~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/pgtable.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_PGTABLE_H
  3 #define _LINUX_PGTABLE_H
  4 
  5 #include <linux/pfn.h>
  6 #include <asm/pgtable.h>
  7 
  8 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  9 #define PUD_ORDER       (PUD_SHIFT - PAGE_SHIFT)
 10 
 11 #ifndef __ASSEMBLY__
 12 #ifdef CONFIG_MMU
 13 
 14 #include <linux/mm_types.h>
 15 #include <linux/bug.h>
 16 #include <linux/errno.h>
 17 #include <asm-generic/pgtable_uffd.h>
 18 #include <linux/page_table_check.h>
 19 
 20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
 21         defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
 22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
 23 #endif
 24 
 25 /*
 26  * On almost all architectures and configurations, 0 can be used as the
 27  * upper ceiling to free_pgtables(): on many architectures it has the same
 28  * effect as using TASK_SIZE.  However, there is one configuration which
 29  * must impose a more careful limit, to avoid freeing kernel pgtables.
 30  */
 31 #ifndef USER_PGTABLES_CEILING
 32 #define USER_PGTABLES_CEILING   0UL
 33 #endif
 34 
 35 /*
 36  * This defines the first usable user address. Platforms
 37  * can override its value with custom FIRST_USER_ADDRESS
 38  * defined in their respective <asm/pgtable.h>.
 39  */
 40 #ifndef FIRST_USER_ADDRESS
 41 #define FIRST_USER_ADDRESS      0UL
 42 #endif
 43 
 44 /*
 45  * This defines the generic helper for accessing PMD page
 46  * table page. Although platforms can still override this
 47  * via their respective <asm/pgtable.h>.
 48  */
 49 #ifndef pmd_pgtable
 50 #define pmd_pgtable(pmd) pmd_page(pmd)
 51 #endif
 52 
 53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
 54 
 55 /*
 56  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
 57  *
 58  * The pXx_index() functions return the index of the entry in the page
 59  * table page which would control the given virtual address
 60  *
 61  * As these functions may be used by the same code for different levels of
 62  * the page table folding, they are always available, regardless of
 63  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
 64  * because in such cases PTRS_PER_PxD equals 1.
 65  */
 66 
 67 static inline unsigned long pte_index(unsigned long address)
 68 {
 69         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
 70 }
 71 
 72 #ifndef pmd_index
 73 static inline unsigned long pmd_index(unsigned long address)
 74 {
 75         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
 76 }
 77 #define pmd_index pmd_index
 78 #endif
 79 
 80 #ifndef pud_index
 81 static inline unsigned long pud_index(unsigned long address)
 82 {
 83         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
 84 }
 85 #define pud_index pud_index
 86 #endif
 87 
 88 #ifndef pgd_index
 89 /* Must be a compile-time constant, so implement it as a macro */
 90 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 91 #endif
 92 
 93 #ifndef pte_offset_kernel
 94 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
 95 {
 96         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
 97 }
 98 #define pte_offset_kernel pte_offset_kernel
 99 #endif
100 
101 #ifdef CONFIG_HIGHPTE
102 #define __pte_map(pmd, address) \
103         ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
104 #define pte_unmap(pte)  do {    \
105         kunmap_local((pte));    \
106         rcu_read_unlock();      \
107 } while (0)
108 #else
109 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
110 {
111         return pte_offset_kernel(pmd, address);
112 }
113 static inline void pte_unmap(pte_t *pte)
114 {
115         rcu_read_unlock();
116 }
117 #endif
118 
119 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
120 
121 /* Find an entry in the second-level page table.. */
122 #ifndef pmd_offset
123 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
124 {
125         return pud_pgtable(*pud) + pmd_index(address);
126 }
127 #define pmd_offset pmd_offset
128 #endif
129 
130 #ifndef pud_offset
131 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
132 {
133         return p4d_pgtable(*p4d) + pud_index(address);
134 }
135 #define pud_offset pud_offset
136 #endif
137 
138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
139 {
140         return (pgd + pgd_index(address));
141 };
142 
143 /*
144  * a shortcut to get a pgd_t in a given mm
145  */
146 #ifndef pgd_offset
147 #define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
148 #endif
149 
150 /*
151  * a shortcut which implies the use of the kernel's pgd, instead
152  * of a process's
153  */
154 #define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
155 
156 /*
157  * In many cases it is known that a virtual address is mapped at PMD or PTE
158  * level, so instead of traversing all the page table levels, we can get a
159  * pointer to the PMD entry in user or kernel page table or translate a virtual
160  * address to the pointer in the PTE in the kernel page tables with simple
161  * helpers.
162  */
163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165         return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167 
168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170         return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172 
173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175         pmd_t *pmd = pmd_off_k(vaddr);
176 
177         return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179 
180 #ifndef pmd_young
181 static inline int pmd_young(pmd_t pmd)
182 {
183         return 0;
184 }
185 #endif
186 
187 #ifndef pmd_dirty
188 static inline int pmd_dirty(pmd_t pmd)
189 {
190         return 0;
191 }
192 #endif
193 
194 /*
195  * A facility to provide lazy MMU batching.  This allows PTE updates and
196  * page invalidations to be delayed until a call to leave lazy MMU mode
197  * is issued.  Some architectures may benefit from doing this, and it is
198  * beneficial for both shadow and direct mode hypervisors, which may batch
199  * the PTE updates which happen during this window.  Note that using this
200  * interface requires that read hazards be removed from the code.  A read
201  * hazard could result in the direct mode hypervisor case, since the actual
202  * write to the page tables may not yet have taken place, so reads though
203  * a raw PTE pointer after it has been modified are not guaranteed to be
204  * up to date.  This mode can only be entered and left under the protection of
205  * the page table locks for all page tables which may be modified.  In the UP
206  * case, this is required so that preemption is disabled, and in the SMP case,
207  * it must synchronize the delayed page table writes properly on other CPUs.
208  */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode()      do {} while (0)
211 #define arch_leave_lazy_mmu_mode()      do {} while (0)
212 #define arch_flush_lazy_mmu_mode()      do {} while (0)
213 #endif
214 
215 #ifndef pte_batch_hint
216 /**
217  * pte_batch_hint - Number of pages that can be added to batch without scanning.
218  * @ptep: Page table pointer for the entry.
219  * @pte: Page table entry.
220  *
221  * Some architectures know that a set of contiguous ptes all map the same
222  * contiguous memory with the same permissions. In this case, it can provide a
223  * hint to aid pte batching without the core code needing to scan every pte.
224  *
225  * An architecture implementation may ignore the PTE accessed state. Further,
226  * the dirty state must apply atomically to all the PTEs described by the hint.
227  *
228  * May be overridden by the architecture, else pte_batch_hint is always 1.
229  */
230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
231 {
232         return 1;
233 }
234 #endif
235 
236 #ifndef pte_advance_pfn
237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
238 {
239         return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
240 }
241 #endif
242 
243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
244 
245 #ifndef set_ptes
246 /**
247  * set_ptes - Map consecutive pages to a contiguous range of addresses.
