1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Host communication command constants for ChromeOS EC 4 * 5 * Copyright (C) 2012 Google, Inc 6 * 7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from 8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h 9 */ 10 11 /* Host communication command constants for Chrome EC */ 12 13 #ifndef __CROS_EC_COMMANDS_H 14 #define __CROS_EC_COMMANDS_H 15 16 #include <linux/bits.h> 17 #include <linux/types.h> 18 19 #define BUILD_ASSERT(_cond) 20 21 /* 22 * Current version of this protocol 23 * 24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is 25 * determined in other ways. Remove this once the kernel code no longer 26 * depends on it. 27 */ 28 #define EC_PROTO_VERSION 0x00000002 29 30 /* Command version mask */ 31 #define EC_VER_MASK(version) BIT(version) 32 33 /* I/O addresses for ACPI commands */ 34 #define EC_LPC_ADDR_ACPI_DATA 0x62 35 #define EC_LPC_ADDR_ACPI_CMD 0x66 36 37 /* I/O addresses for host command */ 38 #define EC_LPC_ADDR_HOST_DATA 0x200 39 #define EC_LPC_ADDR_HOST_CMD 0x204 40 41 /* I/O addresses for host command args and params */ 42 /* Protocol version 2 */ 43 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ 44 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is 45 * EC_PROTO2_MAX_PARAM_SIZE 46 */ 47 /* Protocol version 3 */ 48 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ 49 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ 50 51 /* 52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff 53 * and they tell the kernel that so we have to think of it as two parts. 54 * 55 * Other BIOSes report only the I/O port region spanned by the Microchip 56 * MEC series EC; an attempt to address a larger region may fail. 57 */ 58 #define EC_HOST_CMD_REGION0 0x800 59 #define EC_HOST_CMD_REGION1 0x880 60 #define EC_HOST_CMD_REGION_SIZE 0x80 61 #define EC_HOST_CMD_MEC_REGION_SIZE 0x8 62 63 /* EC command register bit functions */ 64 #define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */ 65 #define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */ 66 #define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */ 67 #define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */ 68 #define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */ 69 #define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */ 70 #define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */ 71 72 #define EC_LPC_ADDR_MEMMAP 0x900 73 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ 74 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ 75 76 /* The offset address of each type of data in mapped memory. */ 77 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ 78 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ 79 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ 80 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ 81 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ 82 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ 83 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ 84 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ 85 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ 86 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ 87 /* Unused 0x28 - 0x2f */ 88 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ 89 /* Unused 0x31 - 0x33 */ 90 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */ 91 /* Battery values are all 32 bits, unless otherwise noted. */ 92 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ 93 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ 94 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ 95 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */ 96 #define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */ 97 #define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */ 98 /* Unused 0x4f */ 99 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ 100 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ 101 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ 102 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ 103 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ 104 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ 105 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ 106 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ 107 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ 108 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ 109 /* Unused 0x84 - 0x8f */ 110 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ 111 /* Unused 0x91 */ 112 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */ 113 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */ 114 /* 0x94 - 0x99: 1st Accelerometer */ 115 /* 0x9a - 0x9f: 2nd Accelerometer */ 116 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ 117 /* Unused 0xa6 - 0xdf */ 118 119 /* 120 * ACPI is unable to access memory mapped data at or above this offset due to 121 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe 122 * which might be needed by ACPI. 123 */ 124 #define EC_MEMMAP_NO_ACPI 0xe0 125 126 /* Define the format of the accelerometer mapped memory status byte. */ 127 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f 128 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4) 129 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7) 130 131 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ 132 #define EC_TEMP_SENSOR_ENTRIES 16 133 /* 134 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. 135 * 136 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. 137 */ 138 #define EC_TEMP_SENSOR_B_ENTRIES 8 139 140 /* Special values for mapped temperature sensors */ 141 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff 142 #define EC_TEMP_SENSOR_ERROR 0xfe 143 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd 144 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc 145 /* 146 * The offset of temperature value stored in mapped memory. This allows 147 * reporting a temperature range of 200K to 454K = -73C to 181C. 148 */ 149 #define EC_TEMP_SENSOR_OFFSET 200 150 151 /* 152 * Number of ALS readings at EC_MEMMAP_ALS 153 */ 154 #define EC_ALS_ENTRIES 2 155 156 /* 157 * The default value a temperature sensor will return when it is present but 158 * has not been read this boot. This is a reasonable number to avoid 159 * triggering alarms on the host. 160 */ 161 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) 162 163 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ 164 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ 165 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ 166 167 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ 168 #define EC_BATT_FLAG_AC_PRESENT 0x01 169 #define EC_BATT_FLAG_BATT_PRESENT 0x02 170 #define EC_BATT_FLAG_DISCHARGING 0x04 171 #define EC_BATT_FLAG_CHARGING 0x08 172 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 173 /* Set if some of the static/dynamic data is invalid (or outdated). */ 174 #define EC_BATT_FLAG_INVALID_DATA 0x20 175 176 /* Switch flags at EC_MEMMAP_SWITCHES */ 177 #define EC_SWITCH_LID_OPEN 0x01 178 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 179 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 180 /* Was recovery requested via keyboard; now unused. */ 181 #define EC_SWITCH_IGNORE1 0x08 182 /* Recovery requested via dedicated signal (from servo board) */ 183 #define EC_SWITCH_DEDICATED_RECOVERY 0x10 184 /* Was fake developer mode switch; now unused. Remove in next refactor. */ 185 #define EC_SWITCH_IGNORE0 0x20 186 187 /* Host command interface flags */ 188 /* Host command interface supports LPC args (LPC interface only) */ 189 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 190 /* Host command interface supports version 3 protocol */ 191 #define EC_HOST_CMD_FLAG_VERSION_3 0x02 192 193 /* Wireless switch flags */ 194 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ 195 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ 196 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ 197 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ 198 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ 199 200 /*****************************************************************************/ 201 /* 202 * ACPI commands 203 * 204 * These are valid ONLY on the ACPI command/data port. 205 */ 206 207 /* 208 * ACPI Read Embedded Controller 209 * 210 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 211 * 212 * Use the following sequence: 213 * 214 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD 215 * - Wait for EC_LPC_CMDR_PENDING bit to clear 216 * - Write address to EC_LPC_ADDR_ACPI_DATA 217 * - Wait for EC_LPC_CMDR_DATA bit to set 218 * - Read value from EC_LPC_ADDR_ACPI_DATA 219 */ 220 #define EC_CMD_ACPI_READ 0x0080 221 222 /* 223 * ACPI Write Embedded Controller 224 * 225 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 226 * 227 * Use the following sequence: 228 * 229 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD 230 * - Wait for EC_LPC_CMDR_PENDING bit to clear 231 * - Write address to EC_LPC_ADDR_ACPI_DATA 232 * - Wait for EC_LPC_CMDR_PENDING bit to clear 233 * - Write value to EC_LPC_ADDR_ACPI_DATA 234 */ 235 #define EC_CMD_ACPI_WRITE 0x0081 236 237 /* 238 * ACPI Burst Enable Embedded Controller 239 * 240 * This enables burst mode on the EC to allow the host to issue several 241 * commands back-to-back. While in this mode, writes to mapped multi-byte 242 * data are locked out to ensure data consistency. 243 */ 244 #define EC_CMD_ACPI_BURST_ENABLE 0x0082 245 246 /* 247 * ACPI Burst Disable Embedded Controller 248 * 249 * This disables burst mode on the EC and stops preventing EC writes to mapped 250 * multi-byte data. 251 */ 252 #define EC_CMD_ACPI_BURST_DISABLE 0x0083 253 254 /* 255 * ACPI Query Embedded Controller 256 * 257 * This clears the lowest-order bit in the currently pending host events, and 258 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, 259 * event 0x80000000 = 32), or 0 if no event was pending. 260 */ 261 #define EC_CMD_ACPI_QUERY_EVENT 0x0084 262 263 /* Valid addresses in ACPI memory space, for read/write commands */ 264 265 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ 266 #define EC_ACPI_MEM_VERSION 0x00 267 /* 268 * Test location; writing value here updates test compliment byte to (0xff - 269 * value). 270 */ 271 #define EC_ACPI_MEM_TEST 0x01 272 /* Test compliment; writes here are ignored. */ 273 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 274 275 /* Keyboard backlight brightness percent (0 - 100) */ 276 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 277 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ 278 #define EC_ACPI_MEM_FAN_DUTY 0x04 279 280 /* 281 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two 282 * independent thresholds attached to them. The current value of the ID 283 * register determines which sensor is affected by the THRESHOLD and COMMIT 284 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme 285 * as the memory-mapped sensors. The COMMIT register applies those settings. 286 * 287 * The spec does not mandate any way to read back the threshold settings 288 * themselves, but when a threshold is crossed the AP needs a way to determine 289 * which sensor(s) are responsible. Each reading of the ID register clears and 290 * returns one sensor ID that has crossed one of its threshold (in either 291 * direction) since the last read. A value of 0xFF means "no new thresholds 292 * have tripped". Setting or enabling the thresholds for a sensor will clear 293 * the unread event count for that sensor. 294 */ 295 #define EC_ACPI_MEM_TEMP_ID 0x05 296 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 297 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 298 /* 299 * Here are the bits for the COMMIT register: 300 * bit 0 selects the threshold index for the chosen sensor (0/1) 301 * bit 1 enables/disables the selected threshold (0 = off, 1 = on) 302 * Each write to the commit register affects one threshold. 303 */ 304 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0) 305 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1) 306 /* 307 * Example: 308 * 309 * Set the thresholds for sensor 2 to 50 C and 60 C: 310 * write 2 to [0x05] -- select temp sensor 2 311 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET 312 * write 0x2 to [0x07] -- enable threshold 0 with this value 313 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET 314 * write 0x3 to [0x07] -- enable threshold 1 with this value 315 * 316 * Disable the 60 C threshold, leaving the 50 C threshold unchanged: 317 * write 2 to [0x05] -- select temp sensor 2 318 * write 0x1 to [0x07] -- disable threshold 1 319 */ 320 321 /* DPTF battery charging current limit */ 322 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 323 324 /* Charging limit is specified in 64 mA steps */ 325 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 326 /* Value to disable DPTF battery charging limit */ 327 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff 328 329 /* 330 * Report device orientation 331 * Bits Definition 332 * 3:1 Device DPTF Profile Number (DDPN) 333 * 0 = Reserved for backward compatibility (indicates no valid 334 * profile number. Host should fall back to using TBMD). 335 * 1..7 = DPTF Profile number to indicate to host which table needs 336 * to be loaded. 337 * 0 Tablet Mode Device Indicator (TBMD) 338 */ 339 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09 340 #define EC_ACPI_MEM_TBMD_SHIFT 0 341 #define EC_ACPI_MEM_TBMD_MASK 0x1 342 #define EC_ACPI_MEM_DDPN_SHIFT 1 343 #define EC_ACPI_MEM_DDPN_MASK 0x7 344 345 /* 346 * Report device features. Uses the same format as the host command, except: 347 * 348 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set 349 * of features", which is of limited interest when the system is already 350 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since 351 * these are supported, it defaults to 0. 352 * This allows detecting the presence of this field since older versions of 353 * the EC codebase would simply return 0xff to that unknown address. Check 354 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits 355 * are valid. 356 */ 357 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a 358 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b 359 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c 360 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d 361 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e 362 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f 363 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10 364 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11 365 366 #define EC_ACPI_MEM_BATTERY_INDEX 0x12 367 368 /* 369 * USB Port Power. Each bit indicates whether the corresponding USB ports' power 370 * is enabled (1) or disabled (0). 371 * bit 0 USB port ID 0 372 * ... 373 * bit 7 USB port ID 7 374 */ 375 #define EC_ACPI_MEM_USB_PORT_POWER 0x13 376 377 /* 378 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data 379 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2. 380 */ 381 #define EC_ACPI_MEM_MAPPED_BEGIN 0x20 382 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0 383 384 /* Current version of ACPI memory address space */ 385 #define EC_ACPI_MEM_VERSION_CURRENT 2 386 387 388 /* 389 * This header file is used in coreboot both in C and ACPI code. The ACPI code 390 * is pre-processed to handle constants but the ASL compiler is unable to 391 * handle actual C code so keep it separate. 392 */ 393 394 395 /* 396 * Attributes for EC request and response packets. Just defining __packed 397 * results in inefficient assembly code on ARM, if the structure is actually 398 * 32-bit aligned, as it should be for all buffers. 399 * 400 * Be very careful when adding these to existing structures. They will round 401 * up the structure size to the specified boundary. 402 * 403 * Also be very careful to make that if a structure is included in some other 404 * parent structure that the alignment will still be true given the packing of 405 * the parent structure. This is particularly important if the sub-structure 406 * will be passed as a pointer to another function, since that function will 407 * not know about the misaligment caused by the parent structure's packing. 408 * 409 * Also be very careful using __packed - particularly when nesting non-packed 410 * structures inside packed ones. In fact, DO NOT use __packed directly; 411 * always use one of these attributes. 412 * 413 * Once everything is annotated properly, the following search strings should 414 * not return ANY matches in this file other than right here: 415 * 416 * "__packed" - generates inefficient code; all sub-structs must also be packed 417 * 418 * "struct [^_]" - all structs should be annotated, except for structs that are 419 * members of other structs/unions (and their original declarations should be 420 * annotated). 421 */ 422 423 /* 424 * Packed structures make no assumption about alignment, so they do inefficient 425 * byte-wise reads. 426 */ 427 #define __ec_align1 __packed 428 #define __ec_align2 __packed 429 #define __ec_align4 __packed 430 #define __ec_align_size1 __packed 431 #define __ec_align_offset1 __packed 432 #define __ec_align_offset2 __packed 433 #define __ec_todo_packed __packed 434 #define __ec_todo_unpacked 435 436 437 /* LPC command status byte masks */ 438 /* EC has written a byte in the data register and host hasn't read it yet */ 439 #define EC_LPC_STATUS_TO_HOST 0x01 440 /* Host has written a command/data byte and the EC hasn't read it yet */ 441 #define EC_LPC_STATUS_FROM_HOST 0x02 442 /* EC is processing a command */ 443 #define EC_LPC_STATUS_PROCESSING 0x04 444 /* Last write to EC was a command, not data */ 445 #define EC_LPC_STATUS_LAST_CMD 0x08 446 /* EC is in burst mode */ 447 #define EC_LPC_STATUS_BURST_MODE 0x10 448 /* SCI event is pending (requesting SCI query) */ 449 #define EC_LPC_STATUS_SCI_PENDING 0x20 450 /* SMI event is pending (requesting SMI query) */ 451 #define EC_LPC_STATUS_SMI_PENDING 0x40 452 /* (reserved) */ 453 #define EC_LPC_STATUS_RESERVED 0x80 454 455 /* 456 * EC is busy. This covers both the EC processing a command, and the host has 457 * written a new command but the EC hasn't picked it up yet. 458 */ 459 #define EC_LPC_STATUS_BUSY_MASK \ 460 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) 461 462 /* 463 * Host command response codes (16-bit). Note that response codes should be 464 * stored in a uint16_t rather than directly in a value of this type. 465 */ 466 enum ec_status { 467 EC_RES_SUCCESS = 0, 468 EC_RES_INVALID_COMMAND = 1, 469 EC_RES_ERROR = 2, 470 EC_RES_INVALID_PARAM = 3, 471 EC_RES_ACCESS_DENIED = 4, 472 EC_RES_INVALID_RESPONSE = 5, 473 EC_RES_INVALID_VERSION = 6, 474 EC_RES_INVALID_CHECKSUM = 7, 475 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ 476 EC_RES_UNAVAILABLE = 9, /* No response available */ 477 EC_RES_TIMEOUT = 10, /* We got a timeout */ 478 EC_RES_OVERFLOW = 11, /* Table / data overflow */ 479 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ 480 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ 481 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */ 482 EC_RES_BUS_ERROR = 15, /* Communications bus error */ 483 EC_RES_BUSY = 16, /* Up but too busy. Should retry */ 484 EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */ 485 EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */ 486 EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */ 487 EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */ 488 }; 489 490 /* 491 * Host event codes. Note these are 1-based, not 0-based, because ACPI query 492 * EC command uses code 0 to mean "no event pending". We explicitly specify 493 * each value in the enum listing so they won't change if we delete/insert an 494 * item or rearrange the list (it needs to be stable across platforms, not 495 * just within a single compiled instance). 496 */ 497 enum host_event_code { 498 EC_HOST_EVENT_LID_CLOSED = 1, 499 EC_HOST_EVENT_LID_OPEN = 2, 500 EC_HOST_EVENT_POWER_BUTTON = 3, 501 EC_HOST_EVENT_AC_CONNECTED = 4, 502 EC_HOST_EVENT_AC_DISCONNECTED = 5, 503 EC_HOST_EVENT_BATTERY_LOW = 6, 504 EC_HOST_EVENT_BATTERY_CRITICAL = 7, 505 EC_HOST_EVENT_BATTERY = 8, 506 EC_HOST_EVENT_THERMAL_THRESHOLD = 9, 507 /* Event generated by a device attached to the EC */ 508 EC_HOST_EVENT_DEVICE = 10, 509 EC_HOST_EVENT_THERMAL = 11, 510 EC_HOST_EVENT_USB_CHARGER = 12, 511 EC_HOST_EVENT_KEY_PRESSED = 13, 512 /* 513 * EC has finished initializing the host interface. The host can check 514 * for this event following sending a EC_CMD_REBOOT_EC command to 515 * determine when the EC is ready to accept subsequent commands. 516 */ 517 EC_HOST_EVENT_INTERFACE_READY = 14, 518 /* Keyboard recovery combo has been pressed */ 519 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, 520 521 /* Shutdown due to thermal overload */ 522 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, 523 /* Shutdown due to battery level too low */ 524 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, 525 526 /* Suggest that the AP throttle itself */ 527 EC_HOST_EVENT_THROTTLE_START = 18, 528 /* Suggest that the AP resume normal speed */ 529 EC_HOST_EVENT_THROTTLE_STOP = 19, 530 531 /* Hang detect logic detected a hang and host event timeout expired */ 532 EC_HOST_EVENT_HANG_DETECT = 20, 533 /* Hang detect logic detected a hang and warm rebooted the AP */ 534 EC_HOST_EVENT_HANG_REBOOT = 21, 535 536 /* PD MCU triggering host event */ 537 EC_HOST_EVENT_PD_MCU = 22, 538 539 /* Battery Status flags have changed */ 540 EC_HOST_EVENT_BATTERY_STATUS = 23, 541 542 /* EC encountered a panic, triggering a reset */ 543 EC_HOST_EVENT_PANIC = 24, 544 545 /* Keyboard fastboot combo has been pressed */ 546 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25, 547 548 /* EC RTC event occurred */ 549 EC_HOST_EVENT_RTC = 26, 550 551 /* Emulate MKBP event */ 552 EC_HOST_EVENT_MKBP = 27, 553 554 /* EC desires to change state of host-controlled USB mux */ 555 EC_HOST_EVENT_USB_MUX = 28, 556 557 /* TABLET/LAPTOP mode or detachable base attach/detach event */ 558 EC_HOST_EVENT_MODE_CHANGE = 29, 559 560 /* Keyboard recovery combo with hardware reinitialization */ 561 EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30, 562 563 /* WoV */ 564 EC_HOST_EVENT_WOV = 31, 565 566 /* 567 * The high bit of the event mask is not used as a host event code. If 568 * it reads back as set, then the entire event mask should be 569 * considered invalid by the host. This can happen when reading the 570 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is 571 * not initialized on the EC, or improperly configured on the host. 572 */ 573 EC_HOST_EVENT_INVALID = 32 574 }; 575 /* Host event mask */ 576 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1) 577 578 /** 579 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS 580 * @flags: The host argument flags. 581 * @command_version: Command version. 582 * @data_size: The length of data. 583 * @checksum: Checksum; sum of command + flags + command_version + data_size + 584 * all params/response data bytes. 585 */ 586 struct ec_lpc_host_args { 587 uint8_t flags; 588 uint8_t command_version; 589 uint8_t data_size; 590 uint8_t checksum; 591 } __ec_align4; 592 593 /* Flags for ec_lpc_host_args.flags */ 594 /* 595 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command 596 * params. 597 * 598 * If EC gets a command and this flag is not set, this is an old-style command. 599 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with 600 * unknown length. EC must respond with an old-style response (that is, 601 * without setting EC_HOST_ARGS_FLAG_TO_HOST). 602 */ 603 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 604 /* 605 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. 