~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/pid.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_PID_H
  3 #define _LINUX_PID_H
  4 
  5 #include <linux/pid_types.h>
  6 #include <linux/rculist.h>
  7 #include <linux/rcupdate.h>
  8 #include <linux/refcount.h>
  9 #include <linux/sched.h>
 10 #include <linux/wait.h>
 11 
 12 /*
 13  * What is struct pid?
 14  *
 15  * A struct pid is the kernel's internal notion of a process identifier.
 16  * It refers to individual tasks, process groups, and sessions.  While
 17  * there are processes attached to it the struct pid lives in a hash
 18  * table, so it and then the processes that it refers to can be found
 19  * quickly from the numeric pid value.  The attached processes may be
 20  * quickly accessed by following pointers from struct pid.
 21  *
 22  * Storing pid_t values in the kernel and referring to them later has a
 23  * problem.  The process originally with that pid may have exited and the
 24  * pid allocator wrapped, and another process could have come along
 25  * and been assigned that pid.
 26  *
 27  * Referring to user space processes by holding a reference to struct
 28  * task_struct has a problem.  When the user space process exits
 29  * the now useless task_struct is still kept.  A task_struct plus a
 30  * stack consumes around 10K of low kernel memory.  More precisely
 31  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
 32  * a struct pid is about 64 bytes.
 33  *
 34  * Holding a reference to struct pid solves both of these problems.
 35  * It is small so holding a reference does not consume a lot of
 36  * resources, and since a new struct pid is allocated when the numeric pid
 37  * value is reused (when pids wrap around) we don't mistakenly refer to new
 38  * processes.
 39  */
 40 
 41 
 42 /*
 43  * struct upid is used to get the id of the struct pid, as it is
 44  * seen in particular namespace. Later the struct pid is found with
 45  * find_pid_ns() using the int nr and struct pid_namespace *ns.
 46  */
 47 
 48 #define RESERVED_PIDS 300
 49 
 50 struct upid {
 51         int nr;
 52         struct pid_namespace *ns;
 53 };
 54 
 55 struct pid
 56 {
 57         refcount_t count;
 58         unsigned int level;
 59         spinlock_t lock;
 60         struct dentry *stashed;
 61         u64 ino;
 62         /* lists of tasks that use this pid */
 63         struct hlist_head tasks[PIDTYPE_MAX];
 64         struct hlist_head inodes;
 65         /* wait queue for pidfd notifications */
 66         wait_queue_head_t wait_pidfd;
 67         struct rcu_head rcu;
 68         struct upid numbers[];
 69 };
 70 
 71 extern struct pid init_struct_pid;
 72 
 73 struct file;
 74 
 75 struct pid *pidfd_pid(const struct file *file);
 76 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
 77 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
 78 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
 79 void do_notify_pidfd(struct task_struct *task);
 80 
 81 static inline struct pid *get_pid(struct pid *pid)
 82 {
 83         if (pid)
 84                 refcount_inc(&pid->count);
 85         return pid;
 86 }
 87 
 88 extern void put_pid(struct pid *pid);
 89 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
 90 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
 91 {
 92         return !hlist_empty(&pid->tasks[type]);
 93 }
 94 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
 95 
 96 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
 97 
 98 /*
 99  * these helpers must be called with the tasklist_lock write-held.
100  */
101 extern void attach_pid(struct task_struct *task, enum pid_type);
102 extern void detach_pid(struct task_struct *task, enum pid_type);
103 extern void change_pid(struct task_struct *task, enum pid_type,
104                         struct pid *pid);
105 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
106 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
107                          enum pid_type);
108 
109 extern int pid_max;
110 extern int pid_max_min, pid_max_max;
111 
112 /*
113  * look up a PID in the hash table. Must be called with the tasklist_lock
114  * or rcu_read_lock() held.
115  *
116  * find_pid_ns() finds the pid in the namespace specified
117  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
118  *
119  * see also find_task_by_vpid() set in include/linux/sched.h
120  */
121 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
122 extern struct pid *find_vpid(int nr);
123 
124 /*
125  * Lookup a PID in the hash table, and return with it's count elevated.
126  */
127 extern struct pid *find_get_pid(int nr);
128 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
129 
130 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
131                              size_t set_tid_size);
132 extern void free_pid(struct pid *pid);
133 extern void disable_pid_allocation(struct pid_namespace *ns);
134 
135 /*
136  * ns_of_pid() returns the pid namespace in which the specified pid was
137  * allocated.
138  *
139  * NOTE:
140  *      ns_of_pid() is expected to be called for a process (task) that has
141  *      an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
142  *      is expected to be non-NULL. If @pid is NULL, caller should handle
143  *      the resulting NULL pid-ns.