248  * @mm: Address space to map the pages into.
249  * @addr: Address to map the first page at.
250  * @ptep: Page table pointer for the first entry.
251  * @pte: Page table entry for the first page.
252  * @nr: Number of pages to map.
253  *
254  * When nr==1, initial state of pte may be present or not present, and new state
255  * may be present or not present. When nr>1, initial state of all ptes must be
256  * not present, and new state must be present.
257  *
258  * May be overridden by the architecture, or the architecture can define
259  * set_pte() and PFN_PTE_SHIFT.
260  *
261  * Context: The caller holds the page table lock.  The pages all belong
262  * to the same folio.  The PTEs are all in the same PMD.
263  */
264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
265                 pte_t *ptep, pte_t pte, unsigned int nr)
266 {
267         page_table_check_ptes_set(mm, ptep, pte, nr);
268 
269         arch_enter_lazy_mmu_mode();
270         for (;;) {
271                 set_pte(ptep, pte);
272                 if (--nr == 0)
273                         break;
274                 ptep++;
275                 pte = pte_next_pfn(pte);
276         }
277         arch_leave_lazy_mmu_mode();
278 }
279 #endif
280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
281 
282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
283 extern int ptep_set_access_flags(struct vm_area_struct *vma,
284                                  unsigned long address, pte_t *ptep,
285                                  pte_t entry, int dirty);
286 #endif
287 
288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
290 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
291                                  unsigned long address, pmd_t *pmdp,
292                                  pmd_t entry, int dirty);
293 extern int pudp_set_access_flags(struct vm_area_struct *vma,
294                                  unsigned long address, pud_t *pudp,
295                                  pud_t entry, int dirty);
296 #else
297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
298                                         unsigned long address, pmd_t *pmdp,
299                                         pmd_t entry, int dirty)
300 {
301         BUILD_BUG();
302         return 0;
303 }
304 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
305                                         unsigned long address, pud_t *pudp,
306                                         pud_t entry, int dirty)
307 {
308         BUILD_BUG();
309         return 0;
310 }
311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
312 #endif
313 
314 #ifndef ptep_get
315 static inline pte_t ptep_get(pte_t *ptep)
316 {
317         return READ_ONCE(*ptep);
318 }
319 #endif
320 
321 #ifndef pmdp_get
322 static inline pmd_t pmdp_get(pmd_t *pmdp)
323 {
324         return READ_ONCE(*pmdp);
325 }
326 #endif
327 
328 #ifndef pudp_get
329 static inline pud_t pudp_get(pud_t *pudp)
330 {
331         return READ_ONCE(*pudp);
332 }
333 #endif
334 
335 #ifndef p4dp_get
336 static inline p4d_t p4dp_get(p4d_t *p4dp)
337 {
338         return READ_ONCE(*p4dp);
339 }
340 #endif
341 
342 #ifndef pgdp_get
343 static inline pgd_t pgdp_get(pgd_t *pgdp)
344 {
345         return READ_ONCE(*pgdp);
346 }
347 #endif
348 
349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
351                                             unsigned long address,
352                                             pte_t *ptep)
353 {
354         pte_t pte = ptep_get(ptep);
355         int r = 1;
356         if (!pte_young(pte))
357                 r = 0;
358         else
359                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
360         return r;
361 }
362 #endif
363 
364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
367                                             unsigned long address,
368                                             pmd_t *pmdp)
369 {
370         pmd_t pmd = *pmdp;
371         int r = 1;
372         if (!pmd_young(pmd))
373                 r = 0;
374         else
375                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
376         return r;
377 }
378 #else
379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
380                                             unsigned long address,
381                                             pmd_t *pmdp)
382 {
383         BUILD_BUG();
384         return 0;
385 }
386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
387 #endif
388 
389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
390 int ptep_clear_flush_young(struct vm_area_struct *vma,
391                            unsigned long address, pte_t *ptep);
392 #endif
393 
394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
397                                   unsigned long address, pmd_t *pmdp);
398 #else
399 /*
400  * Despite relevant to THP only, this API is called from generic rmap code
401  * under PageTransHuge(), hence needs a dummy implementation for !THP
402  */
403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
404                                          unsigned long address, pmd_t *pmdp)
405 {
406         BUILD_BUG();
407         return 0;
408 }
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
410 #endif
411 
412 #ifndef arch_has_hw_nonleaf_pmd_young
413 /*
414  * Return whether the accessed bit in non-leaf PMD entries is supported on the
415  * local CPU.
416  */
417 static inline bool arch_has_hw_nonleaf_pmd_young(void)
418 {
419         return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
420 }
421 #endif
422 
423 #ifndef arch_has_hw_pte_young
424 /*
425  * Return whether the accessed bit is supported on the local CPU.
426  *
427  * This stub assumes accessing through an old PTE triggers a page fault.
428  * Architectures that automatically set the access bit should overwrite it.
429  */
430 static inline bool arch_has_hw_pte_young(void)
431 {
432         return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
433 }
434 #endif
435 
436 #ifndef arch_check_zapped_pte
437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
438                                          pte_t pte)
439 {
440 }
441 #endif
442 
443 #ifndef arch_check_zapped_pmd
444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
445                                          pmd_t pmd)
446 {
447 }
448 #endif
449 
450 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452                                        unsigned long address,
453                                        pte_t *ptep)
454 {
455         pte_t pte = ptep_get(ptep);
456         pte_clear(mm, address, ptep);
457         page_table_check_pte_clear(mm, pte);
458         return pte;
459 }
460 #endif
461 
462 #ifndef clear_young_dirty_ptes
463 /**
464  * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
465  *              same folio as old/clean.
466  * @mm: Address space the pages are mapped into.
467  * @addr: Address the first page is mapped at.
468  * @ptep: Page table pointer for the first entry.
469  * @nr: Number of entries to mark old/clean.
470  * @flags: Flags to modify the PTE batch semantics.
471  *
472  * May be overridden by the architecture; otherwise, implemented by
473  * get_and_clear/modify/set for each pte in the range.
474  *
475  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
476  * some PTEs might be write-protected.
477  *
478  * Context: The caller holds the page table lock.  The PTEs map consecutive
479  * pages that belong to the same folio.  The PTEs are all in the same PMD.
