1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PGTABLE_H 3 #define _LINUX_PGTABLE_H 4 5 #include <linux/pfn.h> 6 #include <asm/pgtable.h> 7 8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11 #ifndef __ASSEMBLY__ 12 #ifdef CONFIG_MMU 13 14 #include <linux/mm_types.h> 15 #include <linux/bug.h> 16 #include <linux/errno.h> 17 #include <asm-generic/pgtable_uffd.h> 18 #include <linux/page_table_check.h> 19 20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23 #endif 24 25 /* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31 #ifndef USER_PGTABLES_CEILING 32 #define USER_PGTABLES_CEILING 0UL 33 #endif 34 35 /* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40 #ifndef FIRST_USER_ADDRESS 41 #define FIRST_USER_ADDRESS 0UL 42 #endif 43 44 /* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49 #ifndef pmd_pgtable 50 #define pmd_pgtable(pmd) pmd_page(pmd) 51 #endif 52 53 #define pmd_folio(pmd) page_folio(pmd_page(pmd)) 54 55 /* 56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 58 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given virtual address 60 * 61 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1. 65 */ 66 67 static inline unsigned long pte_index(unsigned long address) 68 { 69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70 } 71 72 #ifndef pmd_index 73 static inline unsigned long pmd_index(unsigned long address) 74 { 75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76 } 77 #define pmd_index pmd_index 78 #endif 79 80 #ifndef pud_index 81 static inline unsigned long pud_index(unsigned long address) 82 { 83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84 } 85 #define pud_index pud_index 86 #endif 87 88 #ifndef pgd_index 89 /* Must be a compile-time constant, so implement it as a macro */ 90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91 #endif 92 93 #ifndef pte_offset_kernel 94 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 95 { 96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 97 } 98 #define pte_offset_kernel pte_offset_kernel 99 #endif 100 101 #ifdef CONFIG_HIGHPTE 102 #define __pte_map(pmd, address) \ 103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 104 #define pte_unmap(pte) do { \ 105 kunmap_local((pte)); \ 106 rcu_read_unlock(); \ 107 } while (0) 108 #else 109 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 110 { 111 return pte_offset_kernel(pmd, address); 112 } 113 static inline void pte_unmap(pte_t *pte) 114 { 115 rcu_read_unlock(); 116 } 117 #endif 118 119 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 120 121 /* Find an entry in the second-level page table.. */ 122 #ifndef pmd_offset 123 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 124 { 125 return pud_pgtable(*pud) + pmd_index(address); 126 } 127 #define pmd_offset pmd_offset 128 #endif 129 130 #ifndef pud_offset 131 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 132 { 133 return p4d_pgtable(*p4d) + pud_index(address); 134 } 135 #define pud_offset pud_offset 136 #endif 137 138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 139 { 140 return (pgd + pgd_index(address)); 141 }; 142 143 /* 144 * a shortcut to get a pgd_t in a given mm 145 */ 146 #ifndef pgd_offset 147 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 148 #endif 149 150 /* 151 * a shortcut which implies the use of the kernel's pgd, instead 152 * of a process's 153 */ 154 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 155 156 /* 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 162 */ 163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164 { 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166 } 167 168 static inline pmd_t *pmd_off_k(unsigned long va) 169 { 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171 } 172 173 static inline pte_t *virt_to_kpte(unsigned long vaddr) 174 { 175 pmd_t *pmd = pmd_off_k(vaddr); 176 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178 } 179 180 #ifndef pmd_young 181 static inline int pmd_young(pmd_t pmd) 182 { 183 return 0; 184 } 185 #endif 186 187 #ifndef pmd_dirty 188 static inline int pmd_dirty(pmd_t pmd) 189 { 190 return 0; 191 } 192 #endif 193 194 /* 195 * A facility to provide lazy MMU batching. This allows PTE updates and 196 * page invalidations to be delayed until a call to leave lazy MMU mode 197 * is issued. Some architectures may benefit from doing this, and it is 198 * beneficial for both shadow and direct mode hypervisors, which may batch 199 * the PTE updates which happen during this window. Note that using this 200 * interface requires that read hazards be removed from the code. A read 201 * hazard could result in the direct mode hypervisor case, since the actual 202 * write to the page tables may not yet have taken place, so reads though 203 * a raw PTE pointer after it has been modified are not guaranteed to be 204 * up to date. This mode can only be entered and left under the protection of 205 * the page table locks for all page tables which may be modified. In the UP 206 * case, this is required so that preemption is disabled, and in the SMP case, 207 * it must synchronize the delayed page table writes properly on other CPUs. 208 */ 209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 210 #define arch_enter_lazy_mmu_mode() do {} while (0) 211 #define arch_leave_lazy_mmu_mode() do {} while (0) 212 #define arch_flush_lazy_mmu_mode() do {} while (0) 213 #endif 214 215 #ifndef pte_batch_hint 216 /** 217 * pte_batch_hint - Number of pages that can be added to batch without scanning. 218 * @ptep: Page table pointer for the entry. 219 * @pte: Page table entry. 220 * 221 * Some architectures know that a set of contiguous ptes all map the same 222 * contiguous memory with the same permissions. In this case, it can provide a 223 * hint to aid pte batching without the core code needing to scan every pte. 224 * 225 * An architecture implementation may ignore the PTE accessed state. Further, 226 * the dirty state must apply atomically to all the PTEs described by the hint. 227 * 228 * May be overridden by the architecture, else pte_batch_hint is always 1. 229 */ 230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 231 { 232 return 1; 233 } 234 #endif 235 236 #ifndef pte_advance_pfn 237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 238 { 239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 240 } 241 #endif 242 243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 244 245 #ifndef set_ptes 246 /** 247 * set_ptes - Map consecutive pages to a contiguous range of addresses. 248 * @mm: Address space to map the pages into. 249 * @addr: Address to map the first page at. 250 * @ptep: Page table pointer for the first entry. 251 * @pte: Page table entry for the first page. 252 * @nr: Number of pages to map. 253 * 254 * When nr==1, initial state of pte may be present or not present, and new state 255 * may be present or not present. When nr>1, initial state of all ptes must be 256 * not present, and new state must be present. 257 * 258 * May be overridden by the architecture, or the architecture can define 259 * set_pte() and PFN_PTE_SHIFT. 