606 * 607 * If EC responds to a command and this flag is not set, this is an old-style 608 * response. Command version is 0 and response data from EC is at 609 * EC_LPC_ADDR_OLD_PARAM with unknown length. 610 */ 611 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 612 613 /*****************************************************************************/ 614 /* 615 * Byte codes returned by EC over SPI interface. 616 * 617 * These can be used by the AP to debug the EC interface, and to determine 618 * when the EC is not in a state where it will ever get around to responding 619 * to the AP. 620 * 621 * Example of sequence of bytes read from EC for a current good transfer: 622 * 1. - - AP asserts chip select (CS#) 623 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request 624 * 3. - - EC starts handling CS# interrupt 625 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request 626 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in 627 * bytes looking for EC_SPI_FRAME_START 628 * 6. - - EC finishes processing and sets up response 629 * 7. EC_SPI_FRAME_START - AP reads frame byte 630 * 8. (response packet) - AP reads response packet 631 * 9. EC_SPI_PAST_END - Any additional bytes read by AP 632 * 10 - - AP deasserts chip select 633 * 11 - - EC processes CS# interrupt and sets up DMA for 634 * next request 635 * 636 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than 637 * the following byte values: 638 * EC_SPI_OLD_READY 639 * EC_SPI_RX_READY 640 * EC_SPI_RECEIVING 641 * EC_SPI_PROCESSING 642 * 643 * Then the EC found an error in the request, or was not ready for the request 644 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, 645 * because the EC is unable to tell when the AP is done sending its request. 646 */ 647 648 /* 649 * Framing byte which precedes a response packet from the EC. After sending a 650 * request, the AP will clock in bytes until it sees the framing byte, then 651 * clock in the response packet. 652 */ 653 #define EC_SPI_FRAME_START 0xec 654 655 /* 656 * Padding bytes which are clocked out after the end of a response packet. 657 */ 658 #define EC_SPI_PAST_END 0xed 659 660 /* 661 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects 662 * that the AP will send a valid packet header (starting with 663 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. 664 */ 665 #define EC_SPI_RX_READY 0xf8 666 667 /* 668 * EC has started receiving the request from the AP, but hasn't started 669 * processing it yet. 670 */ 671 #define EC_SPI_RECEIVING 0xf9 672 673 /* EC has received the entire request from the AP and is processing it. */ 674 #define EC_SPI_PROCESSING 0xfa 675 676 /* 677 * EC received bad data from the AP, such as a packet header with an invalid 678 * length. EC will ignore all data until chip select deasserts. 679 */ 680 #define EC_SPI_RX_BAD_DATA 0xfb 681 682 /* 683 * EC received data from the AP before it was ready. That is, the AP asserted 684 * chip select and started clocking data before the EC was ready to receive it. 685 * EC will ignore all data until chip select deasserts. 686 */ 687 #define EC_SPI_NOT_READY 0xfc 688 689 /* 690 * EC was ready to receive a request from the AP. EC has treated the byte sent 691 * by the AP as part of a request packet, or (for old-style ECs) is processing 692 * a fully received packet but is not ready to respond yet. 693 */ 694 #define EC_SPI_OLD_READY 0xfd 695 696 /*****************************************************************************/ 697 698 /* 699 * Protocol version 2 for I2C and SPI send a request this way: 700 * 701 * 0 EC_CMD_VERSION0 + (command version) 702 * 1 Command number 703 * 2 Length of params = N 704 * 3..N+2 Params, if any 705 * N+3 8-bit checksum of bytes 0..N+2 706 * 707 * The corresponding response is: 708 * 709 * 0 Result code (EC_RES_*) 710 * 1 Length of params = M 711 * 2..M+1 Params, if any 712 * M+2 8-bit checksum of bytes 0..M+1 713 */ 714 #define EC_PROTO2_REQUEST_HEADER_BYTES 3 715 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 716 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ 717 EC_PROTO2_REQUEST_TRAILER_BYTES) 718 719 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 720 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 721 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ 722 EC_PROTO2_RESPONSE_TRAILER_BYTES) 723 724 /* Parameter length was limited by the LPC interface */ 725 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc 726 727 /* Maximum request and response packet sizes for protocol version 2 */ 728 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ 729 EC_PROTO2_MAX_PARAM_SIZE) 730 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ 731 EC_PROTO2_MAX_PARAM_SIZE) 732 733 /*****************************************************************************/ 734 735 /* 736 * Value written to legacy command port / prefix byte to indicate protocol 737 * 3+ structs are being used. Usage is bus-dependent. 738 */ 739 #define EC_COMMAND_PROTOCOL_3 0xda 740 741 #define EC_HOST_REQUEST_VERSION 3 742 743 /** 744 * struct ec_host_request - Version 3 request from host. 745 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it 746 * receives a header with a version it doesn't know how to 747 * parse. 748 * @checksum: Checksum of request and data; sum of all bytes including checksum 749 * should total to 0. 750 * @command: Command to send (EC_CMD_...) 751 * @command_version: Command version. 752 * @reserved: Unused byte in current protocol version; set to 0. 753 * @data_len: Length of data which follows this header. 754 */ 755 struct ec_host_request { 756 uint8_t struct_version; 757 uint8_t checksum; 758 uint16_t command; 759 uint8_t command_version; 760 uint8_t reserved; 761 uint16_t data_len; 762 } __ec_align4; 763 764 #define EC_HOST_RESPONSE_VERSION 3 765 766 /** 767 * struct ec_host_response - Version 3 response from EC. 768 * @struct_version: Struct version (=3). 769 * @checksum: Checksum of response and data; sum of all bytes including 770 * checksum should total to 0. 771 * @result: EC's response to the command (separate from communication failure) 772 * @data_len: Length of data which follows this header. 773 * @reserved: Unused bytes in current protocol version; set to 0. 774 */ 775 struct ec_host_response { 776 uint8_t struct_version; 777 uint8_t checksum; 778 uint16_t result; 779 uint16_t data_len; 780 uint16_t reserved; 781 } __ec_align4; 782 783 /*****************************************************************************/ 784 785 /* 786 * Host command protocol V4. 787 * 788 * Packets always start with a request or response header. They are followed 789 * by data_len bytes of data. If the data_crc_present flag is set, the data 790 * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1 791 * polynomial. 792 * 793 * Host algorithm when sending a request q: 794 * 795 * 101) tries_left=(some value, e.g. 3); 796 * 102) q.seq_num++ 797 * 103) q.seq_dup=0 798 * 104) Calculate q.header_crc. 799 * 105) Send request q to EC. 800 * 106) Wait for response r. Go to 201 if received or 301 if timeout. 801 * 802 * 201) If r.struct_version != 4, go to 301. 803 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301. 804 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301. 805 * 204) If r.seq_num != q.seq_num, go to 301. 806 * 205) If r.seq_dup == q.seq_dup, return success. 807 * 207) If r.seq_dup == 1, go to 301. 808 * 208) Return error. 809 * 810 * 301) If --tries_left <= 0, return error. 811 * 302) If q.seq_dup == 1, go to 105. 812 * 303) q.seq_dup = 1 813 * 304) Go to 104. 814 * 815 * EC algorithm when receiving a request q. 816 * EC has response buffer r, error buffer e. 817 * 818 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION 819 * and go to 301 820 * 102) If q.header_crc mismatches calculated CRC, set e.result = 821 * EC_RES_INVALID_HEADER_CRC and go to 301 822 * 103) If q.data_crc_present, calculate data CRC. If that mismatches the CRC 823 * byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC 824 * and go to 301. 825 * 104) If q.seq_dup == 0, go to 201. 826 * 105) If q.seq_num != r.seq_num, go to 201. 827 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203. 828 * 829 * 201) Process request q into response r. 830 * 202) r.seq_num = q.seq_num 831 * 203) r.seq_dup = q.seq_dup 832 * 204) Calculate r.header_crc 833 * 205) If r.data_len > 0 and data is no longer available, set e.result = 834 * EC_RES_DUP_UNAVAILABLE and go to 301. 835 * 206) Send response r. 836 * 837 * 301) e.seq_num = q.seq_num 838 * 302) e.seq_dup = q.seq_dup 839 * 303) Calculate e.header_crc. 840 * 304) Send error response e. 841 */ 842 843 /* Version 4 request from host */ 844 struct ec_host_request4 { 845 /* 846 * bits 0-3: struct_version: Structure version (=4) 847 * bit 4: is_response: Is response (=0) 848 * bits 5-6: seq_num: Sequence number 849 * bit 7: seq_dup: Sequence duplicate flag 850 */ 851 uint8_t fields0; 852 853 /* 854 * bits 0-4: command_version: Command version 855 * bits 5-6: Reserved (set 0, ignore on read) 856 * bit 7: data_crc_present: Is data CRC present after data 857 */ 858 uint8_t fields1; 859 860 /* Command code (EC_CMD_*) */ 861 uint16_t command; 862 863 /* Length of data which follows this header (not including data CRC) */ 864 uint16_t data_len; 865 866 /* Reserved (set 0, ignore on read) */ 867 uint8_t reserved; 868 869 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ 870 uint8_t header_crc; 871 } __ec_align4; 872 873 /* Version 4 response from EC */ 874 struct ec_host_response4 { 875 /* 876 * bits 0-3: struct_version: Structure version (=4) 877 * bit 4: is_response: Is response (=1) 878 * bits 5-6: seq_num: Sequence number 879 * bit 7: seq_dup: Sequence duplicate flag 880 */ 881 uint8_t fields0; 882 883 /* 884 * bits 0-6: Reserved (set 0, ignore on read) 885 * bit 7: data_crc_present: Is data CRC present after data 886 */ 887 uint8_t fields1; 888 889 /* Result code (EC_RES_*) */ 890 uint16_t result; 891 892 /* Length of data which follows this header (not including data CRC) */ 893 uint16_t data_len; 894 895 /* Reserved (set 0, ignore on read) */ 896 uint8_t reserved; 897 898 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */ 899 uint8_t header_crc; 900 } __ec_align4; 901 902 /* Fields in fields0 byte */ 903 #define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f 904 #define EC_PACKET4_0_IS_RESPONSE_MASK 0x10 905 #define EC_PACKET4_0_SEQ_NUM_SHIFT 5 906 #define EC_PACKET4_0_SEQ_NUM_MASK 0x60 907 #define EC_PACKET4_0_SEQ_DUP_MASK 0x80 908 909 /* Fields in fields1 byte */ 910 #define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */ 911 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80 912 913 /*****************************************************************************/ 914 /* 915 * Notes on commands: 916 * 917 * Each command is an 16-bit command value. Commands which take params or 918 * return response data specify structures for that data. If no structure is 919 * specified, the command does not input or output data, respectively. 920 * Parameter/response length is implicit in the structs. Some underlying 921 * communication protocols (I2C, SPI) may add length or checksum headers, but 922 * those are implementation-dependent and not defined here. 923 * 924 * All commands MUST be #defined to be 4-digit UPPER CASE hex values 925 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. 926 */ 927 928 /*****************************************************************************/ 929 /* General / test commands */ 930 931 /* 932 * Get protocol version, used to deal with non-backward compatible protocol 933 * changes. 934 */ 935 #define EC_CMD_PROTO_VERSION 0x0000 936 937 /** 938 * struct ec_response_proto_version - Response to the proto version command. 939 * @version: The protocol version. 940 */ 941 struct ec_response_proto_version { 942 uint32_t version; 943 } __ec_align4; 944 945 /* 946 * Hello. This is a simple command to test the EC is responsive to 947 * commands. 948 */ 949 #define EC_CMD_HELLO 0x0001 950 951 /** 952 * struct ec_params_hello - Parameters to the hello command. 953 * @in_data: Pass anything here. 954 */ 955 struct ec_params_hello { 956 uint32_t in_data; 957 } __ec_align4; 958 959 /** 960 * struct ec_response_hello - Response to the hello command. 961 * @out_data: Output will be in_data + 0x01020304. 962 */ 963 struct ec_response_hello { 964 uint32_t out_data; 965 } __ec_align4; 966 967 /* Get version number */ 968 #define EC_CMD_GET_VERSION 0x0002 969 970 enum ec_current_image { 971 EC_IMAGE_UNKNOWN = 0, 972 EC_IMAGE_RO, 973 EC_IMAGE_RW 974 }; 975 976 /** 977 * struct ec_response_get_version - Response to the get version command. 978 * @version_string_ro: Null-terminated RO firmware version string. 979 * @version_string_rw: Null-terminated RW firmware version string. 980 * @reserved: Unused bytes; was previously RW-B firmware version string. 981 * @current_image: One of ec_current_image. 982 */ 983 struct ec_response_get_version { 984 char version_string_ro[32]; 985 char version_string_rw[32]; 986 char reserved[32]; 987 uint32_t current_image; 988 } __ec_align4; 989 990 /* Read test */ 991 #define EC_CMD_READ_TEST 0x0003 992 993 /** 994 * struct ec_params_read_test - Parameters for the read test command. 995 * @offset: Starting value for read buffer. 996 * @size: Size to read in bytes. 997 */ 998 struct ec_params_read_test { 999 uint32_t offset; 1000 uint32_t size; 1001 } __ec_align4; 1002 1003 /** 1004 * struct ec_response_read_test - Response to the read test command. 1005 * @data: Data returned by the read test command. 1006 */ 1007 struct ec_response_read_test { 1008 uint32_t data[32]; 1009 } __ec_align4; 1010 1011 /* 1012 * Get build information 1013 * 1014 * Response is null-terminated string. 1015 */ 1016 #define EC_CMD_GET_BUILD_INFO 0x0004 1017 1018 /* Get chip info */ 1019 #define EC_CMD_GET_CHIP_INFO 0x0005 1020 1021 /** 1022 * struct ec_response_get_chip_info - Response to the get chip info command. 1023 * @vendor: Null-terminated string for chip vendor. 1024 * @name: Null-terminated string for chip name. 1025 * @revision: Null-terminated string for chip mask version. 1026 */ 1027 struct ec_response_get_chip_info { 1028 char vendor[32]; 1029 char name[32]; 1030 char revision[32]; 1031 } __ec_align4; 1032 1033 /* Get board HW version */ 1034 #define EC_CMD_GET_BOARD_VERSION 0x0006 1035 1036 /** 1037 * struct ec_response_board_version - Response to the board version command. 1038 * @board_version: A monotonously incrementing number. 1039 */ 1040 struct ec_response_board_version { 1041 uint16_t board_version; 1042 } __ec_align2; 1043 1044 /* 1045 * Read memory-mapped data. 1046 * 1047 * This is an alternate interface to memory-mapped data for bus protocols 1048 * which don't support direct-mapped memory - I2C, SPI, etc. 1049 * 1050 * Response is params.size bytes of data. 1051 */ 1052 #define EC_CMD_READ_MEMMAP 0x0007 1053 1054 /** 1055 * struct ec_params_read_memmap - Parameters for the read memory map command. 1056 * @offset: Offset in memmap (EC_MEMMAP_*). 1057 * @size: Size to read in bytes. 1058 */ 1059 struct ec_params_read_memmap { 1060 uint8_t offset; 1061 uint8_t size; 1062 } __ec_align1; 1063 1064 /* Read versions supported for a command */ 1065 #define EC_CMD_GET_CMD_VERSIONS 0x0008 1066 1067 /** 1068 * struct ec_params_get_cmd_versions - Parameters for the get command versions. 1069 * @cmd: Command to check. 1070 */ 1071 struct ec_params_get_cmd_versions { 1072 uint8_t cmd; 1073 } __ec_align1; 1074 1075 /** 1076 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command 1077 * versions (v1) 1078 * @cmd: Command to check. 1079 */ 1080 struct ec_params_get_cmd_versions_v1 { 1081 uint16_t cmd; 1082 } __ec_align2; 1083 1084 /** 1085 * struct ec_response_get_cmd_versions - Response to the get command versions. 1086 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with 1087 * a desired version. 1088 */ 1089 struct ec_response_get_cmd_versions { 1090 uint32_t version_mask; 1091 } __ec_align4; 1092 1093 /* 1094 * Check EC communications status (busy). This is needed on i2c/spi but not 1095 * on lpc since it has its own out-of-band busy indicator. 1096 * 1097 * lpc must read the status from the command register. Attempting this on 1098 * lpc will overwrite the args/parameter space and corrupt its data. 1099 */ 1100 #define EC_CMD_GET_COMMS_STATUS 0x0009 1101 1102 /* Avoid using ec_status which is for return values */ 1103 enum ec_comms_status { 1104 EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */ 1105 }; 1106 1107 /** 1108 * struct ec_response_get_comms_status - Response to the get comms status 1109 * command. 1110 * @flags: Mask of enum ec_comms_status. 1111 */ 1112 struct ec_response_get_comms_status { 1113 uint32_t flags; /* Mask of enum ec_comms_status */ 1114 } __ec_align4; 1115 1116 /* Fake a variety of responses, purely for testing purposes. */ 1117 #define EC_CMD_TEST_PROTOCOL 0x000A 1118 1119 /* Tell the EC what to send back to us. */ 1120 struct ec_params_test_protocol { 1121 uint32_t ec_result; 1122 uint32_t ret_len; 1123 uint8_t buf[32]; 1124 } __ec_align4; 1125 1126 /* Here it comes... */ 1127 struct ec_response_test_protocol { 1128 uint8_t buf[32]; 1129 } __ec_align4; 1130 1131 /* Get protocol information */ 1132 #define EC_CMD_GET_PROTOCOL_INFO 0x000B 1133 1134 /* Flags for ec_response_get_protocol_info.flags */ 1135 /* EC_RES_IN_PROGRESS may be returned if a command is slow */ 1136 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0) 1137 1138 /** 1139 * struct ec_response_get_protocol_info - Response to the get protocol info. 1140 * @protocol_versions: Bitmask of protocol versions supported (1 << n means 1141 * version n). 1142 * @max_request_packet_size: Maximum request packet size in bytes. 1143 * @max_response_packet_size: Maximum response packet size in bytes. 1144 * @flags: see EC_PROTOCOL_INFO_* 1145 */ 1146 struct ec_response_get_protocol_info { 1147 /* Fields which exist if at least protocol version 3 supported */ 1148 uint32_t protocol_versions; 1149 uint16_t max_request_packet_size; 1150 uint16_t max_response_packet_size; 1151 uint32_t flags; 1152 } __ec_align4; 1153 1154 1155 /*****************************************************************************/ 1156 /* Get/Set miscellaneous values */ 1157 1158 /* The upper byte of .flags tells what to do (nothing means "get") */ 1159 #define EC_GSV_SET 0x80000000 1160 1161 /* 1162 * The lower three bytes of .flags identifies the parameter, if that has 1163 * meaning for an individual command. 1164 */ 1165 #define EC_GSV_PARAM_MASK 0x00ffffff 1166 1167 struct ec_params_get_set_value { 1168 uint32_t flags; 1169 uint32_t value; 1170 } __ec_align4; 1171 1172 struct ec_response_get_set_value { 1173 uint32_t flags; 1174 uint32_t value; 1175 } __ec_align4; 1176 1177 /* More than one command can use these structs to get/set parameters. */ 1178 #define EC_CMD_GSV_PAUSE_IN_S5 0x000C 1179 1180 /*****************************************************************************/ 1181 /* List the features supported by the firmware */ 1182 #define EC_CMD_GET_FEATURES 0x000D 1183 1184 /* Supported features */ 1185 enum ec_feature_code { 1186 /* 1187 * This image contains a limited set of features. Another image 1188 * in RW partition may support more features. 1189 */ 1190 EC_FEATURE_LIMITED = 0, 1191 /* 1192 * Commands for probing/reading/writing/erasing the flash in the 1193 * EC are present. 1194 */ 1195 EC_FEATURE_FLASH = 1, 1196 /* 1197 * Can control the fan speed directly. 1198 */ 1199 EC_FEATURE_PWM_FAN = 2, 1200 /* 1201 * Can control the intensity of the keyboard backlight. 1202 */ 1203 EC_FEATURE_PWM_KEYB = 3, 1204 /* 1205 * Support Google lightbar, introduced on Pixel. 1206 */ 1207 EC_FEATURE_LIGHTBAR = 4, 1208 /* Control of LEDs */ 1209 EC_FEATURE_LED = 5, 1210 /* Exposes an interface to control gyro and sensors. 1211 * The host goes through the EC to access these sensors. 1212 * In addition, the EC may provide composite sensors, like lid angle. 1213 */ 1214 EC_FEATURE_MOTION_SENSE = 6, 1215 /* The keyboard is controlled by the EC */ 1216 EC_FEATURE_KEYB = 7, 1217 /* The AP can use part of the EC flash as persistent storage. */ 1218 EC_FEATURE_PSTORE = 8, 1219 /* The EC monitors BIOS port 80h, and can return POST codes. */ 1220 EC_FEATURE_PORT80 = 9, 1221 /* 1222 * Thermal management: include TMP specific commands. 1223 * Higher level than direct fan control. 1224 */ 1225 EC_FEATURE_THERMAL = 10, 1226 /* Can switch the screen backlight on/off */ 1227 EC_FEATURE_BKLIGHT_SWITCH = 11, 1228 /* Can switch the wifi module on/off */ 1229 EC_FEATURE_WIFI_SWITCH = 12, 1230 /* Monitor host events, through for example SMI or SCI */ 1231 EC_FEATURE_HOST_EVENTS = 13, 1232 /* The EC exposes GPIO commands to control/monitor connected devices. */ 1233 EC_FEATURE_GPIO = 14, 1234 /* The EC can send i2c messages to downstream devices. */ 1235 EC_FEATURE_I2C = 15, 1236 /* Command to control charger are included */ 1237 EC_FEATURE_CHARGER = 16, 1238 /* Simple battery support. */ 1239 EC_FEATURE_BATTERY = 17, 1240 /* 1241 * Support Smart battery protocol 1242 * (Common Smart Battery System Interface Specification) 1243 */ 1244 EC_FEATURE_SMART_BATTERY = 18, 1245 /* EC can detect when the host hangs. */ 1246 EC_FEATURE_HANG_DETECT = 19, 1247 /* Report power information, for pit only */ 1248 EC_FEATURE_PMU = 20, 1249 /* Another Cros EC device is present downstream of this one */ 1250 EC_FEATURE_SUB_MCU = 21, 1251 /* Support USB Power delivery (PD) commands */ 1252 EC_FEATURE_USB_PD = 22, 1253 /* Control USB multiplexer, for audio through USB port for instance. */ 1254 EC_FEATURE_USB_MUX = 23, 1255 /* Motion Sensor code has an internal software FIFO */ 1256 EC_FEATURE_MOTION_SENSE_FIFO = 24, 1257 /* Support temporary secure vstore */ 1258 EC_FEATURE_VSTORE = 25, 1259 /* EC decides on USB-C SS mux state, muxes configured by host */ 1260 EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26, 1261 /* EC has RTC feature that can be controlled by host commands */ 1262 EC_FEATURE_RTC = 27, 1263 /* The MCU exposes a Fingerprint sensor */ 1264 EC_FEATURE_FINGERPRINT = 28, 1265 /* The MCU exposes a Touchpad */ 1266 EC_FEATURE_TOUCHPAD = 29, 1267 /* The MCU has RWSIG task enabled */ 1268 EC_FEATURE_RWSIG = 30, 1269 /* EC has device events support */ 1270 EC_FEATURE_DEVICE_EVENT = 31, 1271 /* EC supports the unified wake masks for LPC/eSPI systems */ 1272 EC_FEATURE_UNIFIED_WAKE_MASKS = 32, 1273 /* EC supports 64-bit host events */ 1274 EC_FEATURE_HOST_EVENT64 = 33, 1275 /* EC runs code in RAM (not in place, a.k.a. XIP) */ 1276 EC_FEATURE_EXEC_IN_RAM = 34, 1277 /* EC supports CEC commands */ 1278 EC_FEATURE_CEC = 35, 1279 /* EC supports tight sensor timestamping. */ 1280 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36, 1281 /* 1282 * EC supports tablet mode detection aligned to Chrome and allows 1283 * setting of threshold by host command using 1284 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. 1285 */ 1286 EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37, 1287 /* The MCU is a System Companion Processor (SCP). */ 1288 EC_FEATURE_SCP = 39, 1289 /* The MCU is an Integrated Sensor Hub */ 1290 EC_FEATURE_ISH = 40, 1291 /* New TCPMv2 TYPEC_ prefaced commands supported */ 1292 EC_FEATURE_TYPEC_CMD = 41, 1293 /* 1294 * The EC will wait for direction from the AP to enter Type-C alternate 1295 * modes or USB4. 1296 */ 1297 EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42, 1298 /* 1299 * The EC will wait for an acknowledge from the AP after setting the 1300 * mux. 1301 */ 1302 EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43, 1303 /* 1304 * The EC supports entering and residing in S4. 