480  */
481 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
482                                           unsigned long addr, pte_t *ptep,
483                                           unsigned int nr, cydp_t flags)
484 {
485         pte_t pte;
486 
487         for (;;) {
488                 if (flags == CYDP_CLEAR_YOUNG)
489                         ptep_test_and_clear_young(vma, addr, ptep);
490                 else {
491                         pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
492                         if (flags & CYDP_CLEAR_YOUNG)
493                                 pte = pte_mkold(pte);
494                         if (flags & CYDP_CLEAR_DIRTY)
495                                 pte = pte_mkclean(pte);
496                         set_pte_at(vma->vm_mm, addr, ptep, pte);
497                 }
498                 if (--nr == 0)
499                         break;
500                 ptep++;
501                 addr += PAGE_SIZE;
502         }
503 }
504 #endif
505 
506 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
507                               pte_t *ptep)
508 {
509         ptep_get_and_clear(mm, addr, ptep);
510 }
511 
512 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
513 /*
514  * For walking the pagetables without holding any locks.  Some architectures
515  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
516  * instructions.  We are guaranteed that a PTE will only either go from not
517  * present to present, or present to not present -- it will not switch to a
518  * completely different present page without a TLB flush inbetween; which we
519  * are blocking by holding interrupts off.
520  *
521  * Setting ptes from not present to present goes:
522  *
523  *   ptep->pte_high = h;
524  *   smp_wmb();
525  *   ptep->pte_low = l;
526  *
527  * And present to not present goes:
528  *
529  *   ptep->pte_low = 0;
530  *   smp_wmb();
531  *   ptep->pte_high = 0;
532  *
533  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
534  * We load pte_high *after* loading pte_low, which ensures we don't see an older
535  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
536  * picked up a changed pte high. We might have gotten rubbish values from
537  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
538  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
539  * operates on present ptes we're safe.
540  */
541 static inline pte_t ptep_get_lockless(pte_t *ptep)
542 {
543         pte_t pte;
544 
545         do {
546                 pte.pte_low = ptep->pte_low;
547                 smp_rmb();
548                 pte.pte_high = ptep->pte_high;
549                 smp_rmb();
550         } while (unlikely(pte.pte_low != ptep->pte_low));
551 
552         return pte;
553 }
554 #define ptep_get_lockless ptep_get_lockless
555 
556 #if CONFIG_PGTABLE_LEVELS > 2
557 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
558 {
559         pmd_t pmd;
560 
561         do {
562                 pmd.pmd_low = pmdp->pmd_low;
563                 smp_rmb();
564                 pmd.pmd_high = pmdp->pmd_high;
565                 smp_rmb();
566         } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
567 
568         return pmd;
569 }
570 #define pmdp_get_lockless pmdp_get_lockless
571 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
572 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
573 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
574 
575 /*
576  * We require that the PTE can be read atomically.
577  */
578 #ifndef ptep_get_lockless
579 static inline pte_t ptep_get_lockless(pte_t *ptep)
580 {
581         return ptep_get(ptep);
582 }
583 #endif
584 
585 #ifndef pmdp_get_lockless
586 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
587 {
588         return pmdp_get(pmdp);
589 }
590 static inline void pmdp_get_lockless_sync(void)
591 {
592 }
593 #endif
594 
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
597 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
598                                             unsigned long address,
599                                             pmd_t *pmdp)
600 {
601         pmd_t pmd = *pmdp;
602 
603         pmd_clear(pmdp);
604         page_table_check_pmd_clear(mm, pmd);
605 
606         return pmd;
607 }
608 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
609 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
610 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
611                                             unsigned long address,
612                                             pud_t *pudp)
613 {
614         pud_t pud = *pudp;
615 
616         pud_clear(pudp);
617         page_table_check_pud_clear(mm, pud);
618 
619         return pud;
620 }
621 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
623 
624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
625 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
626 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
627                                             unsigned long address, pmd_t *pmdp,
628                                             int full)
629 {
630         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
631 }
632 #endif
633 
634 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
635 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
636                                             unsigned long address, pud_t *pudp,
637                                             int full)
638 {
639         return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
640 }
641 #endif
642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
643 
644 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
645 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
646                                             unsigned long address, pte_t *ptep,
647                                             int full)
648 {
649         return ptep_get_and_clear(mm, address, ptep);
650 }
651 #endif
652 
653 #ifndef get_and_clear_full_ptes
654 /**
655  * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
656  *                           the same folio, collecting dirty/accessed bits.
657  * @mm: Address space the pages are mapped into.
658  * @addr: Address the first page is mapped at.
659  * @ptep: Page table pointer for the first entry.
660  * @nr: Number of entries to clear.
661  * @full: Whether we are clearing a full mm.
662  *
663  * May be overridden by the architecture; otherwise, implemented as a simple
664  * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
665  * returned PTE.
666  *
667  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
668  * some PTEs might be write-protected.
669  *
670  * Context: The caller holds the page table lock.  The PTEs map consecutive
671  * pages that belong to the same folio.  The PTEs are all in the same PMD.
672  */
673 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
674                 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
675 {
676         pte_t pte, tmp_pte;
677 
678         pte = ptep_get_and_clear_full(mm, addr, ptep, full);
679         while (--nr) {
680                 ptep++;
681                 addr += PAGE_SIZE;
682                 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
683                 if (pte_dirty(tmp_pte))
684                         pte = pte_mkdirty(pte);
685                 if (pte_young(tmp_pte))
686                         pte = pte_mkyoung(pte);
687         }
688         return pte;
689 }
690 #endif
691 
692 #ifndef clear_full_ptes
693 /**
694  * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
695  *                   folio.
696  * @mm: Address space the pages are mapped into.
697  * @addr: Address the first page is mapped at.
698  * @ptep: Page table pointer for the first entry.
699  * @nr: Number of entries to clear.
700  * @full: Whether we are clearing a full mm.
701  *
702  * May be overridden by the architecture; otherwise, implemented as a simple
703  * loop over ptep_get_and_clear_full().
704  *
705  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
706  * some PTEs might be write-protected.
707  *
708  * Context: The caller holds the page table lock.  The PTEs map consecutive
709  * pages that belong to the same folio.  The PTEs are all in the same PMD.
710  */
711 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
712                 pte_t *ptep, unsigned int nr, int full)
713 {
714         for (;;) {
715                 ptep_get_and_clear_full(mm, addr, ptep, full);
716                 if (--nr == 0)
717                         break;
718                 ptep++;
719                 addr += PAGE_SIZE;
720         }
721 }
722 #endif
723 
724 /*
725  * If two threads concurrently fault at the same page, the thread that
726  * won the race updates the PTE and its local TLB/Cache. The other thread
727  * gives up, simply does nothing, and continues; on architectures where
728  * software can update TLB,  local TLB can be updated here to avoid next page
729  * fault. This function updates TLB only, do nothing with cache or others.
730  * It is the difference with function update_mmu_cache.
731  */
732 #ifndef update_mmu_tlb_range
733 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
734                                 unsigned long address, pte_t *ptep, unsigned int nr)
735 {
736 }
737 #endif
738 
739 static inline void update_mmu_tlb(struct vm_area_struct *vma,
740                                 unsigned long address, pte_t *ptep)
741 {
742         update_mmu_tlb_range(vma, address, ptep, 1);
743 }
744 
745 /*
746  * Some architectures may be able to avoid expensive synchronization
747  * primitives when modifications are made to PTE's which are already
748  * not present, or in the process of an address space destruction.