260 * 261 * Context: The caller holds the page table lock. The pages all belong 262 * to the same folio. The PTEs are all in the same PMD. 263 */ 264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 265 pte_t *ptep, pte_t pte, unsigned int nr) 266 { 267 page_table_check_ptes_set(mm, ptep, pte, nr); 268 269 arch_enter_lazy_mmu_mode(); 270 for (;;) { 271 set_pte(ptep, pte); 272 if (--nr == 0) 273 break; 274 ptep++; 275 pte = pte_next_pfn(pte); 276 } 277 arch_leave_lazy_mmu_mode(); 278 } 279 #endif 280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 281 282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 283 extern int ptep_set_access_flags(struct vm_area_struct *vma, 284 unsigned long address, pte_t *ptep, 285 pte_t entry, int dirty); 286 #endif 287 288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 290 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 291 unsigned long address, pmd_t *pmdp, 292 pmd_t entry, int dirty); 293 extern int pudp_set_access_flags(struct vm_area_struct *vma, 294 unsigned long address, pud_t *pudp, 295 pud_t entry, int dirty); 296 #else 297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 298 unsigned long address, pmd_t *pmdp, 299 pmd_t entry, int dirty) 300 { 301 BUILD_BUG(); 302 return 0; 303 } 304 static inline int pudp_set_access_flags(struct vm_area_struct *vma, 305 unsigned long address, pud_t *pudp, 306 pud_t entry, int dirty) 307 { 308 BUILD_BUG(); 309 return 0; 310 } 311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 312 #endif 313 314 #ifndef ptep_get 315 static inline pte_t ptep_get(pte_t *ptep) 316 { 317 return READ_ONCE(*ptep); 318 } 319 #endif 320 321 #ifndef pmdp_get 322 static inline pmd_t pmdp_get(pmd_t *pmdp) 323 { 324 return READ_ONCE(*pmdp); 325 } 326 #endif 327 328 #ifndef pudp_get 329 static inline pud_t pudp_get(pud_t *pudp) 330 { 331 return READ_ONCE(*pudp); 332 } 333 #endif 334 335 #ifndef p4dp_get 336 static inline p4d_t p4dp_get(p4d_t *p4dp) 337 { 338 return READ_ONCE(*p4dp); 339 } 340 #endif 341 342 #ifndef pgdp_get 343 static inline pgd_t pgdp_get(pgd_t *pgdp) 344 { 345 return READ_ONCE(*pgdp); 346 } 347 #endif 348 349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 351 unsigned long address, 352 pte_t *ptep) 353 { 354 pte_t pte = ptep_get(ptep); 355 int r = 1; 356 if (!pte_young(pte)) 357 r = 0; 358 else 359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 360 return r; 361 } 362 #endif 363 364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 367 unsigned long address, 368 pmd_t *pmdp) 369 { 370 pmd_t pmd = *pmdp; 371 int r = 1; 372 if (!pmd_young(pmd)) 373 r = 0; 374 else 375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 376 return r; 377 } 378 #else 379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 380 unsigned long address, 381 pmd_t *pmdp) 382 { 383 BUILD_BUG(); 384 return 0; 385 } 386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 387 #endif 388 389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 390 int ptep_clear_flush_young(struct vm_area_struct *vma, 391 unsigned long address, pte_t *ptep); 392 #endif 393 394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 397 unsigned long address, pmd_t *pmdp); 398 #else 399 /* 400 * Despite relevant to THP only, this API is called from generic rmap code 401 * under PageTransHuge(), hence needs a dummy implementation for !THP 402 */ 403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 404 unsigned long address, pmd_t *pmdp) 405 { 406 BUILD_BUG(); 407 return 0; 408 } 409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 410 #endif 411 412 #ifndef arch_has_hw_nonleaf_pmd_young 413 /* 414 * Return whether the accessed bit in non-leaf PMD entries is supported on the 415 * local CPU. 416 */ 417 static inline bool arch_has_hw_nonleaf_pmd_young(void) 418 { 419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 420 } 421 #endif 422 423 #ifndef arch_has_hw_pte_young 424 /* 425 * Return whether the accessed bit is supported on the local CPU. 426 * 427 * This stub assumes accessing through an old PTE triggers a page fault. 428 * Architectures that automatically set the access bit should overwrite it. 429 */ 430 static inline bool arch_has_hw_pte_young(void) 431 { 432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 433 } 434 #endif 435 436 #ifndef arch_check_zapped_pte 437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 438 pte_t pte) 439 { 440 } 441 #endif 442 443 #ifndef arch_check_zapped_pmd 444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 445 pmd_t pmd) 446 { 447 } 448 #endif 449 450 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 452 unsigned long address, 453 pte_t *ptep) 454 { 455 pte_t pte = ptep_get(ptep); 456 pte_clear(mm, address, ptep); 457 page_table_check_pte_clear(mm, pte); 458 return pte; 459 } 460 #endif 461 462 #ifndef clear_young_dirty_ptes 463 /** 464 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the 465 * same folio as old/clean. 466 * @mm: Address space the pages are mapped into. 467 * @addr: Address the first page is mapped at. 468 * @ptep: Page table pointer for the first entry. 469 * @nr: Number of entries to mark old/clean. 470 * @flags: Flags to modify the PTE batch semantics. 471 * 472 * May be overridden by the architecture; otherwise, implemented by 473 * get_and_clear/modify/set for each pte in the range. 474 * 475 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 476 * some PTEs might be write-protected. 477 * 478 * Context: The caller holds the page table lock. The PTEs map consecutive 479 * pages that belong to the same folio. The PTEs are all in the same PMD. 480 */ 481 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 482 unsigned long addr, pte_t *ptep, 483 unsigned int nr, cydp_t flags) 484 { 485 pte_t pte; 486 487 for (;;) { 488 if (flags == CYDP_CLEAR_YOUNG) 489 ptep_test_and_clear_young(vma, addr, ptep); 490 else { 491 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); 492 if (flags & CYDP_CLEAR_YOUNG) 493 pte = pte_mkold(pte); 494 if (flags & CYDP_CLEAR_DIRTY) 495 pte = pte_mkclean(pte); 496 set_pte_at(vma->vm_mm, addr, ptep, pte); 497 } 498 if (--nr == 0) 499 break; 500 ptep++; 501 addr += PAGE_SIZE; 502 } 503 } 504 #endif 505 506 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 507 pte_t *ptep) 508 { 509 ptep_get_and_clear(mm, addr, ptep); 510 } 511 512 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 513 /* 514 * For walking the pagetables without holding any locks. Some architectures 515 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 516 * instructions. We are guaranteed that a PTE will only either go from not 517 * present to present, or present to not present -- it will not switch to a 518 * completely different present page without a TLB flush inbetween; which we 519 * are blocking by holding interrupts off. 520 * 521 * Setting ptes from not present to present goes: 522 * 523 * ptep->pte_high = h; 524 * smp_wmb(); 525 * ptep->pte_low = l; 526 * 527 * And present to not present goes: 528 * 529 * ptep->pte_low = 0; 530 * smp_wmb(); 531 * ptep->pte_high = 0; 532 * 533 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 534 * We load pte_high *after* loading pte_low, which ensures we don't see an older 535 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 536 * picked up a changed pte high. We