 4589 static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4590 { 4591 __dev_addr_set(dev, addr, dev->addr_len); 4592 } 4593 4594 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4595 unsigned char addr_type); 4596 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4597 unsigned char addr_type); 4598 4599 /* Functions used for unicast addresses handling */ 4600 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4601 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4602 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4603 int dev_uc_sync(struct net_device *to, struct net_device *from); 4604 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4605 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4606 void dev_uc_flush(struct net_device *dev); 4607 void dev_uc_init(struct net_device *dev); 4608 4609 /** 4610 * __dev_uc_sync - Synchonize device's unicast list 4611 * @dev: device to sync 4612 * @sync: function to call if address should be added 4613 * @unsync: function to call if address should be removed 4614 * 4615 * Add newly added addresses to the interface, and release 4616 * addresses that have been deleted. 4617 */ 4618 static inline int __dev_uc_sync(struct net_device *dev, 4619 int (*sync)(struct net_device *, 4620 const unsigned char *), 4621 int (*unsync)(struct net_device *, 4622 const unsigned char *)) 4623 { 4624 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4625 } 4626 4627 /** 4628 * __dev_uc_unsync - Remove synchronized addresses from device 4629 * @dev: device to sync 4630 * @unsync: function to call if address should be removed 4631 * 4632 * Remove all addresses that were added to the device by dev_uc_sync(). 4633 */ 4634 static inline void __dev_uc_unsync(struct net_device *dev, 4635 int (*unsync)(struct net_device *, 4636 const unsigned char *)) 4637 { 4638 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4639 } 4640 4641 /* Functions used for multicast addresses handling */ 4642 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4643 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4644 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4645 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4646 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4647 int dev_mc_sync(struct net_device *to, struct net_device *from); 4648 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4649 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4650 void dev_mc_flush(struct net_device *dev); 4651 void dev_mc_init(struct net_device *dev); 4652 4653 /** 4654 * __dev_mc_sync - Synchonize device's multicast list 4655 * @dev: device to sync 4656 * @sync: function to call if address should be added 4657 * @unsync: function to call if address should be removed 4658 * 4659 * Add newly added addresses to the interface, and release 4660 * addresses that have been deleted. 4661 */ 4662 static inline int __dev_mc_sync(struct net_device *dev, 4663 int (*sync)(struct net_device *, 4664 const unsigned char *), 4665 int (*unsync)(struct net_device *, 4666 const unsigned char *)) 4667 { 4668 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4669 } 4670 4671 /** 4672 * __dev_mc_unsync - Remove synchronized addresses from device 4673 * @dev: device to sync 4674 * @unsync: function to call if address should be removed 4675 * 4676 * Remove all addresses that were added to the device by dev_mc_sync(). 4677 */ 4678 static inline void __dev_mc_unsync(struct net_device *dev, 4679 int (*unsync)(struct net_device *, 4680 const unsigned char *)) 4681 { 4682 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4683 } 4684 4685 /* Functions used for secondary unicast and multicast support */ 4686 void dev_set_rx_mode(struct net_device *dev); 4687 int dev_set_promiscuity(struct net_device *dev, int inc); 4688 int dev_set_allmulti(struct net_device *dev, int inc); 4689 void netdev_state_change(struct net_device *dev); 4690 void __netdev_notify_peers(struct net_device *dev); 4691 void netdev_notify_peers(struct net_device *dev); 4692 void netdev_features_change(struct net_device *dev); 4693 /* Load a device via the kmod */ 4694 void dev_load(struct net *net, const char *name); 4695 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4696 struct rtnl_link_stats64 *storage); 4697 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4698 const struct net_device_stats *netdev_stats); 4699 