749  */
750 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
751 static inline void pte_clear_not_present_full(struct mm_struct *mm,
752                                               unsigned long address,
753                                               pte_t *ptep,
754                                               int full)
755 {
756         pte_clear(mm, address, ptep);
757 }
758 #endif
759 
760 #ifndef clear_not_present_full_ptes
761 /**
762  * clear_not_present_full_ptes - Clear multiple not present PTEs which are
763  *                               consecutive in the pgtable.
764  * @mm: Address space the ptes represent.
765  * @addr: Address of the first pte.
766  * @ptep: Page table pointer for the first entry.
767  * @nr: Number of entries to clear.
768  * @full: Whether we are clearing a full mm.
769  *
770  * May be overridden by the architecture; otherwise, implemented as a simple
771  * loop over pte_clear_not_present_full().
772  *
773  * Context: The caller holds the page table lock.  The PTEs are all not present.
774  * The PTEs are all in the same PMD.
775  */
776 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
777                 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
778 {
779         for (;;) {
780                 pte_clear_not_present_full(mm, addr, ptep, full);
781                 if (--nr == 0)
782                         break;
783                 ptep++;
784                 addr += PAGE_SIZE;
785         }
786 }
787 #endif
788 
789 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
790 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
791                               unsigned long address,
792                               pte_t *ptep);
793 #endif
794 
795 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
796 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
797                               unsigned long address,
798                               pmd_t *pmdp);
799 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
800                               unsigned long address,
801                               pud_t *pudp);
802 #endif
803 
804 #ifndef pte_mkwrite
805 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
806 {
807         return pte_mkwrite_novma(pte);
808 }
809 #endif
810 
811 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
812 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
813 {
814         return pmd_mkwrite_novma(pmd);
815 }
816 #endif
817 
818 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
819 struct mm_struct;
820 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
821 {
822         pte_t old_pte = ptep_get(ptep);
823         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
824 }
825 #endif
826 
827 #ifndef wrprotect_ptes
828 /**
829  * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
830  *                  folio.
831  * @mm: Address space the pages are mapped into.
832  * @addr: Address the first page is mapped at.
833  * @ptep: Page table pointer for the first entry.
834  * @nr: Number of entries to write-protect.
835  *
836  * May be overridden by the architecture; otherwise, implemented as a simple
837  * loop over ptep_set_wrprotect().
838  *
839  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
840  * some PTEs might be write-protected.
841  *
842  * Context: The caller holds the page table lock.  The PTEs map consecutive
843  * pages that belong to the same folio.  The PTEs are all in the same PMD.
844  */
845 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
846                 pte_t *ptep, unsigned int nr)
847 {
848         for (;;) {
849                 ptep_set_wrprotect(mm, addr, ptep);
850                 if (--nr == 0)
851                         break;
852                 ptep++;
853                 addr += PAGE_SIZE;
854         }
855 }
856 #endif
857 
858 /*
859  * On some architectures hardware does not set page access bit when accessing
860  * memory page, it is responsibility of software setting this bit. It brings
861  * out extra page fault penalty to track page access bit. For optimization page
862  * access bit can be set during all page fault flow on these arches.
863  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
864  * where software maintains page access bit.
865  */
866 #ifndef pte_sw_mkyoung
867 static inline pte_t pte_sw_mkyoung(pte_t pte)
868 {
869         return pte;
870 }
871 #define pte_sw_mkyoung  pte_sw_mkyoung
872 #endif
873 
874 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
877                                       unsigned long address, pmd_t *pmdp)
878 {
879         pmd_t old_pmd = *pmdp;
880         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
881 }
882 #else
883 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
884                                       unsigned long address, pmd_t *pmdp)
885 {
886         BUILD_BUG();
887 }
888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
889 #endif
890 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
891 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 static inline void pudp_set_wrprotect(struct mm_struct *mm,
894                                       unsigned long address, pud_t *pudp)
895 {
896         pud_t old_pud = *pudp;
897 
898         set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
899 }
900 #else
901 static inline void pudp_set_wrprotect(struct mm_struct *mm,
902                                       unsigned long address, pud_t *pudp)
903 {
904         BUILD_BUG();
905 }
906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
907 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
908 #endif
909 
910 #ifndef pmdp_collapse_flush
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
913                                  unsigned long address, pmd_t *pmdp);
914 #else
915 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
916                                         unsigned long address,
917                                         pmd_t *pmdp)
918 {
919         BUILD_BUG();
920         return *pmdp;
921 }
922 #define pmdp_collapse_flush pmdp_collapse_flush
923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
924 #endif
925 
926 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
927 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
928                                        pgtable_t pgtable);
929 #endif
930 
931 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
932 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
933 #endif
934 
935 #ifndef arch_needs_pgtable_deposit
936 #define arch_needs_pgtable_deposit() (false)
937 #endif
938 
939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
940 /*
941  * This is an implementation of pmdp_establish() that is only suitable for an
942  * architecture that doesn't have hardware dirty/accessed bits. In this case we
943  * can't race with CPU which sets these bits and non-atomic approach is fine.
944  */
945 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
946                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
947 {
948         pmd_t old_pmd = *pmdp;
949         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
950         return old_pmd;
951 }
952 #endif
953 
954 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
955 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
956                             pmd_t *pmdp);
957 #endif
958 
959 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
960 
961 /*
962  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
963  * hugepage mapping in the page tables. This function is similar to
964  * pmdp_invalidate(), but should only be used if the access and dirty bits would
965  * not be cleared by the software in the new PMD value. The function ensures
966  * that hardware changes of the access and dirty bits updates would not be lost.
967  *
968  * Doing so can allow in certain architectures to avoid a TLB flush in most
969  * cases. Yet, another TLB flush might be necessary later if the PMD update
970  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
971  * even when a TLB flush is needed because of the update, the caller may be able
972  * to batch these TLB flushing operations, so fewer TLB flush operations are
973  * needed.
974  */
975 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
976                                 unsigned long address, pmd_t *pmdp);
977 #endif
978 
979 #ifndef __HAVE_ARCH_PTE_SAME
980 static inline int pte_same(pte_t pte_a, pte_t pte_b)
981 {
982         return pte_val(pte_a) == pte_val(pte_b);
983 }
984 #endif
985 
986 #ifndef __HAVE_ARCH_PTE_UNUSED
987 /*
988  * Some architectures provide facilities to virtualization guests
989  * so that they can flag allocated pages as unused. This allows the
990  * host to transparently reclaim unused pages. This function returns
991  * whether the pte's page is unused.