144  */
145 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
146 {
147         struct pid_namespace *ns = NULL;
148         if (pid)
149                 ns = pid->numbers[pid->level].ns;
150         return ns;
151 }
152 
153 /*
154  * is_child_reaper returns true if the pid is the init process
155  * of the current namespace. As this one could be checked before
156  * pid_ns->child_reaper is assigned in copy_process, we check
157  * with the pid number.
158  */
159 static inline bool is_child_reaper(struct pid *pid)
160 {
161         return pid->numbers[pid->level].nr == 1;
162 }
163 
164 /*
165  * the helpers to get the pid's id seen from different namespaces
166  *
167  * pid_nr()    : global id, i.e. the id seen from the init namespace;
168  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
169  *               current.
170  * pid_nr_ns() : id seen from the ns specified.
171  *
172  * see also task_xid_nr() etc in include/linux/sched.h
173  */
174 
175 static inline pid_t pid_nr(struct pid *pid)
176 {
177         pid_t nr = 0;
178         if (pid)
179                 nr = pid->numbers[0].nr;
180         return nr;
181 }
182 
183 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
184 pid_t pid_vnr(struct pid *pid);
185 
186 #define do_each_pid_task(pid, type, task)                               \
187         do {                                                            \
188                 if ((pid) != NULL)                                      \
189                         hlist_for_each_entry_rcu((task),                \
190                                 &(pid)->tasks[type], pid_links[type]) {
191 
192                         /*
193                          * Both old and new leaders may be attached to
194                          * the same pid in the middle of de_thread().
195                          */
196 #define while_each_pid_task(pid, type, task)                            \
197                                 if (type == PIDTYPE_PID)                \
198                                         break;                          \
199                         }                                               \
200         } while (0)
201 
202 #define do_each_pid_thread(pid, type, task)                             \
203         do_each_pid_task(pid, type, task) {                             \
204                 struct task_struct *tg___ = task;                       \
205                 for_each_thread(tg___, task) {
206 
207 #define while_each_pid_thread(pid, type, task)                          \
208                 }                                                       \
209                 task = tg___;                                           \
210         } while_each_pid_task(pid, type, task)
211 
212 static inline struct pid *task_pid(struct task_struct *task)
213 {
214         return task->thread_pid;
215 }
216 
217 /*
218  * the helpers to get the task's different pids as they are seen
219  * from various namespaces
220  *
221  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
222  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
223  *                     current.
224  * task_xid_nr_ns()  : id seen from the ns specified;
225  *
226  * see also pid_nr() etc in include/linux/pid.h
227  */
228 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
229 
230 static inline pid_t task_pid_nr(struct task_struct *tsk)
231 {
232         return tsk->pid;
233 }
234 
235 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
236 {
237         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
238 }
239 
240 static inline pid_t task_pid_vnr(struct task_struct *tsk)
241 {
242         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
243 }
244 
245 
246 static inline pid_t task_tgid_nr(struct task_struct *tsk)
247 {
248         return tsk->tgid;
249 }
250 
251 /**
252  * pid_alive - check that a task structure is not stale
253  * @p: Task structure to be checked.
254  *
255  * Test if a process is not yet dead (at most zombie state)
256  * If pid_alive fails, then pointers within the task structure
257  * can be stale and must not be dereferenced.
258  *
259  * Return: 1 if the process is alive. 0 otherwise.
260  */
261 static inline int pid_alive(const struct task_struct *p)
262 {
263         return p->thread_pid != NULL;
264 }
265 
266 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
267 {
268         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
269 }
270 
271 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
272 {
273         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
274 }
275 
276 
277 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
278 {
279         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
280 }
281 
282 static inline pid_t task_session_vnr(struct task_struct *tsk)
283 {
284         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
285 }
286 
287 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
288 {
289         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
290 }
291 
292 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
293 {
294         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
295 }
296 
297 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
298 {
299         pid_t pid = 0;
300 
301         rcu_read_lock();
302         if (pid_alive(tsk))
303                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
304         rcu_read_unlock();
305 
306         return pid;
307 }
308 
309 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
310 {
311         return task_ppid_nr_ns(tsk, &init_pid_ns);
312 }
313 
314 /* Obsolete, do not use: */
315 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
316 {
317         return task_pgrp_nr_ns(tsk, &init_pid_ns);
318 }
319 
320 /**
321  * is_global_init - check if a task structure is init. Since init
322  * is free to have sub-threads we need to check tgid.
323  * @tsk: Task structure to be checked.
324  *
325  * Check if a task structure is the first user space task the kernel created.
326  *
327  * Return: 1 if the task structure is init. 0 otherwise.
328  */
329 static inline int is_global_init(struct task_struct *tsk)
330 {
331         return task_tgid_nr(tsk) == 1;
332 }
333 
334 #endif /* _LINUX_PID_H */
335 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php