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4700 const struct pcpu_sw_netstats __percpu *netstats); 4701 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4702 4703 enum { 4704 NESTED_SYNC_IMM_BIT, 4705 NESTED_SYNC_TODO_BIT, 4706 }; 4707 4708 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4709 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4710 4711 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4712 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4713 4714 struct netdev_nested_priv { 4715 unsigned char flags; 4716 void *data; 4717 }; 4718 4719 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4720 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4721 struct list_head **iter); 4722 4723 /* iterate through upper list, must be called under RCU read lock */ 4724 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4725 for (iter = &(dev)->adj_list.upper, \ 4726 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4727 updev; \ 4728 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4729 4730 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4731 int (*fn)(struct net_device *upper_dev, 4732 struct netdev_nested_priv *priv), 4733 struct netdev_nested_priv *priv); 4734 4735 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4736 struct net_device *upper_dev); 4737 4738 bool netdev_has_any_upper_dev(struct net_device *dev); 4739 4740 void *netdev_lower_get_next_private(struct net_device *dev, 4741 struct list_head **iter); 4742 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4743 struct list_head **iter); 4744 4745 #define netdev_for_each_lower_private(dev, priv, iter) \ 4746 for (iter = (dev)->adj_list.lower.next, \ 4747 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4748 priv; \ 4749 priv = netdev_lower_get_next_private(dev, &(iter))) 4750 4751 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4752 for (iter = &(dev)->adj_list.lower, \ 4753 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4754 priv; \ 4755 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4756 4757 void *netdev_lower_get_next(struct net_device *dev, 4758 struct list_head **iter); 4759 4760 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4761 for (iter = (dev)->adj_list.lower.next, \ 4762 ldev = netdev_lower_get_next(dev, &(iter)); \ 4763 ldev; \ 4764 ldev = netdev_lower_get_next(dev, &(iter))) 4765 4766 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4767 struct list_head **iter); 4768 int netdev_walk_all_lower_dev(struct net_device *dev, 4769 int (*fn)(struct net_device *lower_dev, 4770 struct netdev_nested_priv *priv), 4771 struct netdev_nested_priv *priv); 4772 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4773 int (*fn)(struct net_device *lower_dev, 4774 struct netdev_nested_priv *priv), 4775 struct netdev_nested_priv *priv); 4776 4777 void *netdev_adjacent_get_private(struct list_head *adj_list); 4778 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4779 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4780 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4781 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4782 struct netlink_ext_ack *extack); 4783 int netdev_master_upper_dev_link(struct net_device *dev, 4784 struct net_device *upper_dev, 4785 void *upper_priv, void *upper_info, 4786 struct netlink_ext_ack *extack); 4787 void netdev_upper_dev_unlink(struct net_device *dev, 4788 struct net_device *upper_dev); 4789 int netdev_adjacent_change_prepare(struct net_device *old_dev, 4790 struct net_device *new_dev, 4791 struct net_device *dev, 4792 struct netlink_ext_ack *extack); 4793 void netdev_adjacent_change_commit(struct net_device *old_dev, 4794 struct net_device *new_dev, 4795 struct net_device *dev); 4796 void netdev_adjacent_change_abort(struct net_device *old_dev, 4797 struct net_device *new_dev, 4798 struct net_device *dev); 4799 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4800 void *netdev_lower_dev_get_private(struct net_device *dev, 4801 struct net_device *lower_dev); 4802 void netdev_lower_state_changed(struct net_device *lower_dev, 4803 void *lower_state_info); 4804 4805 /* RSS keys are 40 or 52 bytes long */ 4806 #define NETDEV_RSS_KEY_LEN 52 4807 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4808 void netdev_rss_key_fill(void *buffer, size_t len); 4809 4810 int skb_checksum_help(struct sk_buff *skb); 4811 int skb_crc32c_csum_help(struct