992  */
993 static inline int pte_unused(pte_t pte)
994 {
995         return 0;
996 }
997 #endif
998 
999 #ifndef pte_access_permitted
1000 #define pte_access_permitted(pte, write) \
1001         (pte_present(pte) && (!(write) || pte_write(pte)))
1002 #endif
1003 
1004 #ifndef pmd_access_permitted
1005 #define pmd_access_permitted(pmd, write) \
1006         (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1007 #endif
1008 
1009 #ifndef pud_access_permitted
1010 #define pud_access_permitted(pud, write) \
1011         (pud_present(pud) && (!(write) || pud_write(pud)))
1012 #endif
1013 
1014 #ifndef p4d_access_permitted
1015 #define p4d_access_permitted(p4d, write) \
1016         (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1017 #endif
1018 
1019 #ifndef pgd_access_permitted
1020 #define pgd_access_permitted(pgd, write) \
1021         (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1022 #endif
1023 
1024 #ifndef __HAVE_ARCH_PMD_SAME
1025 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1026 {
1027         return pmd_val(pmd_a) == pmd_val(pmd_b);
1028 }
1029 #endif
1030 
1031 #ifndef pud_same
1032 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1033 {
1034         return pud_val(pud_a) == pud_val(pud_b);
1035 }
1036 #define pud_same pud_same
1037 #endif
1038 
1039 #ifndef __HAVE_ARCH_P4D_SAME
1040 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1041 {
1042         return p4d_val(p4d_a) == p4d_val(p4d_b);
1043 }
1044 #endif
1045 
1046 #ifndef __HAVE_ARCH_PGD_SAME
1047 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1048 {
1049         return pgd_val(pgd_a) == pgd_val(pgd_b);
1050 }
1051 #endif
1052 
1053 /*
1054  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1055  * TLB flush will be required as a result of the "set". For example, use
1056  * in scenarios where it is known ahead of time that the routine is
1057  * setting non-present entries, or re-setting an existing entry to the
1058  * same value. Otherwise, use the typical "set" helpers and flush the
1059  * TLB.
1060  */
1061 #define set_pte_safe(ptep, pte) \
1062 ({ \
1063         WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1064         set_pte(ptep, pte); \
1065 })
1066 
1067 #define set_pmd_safe(pmdp, pmd) \
1068 ({ \
1069         WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1070         set_pmd(pmdp, pmd); \
1071 })
1072 
1073 #define set_pud_safe(pudp, pud) \
1074 ({ \
1075         WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1076         set_pud(pudp, pud); \
1077 })
1078 
1079 #define set_p4d_safe(p4dp, p4d) \
1080 ({ \
1081         WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1082         set_p4d(p4dp, p4d); \
1083 })
1084 
1085 #define set_pgd_safe(pgdp, pgd) \
1086 ({ \
1087         WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1088         set_pgd(pgdp, pgd); \
1089 })
1090 
1091 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1092 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1093                                      struct vm_area_struct *vma,
1094                                      unsigned long addr,
1095                                      pte_t pte, pte_t oldpte,
1096                                      int nr)
1097 {
1098 
1099 }
1100 #else
1101 /*
1102  * Some architectures support metadata associated with a page. When a
1103  * page is being swapped out, this metadata must be saved so it can be
1104  * restored when the page is swapped back in. SPARC M7 and newer
1105  * processors support an ADI (Application Data Integrity) tag for the
1106  * page as metadata for the page. arch_do_swap_page() can restore this
1107  * metadata when a page is swapped back in.
1108  */
1109 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1110                                         struct vm_area_struct *vma,
1111                                         unsigned long addr,
1112                                         pte_t pte, pte_t oldpte,
1113                                         int nr)
1114 {
1115         for (int i = 0; i < nr; i++) {
1116                 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1117                                 pte_advance_pfn(pte, i),
1118                                 pte_advance_pfn(oldpte, i));
1119         }
1120 }
1121 #endif
1122 
1123 #ifndef __HAVE_ARCH_UNMAP_ONE
1124 /*
1125  * Some architectures support metadata associated with a page. When a
1126  * page is being swapped out, this metadata must be saved so it can be
1127  * restored when the page is swapped back in. SPARC M7 and newer
1128  * processors support an ADI (Application Data Integrity) tag for the
1129  * page as metadata for the page. arch_unmap_one() can save this
1130  * metadata on a swap-out of a page.
1131  */
1132 static inline int arch_unmap_one(struct mm_struct *mm,
1133                                   struct vm_area_struct *vma,
1134                                   unsigned long addr,
1135                                   pte_t orig_pte)
1136 {
1137         return 0;
1138 }
1139 #endif
1140 
1141 /*
1142  * Allow architectures to preserve additional metadata associated with
1143  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1144  * prototypes must be defined in the arch-specific asm/pgtable.h file.
1145  */
1146 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1147 static inline int arch_prepare_to_swap(struct folio *folio)
1148 {
1149         return 0;
1150 }
1151 #endif
1152 
1153 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1154 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1155 {
1156 }
1157 
1158 static inline void arch_swap_invalidate_area(int type)
1159 {
1160 }
1161 #endif
1162 
1163 #ifndef __HAVE_ARCH_SWAP_RESTORE
1164 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1165 {
1166 }
1167 #endif
1168 
1169 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1170 #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
1171 #endif
1172 
1173 #ifndef __HAVE_ARCH_MOVE_PTE
1174 #define move_pte(pte, old_addr, new_addr)       (pte)
1175 #endif
1176 
1177 #ifndef pte_accessible
1178 # define pte_accessible(mm, pte)        ((void)(pte), 1)
1179 #endif
1180 
1181 #ifndef flush_tlb_fix_spurious_fault
1182 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1183 #endif
1184 
1185 /*
1186  * When walking page tables, get the address of the next boundary,
1187  * or the end address of the range if that comes earlier.  Although no
1188  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1189  */
1190 
1191 #define pgd_addr_end(addr, end)                                         \
1192 ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
1193         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
1194 })
1195 
1196 #ifndef p4d_addr_end
1197 #define p4d_addr_end(addr, end)                                         \
1198 ({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
1199         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
1200 })
1201 #endif
1202 
1203 #ifndef pud_addr_end
1204 #define pud_addr_end(addr, end)                                         \
1205 ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
1206         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
1207 })
1208 #endif
1209 
1210 #ifndef pmd_addr_end
1211 #define pmd_addr_end(addr, end)                                         \
1212 ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
1213         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
1214 })
1215 #endif
1216 
1217 /*
1218  * When walking page tables, we usually want to skip any p?d_none entries;
1219  * and any p?d_bad entries - reporting the error before resetting to none.