might have gotten rubbish values from 537 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 538 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 539 * operates on present ptes we're safe. 540 */ 541 static inline pte_t ptep_get_lockless(pte_t *ptep) 542 { 543 pte_t pte; 544 545 do { 546 pte.pte_low = ptep->pte_low; 547 smp_rmb(); 548 pte.pte_high = ptep->pte_high; 549 smp_rmb(); 550 } while (unlikely(pte.pte_low != ptep->pte_low)); 551 552 return pte; 553 } 554 #define ptep_get_lockless ptep_get_lockless 555 556 #if CONFIG_PGTABLE_LEVELS > 2 557 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 558 { 559 pmd_t pmd; 560 561 do { 562 pmd.pmd_low = pmdp->pmd_low; 563 smp_rmb(); 564 pmd.pmd_high = pmdp->pmd_high; 565 smp_rmb(); 566 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 567 568 return pmd; 569 } 570 #define pmdp_get_lockless pmdp_get_lockless 571 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 572 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 573 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 574 575 /* 576 * We require that the PTE can be read atomically. 577 */ 578 #ifndef ptep_get_lockless 579 static inline pte_t ptep_get_lockless(pte_t *ptep) 580 { 581 return ptep_get(ptep); 582 } 583 #endif 584 585 #ifndef pmdp_get_lockless 586 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 587 { 588 return pmdp_get(pmdp); 589 } 590 static inline void pmdp_get_lockless_sync(void) 591 { 592 } 593 #endif 594 595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 596 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 597 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 598 unsigned long address, 599 pmd_t *pmdp) 600 { 601 pmd_t pmd = *pmdp; 602 603 pmd_clear(pmdp); 604 page_table_check_pmd_clear(mm, pmd); 605 606 return pmd; 607 } 608 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 609 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 610 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 611 unsigned long address, 612 pud_t *pudp) 613 { 614 pud_t pud = *pudp; 615 616 pud_clear(pudp); 617 page_table_check_pud_clear(mm, pud); 618 619 return pud; 620 } 621 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 623 624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 625 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 626 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 627 unsigned long address, pmd_t *pmdp, 628 int full) 629 { 630 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 631 } 632 #endif 633 634 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 635 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 636 unsigned long address, pud_t *pudp, 637 int full) 638 { 639 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 640 } 641 #endif 642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 643 644 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 645 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 646 unsigned long address, pte_t *ptep, 647 int full) 648 { 649 return ptep_get_and_clear(mm, address, ptep); 650 } 651 #endif 652 653 #ifndef get_and_clear_full_ptes 654 /** 655 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 656 * the same folio, collecting dirty/accessed bits. 657 * @mm: Address space the pages are mapped into. 658 * @addr: Address the first page is mapped at. 659 * @ptep: Page table pointer for the first entry. 660 * @nr: Number of entries to clear. 661 * @full: Whether we are clearing a full mm. 662 * 663 * May be overridden by the architecture; otherwise, implemented as a simple 664 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 665 * returned PTE. 666 * 667 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 668 * some PTEs might be write-protected. 669 * 670 * Context: The caller holds the page table lock. The PTEs map consecutive 671 * pages that belong to the same folio. The PTEs are all in the same PMD. 672 */ 673 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 674 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 675 { 676 pte_t pte, tmp_pte; 677 678 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 679 while (--nr) { 680 ptep++; 681 addr += PAGE_SIZE; 682 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 683 if (pte_dirty(tmp_pte)) 684 pte = pte_mkdirty(pte); 685 if (pte_young(tmp_pte)) 686 pte = pte_mkyoung(pte); 687 } 688 return pte; 689 } 690 #endif 691 692 #ifndef clear_full_ptes 693 /** 694 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 695 * folio. 696 * @mm: Address space the pages are mapped into. 697 * @addr: Address the first page is mapped at. 698 * @ptep: Page table pointer for the first entry. 699 * @nr: Number of entries to clear. 700 * @full: Whether we are clearing a full mm. 701 * 702 * May be overridden by the architecture; otherwise, implemented as a simple 703 * loop over ptep_get_and_clear_full(). 704 * 705 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 706 * some PTEs might be write-protected. 707 * 708 * Context: The caller holds the page table lock. The PTEs map consecutive 709 * pages that belong to the same folio. The PTEs are all in the same PMD. 710 */ 711 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 712 pte_t *ptep, unsigned int nr, int full) 713 { 714 for (;;) { 715 ptep_get_and_clear_full(mm, addr, ptep, full); 716 if (--nr == 0) 717 break; 718 ptep++; 719 addr += PAGE_SIZE; 720 } 721 } 722 #endif 723 724 /* 725 * If two threads concurrently fault at the same page, the thread that 726 * won the race updates the PTE and its local TLB/Cache. The other thread 727 * gives up, simply does nothing, and continues; on architectures where 728 * software can update TLB, local TLB can be updated here to avoid next page 729 * fault. This function updates TLB only, do nothing with cache or others. 730 * It is the difference with function update_mmu_cache. 731 */ 732 #ifndef update_mmu_tlb_range 733 static inline void update_mmu_tlb_range(struct vm_area_struct *vma, 734 unsigned long address, pte_t *ptep, unsigned int nr) 735 { 736 } 737 #endif 738 739 static inline void update_mmu_tlb(struct vm_area_struct *vma, 740 unsigned long address, pte_t *ptep) 741 { 742 update_mmu_tlb_range(vma, address, ptep, 1); 743 } 744 745 /* 746 * Some architectures may be able to avoid expensive synchronization 747 * primitives when modifications are made to PTE's which are already 748 * not present, or in the process of an address space destruction. 749 */ 750 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 751 static inline void pte_clear_not_present_full(struct mm_struct *mm, 752 unsigned long address, 753 pte_t *ptep, 754 int full) 755 { 756 pte_clear(mm, address, ptep); 757 } 758 #endif 759 760 #ifndef clear_not_present_full_ptes 761 /** 762 * clear_not_present_full_ptes - Clear multiple not present PTEs which are 763 * consecutive in the pgtable. 764 * @mm: Address space the ptes represent. 765 * @addr: Address of the first pte. 766 * @ptep: Page table pointer for the first entry. 767 * @nr: Number of entries to clear. 768 * @full: Whether we are clearing a full mm. 769 * 770 * May be overridden by the architecture; otherwise, implemented as a simple 771 * loop over pte_clear_not_present_full(). 