sk_buff *skb); 4812 int skb_csum_hwoffload_help(struct sk_buff *skb, 4813 const netdev_features_t features); 4814 4815 struct netdev_bonding_info { 4816 ifslave slave; 4817 ifbond master; 4818 }; 4819 4820 struct netdev_notifier_bonding_info { 4821 struct netdev_notifier_info info; /* must be first */ 4822 struct netdev_bonding_info bonding_info; 4823 }; 4824 4825 void netdev_bonding_info_change(struct net_device *dev, 4826 struct netdev_bonding_info *bonding_info); 4827 4828 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4829 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4830 #else 4831 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4832 const void *data) 4833 { 4834 } 4835 #endif 4836 4837 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4838 4839 static inline bool can_checksum_protocol(netdev_features_t features, 4840 __be16 protocol) 4841 { 4842 if (protocol == htons(ETH_P_FCOE)) 4843 return !!(features & NETIF_F_FCOE_CRC); 4844 4845 /* Assume this is an IP checksum (not SCTP CRC) */ 4846 4847 if (features & NETIF_F_HW_CSUM) { 4848 /* Can checksum everything */ 4849 return true; 4850 } 4851 4852 switch (protocol) { 4853 case htons(ETH_P_IP): 4854 return !!(features & NETIF_F_IP_CSUM); 4855 case htons(ETH_P_IPV6): 4856 return !!(features & NETIF_F_IPV6_CSUM); 4857 default: 4858 return false; 4859 } 4860 } 4861 4862 #ifdef CONFIG_BUG 4863 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4864 #else 4865 static inline void netdev_rx_csum_fault(struct net_device *dev, 4866 struct sk_buff *skb) 4867 { 4868 } 4869 #endif 4870 /* rx skb timestamps */ 4871 void net_enable_timestamp(void); 4872 void net_disable_timestamp(void); 4873 4874 static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4875 const struct skb_shared_hwtstamps *hwtstamps, 4876 bool cycles) 4877 { 4878 const struct net_device_ops *ops = dev->netdev_ops; 4879 4880 if (ops->ndo_get_tstamp) 4881 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4882 4883 return hwtstamps->hwtstamp; 4884 } 4885 4886 #ifndef CONFIG_PREEMPT_RT 4887 static inline void netdev_xmit_set_more(bool more) 4888 { 4889 __this_cpu_write(softnet_data.xmit.more, more); 4890 } 4891 4892 static inline bool netdev_xmit_more(void) 4893 { 4894 return __this_cpu_read(softnet_data.xmit.more); 4895 } 4896 #else 4897 static inline void netdev_xmit_set_more(bool more) 4898 { 4899 current->net_xmit.more = more; 4900 } 4901 4902 static inline bool netdev_xmit_more(void) 4903 { 4904 return current->net_xmit.more; 4905 } 4906 #endif 4907 4908 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4909 struct sk_buff *skb, struct net_device *dev, 4910 bool more) 4911 { 4912 netdev_xmit_set_more(more); 4913 return ops->ndo_start_xmit(skb, dev); 4914 } 4915 4916 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4917 struct netdev_queue *txq, bool more) 4918 { 4919 const struct net_device_ops *ops = dev->netdev_ops; 4920 netdev_tx_t rc; 4921 4922 rc = __netdev_start_xmit(ops, skb, dev, more); 4923 if (rc == NETDEV_TX_OK) 4924 txq_trans_update(txq); 4925 4926 return rc; 4927 } 4928 4929 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4930 const void *ns); 4931 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4932 const void *ns); 4933 4934 extern const struct kobj_ns_type_operations net_ns_type_operations; 4935 4936 const char *netdev_drivername(const struct net_device *dev); 4937 4938 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4939 netdev_features_t f2) 4940 { 4941 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4942 if (f1 & NETIF_F_HW_CSUM) 4943 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4944 else 4945 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4946 } 4947 4948 return f1 & f2; 4949 } 4950 4951 static inline netdev_features_t netdev_get_wanted_features( 4952 struct net_device *dev) 4953 { 4954 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4955 } 4956 netdev_features_t netdev_increment_features(netdev_features_t all, 4957 netdev_features_t one, netdev_features_t mask); 4958 4959 /* Allow TSO being used on stacked device : 4960 * Performing the GSO segmentation before last device 4961 * is a performance improvement. 