1220  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1221  */
1222 void pgd_clear_bad(pgd_t *);
1223 
1224 #ifndef __PAGETABLE_P4D_FOLDED
1225 void p4d_clear_bad(p4d_t *);
1226 #else
1227 #define p4d_clear_bad(p4d)        do { } while (0)
1228 #endif
1229 
1230 #ifndef __PAGETABLE_PUD_FOLDED
1231 void pud_clear_bad(pud_t *);
1232 #else
1233 #define pud_clear_bad(p4d)        do { } while (0)
1234 #endif
1235 
1236 void pmd_clear_bad(pmd_t *);
1237 
1238 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1239 {
1240         if (pgd_none(*pgd))
1241                 return 1;
1242         if (unlikely(pgd_bad(*pgd))) {
1243                 pgd_clear_bad(pgd);
1244                 return 1;
1245         }
1246         return 0;
1247 }
1248 
1249 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1250 {
1251         if (p4d_none(*p4d))
1252                 return 1;
1253         if (unlikely(p4d_bad(*p4d))) {
1254                 p4d_clear_bad(p4d);
1255                 return 1;
1256         }
1257         return 0;
1258 }
1259 
1260 static inline int pud_none_or_clear_bad(pud_t *pud)
1261 {
1262         if (pud_none(*pud))
1263                 return 1;
1264         if (unlikely(pud_bad(*pud))) {
1265                 pud_clear_bad(pud);
1266                 return 1;
1267         }
1268         return 0;
1269 }
1270 
1271 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1272 {
1273         if (pmd_none(*pmd))
1274                 return 1;
1275         if (unlikely(pmd_bad(*pmd))) {
1276                 pmd_clear_bad(pmd);
1277                 return 1;
1278         }
1279         return 0;
1280 }
1281 
1282 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1283                                              unsigned long addr,
1284                                              pte_t *ptep)
1285 {
1286         /*
1287          * Get the current pte state, but zero it out to make it
1288          * non-present, preventing the hardware from asynchronously
1289          * updating it.
1290          */
1291         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1292 }
1293 
1294 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1295                                              unsigned long addr,
1296                                              pte_t *ptep, pte_t pte)
1297 {
1298         /*
1299          * The pte is non-present, so there's no hardware state to
1300          * preserve.
1301          */
1302         set_pte_at(vma->vm_mm, addr, ptep, pte);
1303 }
1304 
1305 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1306 /*
1307  * Start a pte protection read-modify-write transaction, which
1308  * protects against asynchronous hardware modifications to the pte.
1309  * The intention is not to prevent the hardware from making pte
1310  * updates, but to prevent any updates it may make from being lost.
1311  *
1312  * This does not protect against other software modifications of the
1313  * pte; the appropriate pte lock must be held over the transaction.
1314  *
1315  * Note that this interface is intended to be batchable, meaning that
1316  * ptep_modify_prot_commit may not actually update the pte, but merely
1317  * queue the update to be done at some later time.  The update must be
1318  * actually committed before the pte lock is released, however.
1319  */
1320 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1321                                            unsigned long addr,
1322                                            pte_t *ptep)
1323 {
1324         return __ptep_modify_prot_start(vma, addr, ptep);
1325 }
1326 
1327 /*
1328  * Commit an update to a pte, leaving any hardware-controlled bits in
1329  * the PTE unmodified.
1330  */
1331 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1332                                            unsigned long addr,
1333                                            pte_t *ptep, pte_t old_pte, pte_t pte)
1334 {
1335         __ptep_modify_prot_commit(vma, addr, ptep, pte);
1336 }
1337 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1338 #endif /* CONFIG_MMU */
1339 
1340 /*
1341  * No-op macros that just return the current protection value. Defined here
1342  * because these macros can be used even if CONFIG_MMU is not defined.
1343  */
1344 
1345 #ifndef pgprot_nx
1346 #define pgprot_nx(prot) (prot)
1347 #endif
1348 
1349 #ifndef pgprot_noncached
1350 #define pgprot_noncached(prot)  (prot)
1351 #endif
1352 
1353 #ifndef pgprot_writecombine
1354 #define pgprot_writecombine pgprot_noncached
1355 #endif
1356 
1357 #ifndef pgprot_writethrough
1358 #define pgprot_writethrough pgprot_noncached
1359 #endif
1360 
1361 #ifndef pgprot_device
1362 #define pgprot_device pgprot_noncached
1363 #endif
1364 
1365 #ifndef pgprot_mhp
1366 #define pgprot_mhp(prot)        (prot)
1367 #endif
1368 
1369 #ifdef CONFIG_MMU
1370 #ifndef pgprot_modify
1371 #define pgprot_modify pgprot_modify
1372 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1373 {
1374         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1375                 newprot = pgprot_noncached(newprot);
1376         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1377                 newprot = pgprot_writecombine(newprot);
1378         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1379                 newprot = pgprot_device(newprot);
1380         return newprot;
1381 }
1382 #endif
1383 #endif /* CONFIG_MMU */
1384 
1385 #ifndef pgprot_encrypted
1386 #define pgprot_encrypted(prot)  (prot)
1387 #endif
1388 
1389 #ifndef pgprot_decrypted
1390 #define pgprot_decrypted(prot)  (prot)
1391 #endif
1392 
1393 /*
1394  * A facility to provide batching of the reload of page tables and
1395  * other process state with the actual context switch code for
1396  * paravirtualized guests.  By convention, only one of the batched
1397  * update (lazy) modes (CPU, MMU) should be active at any given time,
1398  * entry should never be nested, and entry and exits should always be
1399  * paired.  This is for sanity of maintaining and reasoning about the
1400  * kernel code.  In this case, the exit (end of the context switch) is
1401  * in architecture-specific code, and so doesn't need a generic
1402  * definition.
1403  */
1404 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1405 #define arch_start_context_switch(prev) do {} while (0)
1406 #endif
1407 
1408 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1409 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1410 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1411 {
1412         return pmd;
1413 }
1414 
1415 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1416 {
1417         return 0;
1418 }
1419 
1420 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1421 {
1422         return pmd;
1423 }
1424 #endif
1425 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1426 static inline int pte_soft_dirty(pte_t pte)
1427 {
1428         return 0;
1429 }
1430 
1431 static inline int pmd_soft_dirty(pmd_t pmd)
1432 {
1433         return 0;
1434 }
1435 
1436 static inline pte_t pte_mksoft_dirty(pte_t pte)
1437 {
1438         return pte;
1439 }
1440 
1441 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1442 {
1443         return pmd;
1444 }
1445 
1446 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1447 {
1448         return pte;
1449 }
1450 
1451 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1452 {
1453         return pmd;
1454 }
1455 
1456 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1457 {
1458         return pte;
1459 }
1460 
1461 static inline int pte_swp_soft_dirty(pte_t pte)
1462 {
1463         return 0;
1464 }
1465 
1466 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1467 {
1468         return pte;
1469 }
1470 
1471 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1472 {
1473         return pmd;
1474 }
1475 
1476 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1477 {
1478         return 0;
1479 }
1480 
1481 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1482 {
1483         return pmd;
1484 }
1485 #endif
1486 
1487 #ifndef __HAVE_PFNMAP_TRACKING
1488 /*
1489  * Interfaces that can be used by architecture code to keep track of
1490  * memory type of pfn mappings specified by the remap_pfn_range,
1491  * vmf_insert_pfn.
1492  */
1493 
1494 /*
1495  * track_pfn_remap is called when a _new_ pfn mapping is being established
1496  * by remap_pfn_range() for physical range indicated by pfn and size.