1305 */ 1306 EC_FEATURE_S4_RESIDENCY = 44, 1307 /* 1308 * The EC supports the AP directing mux sets for the board. 1309 */ 1310 EC_FEATURE_TYPEC_AP_MUX_SET = 45, 1311 /* 1312 * The EC supports the AP composing VDMs for us to send. 1313 */ 1314 EC_FEATURE_TYPEC_AP_VDM_SEND = 46, 1315 }; 1316 1317 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32) 1318 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32) 1319 1320 struct ec_response_get_features { 1321 uint32_t flags[2]; 1322 } __ec_align4; 1323 1324 /*****************************************************************************/ 1325 /* Get the board's SKU ID from EC */ 1326 #define EC_CMD_GET_SKU_ID 0x000E 1327 1328 /* Set SKU ID from AP */ 1329 #define EC_CMD_SET_SKU_ID 0x000F 1330 1331 struct ec_sku_id_info { 1332 uint32_t sku_id; 1333 } __ec_align4; 1334 1335 /*****************************************************************************/ 1336 /* Flash commands */ 1337 1338 /* Get flash info */ 1339 #define EC_CMD_FLASH_INFO 0x0010 1340 #define EC_VER_FLASH_INFO 2 1341 1342 /** 1343 * struct ec_response_flash_info - Response to the flash info command. 1344 * @flash_size: Usable flash size in bytes. 1345 * @write_block_size: Write block size. Write offset and size must be a 1346 * multiple of this. 1347 * @erase_block_size: Erase block size. Erase offset and size must be a 1348 * multiple of this. 1349 * @protect_block_size: Protection block size. Protection offset and size 1350 * must be a multiple of this. 1351 * 1352 * Version 0 returns these fields. 1353 */ 1354 struct ec_response_flash_info { 1355 uint32_t flash_size; 1356 uint32_t write_block_size; 1357 uint32_t erase_block_size; 1358 uint32_t protect_block_size; 1359 } __ec_align4; 1360 1361 /* 1362 * Flags for version 1+ flash info command 1363 * EC flash erases bits to 0 instead of 1. 1364 */ 1365 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0) 1366 1367 /* 1368 * Flash must be selected for read/write/erase operations to succeed. This may 1369 * be necessary on a chip where write/erase can be corrupted by other board 1370 * activity, or where the chip needs to enable some sort of programming voltage, 1371 * or where the read/write/erase operations require cleanly suspending other 1372 * chip functionality. 1373 */ 1374 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1) 1375 1376 /** 1377 * struct ec_response_flash_info_1 - Response to the flash info v1 command. 1378 * @flash_size: Usable flash size in bytes. 1379 * @write_block_size: Write block size. Write offset and size must be a 1380 * multiple of this. 1381 * @erase_block_size: Erase block size. Erase offset and size must be a 1382 * multiple of this. 1383 * @protect_block_size: Protection block size. Protection offset and size 1384 * must be a multiple of this. 1385 * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if 1386 * size is exactly this and offset is a multiple of this. 1387 * For example, an EC may have a write buffer which can do 1388 * half-page operations if data is aligned, and a slower 1389 * word-at-a-time write mode. 1390 * @flags: Flags; see EC_FLASH_INFO_* 1391 * 1392 * Version 1 returns the same initial fields as version 0, with additional 1393 * fields following. 1394 * 1395 * gcc anonymous structs don't seem to get along with the __packed directive; 1396 * if they did we'd define the version 0 structure as a sub-structure of this 1397 * one. 1398 * 1399 * Version 2 supports flash banks of different sizes: 1400 * The caller specified the number of banks it has preallocated 1401 * (num_banks_desc) 1402 * The EC returns the number of banks describing the flash memory. 1403 * It adds banks descriptions up to num_banks_desc. 1404 */ 1405 struct ec_response_flash_info_1 { 1406 /* Version 0 fields; see above for description */ 1407 uint32_t flash_size; 1408 uint32_t write_block_size; 1409 uint32_t erase_block_size; 1410 uint32_t protect_block_size; 1411 1412 /* Version 1 adds these fields: */ 1413 uint32_t write_ideal_size; 1414 uint32_t flags; 1415 } __ec_align4; 1416 1417 struct ec_params_flash_info_2 { 1418 /* Number of banks to describe */ 1419 uint16_t num_banks_desc; 1420 /* Reserved; set 0; ignore on read */ 1421 uint8_t reserved[2]; 1422 } __ec_align4; 1423 1424 struct ec_flash_bank { 1425 /* Number of sector is in this bank. */ 1426 uint16_t count; 1427 /* Size in power of 2 of each sector (8 --> 256 bytes) */ 1428 uint8_t size_exp; 1429 /* Minimal write size for the sectors in this bank */ 1430 uint8_t write_size_exp; 1431 /* Erase size for the sectors in this bank */ 1432 uint8_t erase_size_exp; 1433 /* Size for write protection, usually identical to erase size. */ 1434 uint8_t protect_size_exp; 1435 /* Reserved; set 0; ignore on read */ 1436 uint8_t reserved[2]; 1437 }; 1438 1439 struct ec_response_flash_info_2 { 1440 /* Total flash in the EC. */ 1441 uint32_t flash_size; 1442 /* Flags; see EC_FLASH_INFO_* */ 1443 uint32_t flags; 1444 /* Maximum size to use to send data to write to the EC. */ 1445 uint32_t write_ideal_size; 1446 /* Number of banks present in the EC. */ 1447 uint16_t num_banks_total; 1448 /* Number of banks described in banks array. */ 1449 uint16_t num_banks_desc; 1450 struct ec_flash_bank banks[]; 1451 } __ec_align4; 1452 1453 /* 1454 * Read flash 1455 * 1456 * Response is params.size bytes of data. 1457 */ 1458 #define EC_CMD_FLASH_READ 0x0011 1459 1460 /** 1461 * struct ec_params_flash_read - Parameters for the flash read command. 1462 * @offset: Byte offset to read. 1463 * @size: Size to read in bytes. 1464 */ 1465 struct ec_params_flash_read { 1466 uint32_t offset; 1467 uint32_t size; 1468 } __ec_align4; 1469 1470 /* Write flash */ 1471 #define EC_CMD_FLASH_WRITE 0x0012 1472 #define EC_VER_FLASH_WRITE 1 1473 1474 /* Version 0 of the flash command supported only 64 bytes of data */ 1475 #define EC_FLASH_WRITE_VER0_SIZE 64 1476 1477 /** 1478 * struct ec_params_flash_write - Parameters for the flash write command. 1479 * @offset: Byte offset to write. 1480 * @size: Size to write in bytes. 1481 */ 1482 struct ec_params_flash_write { 1483 uint32_t offset; 1484 uint32_t size; 1485 /* Followed by data to write */ 1486 } __ec_align4; 1487 1488 /* Erase flash */ 1489 #define EC_CMD_FLASH_ERASE 0x0013 1490 1491 /** 1492 * struct ec_params_flash_erase - Parameters for the flash erase command, v0. 1493 * @offset: Byte offset to erase. 1494 * @size: Size to erase in bytes. 1495 */ 1496 struct ec_params_flash_erase { 1497 uint32_t offset; 1498 uint32_t size; 1499 } __ec_align4; 1500 1501 /* 1502 * v1 add async erase: 1503 * subcommands can returns: 1504 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below). 1505 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary. 1506 * EC_RES_ERROR : other errors. 1507 * EC_RES_BUSY : an existing erase operation is in progress. 1508 * EC_RES_ACCESS_DENIED: Trying to erase running image. 1509 * 1510 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just 1511 * properly queued. The user must call ERASE_GET_RESULT subcommand to get 1512 * the proper result. 1513 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send 1514 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC. 1515 * ERASE_GET_RESULT command may timeout on EC where flash access is not 1516 * permitted while erasing. (For instance, STM32F4). 1517 */ 1518 enum ec_flash_erase_cmd { 1519 FLASH_ERASE_SECTOR, /* Erase and wait for result */ 1520 FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */ 1521 FLASH_ERASE_GET_RESULT, /* Ask for last erase result */ 1522 }; 1523 1524 /** 1525 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1. 1526 * @cmd: One of ec_flash_erase_cmd. 1527 * @reserved: Pad byte; currently always contains 0. 1528 * @flag: No flags defined yet; set to 0. 1529 * @params: Same as v0 parameters. 1530 */ 1531 struct ec_params_flash_erase_v1 { 1532 uint8_t cmd; 1533 uint8_t reserved; 1534 uint16_t flag; 1535 struct ec_params_flash_erase params; 1536 } __ec_align4; 1537 1538 /* 1539 * Get/set flash protection. 1540 * 1541 * If mask!=0, sets/clear the requested bits of flags. Depending on the 1542 * firmware write protect GPIO, not all flags will take effect immediately; 1543 * some flags require a subsequent hard reset to take effect. Check the 1544 * returned flags bits to see what actually happened. 1545 * 1546 * If mask=0, simply returns the current flags state. 1547 */ 1548 #define EC_CMD_FLASH_PROTECT 0x0015 1549 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ 1550 1551 /* Flags for flash protection */ 1552 /* RO flash code protected when the EC boots */ 1553 #define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0) 1554 /* 1555 * RO flash code protected now. If this bit is set, at-boot status cannot 1556 * be changed. 1557 */ 1558 #define EC_FLASH_PROTECT_RO_NOW BIT(1) 1559 /* Entire flash code protected now, until reboot. */ 1560 #define EC_FLASH_PROTECT_ALL_NOW BIT(2) 1561 /* Flash write protect GPIO is asserted now */ 1562 #define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3) 1563 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ 1564 #define EC_FLASH_PROTECT_ERROR_STUCK BIT(4) 1565 /* 1566 * Error - flash protection is in inconsistent state. At least one bank of 1567 * flash which should be protected is not protected. Usually fixed by 1568 * re-requesting the desired flags, or by a hard reset if that fails. 1569 */ 1570 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5) 1571 /* Entire flash code protected when the EC boots */ 1572 #define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6) 1573 /* RW flash code protected when the EC boots */ 1574 #define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7) 1575 /* RW flash code protected now. */ 1576 #define EC_FLASH_PROTECT_RW_NOW BIT(8) 1577 /* Rollback information flash region protected when the EC boots */ 1578 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9) 1579 /* Rollback information flash region protected now */ 1580 #define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10) 1581 1582 1583 /** 1584 * struct ec_params_flash_protect - Parameters for the flash protect command. 1585 * @mask: Bits in flags to apply. 1586 * @flags: New flags to apply. 1587 */ 1588 struct ec_params_flash_protect { 1589 uint32_t mask; 1590 uint32_t flags; 1591 } __ec_align4; 1592 1593 /** 1594 * struct ec_response_flash_protect - Response to the flash protect command. 1595 * @flags: Current value of flash protect flags. 1596 * @valid_flags: Flags which are valid on this platform. This allows the 1597 * caller to distinguish between flags which aren't set vs. flags 1598 * which can't be set on this platform. 1599 * @writable_flags: Flags which can be changed given the current protection 1600 * state. 1601 */ 1602 struct ec_response_flash_protect { 1603 uint32_t flags; 1604 uint32_t valid_flags; 1605 uint32_t writable_flags; 1606 } __ec_align4; 1607 1608 /* 1609 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash 1610 * write protect. These commands may be reused with version > 0. 1611 */ 1612 1613 /* Get the region offset/size */ 1614 #define EC_CMD_FLASH_REGION_INFO 0x0016 1615 #define EC_VER_FLASH_REGION_INFO 1 1616 1617 enum ec_flash_region { 1618 /* Region which holds read-only EC image */ 1619 EC_FLASH_REGION_RO = 0, 1620 /* 1621 * Region which holds active RW image. 'Active' is different from 1622 * 'running'. Active means 'scheduled-to-run'. Since RO image always 1623 * scheduled to run, active/non-active applies only to RW images (for 1624 * the same reason 'update' applies only to RW images. It's a state of 1625 * an image on a flash. Running image can be RO, RW_A, RW_B but active 1626 * image can only be RW_A or RW_B. In recovery mode, an active RW image 1627 * doesn't enter 'running' state but it's still active on a flash. 1628 */ 1629 EC_FLASH_REGION_ACTIVE, 1630 /* 1631 * Region which should be write-protected in the factory (a superset of 1632 * EC_FLASH_REGION_RO) 1633 */ 1634 EC_FLASH_REGION_WP_RO, 1635 /* Region which holds updatable (non-active) RW image */ 1636 EC_FLASH_REGION_UPDATE, 1637 /* Number of regions */ 1638 EC_FLASH_REGION_COUNT, 1639 }; 1640 /* 1641 * 'RW' is vague if there are multiple RW images; we mean the active one, 1642 * so the old constant is deprecated. 1643 */ 1644 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE 1645 1646 /** 1647 * struct ec_params_flash_region_info - Parameters for the flash region info 1648 * command. 1649 * @region: Flash region; see EC_FLASH_REGION_* 1650 */ 1651 struct ec_params_flash_region_info { 1652 uint32_t region; 1653 } __ec_align4; 1654 1655 struct ec_response_flash_region_info { 1656 uint32_t offset; 1657 uint32_t size; 1658 } __ec_align4; 1659 1660 /* Read/write VbNvContext */ 1661 #define EC_CMD_VBNV_CONTEXT 0x0017 1662 #define EC_VER_VBNV_CONTEXT 1 1663 #define EC_VBNV_BLOCK_SIZE 16 1664 1665 enum ec_vbnvcontext_op { 1666 EC_VBNV_CONTEXT_OP_READ, 1667 EC_VBNV_CONTEXT_OP_WRITE, 1668 }; 1669 1670 struct ec_params_vbnvcontext { 1671 uint32_t op; 1672 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1673 } __ec_align4; 1674 1675 struct ec_response_vbnvcontext { 1676 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1677 } __ec_align4; 1678 1679 1680 /* Get SPI flash information */ 1681 #define EC_CMD_FLASH_SPI_INFO 0x0018 1682 1683 struct ec_response_flash_spi_info { 1684 /* JEDEC info from command 0x9F (manufacturer, memory type, size) */ 1685 uint8_t jedec[3]; 1686 1687 /* Pad byte; currently always contains 0 */ 1688 uint8_t reserved0; 1689 1690 /* Manufacturer / device ID from command 0x90 */ 1691 uint8_t mfr_dev_id[2]; 1692 1693 /* Status registers from command 0x05 and 0x35 */ 1694 uint8_t sr1, sr2; 1695 } __ec_align1; 1696 1697 1698 /* Select flash during flash operations */ 1699 #define EC_CMD_FLASH_SELECT 0x0019 1700 1701 /** 1702 * struct ec_params_flash_select - Parameters for the flash select command. 1703 * @select: 1 to select flash, 0 to deselect flash 1704 */ 1705 struct ec_params_flash_select { 1706 uint8_t select; 1707 } __ec_align4; 1708 1709 1710 /*****************************************************************************/ 1711 /* PWM commands */ 1712 1713 /* Get fan target RPM */ 1714 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020 1715 1716 struct ec_response_pwm_get_fan_rpm { 1717 uint32_t rpm; 1718 } __ec_align4; 1719 1720 /* Set target fan RPM */ 1721 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021 1722 1723 /* Version 0 of input params */ 1724 struct ec_params_pwm_set_fan_target_rpm_v0 { 1725 uint32_t rpm; 1726 } __ec_align4; 1727 1728 /* Version 1 of input params */ 1729 struct ec_params_pwm_set_fan_target_rpm_v1 { 1730 uint32_t rpm; 1731 uint8_t fan_idx; 1732 } __ec_align_size1; 1733 1734 /* Get keyboard backlight */ 1735 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ 1736 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022 1737 1738 struct ec_response_pwm_get_keyboard_backlight { 1739 uint8_t percent; 1740 uint8_t enabled; 1741 } __ec_align1; 1742 1743 /* Set keyboard backlight */ 1744 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */ 1745 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023 1746 1747 struct ec_params_pwm_set_keyboard_backlight { 1748 uint8_t percent; 1749 } __ec_align1; 1750 1751 /* Set target fan PWM duty cycle */ 1752 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024 1753 1754 /* Version 0 of input params */ 1755 struct ec_params_pwm_set_fan_duty_v0 { 1756 uint32_t percent; 1757 } __ec_align4; 1758 1759 /* Version 1 of input params */ 1760 struct ec_params_pwm_set_fan_duty_v1 { 1761 uint32_t percent; 1762 uint8_t fan_idx; 1763 } __ec_align_size1; 1764 1765 #define EC_CMD_PWM_SET_DUTY 0x0025 1766 /* 16 bit duty cycle, 0xffff = 100% */ 1767 #define EC_PWM_MAX_DUTY 0xffff 1768 1769 enum ec_pwm_type { 1770 /* All types, indexed by board-specific enum pwm_channel */ 1771 EC_PWM_TYPE_GENERIC = 0, 1772 /* Keyboard backlight */ 1773 EC_PWM_TYPE_KB_LIGHT, 1774 /* Display backlight */ 1775 EC_PWM_TYPE_DISPLAY_LIGHT, 1776 EC_PWM_TYPE_COUNT, 1777 }; 1778 1779 struct ec_params_pwm_set_duty { 1780 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1781 uint8_t pwm_type; /* ec_pwm_type */ 1782 uint8_t index; /* Type-specific index, or 0 if unique */ 1783 } __ec_align4; 1784 1785 #define EC_CMD_PWM_GET_DUTY 0x0026 1786 1787 struct ec_params_pwm_get_duty { 1788 uint8_t pwm_type; /* ec_pwm_type */ 1789 uint8_t index; /* Type-specific index, or 0 if unique */ 1790 } __ec_align1; 1791 1792 struct ec_response_pwm_get_duty { 1793 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1794 } __ec_align2; 1795 1796 /*****************************************************************************/ 1797 /* 1798 * Lightbar commands. This looks worse than it is. Since we only use one HOST 1799 * command to say "talk to the lightbar", we put the "and tell it to do X" part 1800 * into a subcommand. We'll make separate structs for subcommands with 1801 * different input args, so that we know how much to expect. 1802 */ 1803 #define EC_CMD_LIGHTBAR_CMD 0x0028 1804 1805 struct rgb_s { 1806 uint8_t r, g, b; 1807 } __ec_todo_unpacked; 1808 1809 #define LB_BATTERY_LEVELS 4 1810 1811 /* 1812 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a 1813 * host command, but the alignment is the same regardless. Keep it that way. 1814 */ 1815 struct lightbar_params_v0 { 1816 /* Timing */ 1817 int32_t google_ramp_up; 1818 int32_t google_ramp_down; 1819 int32_t s3s0_ramp_up; 1820 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1821 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1822 int32_t s0s3_ramp_down; 1823 int32_t s3_sleep_for; 1824 int32_t s3_ramp_up; 1825 int32_t s3_ramp_down; 1826 1827 /* Oscillation */ 1828 uint8_t new_s0; 1829 uint8_t osc_min[2]; /* AC=0/1 */ 1830 uint8_t osc_max[2]; /* AC=0/1 */ 1831 uint8_t w_ofs[2]; /* AC=0/1 */ 1832 1833 /* Brightness limits based on the backlight and AC. */ 1834 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1835 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1836 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1837 1838 /* Battery level thresholds */ 1839 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1840 1841 /* Map [AC][battery_level] to color index */ 1842 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1843 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1844 1845 /* Color palette */ 1846 struct rgb_s color[8]; /* 0-3 are Google colors */ 1847 } __ec_todo_packed; 1848 1849 struct lightbar_params_v1 { 1850 /* Timing */ 1851 int32_t google_ramp_up; 1852 int32_t google_ramp_down; 1853 int32_t s3s0_ramp_up; 1854 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1855 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1856 int32_t s0s3_ramp_down; 1857 int32_t s3_sleep_for; 1858 int32_t s3_ramp_up; 1859 int32_t s3_ramp_down; 1860 int32_t s5_ramp_up; 1861 int32_t s5_ramp_down; 1862 int32_t tap_tick_delay; 1863 int32_t tap_gate_delay; 1864 int32_t tap_display_time; 1865 1866 /* Tap-for-battery params */ 1867 uint8_t tap_pct_red; 1868 uint8_t tap_pct_green; 1869 uint8_t tap_seg_min_on; 1870 uint8_t tap_seg_max_on; 1871 uint8_t tap_seg_osc; 1872 uint8_t tap_idx[3]; 1873 1874 /* Oscillation */ 1875 uint8_t osc_min[2]; /* AC=0/1 */ 1876 uint8_t osc_max[2]; /* AC=0/1 */ 1877 uint8_t w_ofs[2]; /* AC=0/1 */ 1878 1879 /* Brightness limits based on the backlight and AC. */ 1880 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1881 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1882 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1883 1884 /* Battery level thresholds */ 1885 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1886 1887 /* Map [AC][battery_level] to color index */ 1888 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1889 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1890 1891 /* s5: single color pulse on inhibited power-up */ 1892 uint8_t s5_idx; 1893 1894 /* Color palette */ 1895 struct rgb_s color[8]; /* 0-3 are Google colors */ 1896 } __ec_todo_packed; 1897 1898 /* Lightbar command params v2 1899 * crbug.com/467716 1900 * 1901 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by 1902 * logical groups to make it more manageable ( < 120 bytes). 1903 * 1904 * NOTE: Each of these groups must be less than 120 bytes. 1905 */ 1906 1907 struct lightbar_params_v2_timing { 1908 /* Timing */ 1909 int32_t google_ramp_up; 1910 int32_t google_ramp_down; 1911 int32_t s3s0_ramp_up; 1912 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1913 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1914 int32_t s0s3_ramp_down; 1915 int32_t s3_sleep_for; 1916 int32_t s3_ramp_up; 1917 int32_t s3_ramp_down; 1918 int32_t s5_ramp_up; 1919 int32_t s5_ramp_down; 1920 int32_t tap_tick_delay; 1921 int32_t tap_gate_delay; 1922 int32_t tap_display_time; 1923 } __ec_todo_packed; 1924 1925 struct lightbar_params_v2_tap { 1926 /* Tap-for-battery params */ 1927 uint8_t tap_pct_red; 1928 uint8_t tap_pct_green; 1929 uint8_t tap_seg_min_on; 1930 uint8_t tap_seg_max_on; 1931 uint8_t tap_seg_osc; 1932 uint8_t tap_idx[3]; 1933 } __ec_todo_packed; 1934 1935 struct lightbar_params_v2_oscillation { 1936 /* Oscillation */ 1937 uint8_t osc_min[2]; /* AC=0/1 */ 1938 uint8_t osc_max[2]; /* AC=0/1 */ 1939 uint8_t w_ofs[2]; /* AC=0/1 */ 1940 } __ec_todo_packed; 1941 1942 struct lightbar_params_v2_brightness { 1943 /* Brightness limits based on the backlight and AC. */ 1944 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1945 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1946 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1947 } __ec_todo_packed; 1948 1949 struct lightbar_params_v2_thresholds { 1950 /* Battery level thresholds */ 1951 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1952 } __ec_todo_packed; 1953 1954 struct lightbar_params_v2_colors { 1955 /* Map [AC][battery_level] to color index */ 1956 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1957 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1958 1959 /* s5: single color pulse on inhibited power-up */ 1960 uint8_t s5_idx; 1961 1962 /* Color palette */ 1963 struct rgb_s color[8]; /* 0-3 are Google colors */ 1964 } __ec_todo_packed; 1965 1966 /* Lightbar program. */ 1967 #define EC_LB_PROG_LEN 192 1968 struct lightbar_program { 1969 uint8_t size; 1970 uint8_t data[EC_LB_PROG_LEN]; 1971 } __ec_todo_unpacked; 1972 1973 struct ec_params_lightbar { 1974 uint8_t cmd; /* Command (see enum lightbar_command) */ 1975 union { 1976 /* 1977 * The following commands have no args: 1978 * 1979 * dump, off, on, init, get_seq, get_params_v0, get_params_v1, 1980 * version, get_brightness, get_demo, suspend, resume, 1981 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc, 1982 * get_params_v2_bright, get_params_v2_thlds, 1983 * get_params_v2_colors 1984 * 1985 * Don't use an empty struct, because C++ hates that. 1986 */ 1987 1988 struct __ec_todo_unpacked { 1989 uint8_t num; 1990 } set_brightness, seq, demo; 1991 1992 struct __ec_todo_unpacked { 1993 uint8_t ctrl, reg, value; 1994 } reg; 1995 1996 struct __ec_todo_unpacked { 1997 uint8_t led, red, green, blue; 1998 } set_rgb; 1999 2000 struct __ec_todo_unpacked { 2001 uint8_t led; 2002 } get_rgb; 2003 2004 struct __ec_todo_unpacked { 2005 uint8_t enable; 2006 } manual_suspend_ctrl; 2007 2008 struct lightbar_params_v0 set_params_v0; 2009 struct lightbar_params_v1 set_params_v1; 2010 2011 struct lightbar_params_v2_timing set_v2par_timing; 2012 struct lightbar_params_v2_tap set_v2par_tap; 2013 struct lightbar_params_v2_oscillation set_v2par_osc; 2014 struct lightbar_params_v2_brightness set_v2par_bright; 2015 struct lightbar_params_v2_thresholds set_v2par_thlds; 2016 struct lightbar_params_v2_colors set_v2par_colors; 2017 2018 struct lightbar_program set_program; 2019 }; 2020 } __ec_todo_packed; 2021 2022 struct ec_response_lightbar { 2023 union { 2024 struct __ec_todo_unpacked { 2025 struct __ec_todo_unpacked { 2026 uint8_t reg; 2027 uint8_t ic0; 2028 uint8_t ic1; 2029 } vals[23]; 2030 } dump; 2031 2032 struct __ec_todo_unpacked { 2033 uint8_t num; 2034 } get_seq, get_brightness, get_demo; 2035 2036 struct lightbar_params_v0 get_params_v0; 2037 struct lightbar_params_v1 get_params_v1; 2038 2039 2040 struct lightbar_params_v2_timing get_params_v2_timing; 2041 struct lightbar_params_v2_tap get_params_v2_tap; 2042 struct lightbar_params_v2_oscillation get_params_v2_osc; 2043 struct lightbar_params_v2_brightness get_params_v2_bright; 2044 struct lightbar_params_v2_thresholds get_params_v2_thlds; 2045 struct lightbar_params_v2_colors get_params_v2_colors; 2046 2047 struct __ec_todo_unpacked { 2048 uint32_t num; 2049 uint32_t flags; 2050 } version; 2051 2052 struct __ec_todo_unpacked { 2053 uint8_t red, green, blue; 2054 } get_rgb; 2055 2056 /* 2057 * The following commands have no response: 2058 * 2059 * off, on, init, set_brightness, seq, reg, set_rgb, demo, 2060 * set_params_v0, set_params_v1, set_program, 2061 * manual_suspend_ctrl, suspend, resume, set_v2par_timing, 2062 * set_v2par_tap, set_v2par_osc, set_v2par_bright, 2063 * set_v2par_thlds, set_v2par_colors 2064 */ 2065 }; 2066 } __ec_todo_packed; 2067 2068 /* Lightbar commands */ 2069 enum lightbar_command { 2070 LIGHTBAR_CMD_DUMP = 0, 2071 LIGHTBAR_CMD_OFF = 1, 2072 LIGHTBAR_CMD_ON = 2, 2073 LIGHTBAR_CMD_INIT = 3, 2074 LIGHTBAR_CMD_SET_BRIGHTNESS = 4, 2075 LIGHTBAR_CMD_SEQ = 5, 2076 LIGHTBAR_CMD_REG = 6, 2077 LIGHTBAR_CMD_SET_RGB = 7, 2078 LIGHTBAR_CMD_GET_SEQ = 8, 2079 LIGHTBAR_CMD_DEMO = 9, 2080 LIGHTBAR_CMD_GET_PARAMS_V0 = 10, 2081 LIGHTBAR_CMD_SET_PARAMS_V0 = 11, 2082 LIGHTBAR_CMD_VERSION = 12, 2083 LIGHTBAR_CMD_GET_BRIGHTNESS = 13, 2084 LIGHTBAR_CMD_GET_RGB = 14, 2085 LIGHTBAR_CMD_GET_DEMO = 15, 2086 LIGHTBAR_CMD_GET_PARAMS_V1 = 16, 2087 LIGHTBAR_CMD_SET_PARAMS_V1 = 17, 2088 LIGHTBAR_CMD_SET_PROGRAM = 18, 2089 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, 2090 LIGHTBAR_CMD_SUSPEND = 20, 2091 LIGHTBAR_CMD_RESUME = 21, 2092 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22, 2093 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23, 2094 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24, 2095 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25, 2096 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26, 2097 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27, 2098 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28, 2099 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29, 2100 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30, 2101 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31, 2102 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32, 2103 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33, 2104 LIGHTBAR_NUM_CMDS 2105 }; 2106 2107 /*****************************************************************************/ 2108 /* LED control commands */ 2109 2110 #define EC_CMD_LED_CONTROL 0x0029 2111 2112 enum ec_led_id { 2113 /* LED to indicate battery state of charge */ 2114 EC_LED_ID_BATTERY_LED = 0, 2115 /* 2116 * LED to indicate system power state (on or in suspend). 