772 * 773 * Context: The caller holds the page table lock. The PTEs are all not present. 774 * The PTEs are all in the same PMD. 775 */ 776 static inline void clear_not_present_full_ptes(struct mm_struct *mm, 777 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 778 { 779 for (;;) { 780 pte_clear_not_present_full(mm, addr, ptep, full); 781 if (--nr == 0) 782 break; 783 ptep++; 784 addr += PAGE_SIZE; 785 } 786 } 787 #endif 788 789 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 790 extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 791 unsigned long address, 792 pte_t *ptep); 793 #endif 794 795 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 796 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 797 unsigned long address, 798 pmd_t *pmdp); 799 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 800 unsigned long address, 801 pud_t *pudp); 802 #endif 803 804 #ifndef pte_mkwrite 805 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 806 { 807 return pte_mkwrite_novma(pte); 808 } 809 #endif 810 811 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 812 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 813 { 814 return pmd_mkwrite_novma(pmd); 815 } 816 #endif 817 818 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 819 struct mm_struct; 820 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 821 { 822 pte_t old_pte = ptep_get(ptep); 823 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 824 } 825 #endif 826 827 #ifndef wrprotect_ptes 828 /** 829 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 830 * folio. 831 * @mm: Address space the pages are mapped into. 832 * @addr: Address the first page is mapped at. 833 * @ptep: Page table pointer for the first entry. 834 * @nr: Number of entries to write-protect. 835 * 836 * May be overridden by the architecture; otherwise, implemented as a simple 837 * loop over ptep_set_wrprotect(). 838 * 839 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 840 * some PTEs might be write-protected. 841 * 842 * Context: The caller holds the page table lock. The PTEs map consecutive 843 * pages that belong to the same folio. The PTEs are all in the same PMD. 844 */ 845 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 846 pte_t *ptep, unsigned int nr) 847 { 848 for (;;) { 849 ptep_set_wrprotect(mm, addr, ptep); 850 if (--nr == 0) 851 break; 852 ptep++; 853 addr += PAGE_SIZE; 854 } 855 } 856 #endif 857 858 /* 859 * On some architectures hardware does not set page access bit when accessing 860 * memory page, it is responsibility of software setting this bit. It brings 861 * out extra page fault penalty to track page access bit. For optimization page 862 * access bit can be set during all page fault flow on these arches. 863 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 864 * where software maintains page access bit. 865 */ 866 #ifndef pte_sw_mkyoung 867 static inline pte_t pte_sw_mkyoung(pte_t pte) 868 { 869 return pte; 870 } 871 #define pte_sw_mkyoung pte_sw_mkyoung 872 #endif 873 874 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 876 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 877 unsigned long address, pmd_t *pmdp) 878 { 879 pmd_t old_pmd = *pmdp; 880 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 881 } 882 #else 883 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 884 unsigned long address, pmd_t *pmdp) 885 { 886 BUILD_BUG(); 887 } 888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 889 #endif 890 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 891 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 893 static inline void pudp_set_wrprotect(struct mm_struct *mm, 894 unsigned long address, pud_t *pudp) 895 { 896 pud_t old_pud = *pudp; 897 898 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 899 } 900 #else 901 static inline void pudp_set_wrprotect(struct mm_struct *mm, 902 unsigned long address, pud_t *pudp) 903 { 904 BUILD_BUG(); 905 } 906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 907 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 908 #endif 909 910 #ifndef pmdp_collapse_flush 911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 912 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 913 unsigned long address, pmd_t *pmdp); 914 #else 915 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 916 unsigned long address, 917 pmd_t *pmdp) 918 { 919 BUILD_BUG(); 920 return *pmdp; 921 } 922 #define pmdp_collapse_flush pmdp_collapse_flush 923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 924 #endif 925 926 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 927 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 928 pgtable_t pgtable); 929 #endif 930 931 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 932 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 933 #endif 934 935 #ifndef arch_needs_pgtable_deposit 936 #define arch_needs_pgtable_deposit() (false) 937 #endif 938 939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 940 /* 941 * This is an implementation of pmdp_establish() that is only suitable for an 942 * architecture that doesn't have hardware dirty/accessed bits. In this case we 943 * can't race with CPU which sets these bits and non-atomic approach is fine. 944 */ 945 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 946 unsigned long address, pmd_t *pmdp, pmd_t pmd) 947 { 948 pmd_t old_pmd = *pmdp; 949 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 950 return old_pmd; 951 } 952 #endif 953 954 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 955 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 956 pmd_t *pmdp); 957 #endif 958 959 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 960 961 /* 962 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 963 * hugepage mapping in the page tables. This function is similar to 964 * pmdp_invalidate(), but should only be used if the access and dirty bits would 965 * not be cleared by the software in the new PMD value. The function ensures 966 * that hardware changes of the access and dirty bits updates would not be lost. 967 * 968 * Doing so can allow in certain architectures to avoid a TLB flush in most 969 * cases. Yet, another TLB flush might be necessary later if the PMD update 970 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 971 * even when a TLB flush is needed because of the update, the caller may be able 972 * to batch these TLB flushing operations, so fewer TLB flush operations are 973 * needed. 974 */ 975 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 976 unsigned long address, pmd_t *pmdp); 977 #endif 978 979 #ifndef __HAVE_ARCH_PTE_SAME 980 static inline int pte_same(pte_t pte_a, pte_t pte_b) 981 { 982 return pte_val(pte_a) == pte_val(pte_b); 983 } 984 #endif 985 986 #ifndef __HAVE_ARCH_PTE_UNUSED 987 /* 988 * Some architectures provide facilities to virtualization guests 989 * so that they can flag allocated pages as unused. This allows the 990 * host to transparently reclaim unused pages. This function returns 991 * whether the pte's page is unused. 992 */ 993 static inline int pte_unused(pte_t pte) 994 { 995 return 0; 996 } 997 #endif 998 999 #ifndef pte_access_permitted 1000 #define pte_access_permitted(pte, write) \ 1001 (pte_present(pte) && (!