1497  */
1498 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1499                                   unsigned long pfn, unsigned long addr,
1500                                   unsigned long size)
1501 {
1502         return 0;
1503 }
1504 
1505 /*
1506  * track_pfn_insert is called when a _new_ single pfn is established
1507  * by vmf_insert_pfn().
1508  */
1509 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1510                                     pfn_t pfn)
1511 {
1512 }
1513 
1514 /*
1515  * track_pfn_copy is called when vma that is covering the pfnmap gets
1516  * copied through copy_page_range().
1517  */
1518 static inline int track_pfn_copy(struct vm_area_struct *vma)
1519 {
1520         return 0;
1521 }
1522 
1523 /*
1524  * untrack_pfn is called while unmapping a pfnmap for a region.
1525  * untrack can be called for a specific region indicated by pfn and size or
1526  * can be for the entire vma (in which case pfn, size are zero).
1527  */
1528 static inline void untrack_pfn(struct vm_area_struct *vma,
1529                                unsigned long pfn, unsigned long size,
1530                                bool mm_wr_locked)
1531 {
1532 }
1533 
1534 /*
1535  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1536  * or fails to copy pgtable during duplicate vm area.
1537  */
1538 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1539 {
1540 }
1541 #else
1542 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1543                            unsigned long pfn, unsigned long addr,
1544                            unsigned long size);
1545 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1546                              pfn_t pfn);
1547 extern int track_pfn_copy(struct vm_area_struct *vma);
1548 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1549                         unsigned long size, bool mm_wr_locked);
1550 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1551 #endif
1552 
1553 #ifdef CONFIG_MMU
1554 #ifdef __HAVE_COLOR_ZERO_PAGE
1555 static inline int is_zero_pfn(unsigned long pfn)
1556 {
1557         extern unsigned long zero_pfn;
1558         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1559         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1560 }
1561 
1562 #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
1563 
1564 #else
1565 static inline int is_zero_pfn(unsigned long pfn)
1566 {
1567         extern unsigned long zero_pfn;
1568         return pfn == zero_pfn;
1569 }
1570 
1571 static inline unsigned long my_zero_pfn(unsigned long addr)
1572 {
1573         extern unsigned long zero_pfn;
1574         return zero_pfn;
1575 }
1576 #endif
1577 #else
1578 static inline int is_zero_pfn(unsigned long pfn)
1579 {
1580         return 0;
1581 }
1582 
1583 static inline unsigned long my_zero_pfn(unsigned long addr)
1584 {
1585         return 0;
1586 }
1587 #endif /* CONFIG_MMU */
1588 
1589 #ifdef CONFIG_MMU
1590 
1591 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1592 static inline int pmd_trans_huge(pmd_t pmd)
1593 {
1594         return 0;
1595 }
1596 #ifndef pmd_write
1597 static inline int pmd_write(pmd_t pmd)
1598 {
1599         BUG();
1600         return 0;
1601 }
1602 #endif /* pmd_write */
1603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1604 
1605 #ifndef pud_write
1606 static inline int pud_write(pud_t pud)
1607 {
1608         BUG();
1609         return 0;
1610 }
1611 #endif /* pud_write */
1612 
1613 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1614 static inline int pmd_devmap(pmd_t pmd)
1615 {
1616         return 0;
1617 }
1618 static inline int pud_devmap(pud_t pud)
1619 {
1620         return 0;
1621 }
1622 static inline int pgd_devmap(pgd_t pgd)
1623 {
1624         return 0;
1625 }
1626 #endif
1627 
1628 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1629         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1630 static inline int pud_trans_huge(pud_t pud)
1631 {
1632         return 0;
1633 }
1634 #endif
1635 
1636 static inline int pud_trans_unstable(pud_t *pud)
1637 {
1638 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1639         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1640         pud_t pudval = READ_ONCE(*pud);
1641 
1642         if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1643                 return 1;
1644         if (unlikely(pud_bad(pudval))) {
1645                 pud_clear_bad(pud);
1646                 return 1;
1647         }
1648 #endif
1649         return 0;
1650 }
1651 
1652 #ifndef CONFIG_NUMA_BALANCING
1653 /*
1654  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1655  * perfectly valid to indicate "no" in that case, which is why our default
1656  * implementation defaults to "always no".
1657  *
1658  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1659  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1660  * accessible VMAs.
1661  *
1662  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1663  * looking at the VMA accessibility is sufficient.
1664  */
1665 static inline int pte_protnone(pte_t pte)
1666 {
1667         return 0;
1668 }
1669 
1670 static inline int pmd_protnone(pmd_t pmd)
1671 {
1672         return 0;
1673 }
1674 #endif /* CONFIG_NUMA_BALANCING */
1675 
1676 #endif /* CONFIG_MMU */
1677 
1678 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1679 
1680 #ifndef __PAGETABLE_P4D_FOLDED
1681 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1682 void p4d_clear_huge(p4d_t *p4d);
1683 #else
1684 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1685 {
1686         return 0;
1687 }
1688 static inline void p4d_clear_huge(p4d_t *p4d) { }
1689 #endif /* !__PAGETABLE_P4D_FOLDED */
1690 
1691 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1692 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1693 int pud_clear_huge(pud_t *pud);
1694 int pmd_clear_huge(pmd_t *pmd);
1695 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1696 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1697 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1698 #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1699 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1700 {
1701         return 0;
1702 }
1703 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1704 {
1705         return 0;
1706 }
1707 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1708 {
1709         return 0;
1710 }
1711 static inline void p4d_clear_huge(p4d_t *p4d) { }
1712 static inline int pud_clear_huge(pud_t *pud)
1713 {
1714         return 0;
1715 }
1716 static inline int pmd_clear_huge(pmd_t *pmd)
1717 {
1718         return 0;
1719 }
1720 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1721 {
1722         return 0;
1723 }
1724 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1725 {
1726         return 0;
1727 }
1728 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1729 {
1730         return 0;
1731 }
1732 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1733 
1734 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736 /*
1737  * ARCHes with special requirements for evicting THP backing TLB entries can
1738  * implement this. Otherwise also, it can help optimize normal TLB flush in
1739  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1740  * entire TLB if flush span is greater than a threshold, which will
1741  * likely be true for a single huge page. Thus a single THP flush will
1742  * invalidate the entire TLB which is not desirable.
1743  * e.g. see arch/arc: flush_pmd_tlb_range
1744  */
1745 #define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1746 #define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1747 #else
1748 #define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1749 #define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1750 #endif
1751 #endif
1752 
1753 struct file;
1754 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1755                         unsigned long size, pgprot_t *vma_prot);
1756 
1757 #ifndef CONFIG_X86_ESPFIX64
1758 static inline void init_espfix_bsp(void) { }
1759 #endif
1760 
1761 extern void __init pgtable_cache_init(void);
1762 
1763 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1764 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1765 {
1766         return true;
1767 }
1768 
1769 static inline bool arch_has_pfn_modify_check(void)
1770 {
1771         return false;
1772 }
1773 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1774 
1775 /*
1776  * Architecture PAGE_KERNEL_* fallbacks
1777  *
1778  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1779  * because they really don't support them, or the port needs to be updated to
1780  * reflect the required functionality. Below are a set of relatively safe
1781  * fallbacks, as best effort, which we can count on in lieu of the architectures
1782  * not defining them on their own yet.