4962 */ 4963 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4964 netdev_features_t mask) 4965 { 4966 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4967 } 4968 4969 int __netdev_update_features(struct net_device *dev); 4970 void netdev_update_features(struct net_device *dev); 4971 void netdev_change_features(struct net_device *dev); 4972 4973 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4974 struct net_device *dev); 4975 4976 netdev_features_t passthru_features_check(struct sk_buff *skb, 4977 struct net_device *dev, 4978 netdev_features_t features); 4979 netdev_features_t netif_skb_features(struct sk_buff *skb); 4980 void skb_warn_bad_offload(const struct sk_buff *skb); 4981 4982 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4983 { 4984 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4985 4986 /* check flags correspondence */ 4987 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4988 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4989 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4990 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4991 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4992 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4993 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4994 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5006 5007 return (features & feature) == feature; 5008 } 5009 5010 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5011 { 5012 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5013 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5014 } 5015 5016 static inline bool netif_needs_gso(struct sk_buff *skb, 5017 netdev_features_t features) 5018 { 5019 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5020 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5021 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5022 } 5023 5024 void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5026 void netif_inherit_tso_max(struct net_device *to, 5027 const struct net_device *from); 5028 5029 static inline unsigned int 5030 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb) 5031 { 5032 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */ 5033 return skb->protocol == htons(ETH_P_IPV6) ? 5034 READ_ONCE(dev->gro_max_size) : 5035 READ_ONCE(dev->gro_ipv4_max_size); 5036 } 5037 5038 static inline unsigned int 5039 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb) 5040 { 5041 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 5042 return skb->protocol == htons(ETH_P_IPV6) ? 5043 READ_ONCE(dev->gso_max_size) : 5044 READ_ONCE(dev->gso_ipv4_max_size); 5045 } 5046 5047 static inline bool netif_is_macsec(const struct net_device *dev) 5048 { 5049 return dev->priv_flags & IFF_MACSEC; 5050 } 5051 5052 static inline bool netif_is_macvlan(const struct net_device *dev) 5053 { 5054 return dev->priv_flags & IFF_MACVLAN; 5055 } 5056 5057 static inline bool netif_is_macvlan_port(const struct net_device *dev) 5058 { 5059 return dev->priv_flags & IFF_MACVLAN_PORT; 5060 } 5061 5062 static inline bool netif_is_bond_master(const struct net_device *dev) 5063 { 5064 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5065 } 5066 5067 static inline bool netif_is_bond_slave(const struct net_device *dev) 5068 { 5069 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5070 } 5071 5072 static inline bool netif_supports_nofcs(struct net_device *dev) 5073 { 5074 return dev->priv_flags & IFF_SUPP_NOFCS; 5075 } 5076 5077 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5078 { 5079 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5080 } 5081 5082 static inline bool netif_is_l3_master(const struct net_device *dev) 5083 { 5084 return dev->priv_flags & IFF_L3MDEV_MASTER; 5085 } 5086 5087 static inline bool netif_is_l3_slave(const struct net_device *dev) 5088 { 5089 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5090 } 5091 5092 static inline int dev_sdif(const struct net_device *dev) 5093 { 5094 #ifdef CONFIG_NET_L3_MASTER_DEV 5095 if (netif_is_l3_slave(dev)) 5096 return dev->ifindex; 5097 #endif 5098 return 0; 5099 } 5100 5101 static inline bool netif_is_bridge_master(const struct net_device *dev) 5102 { 5103 return dev->priv_flags & IFF_EBRIDGE; 5104 } 5105 5106 static inline bool netif_is_bridge_port(const struct net_device *dev) 5107 { 5108 return dev->priv_flags & IFF_BRIDGE_PORT; 5109 } 5110 5111 static inline bool netif_is_ovs_master(const struct net_device *dev) 5112 { 5113 return dev->priv_flags & IFF_OPENVSWITCH; 5114 } 5115 5116 static inline bool netif_is_ovs_port(const struct net_device *dev) 5117 { 5118 