(write) || pte_write(pte))) 1002 #endif 1003 1004 #ifndef pmd_access_permitted 1005 #define pmd_access_permitted(pmd, write) \ 1006 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1007 #endif 1008 1009 #ifndef pud_access_permitted 1010 #define pud_access_permitted(pud, write) \ 1011 (pud_present(pud) && (!(write) || pud_write(pud))) 1012 #endif 1013 1014 #ifndef p4d_access_permitted 1015 #define p4d_access_permitted(p4d, write) \ 1016 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1017 #endif 1018 1019 #ifndef pgd_access_permitted 1020 #define pgd_access_permitted(pgd, write) \ 1021 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1022 #endif 1023 1024 #ifndef __HAVE_ARCH_PMD_SAME 1025 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1026 { 1027 return pmd_val(pmd_a) == pmd_val(pmd_b); 1028 } 1029 #endif 1030 1031 #ifndef pud_same 1032 static inline int pud_same(pud_t pud_a, pud_t pud_b) 1033 { 1034 return pud_val(pud_a) == pud_val(pud_b); 1035 } 1036 #define pud_same pud_same 1037 #endif 1038 1039 #ifndef __HAVE_ARCH_P4D_SAME 1040 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1041 { 1042 return p4d_val(p4d_a) == p4d_val(p4d_b); 1043 } 1044 #endif 1045 1046 #ifndef __HAVE_ARCH_PGD_SAME 1047 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1048 { 1049 return pgd_val(pgd_a) == pgd_val(pgd_b); 1050 } 1051 #endif 1052 1053 /* 1054 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 1055 * TLB flush will be required as a result of the "set". For example, use 1056 * in scenarios where it is known ahead of time that the routine is 1057 * setting non-present entries, or re-setting an existing entry to the 1058 * same value. Otherwise, use the typical "set" helpers and flush the 1059 * TLB. 1060 */ 1061 #define set_pte_safe(ptep, pte) \ 1062 ({ \ 1063 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 1064 set_pte(ptep, pte); \ 1065 }) 1066 1067 #define set_pmd_safe(pmdp, pmd) \ 1068 ({ \ 1069 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 1070 set_pmd(pmdp, pmd); \ 1071 }) 1072 1073 #define set_pud_safe(pudp, pud) \ 1074 ({ \ 1075 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 1076 set_pud(pudp, pud); \ 1077 }) 1078 1079 #define set_p4d_safe(p4dp, p4d) \ 1080 ({ \ 1081 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 1082 set_p4d(p4dp, p4d); \ 1083 }) 1084 1085 #define set_pgd_safe(pgdp, pgd) \ 1086 ({ \ 1087 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 1088 set_pgd(pgdp, pgd); \ 1089 }) 1090 1091 #ifndef __HAVE_ARCH_DO_SWAP_PAGE 1092 static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1093 struct vm_area_struct *vma, 1094 unsigned long addr, 1095 pte_t pte, pte_t oldpte, 1096 int nr) 1097 { 1098 1099 } 1100 #else 1101 /* 1102 * Some architectures support metadata associated with a page. When a 1103 * page is being swapped out, this metadata must be saved so it can be 1104 * restored when the page is swapped back in. SPARC M7 and newer 1105 * processors support an ADI (Application Data Integrity) tag for the 1106 * page as metadata for the page. arch_do_swap_page() can restore this 1107 * metadata when a page is swapped back in. 1108 */ 1109 static inline void arch_do_swap_page_nr(struct mm_struct *mm, 1110 struct vm_area_struct *vma, 1111 unsigned long addr, 1112 pte_t pte, pte_t oldpte, 1113 int nr) 1114 { 1115 for (int i = 0; i < nr; i++) { 1116 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, 1117 pte_advance_pfn(pte, i), 1118 pte_advance_pfn(oldpte, i)); 1119 } 1120 } 1121 #endif 1122 1123 #ifndef __HAVE_ARCH_UNMAP_ONE 1124 /* 1125 * Some architectures support metadata associated with a page. When a 1126 * page is being swapped out, this metadata must be saved so it can be 1127 * restored when the page is swapped back in. SPARC M7 and newer 1128 * processors support an ADI (Application Data Integrity) tag for the 1129 * page as metadata for the page. arch_unmap_one() can save this 1130 * metadata on a swap-out of a page. 1131 */ 1132 static inline int arch_unmap_one(struct mm_struct *mm, 1133 struct vm_area_struct *vma, 1134 unsigned long addr, 1135 pte_t orig_pte) 1136 { 1137 return 0; 1138 } 1139 #endif 1140 1141 /* 1142 * Allow architectures to preserve additional metadata associated with 1143 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1144 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1145 */ 1146 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1147 static inline int arch_prepare_to_swap(struct folio *folio) 1148 { 1149 return 0; 1150 } 1151 #endif 1152 1153 #ifndef __HAVE_ARCH_SWAP_INVALIDATE 1154 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1155 { 1156 } 1157 1158 static inline void arch_swap_invalidate_area(int type) 1159 { 1160 } 1161 #endif 1162 1163 #ifndef __HAVE_ARCH_SWAP_RESTORE 1164 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1165 { 1166 } 1167 #endif 1168 1169 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1170 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 1171 #endif 1172 1173 #ifndef __HAVE_ARCH_MOVE_PTE 1174 #define move_pte(pte, old_addr, new_addr) (pte) 1175 #endif 1176 1177 #ifndef pte_accessible 1178 # define pte_accessible(mm, pte) ((void)(pte), 1) 1179 #endif 1180 1181 #ifndef flush_tlb_fix_spurious_fault 1182 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1183 #endif 1184 1185 /* 1186 * When walking page tables, get the address of the next boundary, 1187 * or the end address of the range if that comes earlier. Although no 1188 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1189 */ 1190 1191 #define pgd_addr_end(addr, end) \ 1192 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1193 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1194 }) 1195 1196 #ifndef p4d_addr_end 1197 #define p4d_addr_end(addr, end) \ 1198 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1200 }) 1201 #endif 1202 1203 #ifndef pud_addr_end 1204 #define pud_addr_end(addr, end) \ 1205 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1206 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1207 }) 1208 #endif 1209 1210 #ifndef pmd_addr_end 1211 #define pmd_addr_end(addr, end) \ 1212 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1213 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1214 }) 1215 #endif 1216 1217 /* 1218 * When walking page tables, we usually want to skip any p?d_none entries; 1219 * and any p?d_bad entries - reporting the error before resetting to none. 1220 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1221 */ 1222 void pgd_clear_bad(pgd_t *); 1223 1224 #ifndef __PAGETABLE_P4D_FOLDED 1225 void p4d_clear_bad(p4d_t *); 1226 #else 1227 #define p4d_clear_bad(p4d) do { } while (0) 1228 #endif 1229 1230 #ifndef __PAGETABLE_PUD_FOLDED 1231 void pud_clear_bad(pud_t *); 1232 #else 1233 #define pud_clear_bad(p4d) do { } while (0) 1234 #endif 1235 1236 void pmd_clear_bad(pmd_t *); 1237 1238 static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1239 { 1240 if (pgd_none(*pgd)) 1241 return 1; 1242 if (unlikely(pgd_bad(*pgd))) { 1243 pgd_clear_bad(pgd); 1244 return 1; 1245 } 1246 return 0; 1247 } 1248 1249 