1783  */
1784 
1785 #ifndef PAGE_KERNEL_RO
1786 # define PAGE_KERNEL_RO PAGE_KERNEL
1787 #endif
1788 
1789 #ifndef PAGE_KERNEL_EXEC
1790 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1791 #endif
1792 
1793 /*
1794  * Page Table Modification bits for pgtbl_mod_mask.
1795  *
1796  * These are used by the p?d_alloc_track*() set of functions an in the generic
1797  * vmalloc/ioremap code to track at which page-table levels entries have been
1798  * modified. Based on that the code can better decide when vmalloc and ioremap
1799  * mapping changes need to be synchronized to other page-tables in the system.
1800  */
1801 #define         __PGTBL_PGD_MODIFIED    0
1802 #define         __PGTBL_P4D_MODIFIED    1
1803 #define         __PGTBL_PUD_MODIFIED    2
1804 #define         __PGTBL_PMD_MODIFIED    3
1805 #define         __PGTBL_PTE_MODIFIED    4
1806 
1807 #define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
1808 #define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
1809 #define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
1810 #define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
1811 #define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
1812 
1813 /* Page-Table Modification Mask */
1814 typedef unsigned int pgtbl_mod_mask;
1815 
1816 #endif /* !__ASSEMBLY__ */
1817 
1818 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1819 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1820 /*
1821  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1822  * with physical address space extension, but falls back to
1823  * BITS_PER_LONG otherwise.
1824  */
1825 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1826 #else
1827 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1828 #endif
1829 #endif
1830 
1831 #ifndef has_transparent_hugepage
1832 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1833 #endif
1834 
1835 #ifndef has_transparent_pud_hugepage
1836 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1837 #endif
1838 /*
1839  * On some architectures it depends on the mm if the p4d/pud or pmd
1840  * layer of the page table hierarchy is folded or not.
1841  */
1842 #ifndef mm_p4d_folded
1843 #define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
1844 #endif
1845 
1846 #ifndef mm_pud_folded
1847 #define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
1848 #endif
1849 
1850 #ifndef mm_pmd_folded
1851 #define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
1852 #endif
1853 
1854 #ifndef p4d_offset_lockless
1855 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1856 #endif
1857 #ifndef pud_offset_lockless
1858 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1859 #endif
1860 #ifndef pmd_offset_lockless
1861 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1862 #endif
1863 
1864 /*
1865  * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1866  * mapping.  It should work globally across all archs, without any
1867  * dependency on CONFIG_* options.  For architectures that do not support
1868  * huge mappings on specific levels, below fallbacks will be used.
1869  *
1870  * A leaf pgtable entry should always imply the following:
1871  *
1872  * - It is a "present" entry.  IOW, before using this API, please check it
1873  *   with pXd_present() first. NOTE: it may not always mean the "present
1874  *   bit" is set.  For example, PROT_NONE entries are always "present".
1875  *
1876  * - It should _never_ be a swap entry of any type.  Above "present" check
1877  *   should have guarded this, but let's be crystal clear on this.
1878  *
1879  * - It should contain a huge PFN, which points to a huge page larger than
1880  *   PAGE_SIZE of the platform.  The PFN format isn't important here.
1881  *
1882  * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1883  *   pXd_devmap(), or hugetlb mappings).
1884  */
1885 #ifndef pgd_leaf
1886 #define pgd_leaf(x)     false
1887 #endif
1888 #ifndef p4d_leaf
1889 #define p4d_leaf(x)     false
1890 #endif
1891 #ifndef pud_leaf
1892 #define pud_leaf(x)     false
1893 #endif
1894 #ifndef pmd_leaf
1895 #define pmd_leaf(x)     false
1896 #endif
1897 
1898 #ifndef pgd_leaf_size
1899 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1900 #endif
1901 #ifndef p4d_leaf_size
1902 #define p4d_leaf_size(x) P4D_SIZE
1903 #endif
1904 #ifndef pud_leaf_size
1905 #define pud_leaf_size(x) PUD_SIZE
1906 #endif
1907 #ifndef pmd_leaf_size
1908 #define pmd_leaf_size(x) PMD_SIZE
1909 #endif
1910 #ifndef __pte_leaf_size
1911 #ifndef pte_leaf_size
1912 #define pte_leaf_size(x) PAGE_SIZE
1913 #endif
1914 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1915 #endif
1916 
1917 /*
1918  * We always define pmd_pfn for all archs as it's used in lots of generic
1919  * code.  Now it happens too for pud_pfn (and can happen for larger
1920  * mappings too in the future; we're not there yet).  Instead of defining
1921  * it for all archs (like pmd_pfn), provide a fallback.
1922  *
1923  * Note that returning 0 here means any arch that didn't define this can
1924  * get severely wrong when it hits a real pud leaf.  It's arch's
1925  * responsibility to properly define it when a huge pud is possible.
1926  */
1927 #ifndef pud_pfn
1928 #define pud_pfn(x) 0
1929 #endif
1930 
1931 /*
1932  * Some architectures have MMUs that are configurable or selectable at boot
1933  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1934  * helps to have a static maximum value.
1935  */
1936 
1937 #ifndef MAX_PTRS_PER_PTE
1938 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1939 #endif
1940 
1941 #ifndef MAX_PTRS_PER_PMD
1942 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1943 #endif
1944 
1945 #ifndef MAX_PTRS_PER_PUD
1946 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1947 #endif
1948 
1949 #ifndef MAX_PTRS_PER_P4D
1950 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1951 #endif
1952 
1953 /* description of effects of mapping type and prot in current implementation.
1954  * this is due to the limited x86 page protection hardware.  The expected
1955  * behavior is in parens:
1956  *
1957  * map_type     prot
1958  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
1959  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
1960  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
1961  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
1962  *
1963  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
1964  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
1965  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
1966  *
1967  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1968  * MAP_PRIVATE (with Enhanced PAN supported):
1969  *                                                              r: (no) no
1970  *                                                              w: (no) no
1971  *                                                              x: (yes) yes
1972  */
1973 #define DECLARE_VM_GET_PAGE_PROT                                        \
1974 pgprot_t vm_get_page_prot(unsigned long vm_flags)                       \
1975 {                                                                       \
1976                 return protection_map[vm_flags &                        \
1977                         (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];    \
1978 }                                                                       \
1979 EXPORT_SYMBOL(vm_get_page_prot);
1980 
1981 #endif /* _LINUX_PGTABLE_H */
1982 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php