return dev->priv_flags & IFF_OVS_DATAPATH; 5119 } 5120 5121 static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5122 { 5123 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5124 } 5125 5126 static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5127 { 5128 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5129 } 5130 5131 static inline bool netif_is_team_master(const struct net_device *dev) 5132 { 5133 return dev->priv_flags & IFF_TEAM; 5134 } 5135 5136 static inline bool netif_is_team_port(const struct net_device *dev) 5137 { 5138 return dev->priv_flags & IFF_TEAM_PORT; 5139 } 5140 5141 static inline bool netif_is_lag_master(const struct net_device *dev) 5142 { 5143 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5144 } 5145 5146 static inline bool netif_is_lag_port(const struct net_device *dev) 5147 { 5148 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5149 } 5150 5151 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5152 { 5153 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5154 } 5155 5156 static inline bool netif_is_failover(const struct net_device *dev) 5157 { 5158 return dev->priv_flags & IFF_FAILOVER; 5159 } 5160 5161 static inline bool netif_is_failover_slave(const struct net_device *dev) 5162 { 5163 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5164 } 5165 5166 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5167 static inline void netif_keep_dst(struct net_device *dev) 5168 { 5169 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5170 } 5171 5172 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5173 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5174 { 5175 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5176 return netif_is_macsec(dev); 5177 } 5178 5179 extern struct pernet_operations __net_initdata loopback_net_ops; 5180 5181 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 5182 5183 /* netdev_printk helpers, similar to dev_printk */ 5184 5185 static inline const char *netdev_name(const struct net_device *dev) 5186 { 5187 if (!dev->name[0] || strchr(dev->name, '%')) 5188 return "(unnamed net_device)"; 5189 return dev->name; 5190 } 5191 5192 static inline const char *netdev_reg_state(const struct net_device *dev) 5193 { 5194 u8 reg_state = READ_ONCE(dev->reg_state); 5195 5196 switch (reg_state) { 5197 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5198 case NETREG_REGISTERED: return ""; 5199 case NETREG_UNREGISTERING: return " (unregistering)"; 5200 case NETREG_UNREGISTERED: return " (unregistered)"; 5201 case NETREG_RELEASED: return " (released)"; 5202 case NETREG_DUMMY: return " (dummy)"; 5203 } 5204 5205 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state); 5206 return " (unknown)"; 5207 } 5208 5209 #define MODULE_ALIAS_NETDEV(device) \ 5210 MODULE_ALIAS("netdev-" device) 5211 5212 /* 5213 * netdev_WARN() acts like dev_printk(), but with the key difference 5214 * of using a WARN/WARN_ON to get the message out, including the 5215 * file/line information and a backtrace. 5216 */ 5217 #define netdev_WARN(dev, format, args...) \ 5218 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5219 netdev_reg_state(dev), ##args) 5220 5221 #define netdev_WARN_ONCE(dev, format, args...) \ 5222 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5223 netdev_reg_state(dev), ##args) 5224 5225 /* 5226 * The list of packet types we will receive (as opposed to discard) 5227 * and the routines to invoke. 5228 * 5229 * Why 16. Because with 16 the only overlap we get on a hash of the 5230 * low nibble of the protocol value is RARP/SNAP/X.25. 5231 * 5232 * 0800 IP 5233 * 0001 802.3 5234 * 0002 AX.25 5235 * 0004 802.2 5236 * 8035 RARP 5237 * 0005 SNAP 5238 * 0805 X.25 5239 * 0806 ARP 5240 * 8137 IPX 5241 * 0009 Localtalk 5242 * 86DD IPv6 5243 */ 5244 #define PTYPE_HASH_SIZE (16) 5245 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5246 5247 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5248 5249 extern struct net_device *blackhole_netdev; 5250 5251 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5252 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5253 #define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5254 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5255 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5256 5257 #endif /* _LINUX_NETDEVICE_H */ 5258
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.