2117 * May be on power button or on C-panel. 2118 */ 2119 EC_LED_ID_POWER_LED, 2120 /* LED on power adapter or its plug */ 2121 EC_LED_ID_ADAPTER_LED, 2122 /* LED to indicate left side */ 2123 EC_LED_ID_LEFT_LED, 2124 /* LED to indicate right side */ 2125 EC_LED_ID_RIGHT_LED, 2126 /* LED to indicate recovery mode with HW_REINIT */ 2127 EC_LED_ID_RECOVERY_HW_REINIT_LED, 2128 /* LED to indicate sysrq debug mode. */ 2129 EC_LED_ID_SYSRQ_DEBUG_LED, 2130 2131 EC_LED_ID_COUNT 2132 }; 2133 2134 /* LED control flags */ 2135 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */ 2136 #define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */ 2137 2138 enum ec_led_colors { 2139 EC_LED_COLOR_RED = 0, 2140 EC_LED_COLOR_GREEN, 2141 EC_LED_COLOR_BLUE, 2142 EC_LED_COLOR_YELLOW, 2143 EC_LED_COLOR_WHITE, 2144 EC_LED_COLOR_AMBER, 2145 2146 EC_LED_COLOR_COUNT 2147 }; 2148 2149 struct ec_params_led_control { 2150 uint8_t led_id; /* Which LED to control */ 2151 uint8_t flags; /* Control flags */ 2152 2153 uint8_t brightness[EC_LED_COLOR_COUNT]; 2154 } __ec_align1; 2155 2156 struct ec_response_led_control { 2157 /* 2158 * Available brightness value range. 2159 * 2160 * Range 0 means color channel not present. 2161 * Range 1 means on/off control. 2162 * Other values means the LED is control by PWM. 2163 */ 2164 uint8_t brightness_range[EC_LED_COLOR_COUNT]; 2165 } __ec_align1; 2166 2167 /*****************************************************************************/ 2168 /* Verified boot commands */ 2169 2170 /* 2171 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be 2172 * reused for other purposes with version > 0. 2173 */ 2174 2175 /* Verified boot hash command */ 2176 #define EC_CMD_VBOOT_HASH 0x002A 2177 2178 struct ec_params_vboot_hash { 2179 uint8_t cmd; /* enum ec_vboot_hash_cmd */ 2180 uint8_t hash_type; /* enum ec_vboot_hash_type */ 2181 uint8_t nonce_size; /* Nonce size; may be 0 */ 2182 uint8_t reserved0; /* Reserved; set 0 */ 2183 uint32_t offset; /* Offset in flash to hash */ 2184 uint32_t size; /* Number of bytes to hash */ 2185 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ 2186 } __ec_align4; 2187 2188 struct ec_response_vboot_hash { 2189 uint8_t status; /* enum ec_vboot_hash_status */ 2190 uint8_t hash_type; /* enum ec_vboot_hash_type */ 2191 uint8_t digest_size; /* Size of hash digest in bytes */ 2192 uint8_t reserved0; /* Ignore; will be 0 */ 2193 uint32_t offset; /* Offset in flash which was hashed */ 2194 uint32_t size; /* Number of bytes hashed */ 2195 uint8_t hash_digest[64]; /* Hash digest data */ 2196 } __ec_align4; 2197 2198 enum ec_vboot_hash_cmd { 2199 EC_VBOOT_HASH_GET = 0, /* Get current hash status */ 2200 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ 2201 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ 2202 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ 2203 }; 2204 2205 enum ec_vboot_hash_type { 2206 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ 2207 }; 2208 2209 enum ec_vboot_hash_status { 2210 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ 2211 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ 2212 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ 2213 }; 2214 2215 /* 2216 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. 2217 * If one of these is specified, the EC will automatically update offset and 2218 * size to the correct values for the specified image (RO or RW). 2219 */ 2220 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe 2221 #define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd 2222 #define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc 2223 2224 /* 2225 * 'RW' is vague if there are multiple RW images; we mean the active one, 2226 * so the old constant is deprecated. 2227 */ 2228 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE 2229 2230 /*****************************************************************************/ 2231 /* 2232 * Motion sense commands. We'll make separate structs for sub-commands with 2233 * different input args, so that we know how much to expect. 2234 */ 2235 #define EC_CMD_MOTION_SENSE_CMD 0x002B 2236 2237 /* Motion sense commands */ 2238 enum motionsense_command { 2239 /* 2240 * Dump command returns all motion sensor data including motion sense 2241 * module flags and individual sensor flags. 2242 */ 2243 MOTIONSENSE_CMD_DUMP = 0, 2244 2245 /* 2246 * Info command returns data describing the details of a given sensor, 2247 * including enum motionsensor_type, enum motionsensor_location, and 2248 * enum motionsensor_chip. 2249 */ 2250 MOTIONSENSE_CMD_INFO = 1, 2251 2252 /* 2253 * EC Rate command is a setter/getter command for the EC sampling rate 2254 * in milliseconds. 2255 * It is per sensor, the EC run sample task at the minimum of all 2256 * sensors EC_RATE. 2257 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR 2258 * to collect all the sensor samples. 2259 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay 2260 * to process of all motion sensors in milliseconds. 2261 */ 2262 MOTIONSENSE_CMD_EC_RATE = 2, 2263 2264 /* 2265 * Sensor ODR command is a setter/getter command for the output data 2266 * rate of a specific motion sensor in millihertz. 2267 */ 2268 MOTIONSENSE_CMD_SENSOR_ODR = 3, 2269 2270 /* 2271 * Sensor range command is a setter/getter command for the range of 2272 * a specified motion sensor in +/-G's or +/- deg/s. 2273 */ 2274 MOTIONSENSE_CMD_SENSOR_RANGE = 4, 2275 2276 /* 2277 * Setter/getter command for the keyboard wake angle. When the lid 2278 * angle is greater than this value, keyboard wake is disabled in S3, 2279 * and when the lid angle goes less than this value, keyboard wake is 2280 * enabled. Note, the lid angle measurement is an approximate, 2281 * un-calibrated value, hence the wake angle isn't exact. 2282 */ 2283 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, 2284 2285 /* 2286 * Returns a single sensor data. 2287 */ 2288 MOTIONSENSE_CMD_DATA = 6, 2289 2290 /* 2291 * Return sensor fifo info. 2292 */ 2293 MOTIONSENSE_CMD_FIFO_INFO = 7, 2294 2295 /* 2296 * Insert a flush element in the fifo and return sensor fifo info. 2297 * The host can use that element to synchronize its operation. 2298 */ 2299 MOTIONSENSE_CMD_FIFO_FLUSH = 8, 2300 2301 /* 2302 * Return a portion of the fifo. 2303 */ 2304 MOTIONSENSE_CMD_FIFO_READ = 9, 2305 2306 /* 2307 * Perform low level calibration. 2308 * On sensors that support it, ask to do offset calibration. 2309 */ 2310 MOTIONSENSE_CMD_PERFORM_CALIB = 10, 2311 2312 /* 2313 * Sensor Offset command is a setter/getter command for the offset 2314 * used for calibration. 2315 * The offsets can be calculated by the host, or via 2316 * PERFORM_CALIB command. 2317 */ 2318 MOTIONSENSE_CMD_SENSOR_OFFSET = 11, 2319 2320 /* 2321 * List available activities for a MOTION sensor. 2322 * Indicates if they are enabled or disabled. 2323 */ 2324 MOTIONSENSE_CMD_LIST_ACTIVITIES = 12, 2325 2326 /* 2327 * Activity management 2328 * Enable/Disable activity recognition. 2329 */ 2330 MOTIONSENSE_CMD_SET_ACTIVITY = 13, 2331 2332 /* 2333 * Lid Angle 2334 */ 2335 MOTIONSENSE_CMD_LID_ANGLE = 14, 2336 2337 /* 2338 * Allow the FIFO to trigger interrupt via MKBP events. 2339 * By default the FIFO does not send interrupt to process the FIFO 2340 * until the AP is ready or it is coming from a wakeup sensor. 2341 */ 2342 MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15, 2343 2344 /* 2345 * Spoof the readings of the sensors. The spoofed readings can be set 2346 * to arbitrary values, or will lock to the last read actual values. 2347 */ 2348 MOTIONSENSE_CMD_SPOOF = 16, 2349 2350 /* Set lid angle for tablet mode detection. */ 2351 MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17, 2352 2353 /* 2354 * Sensor Scale command is a setter/getter command for the calibration 2355 * scale. 2356 */ 2357 MOTIONSENSE_CMD_SENSOR_SCALE = 18, 2358 2359 /* Number of motionsense sub-commands. */ 2360 MOTIONSENSE_NUM_CMDS 2361 }; 2362 2363 /* List of motion sensor types. */ 2364 enum motionsensor_type { 2365 MOTIONSENSE_TYPE_ACCEL = 0, 2366 MOTIONSENSE_TYPE_GYRO = 1, 2367 MOTIONSENSE_TYPE_MAG = 2, 2368 MOTIONSENSE_TYPE_PROX = 3, 2369 MOTIONSENSE_TYPE_LIGHT = 4, 2370 MOTIONSENSE_TYPE_ACTIVITY = 5, 2371 MOTIONSENSE_TYPE_BARO = 6, 2372 MOTIONSENSE_TYPE_SYNC = 7, 2373 MOTIONSENSE_TYPE_MAX, 2374 }; 2375 2376 /* List of motion sensor locations. */ 2377 enum motionsensor_location { 2378 MOTIONSENSE_LOC_BASE = 0, 2379 MOTIONSENSE_LOC_LID = 1, 2380 MOTIONSENSE_LOC_CAMERA = 2, 2381 MOTIONSENSE_LOC_MAX, 2382 }; 2383 2384 /* List of motion sensor chips. */ 2385 enum motionsensor_chip { 2386 MOTIONSENSE_CHIP_KXCJ9 = 0, 2387 MOTIONSENSE_CHIP_LSM6DS0 = 1, 2388 MOTIONSENSE_CHIP_BMI160 = 2, 2389 MOTIONSENSE_CHIP_SI1141 = 3, 2390 MOTIONSENSE_CHIP_SI1142 = 4, 2391 MOTIONSENSE_CHIP_SI1143 = 5, 2392 MOTIONSENSE_CHIP_KX022 = 6, 2393 MOTIONSENSE_CHIP_L3GD20H = 7, 2394 MOTIONSENSE_CHIP_BMA255 = 8, 2395 MOTIONSENSE_CHIP_BMP280 = 9, 2396 MOTIONSENSE_CHIP_OPT3001 = 10, 2397 MOTIONSENSE_CHIP_BH1730 = 11, 2398 MOTIONSENSE_CHIP_GPIO = 12, 2399 MOTIONSENSE_CHIP_LIS2DH = 13, 2400 MOTIONSENSE_CHIP_LSM6DSM = 14, 2401 MOTIONSENSE_CHIP_LIS2DE = 15, 2402 MOTIONSENSE_CHIP_LIS2MDL = 16, 2403 MOTIONSENSE_CHIP_LSM6DS3 = 17, 2404 MOTIONSENSE_CHIP_LSM6DSO = 18, 2405 MOTIONSENSE_CHIP_LNG2DM = 19, 2406 MOTIONSENSE_CHIP_MAX, 2407 }; 2408 2409 /* List of orientation positions */ 2410 enum motionsensor_orientation { 2411 MOTIONSENSE_ORIENTATION_LANDSCAPE = 0, 2412 MOTIONSENSE_ORIENTATION_PORTRAIT = 1, 2413 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2, 2414 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3, 2415 MOTIONSENSE_ORIENTATION_UNKNOWN = 4, 2416 }; 2417 2418 struct ec_response_motion_sensor_data { 2419 /* Flags for each sensor. */ 2420 uint8_t flags; 2421 /* Sensor number the data comes from. */ 2422 uint8_t sensor_num; 2423 /* Each sensor is up to 3-axis. */ 2424 union { 2425 int16_t data[3]; 2426 struct __ec_todo_packed { 2427 uint16_t reserved; 2428 uint32_t timestamp; 2429 }; 2430 struct __ec_todo_unpacked { 2431 uint8_t activity; /* motionsensor_activity */ 2432 uint8_t state; 2433 int16_t add_info[2]; 2434 }; 2435 }; 2436 } __ec_todo_packed; 2437 2438 /* Note: used in ec_response_get_next_data */ 2439 struct ec_response_motion_sense_fifo_info { 2440 /* Size of the fifo */ 2441 uint16_t size; 2442 /* Amount of space used in the fifo */ 2443 uint16_t count; 2444 /* Timestamp recorded in us. 2445 * aka accurate timestamp when host event was triggered. 2446 */ 2447 uint32_t timestamp; 2448 /* Total amount of vector lost */ 2449 uint16_t total_lost; 2450 /* Lost events since the last fifo_info, per sensors */ 2451 uint16_t lost[]; 2452 } __ec_todo_packed; 2453 2454 struct ec_response_motion_sense_fifo_data { 2455 uint32_t number_data; 2456 struct ec_response_motion_sensor_data data[]; 2457 } __ec_todo_packed; 2458 2459 /* List supported activity recognition */ 2460 enum motionsensor_activity { 2461 MOTIONSENSE_ACTIVITY_RESERVED = 0, 2462 MOTIONSENSE_ACTIVITY_SIG_MOTION = 1, 2463 MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2, 2464 MOTIONSENSE_ACTIVITY_ORIENTATION = 3, 2465 }; 2466 2467 struct ec_motion_sense_activity { 2468 uint8_t sensor_num; 2469 uint8_t activity; /* one of enum motionsensor_activity */ 2470 uint8_t enable; /* 1: enable, 0: disable */ 2471 uint8_t reserved; 2472 uint16_t parameters[3]; /* activity dependent parameters */ 2473 } __ec_todo_unpacked; 2474 2475 /* Module flag masks used for the dump sub-command. */ 2476 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0) 2477 2478 /* Sensor flag masks used for the dump sub-command. */ 2479 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0) 2480 2481 /* 2482 * Flush entry for synchronization. 2483 * data contains time stamp 2484 */ 2485 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0) 2486 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1) 2487 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2) 2488 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3) 2489 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4) 2490 2491 /* 2492 * Send this value for the data element to only perform a read. If you 2493 * send any other value, the EC will interpret it as data to set and will 2494 * return the actual value set. 2495 */ 2496 #define EC_MOTION_SENSE_NO_VALUE -1 2497 2498 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 2499 2500 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */ 2501 /* Set Calibration information */ 2502 #define MOTION_SENSE_SET_OFFSET BIT(0) 2503 2504 /* Default Scale value, factor 1. */ 2505 #define MOTION_SENSE_DEFAULT_SCALE BIT(15) 2506 2507 #define LID_ANGLE_UNRELIABLE 500 2508 2509 enum motionsense_spoof_mode { 2510 /* Disable spoof mode. */ 2511 MOTIONSENSE_SPOOF_MODE_DISABLE = 0, 2512 2513 /* Enable spoof mode, but use provided component values. */ 2514 MOTIONSENSE_SPOOF_MODE_CUSTOM, 2515 2516 /* Enable spoof mode, but use the current sensor values. */ 2517 MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT, 2518 2519 /* Query the current spoof mode status for the sensor. */ 2520 MOTIONSENSE_SPOOF_MODE_QUERY, 2521 }; 2522 2523 struct ec_params_motion_sense { 2524 uint8_t cmd; 2525 union { 2526 /* Used for MOTIONSENSE_CMD_DUMP. */ 2527 struct __ec_todo_unpacked { 2528 /* 2529 * Maximal number of sensor the host is expecting. 2530 * 0 means the host is only interested in the number 2531 * of sensors controlled by the EC. 2532 */ 2533 uint8_t max_sensor_count; 2534 } dump; 2535 2536 /* 2537 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE. 2538 */ 2539 struct __ec_todo_unpacked { 2540 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. 2541 * kb_wake_angle: angle to wakup AP. 2542 */ 2543 int16_t data; 2544 } kb_wake_angle; 2545 2546 /* 2547 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA 2548 * and MOTIONSENSE_CMD_PERFORM_CALIB. 2549 */ 2550 struct __ec_todo_unpacked { 2551 uint8_t sensor_num; 2552 } info, info_3, data, fifo_flush, perform_calib, 2553 list_activities; 2554 2555 /* 2556 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR 2557 * and MOTIONSENSE_CMD_SENSOR_RANGE. 2558 */ 2559 struct __ec_todo_unpacked { 2560 uint8_t sensor_num; 2561 2562 /* Rounding flag, true for round-up, false for down. */ 2563 uint8_t roundup; 2564 2565 uint16_t reserved; 2566 2567 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 2568 int32_t data; 2569 } ec_rate, sensor_odr, sensor_range; 2570 2571 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 2572 struct __ec_todo_packed { 2573 uint8_t sensor_num; 2574 2575 /* 2576 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 2577 * the calibration information in the EC. 2578 * If unset, just retrieve calibration information. 2579 */ 2580 uint16_t flags; 2581 2582 /* 2583 * Temperature at calibration, in units of 0.01 C 2584 * 0x8000: invalid / unknown. 2585 * 0x0: 0C 2586 * 0x7fff: +327.67C 2587 */ 2588 int16_t temp; 2589 2590 /* 2591 * Offset for calibration. 2592 * Unit: 2593 * Accelerometer: 1/1024 g 2594 * Gyro: 1/1024 deg/s 2595 * Compass: 1/16 uT 2596 */ 2597 int16_t offset[3]; 2598 } sensor_offset; 2599 2600 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ 2601 struct __ec_todo_packed { 2602 uint8_t sensor_num; 2603 2604 /* 2605 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 2606 * the calibration information in the EC. 2607 * If unset, just retrieve calibration information. 2608 */ 2609 uint16_t flags; 2610 2611 /* 2612 * Temperature at calibration, in units of 0.01 C 2613 * 0x8000: invalid / unknown. 2614 * 0x0: 0C 2615 * 0x7fff: +327.67C 2616 */ 2617 int16_t temp; 2618 2619 /* 2620 * Scale for calibration: 2621 * By default scale is 1, it is encoded on 16bits: 2622 * 1 = BIT(15) 2623 * ~2 = 0xFFFF 2624 * ~0 = 0. 2625 */ 2626 uint16_t scale[3]; 2627 } sensor_scale; 2628 2629 2630 /* Used for MOTIONSENSE_CMD_FIFO_INFO */ 2631 /* (no params) */ 2632 2633 /* Used for MOTIONSENSE_CMD_FIFO_READ */ 2634 struct __ec_todo_unpacked { 2635 /* 2636 * Number of expected vector to return. 2637 * EC may return less or 0 if none available. 2638 */ 2639 uint32_t max_data_vector; 2640 } fifo_read; 2641 2642 struct ec_motion_sense_activity set_activity; 2643 2644 /* Used for MOTIONSENSE_CMD_LID_ANGLE */ 2645 /* (no params) */ 2646 2647 /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */ 2648 struct __ec_todo_unpacked { 2649 /* 2650 * 1: enable, 0 disable fifo, 2651 * EC_MOTION_SENSE_NO_VALUE return value. 2652 */ 2653 int8_t enable; 2654 } fifo_int_enable; 2655 2656 /* Used for MOTIONSENSE_CMD_SPOOF */ 2657 struct __ec_todo_packed { 2658 uint8_t sensor_id; 2659 2660 /* See enum motionsense_spoof_mode. */ 2661 uint8_t spoof_enable; 2662 2663 /* Ignored, used for alignment. */ 2664 uint8_t reserved; 2665 2666 /* Individual component values to spoof. */ 2667 int16_t components[3]; 2668 } spoof; 2669 2670 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ 2671 struct __ec_todo_unpacked { 2672 /* 2673 * Lid angle threshold for switching between tablet and 2674 * clamshell mode. 2675 */ 2676 int16_t lid_angle; 2677 2678 /* 2679 * Hysteresis degree to prevent fluctuations between 2680 * clamshell and tablet mode if lid angle keeps 2681 * changing around the threshold. Lid motion driver will 2682 * use lid_angle + hys_degree to trigger tablet mode and 2683 * lid_angle - hys_degree to trigger clamshell mode. 2684 */ 2685 int16_t hys_degree; 2686 } tablet_mode_threshold; 2687 }; 2688 } __ec_todo_packed; 2689 2690 struct ec_response_motion_sense { 2691 union { 2692 /* Used for MOTIONSENSE_CMD_DUMP */ 2693 struct __ec_todo_unpacked { 2694 /* Flags representing the motion sensor module. */ 2695 uint8_t module_flags; 2696 2697 /* Number of sensors managed directly by the EC. */ 2698 uint8_t sensor_count; 2699 2700 /* 2701 * Sensor data is truncated if response_max is too small 2702 * for holding all the data. 2703 */ 2704 DECLARE_FLEX_ARRAY(struct ec_response_motion_sensor_data, sensor); 2705 } dump; 2706 2707 /* Used for MOTIONSENSE_CMD_INFO. */ 2708 struct __ec_todo_unpacked { 2709 /* Should be element of enum motionsensor_type. */ 2710 uint8_t type; 2711 2712 /* Should be element of enum motionsensor_location. */ 2713 uint8_t location; 2714 2715 /* Should be element of enum motionsensor_chip. */ 2716 uint8_t chip; 2717 } info; 2718 2719 /* Used for MOTIONSENSE_CMD_INFO version 3 */ 2720 struct __ec_todo_unpacked { 2721 /* Should be element of enum motionsensor_type. */ 2722 uint8_t type; 2723 2724 /* Should be element of enum motionsensor_location. */ 2725 uint8_t location; 2726 2727 /* Should be element of enum motionsensor_chip. */ 2728 uint8_t chip; 2729 2730 /* Minimum sensor sampling frequency */ 2731 uint32_t min_frequency; 2732 2733 /* Maximum sensor sampling frequency */ 2734 uint32_t max_frequency; 2735 2736 /* Max number of sensor events that could be in fifo */ 2737 uint32_t fifo_max_event_count; 2738 } info_3; 2739 2740 /* Used for MOTIONSENSE_CMD_DATA */ 2741 struct ec_response_motion_sensor_data data; 2742 2743 /* 2744 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, 2745 * MOTIONSENSE_CMD_SENSOR_RANGE, 2746 * MOTIONSENSE_CMD_KB_WAKE_ANGLE, 2747 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and 2748 * MOTIONSENSE_CMD_SPOOF. 2749 */ 2750 struct __ec_todo_unpacked { 2751 /* Current value of the parameter queried. */ 2752 int32_t ret; 2753 } ec_rate, sensor_odr, sensor_range, kb_wake_angle, 2754 fifo_int_enable, spoof; 2755 2756 /* 2757 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET, 2758 * PERFORM_CALIB. 2759 */ 2760 struct __ec_todo_unpacked { 2761 int16_t temp; 2762 int16_t offset[3]; 2763 } sensor_offset, perform_calib; 2764 2765 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */ 2766 struct __ec_todo_unpacked { 2767 int16_t temp; 2768 uint16_t scale[3]; 2769 } sensor_scale; 2770 2771 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush; 2772 2773 struct ec_response_motion_sense_fifo_data fifo_read; 2774 2775 struct __ec_todo_packed { 2776 uint16_t reserved; 2777 uint32_t enabled; 2778 uint32_t disabled; 2779 } list_activities; 2780 2781 /* No params for set activity */ 2782 2783 /* Used for MOTIONSENSE_CMD_LID_ANGLE */ 2784 struct __ec_todo_unpacked { 2785 /* 2786 * Angle between 0 and 360 degree if available, 2787 * LID_ANGLE_UNRELIABLE otherwise. 