static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1250 { 1251 if (p4d_none(*p4d)) 1252 return 1; 1253 if (unlikely(p4d_bad(*p4d))) { 1254 p4d_clear_bad(p4d); 1255 return 1; 1256 } 1257 return 0; 1258 } 1259 1260 static inline int pud_none_or_clear_bad(pud_t *pud) 1261 { 1262 if (pud_none(*pud)) 1263 return 1; 1264 if (unlikely(pud_bad(*pud))) { 1265 pud_clear_bad(pud); 1266 return 1; 1267 } 1268 return 0; 1269 } 1270 1271 static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1272 { 1273 if (pmd_none(*pmd)) 1274 return 1; 1275 if (unlikely(pmd_bad(*pmd))) { 1276 pmd_clear_bad(pmd); 1277 return 1; 1278 } 1279 return 0; 1280 } 1281 1282 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1283 unsigned long addr, 1284 pte_t *ptep) 1285 { 1286 /* 1287 * Get the current pte state, but zero it out to make it 1288 * non-present, preventing the hardware from asynchronously 1289 * updating it. 1290 */ 1291 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1292 } 1293 1294 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1295 unsigned long addr, 1296 pte_t *ptep, pte_t pte) 1297 { 1298 /* 1299 * The pte is non-present, so there's no hardware state to 1300 * preserve. 1301 */ 1302 set_pte_at(vma->vm_mm, addr, ptep, pte); 1303 } 1304 1305 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1306 /* 1307 * Start a pte protection read-modify-write transaction, which 1308 * protects against asynchronous hardware modifications to the pte. 1309 * The intention is not to prevent the hardware from making pte 1310 * updates, but to prevent any updates it may make from being lost. 1311 * 1312 * This does not protect against other software modifications of the 1313 * pte; the appropriate pte lock must be held over the transaction. 1314 * 1315 * Note that this interface is intended to be batchable, meaning that 1316 * ptep_modify_prot_commit may not actually update the pte, but merely 1317 * queue the update to be done at some later time. The update must be 1318 * actually committed before the pte lock is released, however. 1319 */ 1320 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1321 unsigned long addr, 1322 pte_t *ptep) 1323 { 1324 return __ptep_modify_prot_start(vma, addr, ptep); 1325 } 1326 1327 /* 1328 * Commit an update to a pte, leaving any hardware-controlled bits in 1329 * the PTE unmodified. 1330 */ 1331 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1332 unsigned long addr, 1333 pte_t *ptep, pte_t old_pte, pte_t pte) 1334 { 1335 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1336 } 1337 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1338 #endif /* CONFIG_MMU */ 1339 1340 /* 1341 * No-op macros that just return the current protection value. Defined here 1342 * because these macros can be used even if CONFIG_MMU is not defined. 1343 */ 1344 1345 #ifndef pgprot_nx 1346 #define pgprot_nx(prot) (prot) 1347 #endif 1348 1349 #ifndef pgprot_noncached 1350 #define pgprot_noncached(prot) (prot) 1351 #endif 1352 1353 #ifndef pgprot_writecombine 1354 #define pgprot_writecombine pgprot_noncached 1355 #endif 1356 1357 #ifndef pgprot_writethrough 1358 #define pgprot_writethrough pgprot_noncached 1359 #endif 1360 1361 #ifndef pgprot_device 1362 #define pgprot_device pgprot_noncached 1363 #endif 1364 1365 #ifndef pgprot_mhp 1366 #define pgprot_mhp(prot) (prot) 1367 #endif 1368 1369 #ifdef CONFIG_MMU 1370 #ifndef pgprot_modify 1371 #define pgprot_modify pgprot_modify 1372 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1373 { 1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1375 newprot = pgprot_noncached(newprot); 1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1377 newprot = pgprot_writecombine(newprot); 1378 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1379 newprot = pgprot_device(newprot); 1380 return newprot; 1381 } 1382 #endif 1383 #endif /* CONFIG_MMU */ 1384 1385 #ifndef pgprot_encrypted 1386 #define pgprot_encrypted(prot) (prot) 1387 #endif 1388 1389 #ifndef pgprot_decrypted 1390 #define pgprot_decrypted(prot) (prot) 1391 #endif 1392 1393 /* 1394 * A facility to provide batching of the reload of page tables and 1395 * other process state with the actual context switch code for 1396 * paravirtualized guests. By convention, only one of the batched 1397 * update (lazy) modes (CPU, MMU) should be active at any given time, 1398 * entry should never be nested, and entry and exits should always be 1399 * paired. This is for sanity of maintaining and reasoning about the 1400 * kernel code. In this case, the exit (end of the context switch) is 1401 * in architecture-specific code, and so doesn't need a generic 1402 * definition. 1403 */ 1404 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1405 #define arch_start_context_switch(prev) do {} while (0) 1406 #endif 1407 1408 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1409 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1410 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1411 { 1412 return pmd; 1413 } 1414 1415 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1416 { 1417 return 0; 1418 } 1419 1420 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1421 { 1422 return pmd; 1423 } 1424 #endif 1425 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1426 static inline int pte_soft_dirty(pte_t pte) 1427 { 1428 return 0; 1429 } 1430 1431 static inline int pmd_soft_dirty(pmd_t pmd) 1432 { 1433 return 0; 1434 } 1435 1436 static inline pte_t pte_mksoft_dirty(pte_t pte) 1437 { 1438 return pte; 1439 } 1440 1441 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1442 { 1443 return pmd; 1444 } 1445 1446 static inline pte_t pte_clear_soft_dirty(pte_t pte) 1447 { 1448 return pte; 1449 } 1450 1451 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1452 { 1453 return pmd; 1454 } 1455 1456 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1457 { 1458 return pte; 1459 } 1460 1461 static inline int pte_swp_soft_dirty(pte_t pte) 1462 { 1463 return 0; 1464 } 1465 1466 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1467 { 1468 return pte; 1469 } 1470 1471 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1472 { 1473 return pmd; 1474 } 1475 1476 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1477 { 1478 return 0; 1479 } 1480 1481 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1482 { 1483 return pmd; 1484 } 1485 #endif 1486 1487 #ifndef __HAVE_PFNMAP_TRACKING 1488 /* 1489 * Interfaces that can be used by architecture code to keep track of 1490 * memory type of pfn mappings specified by the remap_pfn_range, 1491 * vmf_insert_pfn. 1492 */ 1493 1494 /* 1495 * track_pfn_remap is called when a _new_ pfn mapping is being established 1496 * by remap_pfn_range() for physical range indicated by pfn and size. 1497 */ 1498 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1499 unsigned long pfn, unsigned long addr, 1500 unsigned long size) 1501 { 1502 return 0; 1503 } 1504 1505 /* 1506 * track_pfn_insert is called when a _new_ single pfn is established 1507 * by vmf_insert_pfn(). 1508 */ 1509 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1510 pfn_t pfn) 1511 { 1512 } 1513 1514 /* 1515 * track_pfn_copy is called when vma that is covering the pfnmap gets 1516 * copied through copy_page_range(). 