2788 */ 2789 uint16_t value; 2790 } lid_angle; 2791 2792 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */ 2793 struct __ec_todo_unpacked { 2794 /* 2795 * Lid angle threshold for switching between tablet and 2796 * clamshell mode. 2797 */ 2798 uint16_t lid_angle; 2799 2800 /* Hysteresis degree. */ 2801 uint16_t hys_degree; 2802 } tablet_mode_threshold; 2803 2804 }; 2805 } __ec_todo_packed; 2806 2807 /*****************************************************************************/ 2808 /* Force lid open command */ 2809 2810 /* Make lid event always open */ 2811 #define EC_CMD_FORCE_LID_OPEN 0x002C 2812 2813 struct ec_params_force_lid_open { 2814 uint8_t enabled; 2815 } __ec_align1; 2816 2817 /*****************************************************************************/ 2818 /* Configure the behavior of the power button */ 2819 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D 2820 2821 enum ec_config_power_button_flags { 2822 /* Enable/Disable power button pulses for x86 devices */ 2823 EC_POWER_BUTTON_ENABLE_PULSE = BIT(0), 2824 }; 2825 2826 struct ec_params_config_power_button { 2827 /* See enum ec_config_power_button_flags */ 2828 uint8_t flags; 2829 } __ec_align1; 2830 2831 /*****************************************************************************/ 2832 /* USB charging control commands */ 2833 2834 /* Set USB port charging mode */ 2835 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030 2836 2837 struct ec_params_usb_charge_set_mode { 2838 uint8_t usb_port_id; 2839 uint8_t mode:7; 2840 uint8_t inhibit_charge:1; 2841 } __ec_align1; 2842 2843 /*****************************************************************************/ 2844 /* Persistent storage for host */ 2845 2846 /* Maximum bytes that can be read/written in a single command */ 2847 #define EC_PSTORE_SIZE_MAX 64 2848 2849 /* Get persistent storage info */ 2850 #define EC_CMD_PSTORE_INFO 0x0040 2851 2852 struct ec_response_pstore_info { 2853 /* Persistent storage size, in bytes */ 2854 uint32_t pstore_size; 2855 /* Access size; read/write offset and size must be a multiple of this */ 2856 uint32_t access_size; 2857 } __ec_align4; 2858 2859 /* 2860 * Read persistent storage 2861 * 2862 * Response is params.size bytes of data. 2863 */ 2864 #define EC_CMD_PSTORE_READ 0x0041 2865 2866 struct ec_params_pstore_read { 2867 uint32_t offset; /* Byte offset to read */ 2868 uint32_t size; /* Size to read in bytes */ 2869 } __ec_align4; 2870 2871 /* Write persistent storage */ 2872 #define EC_CMD_PSTORE_WRITE 0x0042 2873 2874 struct ec_params_pstore_write { 2875 uint32_t offset; /* Byte offset to write */ 2876 uint32_t size; /* Size to write in bytes */ 2877 uint8_t data[EC_PSTORE_SIZE_MAX]; 2878 } __ec_align4; 2879 2880 /*****************************************************************************/ 2881 /* Real-time clock */ 2882 2883 /* RTC params and response structures */ 2884 struct ec_params_rtc { 2885 uint32_t time; 2886 } __ec_align4; 2887 2888 struct ec_response_rtc { 2889 uint32_t time; 2890 } __ec_align4; 2891 2892 /* These use ec_response_rtc */ 2893 #define EC_CMD_RTC_GET_VALUE 0x0044 2894 #define EC_CMD_RTC_GET_ALARM 0x0045 2895 2896 /* These all use ec_params_rtc */ 2897 #define EC_CMD_RTC_SET_VALUE 0x0046 2898 #define EC_CMD_RTC_SET_ALARM 0x0047 2899 2900 /* Pass as time param to SET_ALARM to clear the current alarm */ 2901 #define EC_RTC_ALARM_CLEAR 0 2902 2903 /*****************************************************************************/ 2904 /* Port80 log access */ 2905 2906 /* Maximum entries that can be read/written in a single command */ 2907 #define EC_PORT80_SIZE_MAX 32 2908 2909 /* Get last port80 code from previous boot */ 2910 #define EC_CMD_PORT80_LAST_BOOT 0x0048 2911 #define EC_CMD_PORT80_READ 0x0048 2912 2913 enum ec_port80_subcmd { 2914 EC_PORT80_GET_INFO = 0, 2915 EC_PORT80_READ_BUFFER, 2916 }; 2917 2918 struct ec_params_port80_read { 2919 uint16_t subcmd; 2920 union { 2921 struct __ec_todo_unpacked { 2922 uint32_t offset; 2923 uint32_t num_entries; 2924 } read_buffer; 2925 }; 2926 } __ec_todo_packed; 2927 2928 struct ec_response_port80_read { 2929 union { 2930 struct __ec_todo_unpacked { 2931 uint32_t writes; 2932 uint32_t history_size; 2933 uint32_t last_boot; 2934 } get_info; 2935 struct __ec_todo_unpacked { 2936 uint16_t codes[EC_PORT80_SIZE_MAX]; 2937 } data; 2938 }; 2939 } __ec_todo_packed; 2940 2941 struct ec_response_port80_last_boot { 2942 uint16_t code; 2943 } __ec_align2; 2944 2945 /*****************************************************************************/ 2946 /* Temporary secure storage for host verified boot use */ 2947 2948 /* Number of bytes in a vstore slot */ 2949 #define EC_VSTORE_SLOT_SIZE 64 2950 2951 /* Maximum number of vstore slots */ 2952 #define EC_VSTORE_SLOT_MAX 32 2953 2954 /* Get persistent storage info */ 2955 #define EC_CMD_VSTORE_INFO 0x0049 2956 struct ec_response_vstore_info { 2957 /* Indicates which slots are locked */ 2958 uint32_t slot_locked; 2959 /* Total number of slots available */ 2960 uint8_t slot_count; 2961 } __ec_align_size1; 2962 2963 /* 2964 * Read temporary secure storage 2965 * 2966 * Response is EC_VSTORE_SLOT_SIZE bytes of data. 2967 */ 2968 #define EC_CMD_VSTORE_READ 0x004A 2969 2970 struct ec_params_vstore_read { 2971 uint8_t slot; /* Slot to read from */ 2972 } __ec_align1; 2973 2974 struct ec_response_vstore_read { 2975 uint8_t data[EC_VSTORE_SLOT_SIZE]; 2976 } __ec_align1; 2977 2978 /* 2979 * Write temporary secure storage and lock it. 2980 */ 2981 #define EC_CMD_VSTORE_WRITE 0x004B 2982 2983 struct ec_params_vstore_write { 2984 uint8_t slot; /* Slot to write to */ 2985 uint8_t data[EC_VSTORE_SLOT_SIZE]; 2986 } __ec_align1; 2987 2988 /*****************************************************************************/ 2989 /* Thermal engine commands. Note that there are two implementations. We'll 2990 * reuse the command number, but the data and behavior is incompatible. 2991 * Version 0 is what originally shipped on Link. 2992 * Version 1 separates the CPU thermal limits from the fan control. 2993 */ 2994 2995 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050 2996 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051 2997 2998 /* The version 0 structs are opaque. You have to know what they are for 2999 * the get/set commands to make any sense. 3000 */ 3001 3002 /* Version 0 - set */ 3003 struct ec_params_thermal_set_threshold { 3004 uint8_t sensor_type; 3005 uint8_t threshold_id; 3006 uint16_t value; 3007 } __ec_align2; 3008 3009 /* Version 0 - get */ 3010 struct ec_params_thermal_get_threshold { 3011 uint8_t sensor_type; 3012 uint8_t threshold_id; 3013 } __ec_align1; 3014 3015 struct ec_response_thermal_get_threshold { 3016 uint16_t value; 3017 } __ec_align2; 3018 3019 3020 /* The version 1 structs are visible. */ 3021 enum ec_temp_thresholds { 3022 EC_TEMP_THRESH_WARN = 0, 3023 EC_TEMP_THRESH_HIGH, 3024 EC_TEMP_THRESH_HALT, 3025 3026 EC_TEMP_THRESH_COUNT 3027 }; 3028 3029 /* 3030 * Thermal configuration for one temperature sensor. Temps are in degrees K. 3031 * Zero values will be silently ignored by the thermal task. 3032 * 3033 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree 3034 * hysteresis. 3035 * For example, 3036 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K 3037 * temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K 3038 * EC will throttle ap when temperature >= 301 K, and release throttling when 3039 * temperature <= 299 K. 3040 * 3041 * Set 'temp_host_release' value allows thermal task has a custom hysteresis. 3042 * For example, 3043 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K 3044 * temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K 3045 * EC will throttle ap when temperature >= 301 K, and release throttling when 3046 * temperature <= 294 K. 3047 * 3048 * Note that this structure is a sub-structure of 3049 * ec_params_thermal_set_threshold_v1, but maintains its alignment there. 3050 */ 3051 struct ec_thermal_config { 3052 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ 3053 uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */ 3054 uint32_t temp_fan_off; /* no active cooling needed */ 3055 uint32_t temp_fan_max; /* max active cooling needed */ 3056 } __ec_align4; 3057 3058 /* Version 1 - get config for one sensor. */ 3059 struct ec_params_thermal_get_threshold_v1 { 3060 uint32_t sensor_num; 3061 } __ec_align4; 3062 /* This returns a struct ec_thermal_config */ 3063 3064 /* 3065 * Version 1 - set config for one sensor. 3066 * Use read-modify-write for best results! 3067 */ 3068 struct ec_params_thermal_set_threshold_v1 { 3069 uint32_t sensor_num; 3070 struct ec_thermal_config cfg; 3071 } __ec_align4; 3072 /* This returns no data */ 3073 3074 /****************************************************************************/ 3075 3076 /* Toggle automatic fan control */ 3077 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052 3078 3079 /* Version 1 of input params */ 3080 struct ec_params_auto_fan_ctrl_v1 { 3081 uint8_t fan_idx; 3082 } __ec_align1; 3083 3084 /* Get/Set TMP006 calibration data */ 3085 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053 3086 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054 3087 3088 /* 3089 * The original TMP006 calibration only needed four params, but now we need 3090 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave 3091 * the params opaque. The v1 "get" response will include the algorithm number 3092 * and how many params it requires. That way we can change the EC code without 3093 * needing to update this file. We can also use a different algorithm on each 3094 * sensor. 3095 */ 3096 3097 /* This is the same struct for both v0 and v1. */ 3098 struct ec_params_tmp006_get_calibration { 3099 uint8_t index; 3100 } __ec_align1; 3101 3102 /* Version 0 */ 3103 struct ec_response_tmp006_get_calibration_v0 { 3104 float s0; 3105 float b0; 3106 float b1; 3107 float b2; 3108 } __ec_align4; 3109 3110 struct ec_params_tmp006_set_calibration_v0 { 3111 uint8_t index; 3112 uint8_t reserved[3]; 3113 float s0; 3114 float b0; 3115 float b1; 3116 float b2; 3117 } __ec_align4; 3118 3119 /* Version 1 */ 3120 struct ec_response_tmp006_get_calibration_v1 { 3121 uint8_t algorithm; 3122 uint8_t num_params; 3123 uint8_t reserved[2]; 3124 float val[]; 3125 } __ec_align4; 3126 3127 struct ec_params_tmp006_set_calibration_v1 { 3128 uint8_t index; 3129 uint8_t algorithm; 3130 uint8_t num_params; 3131 uint8_t reserved; 3132 float val[]; 3133 } __ec_align4; 3134 3135 3136 /* Read raw TMP006 data */ 3137 #define EC_CMD_TMP006_GET_RAW 0x0055 3138 3139 struct ec_params_tmp006_get_raw { 3140 uint8_t index; 3141 } __ec_align1; 3142 3143 struct ec_response_tmp006_get_raw { 3144 int32_t t; /* In 1/100 K */ 3145 int32_t v; /* In nV */ 3146 } __ec_align4; 3147 3148 /*****************************************************************************/ 3149 /* MKBP - Matrix KeyBoard Protocol */ 3150 3151 /* 3152 * Read key state 3153 * 3154 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for 3155 * expected response size. 3156 * 3157 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish 3158 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type 3159 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. 3160 */ 3161 #define EC_CMD_MKBP_STATE 0x0060 3162 3163 /* 3164 * Provide information about various MKBP things. See enum ec_mkbp_info_type. 3165 */ 3166 #define EC_CMD_MKBP_INFO 0x0061 3167 3168 struct ec_response_mkbp_info { 3169 uint32_t rows; 3170 uint32_t cols; 3171 /* Formerly "switches", which was 0. */ 3172 uint8_t reserved; 3173 } __ec_align_size1; 3174 3175 struct ec_params_mkbp_info { 3176 uint8_t info_type; 3177 uint8_t event_type; 3178 } __ec_align1; 3179 3180 enum ec_mkbp_info_type { 3181 /* 3182 * Info about the keyboard matrix: number of rows and columns. 3183 * 3184 * Returns struct ec_response_mkbp_info. 3185 */ 3186 EC_MKBP_INFO_KBD = 0, 3187 3188 /* 3189 * For buttons and switches, info about which specifically are 3190 * supported. event_type must be set to one of the values in enum 3191 * ec_mkbp_event. 3192 * 3193 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte 3194 * bitmask indicating which buttons or switches are present. See the 3195 * bit inidices below. 3196 */ 3197 EC_MKBP_INFO_SUPPORTED = 1, 3198 3199 /* 3200 * Instantaneous state of buttons and switches. 3201 * 3202 * event_type must be set to one of the values in enum ec_mkbp_event. 3203 * 3204 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] 3205 * indicating the current state of the keyboard matrix. 3206 * 3207 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw 3208 * event state. 3209 * 3210 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the 3211 * state of supported buttons. 3212 * 3213 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the 3214 * state of supported switches. 3215 */ 3216 EC_MKBP_INFO_CURRENT = 2, 3217 }; 3218 3219 /* Simulate key press */ 3220 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062 3221 3222 struct ec_params_mkbp_simulate_key { 3223 uint8_t col; 3224 uint8_t row; 3225 uint8_t pressed; 3226 } __ec_align1; 3227 3228 #define EC_CMD_GET_KEYBOARD_ID 0x0063 3229 3230 struct ec_response_keyboard_id { 3231 uint32_t keyboard_id; 3232 } __ec_align4; 3233 3234 enum keyboard_id { 3235 KEYBOARD_ID_UNSUPPORTED = 0, 3236 KEYBOARD_ID_UNREADABLE = 0xffffffff, 3237 }; 3238 3239 /* Configure keyboard scanning */ 3240 #define EC_CMD_MKBP_SET_CONFIG 0x0064 3241 #define EC_CMD_MKBP_GET_CONFIG 0x0065 3242 3243 /* flags */ 3244 enum mkbp_config_flags { 3245 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ 3246 }; 3247 3248 enum mkbp_config_valid { 3249 EC_MKBP_VALID_SCAN_PERIOD = BIT(0), 3250 EC_MKBP_VALID_POLL_TIMEOUT = BIT(1), 3251 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3), 3252 EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4), 3253 EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5), 3254 EC_MKBP_VALID_DEBOUNCE_UP = BIT(6), 3255 EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7), 3256 }; 3257 3258 /* 3259 * Configuration for our key scanning algorithm. 3260 * 3261 * Note that this is used as a sub-structure of 3262 * ec_{params/response}_mkbp_get_config. 3263 */ 3264 struct ec_mkbp_config { 3265 uint32_t valid_mask; /* valid fields */ 3266 uint8_t flags; /* some flags (enum mkbp_config_flags) */ 3267 uint8_t valid_flags; /* which flags are valid */ 3268 uint16_t scan_period_us; /* period between start of scans */ 3269 /* revert to interrupt mode after no activity for this long */ 3270 uint32_t poll_timeout_us; 3271 /* 3272 * minimum post-scan relax time. Once we finish a scan we check 3273 * the time until we are due to start the next one. If this time is 3274 * shorter this field, we use this instead. 3275 */ 3276 uint16_t min_post_scan_delay_us; 3277 /* delay between setting up output and waiting for it to settle */ 3278 uint16_t output_settle_us; 3279 uint16_t debounce_down_us; /* time for debounce on key down */ 3280 uint16_t debounce_up_us; /* time for debounce on key up */ 3281 /* maximum depth to allow for fifo (0 = no keyscan output) */ 3282 uint8_t fifo_max_depth; 3283 } __ec_align_size1; 3284 3285 struct ec_params_mkbp_set_config { 3286 struct ec_mkbp_config config; 3287 } __ec_align_size1; 3288 3289 struct ec_response_mkbp_get_config { 3290 struct ec_mkbp_config config; 3291 } __ec_align_size1; 3292 3293 /* Run the key scan emulation */ 3294 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066 3295 3296 enum ec_keyscan_seq_cmd { 3297 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ 3298 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ 3299 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ 3300 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ 3301 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ 3302 }; 3303 3304 enum ec_collect_flags { 3305 /* 3306 * Indicates this scan was processed by the EC. Due to timing, some 3307 * scans may be skipped. 3308 */ 3309 EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0), 3310 }; 3311 3312 struct ec_collect_item { 3313 uint8_t flags; /* some flags (enum ec_collect_flags) */ 3314 } __ec_align1; 3315 3316 struct ec_params_keyscan_seq_ctrl { 3317 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ 3318 union { 3319 struct __ec_align1 { 3320 uint8_t active; /* still active */ 3321 uint8_t num_items; /* number of items */ 3322 /* Current item being presented */ 3323 uint8_t cur_item; 3324 } status; 3325 struct __ec_todo_unpacked { 3326 /* 3327 * Absolute time for this scan, measured from the 3328 * start of the sequence. 3329 */ 3330 uint32_t time_us; 3331 uint8_t scan[0]; /* keyscan data */ 3332 } add; 3333 struct __ec_align1 { 3334 uint8_t start_item; /* First item to return */ 3335 uint8_t num_items; /* Number of items to return */ 3336 } collect; 3337 }; 3338 } __ec_todo_packed; 3339 3340 struct ec_result_keyscan_seq_ctrl { 3341 union { 3342 struct __ec_todo_unpacked { 3343 uint8_t num_items; /* Number of items */ 3344 /* Data for each item */ 3345 struct ec_collect_item item[0]; 3346 } collect; 3347 }; 3348 } __ec_todo_packed; 3349 3350 /* 3351 * Get the next pending MKBP event. 3352 * 3353 * Returns EC_RES_UNAVAILABLE if there is no event pending. 3354 */ 3355 #define EC_CMD_GET_NEXT_EVENT 0x0067 3356 3357 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7 3358 3359 /* 3360 * We use the most significant bit of the event type to indicate to the host 3361 * that the EC has more MKBP events available to provide. 3362 */ 3363 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) 3364 3365 /* The mask to apply to get the raw event type */ 3366 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1) 3367 3368 enum ec_mkbp_event { 3369 /* Keyboard matrix changed. The event data is the new matrix state. */ 3370 EC_MKBP_EVENT_KEY_MATRIX = 0, 3371 3372 /* New host event. The event data is 4 bytes of host event flags. */ 3373 EC_MKBP_EVENT_HOST_EVENT = 1, 3374 3375 /* New Sensor FIFO data. The event data is fifo_info structure. */ 3376 EC_MKBP_EVENT_SENSOR_FIFO = 2, 3377 3378 /* The state of the non-matrixed buttons have changed. */ 3379 EC_MKBP_EVENT_BUTTON = 3, 3380 3381 /* The state of the switches have changed. */ 3382 EC_MKBP_EVENT_SWITCH = 4, 3383 3384 /* New Fingerprint sensor event, the event data is fp_events bitmap. */ 3385 EC_MKBP_EVENT_FINGERPRINT = 5, 3386 3387 /* 3388 * Sysrq event: send emulated sysrq. The event data is sysrq, 3389 * corresponding to the key to be pressed. 3390 */ 3391 EC_MKBP_EVENT_SYSRQ = 6, 3392 3393 /* 3394 * New 64-bit host event. 3395 * The event data is 8 bytes of host event flags. 3396 */ 3397 EC_MKBP_EVENT_HOST_EVENT64 = 7, 3398 3399 /* Notify the AP that something happened on CEC */ 3400 EC_MKBP_EVENT_CEC_EVENT = 8, 3401 3402 /* Send an incoming CEC message to the AP */ 3403 EC_MKBP_EVENT_CEC_MESSAGE = 9, 3404 3405 /* Peripheral device charger event */ 3406 EC_MKBP_EVENT_PCHG = 12, 3407 3408 /* Number of MKBP events */ 3409 EC_MKBP_EVENT_COUNT, 3410 }; 3411 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK); 3412 3413 union __ec_align_offset1 ec_response_get_next_data { 3414 uint8_t key_matrix[13]; 3415 3416 /* Unaligned */ 3417 uint32_t host_event; 3418 uint64_t host_event64; 3419 3420 struct __ec_todo_unpacked { 3421 /* For aligning the fifo_info */ 3422 uint8_t reserved[3]; 3423 struct ec_response_motion_sense_fifo_info info; 3424 } sensor_fifo; 3425 3426 uint32_t buttons; 3427 3428 uint32_t switches; 3429 3430 uint32_t fp_events; 3431 3432 uint32_t sysrq; 3433 3434 /* CEC events from enum mkbp_cec_event */ 3435 uint32_t cec_events; 3436 }; 3437 3438 union __ec_align_offset1 ec_response_get_next_data_v1 { 3439 uint8_t key_matrix[16]; 3440 3441 /* Unaligned */ 3442 uint32_t host_event; 3443 uint64_t host_event64; 3444 3445 struct __ec_todo_unpacked { 3446 /* For aligning the fifo_info */ 3447 uint8_t reserved[3]; 3448 struct ec_response_motion_sense_fifo_info info; 3449 } sensor_fifo; 3450 3451 uint32_t buttons; 3452 3453 uint32_t switches; 3454 3455 uint32_t fp_events; 3456 3457 uint32_t sysrq; 3458 3459 /* CEC events from enum mkbp_cec_event */ 3460 uint32_t cec_events; 3461 3462 uint8_t cec_message[16]; 3463 }; 3464 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16); 3465 3466 union __ec_align_offset1 ec_response_get_next_data_v3 { 3467 uint8_t key_matrix[18]; 3468 3469 /* Unaligned */ 3470 uint32_t host_event; 3471 uint64_t host_event64; 3472 3473 struct __ec_todo_unpacked { 3474 /* For aligning the fifo_info */ 3475 uint8_t reserved[3]; 3476 struct ec_response_motion_sense_fifo_info info; 3477 } sensor_fifo; 3478 3479 uint32_t buttons; 3480 3481 uint32_t switches; 3482 3483 uint32_t fp_events; 3484 3485 uint32_t sysrq; 3486 3487 /* CEC events from enum mkbp_cec_event */ 3488 uint32_t cec_events; 3489 3490 uint8_t cec_message[16]; 3491 }; 3492 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v3) == 18); 3493 3494 struct ec_response_get_next_event { 3495 uint8_t event_type; 3496 /* Followed by event data if any */ 3497 union ec_response_get_next_data data; 3498 } __ec_align1; 3499 3500 struct ec_response_get_next_event_v1 { 3501 uint8_t event_type; 3502 /* Followed by event data if any */ 3503 union ec_response_get_next_data_v1 data; 3504 } __ec_align1; 3505 3506 struct ec_response_get_next_event_v3 { 3507 uint8_t event_type; 3508 /* Followed by event data if any */ 3509 union ec_response_get_next_data_v3 data; 3510 } __ec_align1; 3511 3512 /* Bit indices for buttons and switches.*/ 3513 /* Buttons */ 3514 #define EC_MKBP_POWER_BUTTON 0 3515 #define EC_MKBP_VOL_UP 1 3516 #define EC_MKBP_VOL_DOWN 2 3517 #define EC_MKBP_RECOVERY 3 3518 #define EC_MKBP_BRI_UP 4 3519 #define EC_MKBP_BRI_DOWN 5 3520 #define EC_MKBP_SCREEN_LOCK 6 3521 3522 /* Switches */ 3523 #define EC_MKBP_LID_OPEN 0 3524 #define EC_MKBP_TABLET_MODE 1 3525 #define EC_MKBP_BASE_ATTACHED 2 3526 #define EC_MKBP_FRONT_PROXIMITY 3 3527 3528 /* Run keyboard factory test scanning */ 3529 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068 3530 3531 struct ec_response_keyboard_factory_test { 3532 uint16_t shorted; /* Keyboard pins are shorted */ 3533 } __ec_align2; 3534 3535 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */ 3536 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF) 3537 #define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F) 3538 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4 3539 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \ 3540 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET) 3541 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12 3542 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000 3543 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \ 3544 >> EC_MKBP_FP_MATCH_IDX_OFFSET) 3545 #define EC_MKBP_FP_ENROLL BIT(27) 3546 #define EC_MKBP_FP_MATCH BIT(28) 3547 #define EC_MKBP_FP_FINGER_DOWN BIT(29) 3548 #define EC_MKBP_FP_FINGER_UP BIT(30) 3549 #define EC_MKBP_FP_IMAGE_READY BIT(31) 3550 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */ 3551 #define EC_MKBP_FP_ERR_ENROLL_OK 0 3552 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1 3553 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2 3554 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3 3555 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5 3556 /* Can be used to detect if image was usable for enrollment or not. */ 3557 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1 3558 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */ 3559 #define EC_MKBP_FP_ERR_MATCH_NO 0 3560 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6 3561 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7 3562 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2 3563 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4 3564 #define EC_MKBP_FP_ERR_MATCH_YES 1 3565 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3 3566 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5 3567 3568 3569 /*****************************************************************************/ 3570 /* Temperature sensor commands */ 3571 3572 /* Read temperature sensor info */ 3573 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070 3574 3575 struct ec_params_temp_sensor_get_info { 3576 uint8_t id; 3577 } __ec_align1; 3578 3579 struct ec_response_temp_sensor_get_info { 3580 char sensor_name[32]; 3581 uint8_t sensor_type; 3582 } __ec_align1; 3583 3584 /*****************************************************************************/ 3585 3586 /* 3587 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI 3588 * commands accidentally sent to the wrong interface. See the ACPI section 3589 * below. 