1517 */ 1518 static inline int track_pfn_copy(struct vm_area_struct *vma) 1519 { 1520 return 0; 1521 } 1522 1523 /* 1524 * untrack_pfn is called while unmapping a pfnmap for a region. 1525 * untrack can be called for a specific region indicated by pfn and size or 1526 * can be for the entire vma (in which case pfn, size are zero). 1527 */ 1528 static inline void untrack_pfn(struct vm_area_struct *vma, 1529 unsigned long pfn, unsigned long size, 1530 bool mm_wr_locked) 1531 { 1532 } 1533 1534 /* 1535 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1536 * or fails to copy pgtable during duplicate vm area. 1537 */ 1538 static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1539 { 1540 } 1541 #else 1542 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1543 unsigned long pfn, unsigned long addr, 1544 unsigned long size); 1545 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1546 pfn_t pfn); 1547 extern int track_pfn_copy(struct vm_area_struct *vma); 1548 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1549 unsigned long size, bool mm_wr_locked); 1550 extern void untrack_pfn_clear(struct vm_area_struct *vma); 1551 #endif 1552 1553 #ifdef CONFIG_MMU 1554 #ifdef __HAVE_COLOR_ZERO_PAGE 1555 static inline int is_zero_pfn(unsigned long pfn) 1556 { 1557 extern unsigned long zero_pfn; 1558 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1559 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1560 } 1561 1562 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1563 1564 #else 1565 static inline int is_zero_pfn(unsigned long pfn) 1566 { 1567 extern unsigned long zero_pfn; 1568 return pfn == zero_pfn; 1569 } 1570 1571 static inline unsigned long my_zero_pfn(unsigned long addr) 1572 { 1573 extern unsigned long zero_pfn; 1574 return zero_pfn; 1575 } 1576 #endif 1577 #else 1578 static inline int is_zero_pfn(unsigned long pfn) 1579 { 1580 return 0; 1581 } 1582 1583 static inline unsigned long my_zero_pfn(unsigned long addr) 1584 { 1585 return 0; 1586 } 1587 #endif /* CONFIG_MMU */ 1588 1589 #ifdef CONFIG_MMU 1590 1591 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 1592 static inline int pmd_trans_huge(pmd_t pmd) 1593 { 1594 return 0; 1595 } 1596 #ifndef pmd_write 1597 static inline int pmd_write(pmd_t pmd) 1598 { 1599 BUG(); 1600 return 0; 1601 } 1602 #endif /* pmd_write */ 1603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1604 1605 #ifndef pud_write 1606 static inline int pud_write(pud_t pud) 1607 { 1608 BUG(); 1609 return 0; 1610 } 1611 #endif /* pud_write */ 1612 1613 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1614 static inline int pmd_devmap(pmd_t pmd) 1615 { 1616 return 0; 1617 } 1618 static inline int pud_devmap(pud_t pud) 1619 { 1620 return 0; 1621 } 1622 static inline int pgd_devmap(pgd_t pgd) 1623 { 1624 return 0; 1625 } 1626 #endif 1627 1628 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1629 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1630 static inline int pud_trans_huge(pud_t pud) 1631 { 1632 return 0; 1633 } 1634 #endif 1635 1636 static inline int pud_trans_unstable(pud_t *pud) 1637 { 1638 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1639 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1640 pud_t pudval = READ_ONCE(*pud); 1641 1642 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1643 return 1; 1644 if (unlikely(pud_bad(pudval))) { 1645 pud_clear_bad(pud); 1646 return 1; 1647 } 1648 #endif 1649 return 0; 1650 } 1651 1652 #ifndef CONFIG_NUMA_BALANCING 1653 /* 1654 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1655 * perfectly valid to indicate "no" in that case, which is why our default 1656 * implementation defaults to "always no". 1657 * 1658 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1659 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1660 * accessible VMAs. 1661 * 1662 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1663 * looking at the VMA accessibility is sufficient. 1664 */ 1665 static inline int pte_protnone(pte_t pte) 1666 { 1667 return 0; 1668 } 1669 1670 static inline int pmd_protnone(pmd_t pmd) 1671 { 1672 return 0; 1673 } 1674 #endif /* CONFIG_NUMA_BALANCING */ 1675 1676 #endif /* CONFIG_MMU */ 1677 1678 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1679 1680 #ifndef __PAGETABLE_P4D_FOLDED 1681 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1682 void p4d_clear_huge(p4d_t *p4d); 1683 #else 1684 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1685 { 1686 return 0; 1687 } 1688 static inline void p4d_clear_huge(p4d_t *p4d) { } 1689 #endif /* !__PAGETABLE_P4D_FOLDED */ 1690 1691 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1692 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1693 int pud_clear_huge(pud_t *pud); 1694 int pmd_clear_huge(pmd_t *pmd); 1695 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1696 int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1697 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1698 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1699 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1700 { 1701 return 0; 1702 } 1703 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1704 { 1705 return 0; 1706 } 1707 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1708 { 1709 return 0; 1710 } 1711 static inline void p4d_clear_huge(p4d_t *p4d) { } 1712 static inline int pud_clear_huge(pud_t *pud) 1713 { 1714 return 0; 1715 } 1716 static inline int pmd_clear_huge(pmd_t *pmd) 1717 { 1718 return 0; 1719 } 1720 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1721 { 1722 return 0; 1723 } 1724 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1725 { 1726 return 0; 1727 } 1728 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1729 { 1730 return 0; 1731 } 1732 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1733 1734 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1736 /* 1737 * ARCHes with special requirements for evicting THP backing TLB entries can 1738 * implement this. Otherwise also, it can help optimize normal TLB flush in 1739 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1740 * entire TLB if flush span is greater than a threshold, which will 1741 * likely be true for a single huge page. Thus a single THP flush will 1742 * invalidate the entire TLB which is not desirable. 