3590 */ 3591 3592 /*****************************************************************************/ 3593 /* Host event commands */ 3594 3595 3596 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */ 3597 /* 3598 * Host event mask params and response structures, shared by all of the host 3599 * event commands below. 3600 */ 3601 struct ec_params_host_event_mask { 3602 uint32_t mask; 3603 } __ec_align4; 3604 3605 struct ec_response_host_event_mask { 3606 uint32_t mask; 3607 } __ec_align4; 3608 3609 /* These all use ec_response_host_event_mask */ 3610 #define EC_CMD_HOST_EVENT_GET_B 0x0087 3611 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088 3612 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089 3613 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D 3614 3615 /* These all use ec_params_host_event_mask */ 3616 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A 3617 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B 3618 #define EC_CMD_HOST_EVENT_CLEAR 0x008C 3619 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E 3620 #define EC_CMD_HOST_EVENT_CLEAR_B 0x008F 3621 3622 /* 3623 * Unified host event programming interface - Should be used by newer versions 3624 * of BIOS/OS to program host events and masks 3625 */ 3626 3627 struct ec_params_host_event { 3628 3629 /* Action requested by host - one of enum ec_host_event_action. */ 3630 uint8_t action; 3631 3632 /* 3633 * Mask type that the host requested the action on - one of 3634 * enum ec_host_event_mask_type. 3635 */ 3636 uint8_t mask_type; 3637 3638 /* Set to 0, ignore on read */ 3639 uint16_t reserved; 3640 3641 /* Value to be used in case of set operations. */ 3642 uint64_t value; 3643 } __ec_align4; 3644 3645 /* 3646 * Response structure returned by EC_CMD_HOST_EVENT. 3647 * Update the value on a GET request. Set to 0 on GET/CLEAR 3648 */ 3649 3650 struct ec_response_host_event { 3651 3652 /* Mask value in case of get operation */ 3653 uint64_t value; 3654 } __ec_align4; 3655 3656 enum ec_host_event_action { 3657 /* 3658 * params.value is ignored. Value of mask_type populated 3659 * in response.value 3660 */ 3661 EC_HOST_EVENT_GET, 3662 3663 /* Bits in params.value are set */ 3664 EC_HOST_EVENT_SET, 3665 3666 /* Bits in params.value are cleared */ 3667 EC_HOST_EVENT_CLEAR, 3668 }; 3669 3670 enum ec_host_event_mask_type { 3671 3672 /* Main host event copy */ 3673 EC_HOST_EVENT_MAIN, 3674 3675 /* Copy B of host events */ 3676 EC_HOST_EVENT_B, 3677 3678 /* SCI Mask */ 3679 EC_HOST_EVENT_SCI_MASK, 3680 3681 /* SMI Mask */ 3682 EC_HOST_EVENT_SMI_MASK, 3683 3684 /* Mask of events that should be always reported in hostevents */ 3685 EC_HOST_EVENT_ALWAYS_REPORT_MASK, 3686 3687 /* Active wake mask */ 3688 EC_HOST_EVENT_ACTIVE_WAKE_MASK, 3689 3690 /* Lazy wake mask for S0ix */ 3691 EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX, 3692 3693 /* Lazy wake mask for S3 */ 3694 EC_HOST_EVENT_LAZY_WAKE_MASK_S3, 3695 3696 /* Lazy wake mask for S5 */ 3697 EC_HOST_EVENT_LAZY_WAKE_MASK_S5, 3698 }; 3699 3700 #define EC_CMD_HOST_EVENT 0x00A4 3701 3702 /*****************************************************************************/ 3703 /* Switch commands */ 3704 3705 /* Enable/disable LCD backlight */ 3706 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090 3707 3708 struct ec_params_switch_enable_backlight { 3709 uint8_t enabled; 3710 } __ec_align1; 3711 3712 /* Enable/disable WLAN/Bluetooth */ 3713 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091 3714 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 3715 3716 /* Version 0 params; no response */ 3717 struct ec_params_switch_enable_wireless_v0 { 3718 uint8_t enabled; 3719 } __ec_align1; 3720 3721 /* Version 1 params */ 3722 struct ec_params_switch_enable_wireless_v1 { 3723 /* Flags to enable now */ 3724 uint8_t now_flags; 3725 3726 /* Which flags to copy from now_flags */ 3727 uint8_t now_mask; 3728 3729 /* 3730 * Flags to leave enabled in S3, if they're on at the S0->S3 3731 * transition. (Other flags will be disabled by the S0->S3 3732 * transition.) 3733 */ 3734 uint8_t suspend_flags; 3735 3736 /* Which flags to copy from suspend_flags */ 3737 uint8_t suspend_mask; 3738 } __ec_align1; 3739 3740 /* Version 1 response */ 3741 struct ec_response_switch_enable_wireless_v1 { 3742 /* Flags to enable now */ 3743 uint8_t now_flags; 3744 3745 /* Flags to leave enabled in S3 */ 3746 uint8_t suspend_flags; 3747 } __ec_align1; 3748 3749 /*****************************************************************************/ 3750 /* GPIO commands. Only available on EC if write protect has been disabled. */ 3751 3752 /* Set GPIO output value */ 3753 #define EC_CMD_GPIO_SET 0x0092 3754 3755 struct ec_params_gpio_set { 3756 char name[32]; 3757 uint8_t val; 3758 } __ec_align1; 3759 3760 /* Get GPIO value */ 3761 #define EC_CMD_GPIO_GET 0x0093 3762 3763 /* Version 0 of input params and response */ 3764 struct ec_params_gpio_get { 3765 char name[32]; 3766 } __ec_align1; 3767 3768 struct ec_response_gpio_get { 3769 uint8_t val; 3770 } __ec_align1; 3771 3772 /* Version 1 of input params and response */ 3773 struct ec_params_gpio_get_v1 { 3774 uint8_t subcmd; 3775 union { 3776 struct __ec_align1 { 3777 char name[32]; 3778 } get_value_by_name; 3779 struct __ec_align1 { 3780 uint8_t index; 3781 } get_info; 3782 }; 3783 } __ec_align1; 3784 3785 struct ec_response_gpio_get_v1 { 3786 union { 3787 struct __ec_align1 { 3788 uint8_t val; 3789 } get_value_by_name, get_count; 3790 struct __ec_todo_unpacked { 3791 uint8_t val; 3792 char name[32]; 3793 uint32_t flags; 3794 } get_info; 3795 }; 3796 } __ec_todo_packed; 3797 3798 enum gpio_get_subcmd { 3799 EC_GPIO_GET_BY_NAME = 0, 3800 EC_GPIO_GET_COUNT = 1, 3801 EC_GPIO_GET_INFO = 2, 3802 }; 3803 3804 /*****************************************************************************/ 3805 /* I2C commands. Only available when flash write protect is unlocked. */ 3806 3807 /* 3808 * CAUTION: These commands are deprecated, and are not supported anymore in EC 3809 * builds >= 8398.0.0 (see crosbug.com/p/23570). 3810 * 3811 * Use EC_CMD_I2C_PASSTHRU instead. 3812 */ 3813 3814 /* Read I2C bus */ 3815 #define EC_CMD_I2C_READ 0x0094 3816 3817 struct ec_params_i2c_read { 3818 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 3819 uint8_t read_size; /* Either 8 or 16. */ 3820 uint8_t port; 3821 uint8_t offset; 3822 } __ec_align_size1; 3823 3824 struct ec_response_i2c_read { 3825 uint16_t data; 3826 } __ec_align2; 3827 3828 /* Write I2C bus */ 3829 #define EC_CMD_I2C_WRITE 0x0095 3830 3831 struct ec_params_i2c_write { 3832 uint16_t data; 3833 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 3834 uint8_t write_size; /* Either 8 or 16. */ 3835 uint8_t port; 3836 uint8_t offset; 3837 } __ec_align_size1; 3838 3839 /*****************************************************************************/ 3840 /* Charge state commands. Only available when flash write protect unlocked. */ 3841 3842 /* Force charge state machine to stop charging the battery or force it to 3843 * discharge the battery. 3844 */ 3845 #define EC_CMD_CHARGE_CONTROL 0x0096 3846 #define EC_VER_CHARGE_CONTROL 3 3847 3848 enum ec_charge_control_mode { 3849 CHARGE_CONTROL_NORMAL = 0, 3850 CHARGE_CONTROL_IDLE, 3851 CHARGE_CONTROL_DISCHARGE, 3852 /* Add no more entry below. */ 3853 CHARGE_CONTROL_COUNT, 3854 }; 3855 3856 #define EC_CHARGE_MODE_TEXT \ 3857 { \ 3858 [CHARGE_CONTROL_NORMAL] = "NORMAL", \ 3859 [CHARGE_CONTROL_IDLE] = "IDLE", \ 3860 [CHARGE_CONTROL_DISCHARGE] = "DISCHARGE", \ 3861 } 3862 3863 enum ec_charge_control_cmd { 3864 EC_CHARGE_CONTROL_CMD_SET = 0, 3865 EC_CHARGE_CONTROL_CMD_GET, 3866 }; 3867 3868 enum ec_charge_control_flag { 3869 EC_CHARGE_CONTROL_FLAG_NO_IDLE = BIT(0), 3870 }; 3871 3872 struct ec_params_charge_control { 3873 uint32_t mode; /* enum charge_control_mode */ 3874 3875 /* Below are the fields added in V2. */ 3876 uint8_t cmd; /* enum ec_charge_control_cmd. */ 3877 uint8_t flags; /* enum ec_charge_control_flag (v3+) */ 3878 /* 3879 * Lower and upper thresholds for battery sustainer. This struct isn't 3880 * named to avoid tainting foreign projects' name spaces. 3881 * 3882 * If charge mode is explicitly set (e.g. DISCHARGE), battery sustainer 3883 * will be disabled. To disable battery sustainer, set mode=NORMAL, 3884 * lower=-1, upper=-1. 3885 */ 3886 struct { 3887 int8_t lower; /* Display SoC in percentage. */ 3888 int8_t upper; /* Display SoC in percentage. */ 3889 } sustain_soc; 3890 } __ec_align4; 3891 3892 /* Added in v2 */ 3893 struct ec_response_charge_control { 3894 uint32_t mode; /* enum charge_control_mode */ 3895 struct { /* Battery sustainer thresholds */ 3896 int8_t lower; 3897 int8_t upper; 3898 } sustain_soc; 3899 uint8_t flags; /* enum ec_charge_control_flag (v3+) */ 3900 uint8_t reserved; 3901 } __ec_align4; 3902 3903 /*****************************************************************************/ 3904 3905 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ 3906 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097 3907 3908 /* 3909 * Read data from the saved snapshot. If the subcmd parameter is 3910 * CONSOLE_READ_NEXT, this will return data starting from the beginning of 3911 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the 3912 * end of the previous snapshot. 3913 * 3914 * The params are only looked at in version >= 1 of this command. Prior 3915 * versions will just default to CONSOLE_READ_NEXT behavior. 3916 * 3917 * Response is null-terminated string. Empty string, if there is no more 3918 * remaining output. 3919 */ 3920 #define EC_CMD_CONSOLE_READ 0x0098 3921 3922 enum ec_console_read_subcmd { 3923 CONSOLE_READ_NEXT = 0, 3924 CONSOLE_READ_RECENT 3925 }; 3926 3927 struct ec_params_console_read_v1 { 3928 uint8_t subcmd; /* enum ec_console_read_subcmd */ 3929 } __ec_align1; 3930 3931 /*****************************************************************************/ 3932 3933 /* 3934 * Cut off battery power immediately or after the host has shut down. 3935 * 3936 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. 3937 * EC_RES_SUCCESS if the command was successful. 3938 * EC_RES_ERROR if the cut off command failed. 3939 */ 3940 #define EC_CMD_BATTERY_CUT_OFF 0x0099 3941 3942 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0) 3943 3944 struct ec_params_battery_cutoff { 3945 uint8_t flags; 3946 } __ec_align1; 3947 3948 /*****************************************************************************/ 3949 /* USB port mux control. */ 3950 3951 /* 3952 * Switch USB mux or return to automatic switching. 3953 */ 3954 #define EC_CMD_USB_MUX 0x009A 3955 3956 struct ec_params_usb_mux { 3957 uint8_t mux; 3958 } __ec_align1; 3959 3960 /*****************************************************************************/ 3961 /* LDOs / FETs control. */ 3962 3963 enum ec_ldo_state { 3964 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ 3965 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ 3966 }; 3967 3968 /* 3969 * Switch on/off a LDO. 3970 */ 3971 #define EC_CMD_LDO_SET 0x009B 3972 3973 struct ec_params_ldo_set { 3974 uint8_t index; 3975 uint8_t state; 3976 } __ec_align1; 3977 3978 /* 3979 * Get LDO state. 3980 */ 3981 #define EC_CMD_LDO_GET 0x009C 3982 3983 struct ec_params_ldo_get { 3984 uint8_t index; 3985 } __ec_align1; 3986 3987 struct ec_response_ldo_get { 3988 uint8_t state; 3989 } __ec_align1; 3990 3991 /*****************************************************************************/ 3992 /* Power info. */ 3993 3994 /* 3995 * Get power info. 3996 */ 3997 #define EC_CMD_POWER_INFO 0x009D 3998 3999 struct ec_response_power_info { 4000 uint32_t usb_dev_type; 4001 uint16_t voltage_ac; 4002 uint16_t voltage_system; 4003 uint16_t current_system; 4004 uint16_t usb_current_limit; 4005 } __ec_align4; 4006 4007 /*****************************************************************************/ 4008 /* I2C passthru command */ 4009 4010 #define EC_CMD_I2C_PASSTHRU 0x009E 4011 4012 /* Read data; if not present, message is a write */ 4013 #define EC_I2C_FLAG_READ BIT(15) 4014 4015 /* Mask for address */ 4016 #define EC_I2C_ADDR_MASK 0x3ff 4017 4018 #define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */ 4019 #define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */ 4020 4021 /* Any error */ 4022 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) 4023 4024 struct ec_params_i2c_passthru_msg { 4025 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ 4026 uint16_t len; /* Number of bytes to read or write */ 4027 } __ec_align2; 4028 4029 struct ec_params_i2c_passthru { 4030 uint8_t port; /* I2C port number */ 4031 uint8_t num_msgs; /* Number of messages */ 4032 struct ec_params_i2c_passthru_msg msg[]; 4033 /* Data to write for all messages is concatenated here */ 4034 } __ec_align2; 4035 4036 struct ec_response_i2c_passthru { 4037 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ 4038 uint8_t num_msgs; /* Number of messages processed */ 4039 uint8_t data[]; /* Data read by messages concatenated here */ 4040 } __ec_align1; 4041 4042 /*****************************************************************************/ 4043 /* AP hang detect */ 4044 #define EC_CMD_HANG_DETECT 0x009F 4045 4046 #define EC_HANG_DETECT_MIN_TIMEOUT 5 4047 #define EC_HANG_DETECT_MAX_TIMEOUT 65535 4048 4049 /* EC hang detect commands */ 4050 enum ec_hang_detect_cmds { 4051 /* Reload AP hang detect timer. */ 4052 EC_HANG_DETECT_CMD_RELOAD = 0x0, 4053 4054 /* Stop AP hang detect timer. */ 4055 EC_HANG_DETECT_CMD_CANCEL = 0x1, 4056 4057 /* Configure watchdog with given reboot timeout and 4058 * cancel currently running AP hang detect timer. 4059 */ 4060 EC_HANG_DETECT_CMD_SET_TIMEOUT = 0x2, 4061 4062 /* Get last hang status - whether the AP boot was clear or not */ 4063 EC_HANG_DETECT_CMD_GET_STATUS = 0x3, 4064 4065 /* Clear last hang status. Called when AP is rebooting/shutting down 4066 * gracefully. 4067 */ 4068 EC_HANG_DETECT_CMD_CLEAR_STATUS = 0x4 4069 }; 4070 4071 struct ec_params_hang_detect { 4072 uint16_t command; /* enum ec_hang_detect_cmds */ 4073 /* Timeout in seconds before generating reboot */ 4074 uint16_t reboot_timeout_sec; 4075 } __ec_align2; 4076 4077 /* Status codes that describe whether AP has boot normally or the hang has been 4078 * detected and EC has reset AP 4079 */ 4080 enum ec_hang_detect_status { 4081 EC_HANG_DETECT_AP_BOOT_NORMAL = 0x0, 4082 EC_HANG_DETECT_AP_BOOT_EC_WDT = 0x1, 4083 EC_HANG_DETECT_AP_BOOT_COUNT, 4084 }; 4085 4086 struct ec_response_hang_detect { 4087 uint8_t status; /* enum ec_hang_detect_status */ 4088 } __ec_align1; 4089 /*****************************************************************************/ 4090 /* Commands for battery charging */ 4091 4092 /* 4093 * This is the single catch-all host command to exchange data regarding the 4094 * charge state machine (v2 and up). 4095 */ 4096 #define EC_CMD_CHARGE_STATE 0x00A0 4097 4098 /* Subcommands for this host command */ 4099 enum charge_state_command { 4100 CHARGE_STATE_CMD_GET_STATE, 4101 CHARGE_STATE_CMD_GET_PARAM, 4102 CHARGE_STATE_CMD_SET_PARAM, 4103 CHARGE_STATE_NUM_CMDS 4104 }; 4105 4106 /* 4107 * Known param numbers are defined here. Ranges are reserved for board-specific 4108 * params, which are handled by the particular implementations. 4109 */ 4110 enum charge_state_params { 4111 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ 4112 CS_PARAM_CHG_CURRENT, /* charger current limit */ 4113 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ 4114 CS_PARAM_CHG_STATUS, /* charger-specific status */ 4115 CS_PARAM_CHG_OPTION, /* charger-specific options */ 4116 CS_PARAM_LIMIT_POWER, /* 4117 * Check if power is limited due to 4118 * low battery and / or a weak external 4119 * charger. READ ONLY. 4120 */ 4121 /* How many so far? */ 4122 CS_NUM_BASE_PARAMS, 4123 4124 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ 4125 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, 4126 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, 4127 4128 /* Range for CONFIG_CHARGE_STATE_DEBUG params */ 4129 CS_PARAM_DEBUG_MIN = 0x20000, 4130 CS_PARAM_DEBUG_CTL_MODE = 0x20000, 4131 CS_PARAM_DEBUG_MANUAL_MODE, 4132 CS_PARAM_DEBUG_SEEMS_DEAD, 4133 CS_PARAM_DEBUG_SEEMS_DISCONNECTED, 4134 CS_PARAM_DEBUG_BATT_REMOVED, 4135 CS_PARAM_DEBUG_MANUAL_CURRENT, 4136 CS_PARAM_DEBUG_MANUAL_VOLTAGE, 4137 CS_PARAM_DEBUG_MAX = 0x2ffff, 4138 4139 /* Other custom param ranges go here... */ 4140 }; 4141 4142 struct ec_params_charge_state { 4143 uint8_t cmd; /* enum charge_state_command */ 4144 union { 4145 /* get_state has no args */ 4146 4147 struct __ec_todo_unpacked { 4148 uint32_t param; /* enum charge_state_param */ 4149 } get_param; 4150 4151 struct __ec_todo_unpacked { 4152 uint32_t param; /* param to set */ 4153 uint32_t value; /* value to set */ 4154 } set_param; 4155 }; 4156 } __ec_todo_packed; 4157 4158 struct ec_response_charge_state { 4159 union { 4160 struct __ec_align4 { 4161 int ac; 4162 int chg_voltage; 4163 int chg_current; 4164 int chg_input_current; 4165 int batt_state_of_charge; 4166 } get_state; 4167 4168 struct __ec_align4 { 4169 uint32_t value; 4170 } get_param; 4171 4172 /* set_param returns no args */ 4173 }; 4174 } __ec_align4; 4175 4176 4177 /* 4178 * Set maximum battery charging current. 4179 */ 4180 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1 4181 4182 struct ec_params_current_limit { 4183 uint32_t limit; /* in mA */ 4184 } __ec_align4; 4185 4186 /* 4187 * Set maximum external voltage / current. 4188 */ 4189 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 4190 4191 /* Command v0 is used only on Spring and is obsolete + unsupported */ 4192 struct ec_params_external_power_limit_v1 { 4193 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ 4194 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ 4195 } __ec_align2; 4196 4197 #define EC_POWER_LIMIT_NONE 0xffff 4198 4199 /* 4200 * Set maximum voltage & current of a dedicated charge port 4201 */ 4202 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3 4203 4204 struct ec_params_dedicated_charger_limit { 4205 uint16_t current_lim; /* in mA */ 4206 uint16_t voltage_lim; /* in mV */ 4207 } __ec_align2; 4208 4209 /*****************************************************************************/ 4210 /* Hibernate/Deep Sleep Commands */ 4211 4212 /* Set the delay before going into hibernation. */ 4213 #define EC_CMD_HIBERNATION_DELAY 0x00A8 4214 4215 struct ec_params_hibernation_delay { 4216 /* 4217 * Seconds to wait in G3 before hibernate. Pass in 0 to read the 4218 * current settings without changing them. 4219 */ 4220 uint32_t seconds; 4221 } __ec_align4; 4222 4223 struct ec_response_hibernation_delay { 4224 /* 4225 * The current time in seconds in which the system has been in the G3 4226 * state. This value is reset if the EC transitions out of G3. 4227 */ 4228 uint32_t time_g3; 4229 4230 /* 4231 * The current time remaining in seconds until the EC should hibernate. 4232 * This value is also reset if the EC transitions out of G3. 4233 */ 4234 uint32_t time_remaining; 4235 4236 /* 4237 * The current time in seconds that the EC should wait in G3 before 4238 * hibernating. 4239 */ 4240 uint32_t hibernate_delay; 4241 } __ec_align4; 4242 4243 /* Inform the EC when entering a sleep state */ 4244 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9 4245 4246 enum host_sleep_event { 4247 HOST_SLEEP_EVENT_S3_SUSPEND = 1, 4248 HOST_SLEEP_EVENT_S3_RESUME = 2, 4249 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, 4250 HOST_SLEEP_EVENT_S0IX_RESUME = 4, 4251 /* S3 suspend with additional enabled wake sources */ 4252 HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5, 4253 }; 4254 4255 struct ec_params_host_sleep_event { 4256 uint8_t sleep_event; 4257 } __ec_align1; 4258 4259 /* 4260 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep 4261 * transition failures 4262 */ 4263 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0 4264 4265 /* Disable timeout detection for this sleep transition */ 4266 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF 4267 4268 struct ec_params_host_sleep_event_v1 { 4269 /* The type of sleep being entered or exited. */ 4270 uint8_t sleep_event; 4271 4272 /* Padding */ 4273 uint8_t reserved; 4274 union { 4275 /* Parameters that apply for suspend messages. */ 4276 struct { 4277 /* 4278 * The timeout in milliseconds between when this message 4279 * is received and when the EC will declare sleep 4280 * transition failure if the sleep signal is not 4281 * asserted. 4282 */ 4283 uint16_t sleep_timeout_ms; 4284 } suspend_params; 4285 4286 /* No parameters for non-suspend messages. */ 4287 }; 4288 } __ec_align2; 4289 4290 /* A timeout occurred when this bit is set */ 4291 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000 4292 4293 /* 4294 * The mask defining which bits correspond to the number of sleep transitions, 4295 * as well as the maximum number of suspend line transitions that will be 4296 * reported back to the host. 4297 */ 4298 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF 4299 4300 struct ec_response_host_sleep_event_v1 { 4301 union { 4302 /* Response fields that apply for resume messages. */ 4303 struct { 4304 /* 4305 * The number of sleep power signal transitions that 4306 * occurred since the suspend message. The high bit 4307 * indicates a timeout occurred. 4308 */ 4309 uint32_t sleep_transitions; 4310 } resume_response; 4311 4312 /* No response fields for non-resume messages. */ 4313 }; 4314 } __ec_align4; 4315 4316 /*****************************************************************************/ 4317 /* Device events */ 4318 #define EC_CMD_DEVICE_EVENT 0x00AA 4319 4320 enum ec_device_event { 4321 EC_DEVICE_EVENT_TRACKPAD, 4322 EC_DEVICE_EVENT_DSP, 4323 EC_DEVICE_EVENT_WIFI, 4324 EC_DEVICE_EVENT_WLC, 4325 }; 4326 4327 enum ec_device_event_param { 4328 /* Get and clear pending device events */ 4329 EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS, 4330 /* Get device event mask */ 4331 EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS, 4332 /* Set device event mask */ 4333 EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS, 4334 }; 4335 4336 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32) 4337 4338 struct ec_params_device_event { 4339 uint32_t event_mask; 4340 uint8_t param; 4341 } __ec_align_size1; 4342 4343 struct ec_response_device_event { 4344 uint32_t event_mask; 4345 } __ec_align4; 4346 4347 /*****************************************************************************/ 4348 /* Smart battery pass-through */ 4349 4350 /* Get / Set 16-bit smart battery registers */ 4351 #define EC_CMD_SB_READ_WORD 0x00B0 4352 #define EC_CMD_SB_WRITE_WORD 0x00B1 4353 4354 /* Get / Set string smart battery parameters 4355 * formatted as SMBUS "block". 4356 */ 4357 #define EC_CMD_SB_READ_BLOCK 0x00B2 4358 #define EC_CMD_SB_WRITE_BLOCK 0x00B3 4359 4360 struct ec_params_sb_rd { 4361 uint8_t reg; 4362 } __ec_align1; 4363 4364 struct ec_response_sb_rd_word { 4365 uint16_t value; 4366 } __ec_align2; 4367 4368 struct ec_params_sb_wr_word { 4369 uint8_t reg; 4370 uint16_t value; 4371 } __ec_align1; 4372 4373 struct ec_response_sb_rd_block { 4374 uint8_t data[32]; 4375 } __ec_align1; 4376 4377 struct ec_params_sb_wr_block { 4378 uint8_t reg; 4379 uint16_t data[32]; 4380 } __ec_align1; 4381 4382 /*****************************************************************************/ 4383 /* Battery vendor parameters 4384 * 4385 * Get or set vendor-specific parameters in the battery. Implementations may 4386 * differ between boards or batteries. On a set operation, the response 4387 * contains the actual value set, which may be rounded or clipped from the 4388 * requested value. 4389 */ 4390 4391 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4 4392 4393 enum ec_battery_vendor_param_mode { 4394 BATTERY_VENDOR_PARAM_MODE_GET = 0, 4395 BATTERY_VENDOR_PARAM_MODE_SET, 4396 }; 4397 4398 struct ec_params_battery_vendor_param { 4399 uint32_t param; 4400 uint32_t value; 4401 uint8_t mode; 4402 } __ec_align_size1; 4403 4404 struct ec_response_battery_vendor_param { 4405 uint32_t value; 4406 } __ec_align4; 4407 4408 /*****************************************************************************/ 4409 /* 4410 * Smart Battery Firmware Update Commands 4411 */ 4412 #define EC_CMD_SB_FW_UPDATE 0x00B5 4413 4414 enum ec_sb_fw_update_subcmd { 4415 EC_SB_FW_UPDATE_PREPARE = 0x0, 4416 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */ 4417 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */ 4418 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */ 4419 EC_SB_FW_UPDATE_END = 0x4, 4420 EC_SB_FW_UPDATE_STATUS = 0x5, 4421 EC_SB_FW_UPDATE_PROTECT = 0x6, 4422 EC_SB_FW_UPDATE_MAX = 0x7, 4423 }; 4424 4425 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32 4426 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2 4427 #define SB_FW_UPDATE_CMD_INFO_SIZE 8 4428 4429 struct ec_sb_fw_update_header { 4430 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */ 4431 uint16_t fw_id; /* firmware id */ 4432 } __ec_align4; 4433 4434 struct ec_params_sb_fw_update { 4435 struct ec_sb_fw_update_header hdr; 4436 union { 4437 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */ 4438 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 4439 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */ 4440 /* EC_SB_FW_UPDATE_END = 0x4 */ 4441 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 4442 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */ 4443 /* Those have no args */ 4444 4445 /* EC_SB_FW_UPDATE_WRITE = 0x3 */ 4446 struct __ec_align4 { 4447 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE]; 4448 } write; 4449 }; 4450 } __ec_align4; 4451 4452 struct ec_response_sb_fw_update { 4453 union { 4454 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 4455 struct __ec_align1 { 4456 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE]; 4457 } info; 4458 4459 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 4460 struct __ec_align1 { 4461 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE]; 4462 } status; 4463 }; 4464 } __ec_align1; 4465 4466 /* 4467 * Entering Verified Boot Mode Command 4468 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command. 4469 * Valid Modes are: normal, developer, and recovery. 4470 */ 4471 #define EC_CMD_ENTERING_MODE 0x00B6 4472 4473 struct ec_params_entering_mode { 4474 int vboot_mode; 4475 } __ec_align4; 4476 4477 #define VBOOT_MODE_NORMAL 0 4478 #define VBOOT_MODE_DEVELOPER 1 4479 #define VBOOT_MODE_RECOVERY 2 4480 4481 /*****************************************************************************/ 4482 /* 4483 * I2C passthru protection command: Protects I2C tunnels against access on 4484 * certain addresses (board-specific). 4485 */ 4486 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7 4487 4488 enum ec_i2c_passthru_protect_subcmd { 4489 EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0, 4490 EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1, 4491 }; 4492 4493 struct ec_params_i2c_passthru_protect { 4494 uint8_t subcmd; 4495 uint8_t port; /* I2C port number */ 4496 } __ec_align1; 4497 4498 struct ec_response_i2c_passthru_protect { 4499 uint8_t status; /* Status flags (0: unlocked, 1: locked) */ 4500 } __ec_align1; 4501 4502 4503 /*****************************************************************************/ 4504 /* 4505 * HDMI CEC commands 4506 * 4507 * These commands are for sending and receiving message via HDMI CEC 4508 */ 4509 4510 #define EC_CEC_MAX_PORTS 16 4511 4512 #define MAX_CEC_MSG_LEN 16 4513 4514 /* 4515 * Helper macros for packing/unpacking cec_events. 4516 * bits[27:0] : bitmask of events from enum mkbp_cec_event 4517 * bits[31:28]: port number 4518 */ 4519 #define EC_MKBP_EVENT_CEC_PACK(events, port) \ 4520 (((events) & GENMASK(27, 0)) | (((port) & 0xf) << 28)) 4521 #define EC_MKBP_EVENT_CEC_GET_EVENTS(event) ((event) & GENMASK(27, 0)) 4522 #define EC_MKBP_EVENT_CEC_GET_PORT(event) (((event) >> 28) & 0xf) 4523 4524 /* CEC message from the AP to be written on the CEC bus */ 4525 #define EC_CMD_CEC_WRITE_MSG 0x00B8 4526 4527 /** 4528 * struct ec_params_cec_write - Message to write to the CEC bus 4529 * @msg: message content to write to the CEC bus 4530 */ 4531 struct ec_params_cec_write { 4532 uint8_t msg[MAX_CEC_MSG_LEN]; 4533 } __ec_align1; 4534 4535 /** 4536 * struct ec_params_cec_write_v1 - Message to write to the CEC bus 4537 * @port: CEC port to write the message on 4538 * @msg_len: length of msg in bytes 4539 * @msg: message content to write to the CEC bus 4540 */ 4541 struct ec_params_cec_write_v1 { 4542 uint8_t port; 4543 uint8_t msg_len; 4544 uint8_t msg[MAX_CEC_MSG_LEN]; 4545 } __ec_align1; 4546 4547 /* CEC message read from a CEC bus reported back to the AP */ 4548 #define EC_CMD_CEC_READ_MSG 0x00B9 4549 4550 /** 4551 * struct ec_params_cec_read - Read a message from the CEC bus 4552 * @port: CEC port to read a message on 4553 */ 4554 struct ec_params_cec_read { 4555 uint8_t port; 4556 } __ec_align1; 4557 4558 /** 4559 * struct ec_response_cec_read - Message read from the CEC bus 4560 * @msg_len: length of msg in bytes 4561 * @msg: message content read from the CEC bus 4562 */ 4563 struct ec_response_cec_read { 4564 uint8_t msg_len; 4565 uint8_t msg[MAX_CEC_MSG_LEN]; 4566 } __ec_align1; 4567 4568 /* Set various CEC parameters */ 4569 #define EC_CMD_CEC_SET 0x00BA 4570 4571 /** 4572 * struct ec_params_cec_set - CEC parameters set 4573 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 4574 * @port: CEC port to set the parameter on 4575 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC 4576 * or 1 to enable CEC functionality, in case cmd is 4577 * CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical 4578 * address between 0 and 15 or 0xff to unregister 4579 */ 4580 struct ec_params_cec_set { 4581 uint8_t cmd : 4; /* enum cec_command */ 4582 uint8_t port : 4; 4583 uint8_t val; 4584 } __ec_align1; 4585 4586 /* Read various CEC parameters */ 4587 #define EC_CMD_CEC_GET 0x00BB 4588 4589 /** 4590 * struct ec_params_cec_get - CEC parameters get 4591 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 4592 * @port: CEC port to get the parameter on 4593 */ 4594 struct ec_params_cec_get { 4595 uint8_t cmd : 4; /* enum cec_command */ 4596 uint8_t port : 4; 4597 } __ec_align1; 4598 4599 /** 4600 * struct ec_response_cec_get - CEC parameters get response 4601 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is 4602 * disabled or 1 if CEC functionality is enabled, 4603 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the 4604 * configured logical address between 0 and 15 or 0xff if unregistered 4605 */ 4606 struct ec_response_cec_get { 4607 uint8_t val; 4608 } __ec_align1; 4609 4610 /* Get the number of CEC ports */ 4611 #define EC_CMD_CEC_PORT_COUNT 0x00C1 4612 4613 /** 4614 * struct ec_response_cec_port_count - CEC port count response 4615 * @port_count: number of CEC ports 4616 */ 4617 struct ec_response_cec_port_count { 4618 uint8_t port_count; 4619 } __ec_align1; 4620 4621 /* CEC parameters command */ 4622 enum cec_command { 4623 /* CEC reading, writing and events enable */ 4624 CEC_CMD_ENABLE, 4625 /* CEC logical address */ 4626 CEC_CMD_LOGICAL_ADDRESS, 4627 }; 4628 4629 /* Events from CEC to AP */ 4630 enum mkbp_cec_event { 4631 /* Outgoing message was acknowledged by a follower */ 4632 EC_MKBP_CEC_SEND_OK = BIT(0), 4633 /* Outgoing message was not acknowledged */ 4634 EC_MKBP_CEC_SEND_FAILED = BIT(1), 4635 /* Incoming message can be read out by AP */ 4636 EC_MKBP_CEC_HAVE_DATA = BIT(2), 4637 }; 4638 4639 /*****************************************************************************/ 4640 4641 /* Commands for audio codec. */ 4642 #define EC_CMD_EC_CODEC 0x00BC 4643 4644 enum ec_codec_subcmd { 4645 EC_CODEC_GET_CAPABILITIES = 0x0, 4646 EC_CODEC_GET_SHM_ADDR = 0x1, 4647 EC_CODEC_SET_SHM_ADDR = 0x2, 4648 EC_CODEC_SUBCMD_COUNT, 4649 }; 4650 4651 enum ec_codec_cap { 4652 EC_CODEC_CAP_WOV_AUDIO_SHM = 0, 4653 EC_CODEC_CAP_WOV_LANG_SHM = 1, 4654 EC_CODEC_CAP_LAST = 32, 4655 }; 4656 4657 enum ec_codec_shm_id { 4658 EC_CODEC_SHM_ID_WOV_AUDIO = 0x0, 4659 EC_CODEC_SHM_ID_WOV_LANG = 0x1, 4660 EC_CODEC_SHM_ID_LAST, 4661 }; 4662 4663 enum ec_codec_shm_type { 4664 EC_CODEC_SHM_TYPE_EC_RAM = 0x0, 4665 EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1, 4666 }; 4667 4668 struct __ec_align1 ec_param_ec_codec_get_shm_addr { 4669 uint8_t shm_id; 4670 uint8_t reserved[3]; 4671 }; 4672 4673 struct __ec_align4 ec_param_ec_codec_set_shm_addr { 4674 uint64_t phys_addr; 4675 uint32_t len; 4676 uint8_t shm_id; 4677 uint8_t reserved[3]; 4678 }; 4679 4680 struct __ec_align4 ec_param_ec_codec { 4681 uint8_t cmd; /* enum ec_codec_subcmd */ 4682 uint8_t reserved[3]; 4683 4684 union { 4685 struct ec_param_ec_codec_get_shm_addr 4686 get_shm_addr_param; 4687 struct ec_param_ec_codec_set_shm_addr 4688 set_shm_addr_param; 4689 }; 4690 }; 4691 4692 struct __ec_align4 ec_response_ec_codec_get_capabilities { 4693 uint32_t capabilities; 4694 }; 4695 4696 struct __ec_align4 ec_response_ec_codec_get_shm_addr { 4697 uint64_t phys_addr; 4698 uint32_t len; 4699 uint8_t type; 4700 uint8_t reserved[3]; 4701 }; 4702 4703 /*****************************************************************************/ 4704 4705 /* Commands for DMIC on audio codec. */ 4706 #define EC_CMD_EC_CODEC_DMIC 0x00BD 4707 4708 enum ec_codec_dmic_subcmd { 4709 EC_CODEC_DMIC_GET_MAX_GAIN = 0x0, 4710 EC_CODEC_DMIC_SET_GAIN_IDX = 0x1, 4711 EC_CODEC_DMIC_GET_GAIN_IDX = 0x2, 4712 EC_CODEC_DMIC_SUBCMD_COUNT, 4713 }; 4714 4715 enum ec_codec_dmic_channel { 4716 EC_CODEC_DMIC_CHANNEL_0 = 0x0, 4717 EC_CODEC_DMIC_CHANNEL_1 = 0x1, 4718 EC_CODEC_DMIC_CHANNEL_2 = 0x2, 4719 EC_CODEC_DMIC_CHANNEL_3 = 0x3, 4720 EC_CODEC_DMIC_CHANNEL_4 = 0x4, 4721 EC_CODEC_DMIC_CHANNEL_5 = 0x5, 4722 EC_CODEC_DMIC_CHANNEL_6 = 0x6, 4723 EC_CODEC_DMIC_CHANNEL_7 = 0x7, 4724 EC_CODEC_DMIC_CHANNEL_COUNT, 4725 }; 4726 4727 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx { 4728 uint8_t channel; /* enum ec_codec_dmic_channel */ 4729 uint8_t gain; 4730 uint8_t reserved[2]; 4731 }; 4732 4733 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx { 4734 uint8_t channel; /* enum ec_codec_dmic_channel */ 4735 uint8_t reserved[3]; 4736 }; 4737 4738 struct __ec_align4 ec_param_ec_codec_dmic { 4739 uint8_t cmd; /* enum ec_codec_dmic_subcmd */ 4740 uint8_t reserved[3]; 4741 4742 union { 4743 struct ec_param_ec_codec_dmic_set_gain_idx 4744 set_gain_idx_param; 4745 struct ec_param_ec_codec_dmic_get_gain_idx 4746 get_gain_idx_param; 4747 }; 4748 }; 4749 4750 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain { 4751 uint8_t max_gain; 4752 }; 4753 4754 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx { 4755 uint8_t gain; 4756 }; 4757 4758 /*****************************************************************************/ 4759 4760 /* Commands for I2S RX on audio codec. */ 4761 4762 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE 4763 4764 enum ec_codec_i2s_rx_subcmd { 4765 EC_CODEC_I2S_RX_ENABLE = 0x0, 4766 EC_CODEC_I2S_RX_DISABLE = 0x1, 4767 EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2, 4768 EC_CODEC_I2S_RX_SET_DAIFMT = 0x3, 4769 EC_CODEC_I2S_RX_SET_BCLK = 0x4, 4770 EC_CODEC_I2S_RX_RESET = 0x5, 4771 EC_CODEC_I2S_RX_SUBCMD_COUNT, 4772 }; 4773 4774 enum ec_codec_i2s_rx_sample_depth { 4775 EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0, 4776 EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1, 4777 EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT, 4778 }; 4779 4780 enum ec_codec_i2s_rx_daifmt { 4781 EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0, 4782 EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1, 4783 EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2, 4784 EC_CODEC_I2S_RX_DAIFMT_COUNT, 4785 }; 4786 4787 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth { 4788 uint8_t depth; 4789 uint8_t reserved[3]; 4790 }; 4791 4792 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain { 4793 uint8_t left; 4794 uint8_t right; 4795 uint8_t reserved[2]; 4796 }; 4797 4798 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt { 4799 uint8_t daifmt; 4800 uint8_t reserved[3]; 4801 }; 4802 4803 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk { 4804 uint32_t bclk; 4805 }; 4806 4807 struct __ec_align4 ec_param_ec_codec_i2s_rx { 4808 uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */ 4809 uint8_t reserved[3]; 4810 4811 union { 4812 struct ec_param_ec_codec_i2s_rx_set_sample_depth 4813 set_sample_depth_param; 4814 struct ec_param_ec_codec_i2s_rx_set_daifmt 4815 set_daifmt_param; 4816 struct ec_param_ec_codec_i2s_rx_set_bclk 4817 set_bclk_param; 4818 }; 4819 }; 4820 4821 /*****************************************************************************/ 4822 /* Commands for WoV on audio codec. */ 4823 4824 #define EC_CMD_EC_CODEC_WOV 0x00BF 4825 4826 enum ec_codec_wov_subcmd { 4827 EC_CODEC_WOV_SET_LANG = 0x0, 4828 EC_CODEC_WOV_SET_LANG_SHM = 0x1, 4829 EC_CODEC_WOV_GET_LANG = 0x2, 4830 EC_CODEC_WOV_ENABLE = 0x3, 4831 EC_CODEC_WOV_DISABLE = 0x4, 4832 EC_CODEC_WOV_READ_AUDIO = 0x5, 4833 EC_CODEC_WOV_READ_AUDIO_SHM = 0x6, 4834 EC_CODEC_WOV_SUBCMD_COUNT, 4835 }; 4836 4837 /* 4838 * @hash is SHA256 of the whole language model. 4839 * @total_len indicates the length of whole language model. 4840 * @offset is the cursor from the beginning of the model. 4841 * @buf is the packet buffer. 4842 * @len denotes how many bytes in the buf. 4843 */ 4844 struct __ec_align4 ec_param_ec_codec_wov_set_lang { 4845 uint8_t hash[32]; 4846 uint32_t total_len; 4847 uint32_t offset; 4848 uint8_t buf[128]; 4849 uint32_t len; 4850 }; 4851 4852 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm { 4853 uint8_t hash[32]; 4854 uint32_t total_len; 4855 }; 4856 4857 struct __ec_align4 ec_param_ec_codec_wov { 4858 uint8_t cmd; /* enum ec_codec_wov_subcmd */ 4859 uint8_t reserved[3]; 4860 4861 union { 4862 struct ec_param_ec_codec_wov_set_lang 4863 set_lang_param; 4864 struct ec_param_ec_codec_wov_set_lang_shm 4865 set_lang_shm_param; 4866 }; 4867 }; 4868 4869 struct __ec_align4 ec_response_ec_codec_wov_get_lang { 4870 uint8_t hash[32]; 4871 }; 4872 4873 struct __ec_align4 ec_response_ec_codec_wov_read_audio { 4874 uint8_t buf[128]; 4875 uint32_t len; 4876 }; 4877 4878 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm { 4879 uint32_t offset; 4880 uint32_t len; 4881 }; 4882 4883 /*****************************************************************************/ 4884 /* System commands */ 4885 4886 /* 4887 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't 4888 * necessarily reboot the EC. Rename to "image" or something similar? 4889 */ 4890 #define EC_CMD_REBOOT_EC 0x00D2 4891 4892 /* Command */ 4893 enum ec_reboot_cmd { 4894 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ 4895 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ 4896 EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */ 4897 /* (command 3 was jump to RW-B) */ 4898 EC_REBOOT_COLD = 4, /* Cold-reboot */ 4899 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ 4900 EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */ 4901 EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */ 4902 EC_REBOOT_COLD_AP_OFF = 8, /* Cold-reboot and don't boot AP */ 4903 }; 4904 4905 /* Flags for ec_params_reboot_ec.reboot_flags */ 4906 #define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */ 4907 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */ 4908 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */ 4909 4910 struct ec_params_reboot_ec { 4911 uint8_t cmd; /* enum ec_reboot_cmd */ 4912 uint8_t flags; /* See EC_REBOOT_FLAG_* */ 4913 } __ec_align1; 4914 4915 /* 4916 * Get information on last EC panic. 4917 * 4918 * Returns variable-length platform-dependent panic information. See panic.h 4919 * for details. 4920 */ 4921 #define EC_CMD_GET_PANIC_INFO 0x00D3 4922 4923 /*****************************************************************************/ 4924 /* 4925 * Special commands 4926 * 4927 * These do not follow the normal rules for commands. See each command for 4928 * details. 4929 */ 4930 4931 /* 4932 * Reboot NOW 4933 * 4934 * This command will work even when the EC LPC interface is busy, because the 4935 * reboot command is processed at interrupt level. Note that when the EC 4936 * reboots, the host will reboot too, so there is no response to this command. 4937 * 4938 * Use EC_CMD_REBOOT_EC to reboot the EC more politely. 4939 */ 4940 #define EC_CMD_REBOOT 0x00D1 /* Think "die" */ 4941 4942 /* 4943 * Resend last response (not supported on LPC). 4944 * 4945 * Returns EC_RES_UNAVAILABLE if there is no response available - for example, 4946 * there was no previous command, or the previous command's response was too 4947 * big to save. 4948 */ 4949 #define EC_CMD_RESEND_RESPONSE 0x00DB 4950 4951 /* 4952 * This header byte on a command indicate version 0. Any header byte less 4953 * than this means that we are talking to an old EC which doesn't support 4954 * versioning. In that case, we assume version 0. 4955 * 4956 * Header bytes greater than this indicate a later version. For example, 4957 * EC_CMD_VERSION0 + 1 means we are using version 1. 4958 * 4959 * The old EC interface must not use commands 0xdc or higher. 4960 */ 4961 #define EC_CMD_VERSION0 0x00DC 4962 4963 /*****************************************************************************/ 4964 /* 4965 * PD commands 4966 * 4967 * These commands are for PD MCU communication. 4968 */ 4969 4970 /* EC to PD MCU exchange status command */ 4971 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100 4972 #define EC_VER_PD_EXCHANGE_STATUS 2 4973 4974 enum pd_charge_state { 4975 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */ 4976 PD_CHARGE_NONE, /* No charging allowed */ 4977 PD_CHARGE_5V, /* 5V charging only */ 4978 PD_CHARGE_MAX /* Charge at max voltage */ 4979 }; 4980 4981 /* Status of EC being sent to PD */ 4982 #define EC_STATUS_HIBERNATING BIT(0) 4983 4984 struct ec_params_pd_status { 4985 uint8_t status; /* EC status */ 4986 int8_t batt_soc; /* battery state of charge */ 4987 uint8_t charge_state; /* charging state (from enum pd_charge_state) */ 4988 } __ec_align1; 4989 4990 /* Status of PD being sent back to EC */ 4991 #define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */ 4992 #define PD_STATUS_IN_RW BIT(1) /* Running RW image */ 4993 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */ 4994 #define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */ 4995 #define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */ 4996 #define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */ 4997 #define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */ 4998 #define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \ 4999 PD_STATUS_TCPC_ALERT_1 | \ 5000 PD_STATUS_HOST_EVENT) 5001 struct ec_response_pd_status { 5002 uint32_t curr_lim_ma; /* input current limit */ 5003 uint16_t status; /* PD MCU status */ 5004 int8_t active_charge_port; /* active charging port */ 5005 } __ec_align_size1; 5006 5007 /* AP to PD MCU host event status command, cleared on read */ 5008 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104 5009 5010 /* PD MCU host event status bits */ 5011 #define PD_EVENT_UPDATE_DEVICE BIT(0) 5012 #define PD_EVENT_POWER_CHANGE BIT(1) 5013 #define PD_EVENT_IDENTITY_RECEIVED BIT(2) 5014 #define PD_EVENT_DATA_SWAP BIT(3) 5015 struct ec_response_host_event_status { 5016 uint32_t status; /* PD MCU host event status */ 5017 } __ec_align4; 5018 5019 /* Set USB type-C port role and muxes */ 5020 #define EC_CMD_USB_PD_CONTROL 0x0101 5021 5022 enum usb_pd_control_role { 5023 USB_PD_CTRL_ROLE_NO_CHANGE = 0, 5024 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ 5025 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, 5026 USB_PD_CTRL_ROLE_FORCE_SINK = 3, 5027 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, 5028 USB_PD_CTRL_ROLE_FREEZE = 5, 5029 USB_PD_CTRL_ROLE_COUNT 5030 }; 5031 5032 enum usb_pd_control_mux { 5033 USB_PD_CTRL_MUX_NO_CHANGE = 0, 5034 USB_PD_CTRL_MUX_NONE = 1, 5035 USB_PD_CTRL_MUX_USB = 2, 5036 USB_PD_CTRL_MUX_DP = 3, 5037 USB_PD_CTRL_MUX_DOCK = 4, 5038 USB_PD_CTRL_MUX_AUTO = 5, 5039 USB_PD_CTRL_MUX_COUNT 5040 }; 5041 5042 enum usb_pd_control_swap { 5043 USB_PD_CTRL_SWAP_NONE = 0, 5044 USB_PD_CTRL_SWAP_DATA = 1, 5045 USB_PD_CTRL_SWAP_POWER = 2, 5046 USB_PD_CTRL_SWAP_VCONN = 3, 5047 USB_PD_CTRL_SWAP_COUNT 5048 }; 5049 5050 struct ec_params_usb_pd_control { 5051 uint8_t port; 5052 uint8_t role; 5053 uint8_t mux; 5054 uint8_t swap; 5055 } __ec_align1; 5056 5057 #define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */ 5058 #define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */ 5059 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */ 5060 5061 #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ 5062 #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ 5063 #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ 5064 #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ 5065 #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ 5066 #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ 5067 #define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */ 5068 5069 struct ec_response_usb_pd_control { 5070 uint8_t enabled; 5071 uint8_t role; 5072 uint8_t polarity; 5073 uint8_t state; 5074 } __ec_align1; 5075 5076 struct ec_response_usb_pd_control_v1 { 5077 uint8_t enabled; 5078 uint8_t role; 5079 uint8_t polarity; 5080 char state[32]; 5081 } __ec_align1; 5082 5083 /* Values representing usbc PD CC state */ 5084 #define USBC_PD_CC_NONE 0 /* No accessory connected */ 5085 #define USBC_PD_CC_NO_UFP 1 /* No UFP accessory connected */ 5086 #define USBC_PD_CC_AUDIO_ACC 2 /* Audio accessory connected */ 5087 #define USBC_PD_CC_DEBUG_ACC 3 /* Debug accessory connected */ 5088 #define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */ 5089 #define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */ 5090 5091 /* Active/Passive Cable */ 5092 #define USB_PD_CTRL_ACTIVE_CABLE BIT(0) 5093 /* Optical/Non-optical cable */ 5094 #define USB_PD_CTRL_OPTICAL_CABLE BIT(1) 5095 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */ 5096 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER BIT(2) 5097 /* Active Link Uni-Direction */ 5098 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR BIT(3) 5099 5100 struct ec_response_usb_pd_control_v2 { 5101 uint8_t enabled; 5102 uint8_t role; 5103 uint8_t polarity; 5104 char state[32]; 5105 uint8_t cc_state; /* enum pd_cc_states representing cc state */ 5106 uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */ 5107 uint8_t reserved; /* Reserved for future use */ 5108 uint8_t control_flags; /* USB_PD_CTRL_*flags */ 5109 uint8_t cable_speed; /* TBT_SS_* cable speed */ 5110 uint8_t cable_gen; /* TBT_GEN3_* cable rounded support */ 5111 } __ec_align1; 5112 5113 #define EC_CMD_USB_PD_PORTS 0x0102 5114 5115 /* Maximum number of PD ports on a device, num_ports will be <= this */ 5116 #define EC_USB_PD_MAX_PORTS 8 5117 5118 struct ec_response_usb_pd_ports { 5119 uint8_t num_ports; 5120 } __ec_align1; 5121 5122 #define EC_CMD_USB_PD_POWER_INFO 0x0103 5123 5124 #define PD_POWER_CHARGING_PORT 0xff 5125 struct ec_params_usb_pd_power_info { 5126 uint8_t port; 5127 } __ec_align1; 5128 5129 enum usb_chg_type { 5130 USB_CHG_TYPE_NONE, 5131 USB_CHG_TYPE_PD, 5132 USB_CHG_TYPE_C, 5133 USB_CHG_TYPE_PROPRIETARY, 5134 USB_CHG_TYPE_BC12_DCP, 5135 USB_CHG_TYPE_BC12_CDP, 5136 USB_CHG_TYPE_BC12_SDP, 5137 USB_CHG_TYPE_OTHER, 5138 USB_CHG_TYPE_VBUS, 5139 USB_CHG_TYPE_UNKNOWN, 5140 USB_CHG_TYPE_DEDICATED, 5141 }; 5142 enum usb_power_roles { 5143 USB_PD_PORT_POWER_DISCONNECTED, 5144 USB_PD_PORT_POWER_SOURCE, 5145 USB_PD_PORT_POWER_SINK, 5146 USB_PD_PORT_POWER_SINK_NOT_CHARGING, 5147 }; 5148 5149 struct usb_chg_measures { 5150 uint16_t voltage_max; 5151 uint16_t voltage_now; 5152 uint16_t current_max; 5153 uint16_t current_lim; 5154 } __ec_align2; 5155 5156 struct ec_response_usb_pd_power_info { 5157 uint8_t role; 5158 uint8_t type; 5159 uint8_t dualrole; 5160 uint8_t reserved1; 5161 struct usb_chg_measures meas; 5162 uint32_t max_power; 5163 } __ec_align4; 5164 5165 5166 /* 5167 * This command will return the number of USB PD charge port + the number 5168 * of dedicated port present. 