1743 * e.g. see arch/arc: flush_pmd_tlb_range 1744 */ 1745 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1746 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1747 #else 1748 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1749 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1750 #endif 1751 #endif 1752 1753 struct file; 1754 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1755 unsigned long size, pgprot_t *vma_prot); 1756 1757 #ifndef CONFIG_X86_ESPFIX64 1758 static inline void init_espfix_bsp(void) { } 1759 #endif 1760 1761 extern void __init pgtable_cache_init(void); 1762 1763 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1764 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1765 { 1766 return true; 1767 } 1768 1769 static inline bool arch_has_pfn_modify_check(void) 1770 { 1771 return false; 1772 } 1773 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1774 1775 /* 1776 * Architecture PAGE_KERNEL_* fallbacks 1777 * 1778 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1779 * because they really don't support them, or the port needs to be updated to 1780 * reflect the required functionality. Below are a set of relatively safe 1781 * fallbacks, as best effort, which we can count on in lieu of the architectures 1782 * not defining them on their own yet. 1783 */ 1784 1785 #ifndef PAGE_KERNEL_RO 1786 # define PAGE_KERNEL_RO PAGE_KERNEL 1787 #endif 1788 1789 #ifndef PAGE_KERNEL_EXEC 1790 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1791 #endif 1792 1793 /* 1794 * Page Table Modification bits for pgtbl_mod_mask. 1795 * 1796 * These are used by the p?d_alloc_track*() set of functions an in the generic 1797 * vmalloc/ioremap code to track at which page-table levels entries have been 1798 * modified. Based on that the code can better decide when vmalloc and ioremap 1799 * mapping changes need to be synchronized to other page-tables in the system. 1800 */ 1801 #define __PGTBL_PGD_MODIFIED 0 1802 #define __PGTBL_P4D_MODIFIED 1 1803 #define __PGTBL_PUD_MODIFIED 2 1804 #define __PGTBL_PMD_MODIFIED 3 1805 #define __PGTBL_PTE_MODIFIED 4 1806 1807 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1808 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1809 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1810 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1811 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1812 1813 /* Page-Table Modification Mask */ 1814 typedef unsigned int pgtbl_mod_mask; 1815 1816 #endif /* !__ASSEMBLY__ */ 1817 1818 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1819 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1820 /* 1821 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1822 * with physical address space extension, but falls back to 1823 * BITS_PER_LONG otherwise. 1824 */ 1825 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1826 #else 1827 #define MAX_POSSIBLE_PHYSMEM_BITS 32 1828 #endif 1829 #endif 1830 1831 #ifndef has_transparent_hugepage 1832 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1833 #endif 1834 1835 #ifndef has_transparent_pud_hugepage 1836 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1837 #endif 1838 /* 1839 * On some architectures it depends on the mm if the p4d/pud or pmd 1840 * layer of the page table hierarchy is folded or not. 1841 */ 1842 #ifndef mm_p4d_folded 1843 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1844 #endif 1845 1846 #ifndef mm_pud_folded 1847 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1848 #endif 1849 1850 #ifndef mm_pmd_folded 1851 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1852 #endif 1853 1854 #ifndef p4d_offset_lockless 1855 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1856 #endif 1857 #ifndef pud_offset_lockless 1858 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1859 #endif 1860 #ifndef pmd_offset_lockless 1861 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1862 #endif 1863 1864 /* 1865 * pXd_leaf() is the API to check whether a pgtable entry is a huge page 1866 * mapping. It should work globally across all archs, without any 1867 * dependency on CONFIG_* options. For architectures that do not support 1868 * huge mappings on specific levels, below fallbacks will be used. 1869 * 1870 * A leaf pgtable entry should always imply the following: 1871 * 1872 * - It is a "present" entry. IOW, before using this API, please check it 1873 * with pXd_present() first. NOTE: it may not always mean the "present 1874 * bit" is set. For example, PROT_NONE entries are always "present". 1875 * 1876 * - It should _never_ be a swap entry of any type. Above "present" check 1877 * should have guarded this, but let's be crystal clear on this. 1878 * 1879 * - It should contain a huge PFN, which points to a huge page larger than 1880 * PAGE_SIZE of the platform. The PFN format isn't important here. 1881 * 1882 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), 1883 * pXd_devmap(), or hugetlb mappings). 1884 */ 1885 #ifndef pgd_leaf 1886 #define pgd_leaf(x) false 1887 #endif 1888 #ifndef p4d_leaf 1889 #define p4d_leaf(x) false 1890 #endif 1891 #ifndef pud_leaf 1892 #define pud_leaf(x) false 1893 #endif 1894 #ifndef pmd_leaf 1895 #define pmd_leaf(x) false 1896 #endif 1897 1898 #ifndef pgd_leaf_size 1899 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1900 #endif 1901 #ifndef p4d_leaf_size 1902 #define p4d_leaf_size(x) P4D_SIZE 1903 #endif 1904 #ifndef pud_leaf_size 1905 #define pud_leaf_size(x) PUD_SIZE 1906 #endif 1907 #ifndef pmd_leaf_size 1908 #define pmd_leaf_size(x) PMD_SIZE 1909 #endif 1910 #ifndef __pte_leaf_size 1911 #ifndef pte_leaf_size 1912 #define pte_leaf_size(x) PAGE_SIZE 1913 #endif 1914 #define __pte_leaf_size(x,y) pte_leaf_size(y) 1915 #endif 1916 1917 /* 1918 * We always define pmd_pfn for all archs as it's used in lots of generic 1919 * code. Now it happens too for pud_pfn (and can happen for larger 1920 * mappings too in the future; we're not there yet). Instead of defining 1921 * it for all archs (like pmd_pfn), provide a fallback. 1922 * 1923 * Note that returning 0 here means any arch that didn't define this can 1924 * get severely wrong when it hits a real pud leaf. It's arch's 1925 * responsibility to properly define it when a huge pud is possible. 1926 */ 1927 #ifndef pud_pfn 1928 #define pud_pfn(x) 0 1929 #endif 1930 1931 /* 1932 * Some architectures have MMUs that are configurable or selectable at boot 1933 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1934 * helps to have a static maximum value. 1935 */ 1936 1937 #ifndef MAX_PTRS_PER_PTE 1938 #define MAX_PTRS_PER_PTE PTRS_PER_PTE 1939 #endif 1940 1941 #ifndef MAX_PTRS_PER_PMD 1942 #define MAX_PTRS_PER_PMD PTRS_PER_PMD 1943 #endif 1944 1945 #ifndef MAX_PTRS_PER_PUD 1946 #define MAX_PTRS_PER_PUD PTRS_PER_PUD 1947 #endif 1948 1949 #ifndef MAX_PTRS_PER_P4D 1950 #define MAX_PTRS_PER_P4D PTRS_PER_P4D 1951 #endif 1952 1953 /* description of effects of mapping type and prot in current implementation. 1954 * this is due to the limited x86 page protection hardware. The expected 1955 * behavior is in parens: 1956 * 1957 * map_type prot 1958 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1959 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1960 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1961 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1962 * 1963 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1964 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1965 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1966 * 1967 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1968 * MAP_PRIVATE (with Enhanced PAN supported): 1969 * r: (no) no 1970 * w: (no) no 1971 * x: (yes) yes 1972 */ 1973 #define DECLARE_VM_GET_PAGE_PROT \ 1974 pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1975 { \ 1976 return protection_map[vm_flags & \ 1977 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1978 } \ 1979 EXPORT_SYMBOL(vm_get_page_prot); 1980 1981 #endif /* _LINUX_PGTABLE_H */ 1982
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.