5169 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports 5170 */ 5171 #define EC_CMD_CHARGE_PORT_COUNT 0x0105 5172 struct ec_response_charge_port_count { 5173 uint8_t port_count; 5174 } __ec_align1; 5175 5176 /* Write USB-PD device FW */ 5177 #define EC_CMD_USB_PD_FW_UPDATE 0x0110 5178 5179 enum usb_pd_fw_update_cmds { 5180 USB_PD_FW_REBOOT, 5181 USB_PD_FW_FLASH_ERASE, 5182 USB_PD_FW_FLASH_WRITE, 5183 USB_PD_FW_ERASE_SIG, 5184 }; 5185 5186 struct ec_params_usb_pd_fw_update { 5187 uint16_t dev_id; 5188 uint8_t cmd; 5189 uint8_t port; 5190 uint32_t size; /* Size to write in bytes */ 5191 /* Followed by data to write */ 5192 } __ec_align4; 5193 5194 /* Write USB-PD Accessory RW_HASH table entry */ 5195 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111 5196 /* RW hash is first 20 bytes of SHA-256 of RW section */ 5197 #define PD_RW_HASH_SIZE 20 5198 struct ec_params_usb_pd_rw_hash_entry { 5199 uint16_t dev_id; 5200 uint8_t dev_rw_hash[PD_RW_HASH_SIZE]; 5201 uint8_t reserved; /* 5202 * For alignment of current_image 5203 * TODO(rspangler) but it's not aligned! 5204 * Should have been reserved[2]. 5205 */ 5206 uint32_t current_image; /* One of ec_current_image */ 5207 } __ec_align1; 5208 5209 /* Read USB-PD Accessory info */ 5210 #define EC_CMD_USB_PD_DEV_INFO 0x0112 5211 5212 struct ec_params_usb_pd_info_request { 5213 uint8_t port; 5214 } __ec_align1; 5215 5216 /* Read USB-PD Device discovery info */ 5217 #define EC_CMD_USB_PD_DISCOVERY 0x0113 5218 struct ec_params_usb_pd_discovery_entry { 5219 uint16_t vid; /* USB-IF VID */ 5220 uint16_t pid; /* USB-IF PID */ 5221 uint8_t ptype; /* product type (hub,periph,cable,ama) */ 5222 } __ec_align_size1; 5223 5224 /* Override default charge behavior */ 5225 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 5226 5227 /* Negative port parameters have special meaning */ 5228 enum usb_pd_override_ports { 5229 OVERRIDE_DONT_CHARGE = -2, 5230 OVERRIDE_OFF = -1, 5231 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ 5232 }; 5233 5234 struct ec_params_charge_port_override { 5235 int16_t override_port; /* Override port# */ 5236 } __ec_align2; 5237 5238 /* 5239 * Read (and delete) one entry of PD event log. 5240 * TODO(crbug.com/751742): Make this host command more generic to accommodate 5241 * future non-PD logs that use the same internal EC event_log. 5242 */ 5243 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 5244 5245 struct ec_response_pd_log { 5246 uint32_t timestamp; /* relative timestamp in milliseconds */ 5247 uint8_t type; /* event type : see PD_EVENT_xx below */ 5248 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ 5249 uint16_t data; /* type-defined data payload */ 5250 uint8_t payload[]; /* optional additional data payload: 0..16 bytes */ 5251 } __ec_align4; 5252 5253 /* The timestamp is the microsecond counter shifted to get about a ms. */ 5254 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ 5255 5256 #define PD_LOG_SIZE_MASK 0x1f 5257 #define PD_LOG_PORT_MASK 0xe0 5258 #define PD_LOG_PORT_SHIFT 5 5259 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ 5260 ((size) & PD_LOG_SIZE_MASK)) 5261 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) 5262 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) 5263 5264 /* PD event log : entry types */ 5265 /* PD MCU events */ 5266 #define PD_EVENT_MCU_BASE 0x00 5267 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) 5268 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) 5269 /* Reserved for custom board event */ 5270 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) 5271 /* PD generic accessory events */ 5272 #define PD_EVENT_ACC_BASE 0x20 5273 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) 5274 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) 5275 /* PD power supply events */ 5276 #define PD_EVENT_PS_BASE 0x40 5277 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) 5278 /* PD video dongles events */ 5279 #define PD_EVENT_VIDEO_BASE 0x60 5280 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) 5281 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) 5282 /* Returned in the "type" field, when there is no entry available */ 5283 #define PD_EVENT_NO_ENTRY 0xff 5284 5285 /* 5286 * PD_EVENT_MCU_CHARGE event definition : 5287 * the payload is "struct usb_chg_measures" 5288 * the data field contains the port state flags as defined below : 5289 */ 5290 /* Port partner is a dual role device */ 5291 #define CHARGE_FLAGS_DUAL_ROLE BIT(15) 5292 /* Port is the pending override port */ 5293 #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) 5294 /* Port is the override port */ 5295 #define CHARGE_FLAGS_OVERRIDE BIT(13) 5296 /* Charger type */ 5297 #define CHARGE_FLAGS_TYPE_SHIFT 3 5298 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) 5299 /* Power delivery role */ 5300 #define CHARGE_FLAGS_ROLE_MASK (7 << 0) 5301 5302 /* 5303 * PD_EVENT_PS_FAULT data field flags definition : 5304 */ 5305 #define PS_FAULT_OCP 1 5306 #define PS_FAULT_FAST_OCP 2 5307 #define PS_FAULT_OVP 3 5308 #define PS_FAULT_DISCH 4 5309 5310 /* 5311 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". 5312 */ 5313 struct mcdp_version { 5314 uint8_t major; 5315 uint8_t minor; 5316 uint16_t build; 5317 } __ec_align4; 5318 5319 struct mcdp_info { 5320 uint8_t family[2]; 5321 uint8_t chipid[2]; 5322 struct mcdp_version irom; 5323 struct mcdp_version fw; 5324 } __ec_align4; 5325 5326 /* struct mcdp_info field decoding */ 5327 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) 5328 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) 5329 5330 /* Get/Set USB-PD Alternate mode info */ 5331 #define EC_CMD_USB_PD_GET_AMODE 0x0116 5332 struct ec_params_usb_pd_get_mode_request { 5333 uint16_t svid_idx; /* SVID index to get */ 5334 uint8_t port; /* port */ 5335 } __ec_align_size1; 5336 5337 struct ec_params_usb_pd_get_mode_response { 5338 uint16_t svid; /* SVID */ 5339 uint16_t opos; /* Object Position */ 5340 uint32_t vdo[6]; /* Mode VDOs */ 5341 } __ec_align4; 5342 5343 #define EC_CMD_USB_PD_SET_AMODE 0x0117 5344 5345 enum pd_mode_cmd { 5346 PD_EXIT_MODE = 0, 5347 PD_ENTER_MODE = 1, 5348 /* Not a command. Do NOT remove. */ 5349 PD_MODE_CMD_COUNT, 5350 }; 5351 5352 struct ec_params_usb_pd_set_mode_request { 5353 uint32_t cmd; /* enum pd_mode_cmd */ 5354 uint16_t svid; /* SVID to set */ 5355 uint8_t opos; /* Object Position */ 5356 uint8_t port; /* port */ 5357 } __ec_align4; 5358 5359 /* Ask the PD MCU to record a log of a requested type */ 5360 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118 5361 5362 struct ec_params_pd_write_log_entry { 5363 uint8_t type; /* event type : see PD_EVENT_xx above */ 5364 uint8_t port; /* port#, or 0 for events unrelated to a given port */ 5365 } __ec_align1; 5366 5367 5368 /* Control USB-PD chip */ 5369 #define EC_CMD_PD_CONTROL 0x0119 5370 5371 enum ec_pd_control_cmd { 5372 PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */ 5373 PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */ 5374 PD_RESET, /* Force reset the PD chip */ 5375 PD_CONTROL_DISABLE, /* Disable further calls to this command */ 5376 PD_CHIP_ON, /* Power on the PD chip */ 5377 }; 5378 5379 struct ec_params_pd_control { 5380 uint8_t chip; /* chip id */ 5381 uint8_t subcmd; 5382 } __ec_align1; 5383 5384 /* Get info about USB-C SS muxes */ 5385 #define EC_CMD_USB_PD_MUX_INFO 0x011A 5386 5387 struct ec_params_usb_pd_mux_info { 5388 uint8_t port; /* USB-C port number */ 5389 } __ec_align1; 5390 5391 /* Flags representing mux state */ 5392 #define USB_PD_MUX_NONE 0 /* Open switch */ 5393 #define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */ 5394 #define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */ 5395 #define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */ 5396 #define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */ 5397 #define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */ 5398 #define USB_PD_MUX_SAFE_MODE BIT(5) /* DP is in safe mode */ 5399 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */ 5400 #define USB_PD_MUX_USB4_ENABLED BIT(7) /* USB4 enabled */ 5401 5402 struct ec_response_usb_pd_mux_info { 5403 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ 5404 } __ec_align1; 5405 5406 #define EC_CMD_PD_CHIP_INFO 0x011B 5407 5408 struct ec_params_pd_chip_info { 5409 uint8_t port; /* USB-C port number */ 5410 uint8_t renew; /* Force renewal */ 5411 } __ec_align1; 5412 5413 struct ec_response_pd_chip_info { 5414 uint16_t vendor_id; 5415 uint16_t product_id; 5416 uint16_t device_id; 5417 union { 5418 uint8_t fw_version_string[8]; 5419 uint64_t fw_version_number; 5420 }; 5421 } __ec_align2; 5422 5423 struct ec_response_pd_chip_info_v1 { 5424 uint16_t vendor_id; 5425 uint16_t product_id; 5426 uint16_t device_id; 5427 union { 5428 uint8_t fw_version_string[8]; 5429 uint64_t fw_version_number; 5430 }; 5431 union { 5432 uint8_t min_req_fw_version_string[8]; 5433 uint64_t min_req_fw_version_number; 5434 }; 5435 } __ec_align2; 5436 5437 /* Run RW signature verification and get status */ 5438 #define EC_CMD_RWSIG_CHECK_STATUS 0x011C 5439 5440 struct ec_response_rwsig_check_status { 5441 uint32_t status; 5442 } __ec_align4; 5443 5444 /* For controlling RWSIG task */ 5445 #define EC_CMD_RWSIG_ACTION 0x011D 5446 5447 enum rwsig_action { 5448 RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */ 5449 RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */ 5450 }; 5451 5452 struct ec_params_rwsig_action { 5453 uint32_t action; 5454 } __ec_align4; 5455 5456 /* Run verification on a slot */ 5457 #define EC_CMD_EFS_VERIFY 0x011E 5458 5459 struct ec_params_efs_verify { 5460 uint8_t region; /* enum ec_flash_region */ 5461 } __ec_align1; 5462 5463 /* 5464 * Retrieve info from Cros Board Info store. Response is based on the data 5465 * type. Integers return a uint32. Strings return a string, using the response 5466 * size to determine how big it is. 5467 */ 5468 #define EC_CMD_GET_CROS_BOARD_INFO 0x011F 5469 /* 5470 * Write info into Cros Board Info on EEPROM. Write fails if the board has 5471 * hardware write-protect enabled. 5472 */ 5473 #define EC_CMD_SET_CROS_BOARD_INFO 0x0120 5474 5475 enum cbi_data_tag { 5476 CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */ 5477 CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */ 5478 CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */ 5479 CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */ 5480 CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */ 5481 CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */ 5482 CBI_TAG_COUNT, 5483 }; 5484 5485 /* 5486 * Flags to control read operation 5487 * 5488 * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify 5489 * write was successful without reboot. 5490 */ 5491 #define CBI_GET_RELOAD BIT(0) 5492 5493 struct ec_params_get_cbi { 5494 uint32_t tag; /* enum cbi_data_tag */ 5495 uint32_t flag; /* CBI_GET_* */ 5496 } __ec_align4; 5497 5498 /* 5499 * Flags to control write behavior. 5500 * 5501 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's 5502 * useful when writing multiple fields in a row. 5503 * INIT: Need to be set when creating a new CBI from scratch. All fields 5504 * will be initialized to zero first. 5505 */ 5506 #define CBI_SET_NO_SYNC BIT(0) 5507 #define CBI_SET_INIT BIT(1) 5508 5509 struct ec_params_set_cbi { 5510 uint32_t tag; /* enum cbi_data_tag */ 5511 uint32_t flag; /* CBI_SET_* */ 5512 uint32_t size; /* Data size */ 5513 uint8_t data[]; /* For string and raw data */ 5514 } __ec_align1; 5515 5516 /* 5517 * Information about resets of the AP by the EC and the EC's own uptime. 5518 */ 5519 #define EC_CMD_GET_UPTIME_INFO 0x0121 5520 5521 struct ec_response_uptime_info { 5522 /* 5523 * Number of milliseconds since the last EC boot. Sysjump resets 5524 * typically do not restart the EC's time_since_boot epoch. 5525 * 5526 * WARNING: The EC's sense of time is much less accurate than the AP's 5527 * sense of time, in both phase and frequency. This timebase is similar 5528 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error. 5529 */ 5530 uint32_t time_since_ec_boot_ms; 5531 5532 /* 5533 * Number of times the AP was reset by the EC since the last EC boot. 5534 * Note that the AP may be held in reset by the EC during the initial 5535 * boot sequence, such that the very first AP boot may count as more 5536 * than one here. 5537 */ 5538 uint32_t ap_resets_since_ec_boot; 5539 5540 /* 5541 * The set of flags which describe the EC's most recent reset. See 5542 * include/system.h RESET_FLAG_* for details. 5543 */ 5544 uint32_t ec_reset_flags; 5545 5546 /* Empty log entries have both the cause and timestamp set to zero. */ 5547 struct ap_reset_log_entry { 5548 /* 5549 * See include/chipset.h: enum chipset_{reset,shutdown}_reason 5550 * for details. 5551 */ 5552 uint16_t reset_cause; 5553 5554 /* Reserved for protocol growth. */ 5555 uint16_t reserved; 5556 5557 /* 5558 * The time of the reset's assertion, in milliseconds since the 5559 * last EC boot, in the same epoch as time_since_ec_boot_ms. 5560 * Set to zero if the log entry is empty. 5561 */ 5562 uint32_t reset_time_ms; 5563 } recent_ap_reset[4]; 5564 } __ec_align4; 5565 5566 /* 5567 * Add entropy to the device secret (stored in the rollback region). 5568 * 5569 * Depending on the chip, the operation may take a long time (e.g. to erase 5570 * flash), so the commands are asynchronous. 5571 */ 5572 #define EC_CMD_ADD_ENTROPY 0x0122 5573 5574 enum add_entropy_action { 5575 /* Add entropy to the current secret. */ 5576 ADD_ENTROPY_ASYNC = 0, 5577 /* 5578 * Add entropy, and also make sure that the previous secret is erased. 5579 * (this can be implemented by adding entropy multiple times until 5580 * all rolback blocks have been overwritten). 5581 */ 5582 ADD_ENTROPY_RESET_ASYNC = 1, 5583 /* Read back result from the previous operation. */ 5584 ADD_ENTROPY_GET_RESULT = 2, 5585 }; 5586 5587 struct ec_params_rollback_add_entropy { 5588 uint8_t action; 5589 } __ec_align1; 5590 5591 /* 5592 * Perform a single read of a given ADC channel. 5593 */ 5594 #define EC_CMD_ADC_READ 0x0123 5595 5596 struct ec_params_adc_read { 5597 uint8_t adc_channel; 5598 } __ec_align1; 5599 5600 struct ec_response_adc_read { 5601 int32_t adc_value; 5602 } __ec_align4; 5603 5604 /* 5605 * Read back rollback info 5606 */ 5607 #define EC_CMD_ROLLBACK_INFO 0x0124 5608 5609 struct ec_response_rollback_info { 5610 int32_t id; /* Incrementing number to indicate which region to use. */ 5611 int32_t rollback_min_version; 5612 int32_t rw_rollback_version; 5613 } __ec_align4; 5614 5615 5616 /* Issue AP reset */ 5617 #define EC_CMD_AP_RESET 0x0125 5618 5619 /* 5620 * Get the number of peripheral charge ports 5621 */ 5622 #define EC_CMD_PCHG_COUNT 0x0134 5623 5624 #define EC_PCHG_MAX_PORTS 8 5625 5626 struct ec_response_pchg_count { 5627 uint8_t port_count; 5628 } __ec_align1; 5629 5630 /* 5631 * Get the status of a peripheral charge port 5632 */ 5633 #define EC_CMD_PCHG 0x0135 5634 5635 struct ec_params_pchg { 5636 uint8_t port; 5637 } __ec_align1; 5638 5639 struct ec_response_pchg { 5640 uint32_t error; /* enum pchg_error */ 5641 uint8_t state; /* enum pchg_state state */ 5642 uint8_t battery_percentage; 5643 uint8_t unused0; 5644 uint8_t unused1; 5645 /* Fields added in version 1 */ 5646 uint32_t fw_version; 5647 uint32_t dropped_event_count; 5648 } __ec_align2; 5649 5650 enum pchg_state { 5651 /* Charger is reset and not initialized. */ 5652 PCHG_STATE_RESET = 0, 5653 /* Charger is initialized or disabled. */ 5654 PCHG_STATE_INITIALIZED, 5655 /* Charger is enabled and ready to detect a device. */ 5656 PCHG_STATE_ENABLED, 5657 /* Device is in proximity. */ 5658 PCHG_STATE_DETECTED, 5659 /* Device is being charged. */ 5660 PCHG_STATE_CHARGING, 5661 /* Device is fully charged. It implies DETECTED (& not charging). */ 5662 PCHG_STATE_FULL, 5663 /* In download (a.k.a. firmware update) mode */ 5664 PCHG_STATE_DOWNLOAD, 5665 /* In download mode. Ready for receiving data. */ 5666 PCHG_STATE_DOWNLOADING, 5667 /* Device is ready for data communication. */ 5668 PCHG_STATE_CONNECTED, 5669 /* Put no more entry below */ 5670 PCHG_STATE_COUNT, 5671 }; 5672 5673 #define EC_PCHG_STATE_TEXT { \ 5674 [PCHG_STATE_RESET] = "RESET", \ 5675 [PCHG_STATE_INITIALIZED] = "INITIALIZED", \ 5676 [PCHG_STATE_ENABLED] = "ENABLED", \ 5677 [PCHG_STATE_DETECTED] = "DETECTED", \ 5678 [PCHG_STATE_CHARGING] = "CHARGING", \ 5679 [PCHG_STATE_FULL] = "FULL", \ 5680 [PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \ 5681 [PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \ 5682 [PCHG_STATE_CONNECTED] = "CONNECTED", \ 5683 } 5684 5685 /* 5686 * Update firmware of peripheral chip 5687 */ 5688 #define EC_CMD_PCHG_UPDATE 0x0136 5689 5690 /* Port number is encoded in bit[28:31]. */ 5691 #define EC_MKBP_PCHG_PORT_SHIFT 28 5692 /* Utility macro for converting MKBP event to port number. */ 5693 #define EC_MKBP_PCHG_EVENT_TO_PORT(e) (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf) 5694 /* Utility macro for extracting event bits. */ 5695 #define EC_MKBP_PCHG_EVENT_MASK(e) ((e) \ 5696 & GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0)) 5697 5698 #define EC_MKBP_PCHG_UPDATE_OPENED BIT(0) 5699 #define EC_MKBP_PCHG_WRITE_COMPLETE BIT(1) 5700 #define EC_MKBP_PCHG_UPDATE_CLOSED BIT(2) 5701 #define EC_MKBP_PCHG_UPDATE_ERROR BIT(3) 5702 #define EC_MKBP_PCHG_DEVICE_EVENT BIT(4) 5703 5704 enum ec_pchg_update_cmd { 5705 /* Reset chip to normal mode. */ 5706 EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0, 5707 /* Reset and put a chip in update (a.k.a. download) mode. */ 5708 EC_PCHG_UPDATE_CMD_OPEN, 5709 /* Write a block of data containing FW image. */ 5710 EC_PCHG_UPDATE_CMD_WRITE, 5711 /* Close update session. */ 5712 EC_PCHG_UPDATE_CMD_CLOSE, 5713 /* End of commands */ 5714 EC_PCHG_UPDATE_CMD_COUNT, 5715 }; 5716 5717 struct ec_params_pchg_update { 5718 /* PCHG port number */ 5719 uint8_t port; 5720 /* enum ec_pchg_update_cmd */ 5721 uint8_t cmd; 5722 /* Padding */ 5723 uint8_t reserved0; 5724 uint8_t reserved1; 5725 /* Version of new firmware */ 5726 uint32_t version; 5727 /* CRC32 of new firmware */ 5728 uint32_t crc32; 5729 /* Address in chip memory where <data> is written to */ 5730 uint32_t addr; 5731 /* Size of <data> */ 5732 uint32_t size; 5733 /* Partial data of new firmware */ 5734 uint8_t data[]; 5735 } __ec_align4; 5736 5737 BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT 5738 < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8)); 5739 5740 struct ec_response_pchg_update { 5741 /* Block size */ 5742 uint32_t block_size; 5743 } __ec_align4; 5744 5745 5746 /*****************************************************************************/ 5747 /* Voltage regulator controls */ 5748 5749 /* 5750 * Get basic info of voltage regulator for given index. 5751 * 5752 * Returns the regulator name and supported voltage list in mV. 5753 */ 5754 #define EC_CMD_REGULATOR_GET_INFO 0x012C 5755 5756 /* Maximum length of regulator name */ 5757 #define EC_REGULATOR_NAME_MAX_LEN 16 5758 5759 /* Maximum length of the supported voltage list. */ 5760 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16 5761 5762 struct ec_params_regulator_get_info { 5763 uint32_t index; 5764 } __ec_align4; 5765 5766 struct ec_response_regulator_get_info { 5767 char name[EC_REGULATOR_NAME_MAX_LEN]; 5768 uint16_t num_voltages; 5769 uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT]; 5770 } __ec_align2; 5771 5772 /* 5773 * Configure the regulator as enabled / disabled. 5774 */ 5775 #define EC_CMD_REGULATOR_ENABLE 0x012D 5776 5777 struct ec_params_regulator_enable { 5778 uint32_t index; 5779 uint8_t enable; 5780 } __ec_align4; 5781 5782 /* 5783 * Query if the regulator is enabled. 5784 * 5785 * Returns 1 if the regulator is enabled, 0 if not. 5786 */ 5787 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E 5788 5789 struct ec_params_regulator_is_enabled { 5790 uint32_t index; 5791 } __ec_align4; 5792 5793 struct ec_response_regulator_is_enabled { 5794 uint8_t enabled; 5795 } __ec_align1; 5796 5797 /* 5798 * Set voltage for the voltage regulator within the range specified. 5799 * 5800 * The driver should select the voltage in range closest to min_mv. 5801 * 5802 * Also note that this might be called before the regulator is enabled, and the 5803 * setting should be in effect after the regulator is enabled. 5804 */ 5805 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F 5806 5807 struct ec_params_regulator_set_voltage { 5808 uint32_t index; 5809 uint32_t min_mv; 5810 uint32_t max_mv; 5811 } __ec_align4; 5812 5813 /* 5814 * Get the currently configured voltage for the voltage regulator. 5815 * 5816 * Note that this might be called before the regulator is enabled, and this 5817 * should return the configured output voltage if the regulator is enabled. 5818 */ 5819 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130 5820 5821 struct ec_params_regulator_get_voltage { 5822 uint32_t index; 5823 } __ec_align4; 5824 5825 struct ec_response_regulator_get_voltage { 5826 uint32_t voltage_mv; 5827 } __ec_align4; 5828 5829 /* 5830 * Gather all discovery information for the given port and partner type. 5831 * 5832 * Note that if discovery has not yet completed, only the currently completed 5833 * responses will be filled in. If the discovery data structures are changed 5834 * in the process of the command running, BUSY will be returned. 5835 * 5836 * VDO field sizes are set to the maximum possible number of VDOs a VDM may 5837 * contain, while the number of SVIDs here is selected to fit within the PROTO2 5838 * maximum parameter size. 5839 */ 5840 #define EC_CMD_TYPEC_DISCOVERY 0x0131 5841 5842 enum typec_partner_type { 5843 TYPEC_PARTNER_SOP = 0, 5844 TYPEC_PARTNER_SOP_PRIME = 1, 5845 }; 5846 5847 struct ec_params_typec_discovery { 5848 uint8_t port; 5849 uint8_t partner_type; /* enum typec_partner_type */ 5850 } __ec_align1; 5851 5852 struct svid_mode_info { 5853 uint16_t svid; 5854 uint16_t mode_count; /* Number of modes partner sent */ 5855 uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */ 5856 }; 5857 5858 struct ec_response_typec_discovery { 5859 uint8_t identity_count; /* Number of identity VDOs partner sent */ 5860 uint8_t svid_count; /* Number of SVIDs partner sent */ 5861 uint16_t reserved; 5862 uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */ 5863 struct svid_mode_info svids[]; 5864 } __ec_align1; 5865 5866 /* USB Type-C commands for AP-controlled device policy. */ 5867 #define EC_CMD_TYPEC_CONTROL 0x0132 5868 5869 enum typec_control_command { 5870 TYPEC_CONTROL_COMMAND_EXIT_MODES, 5871 TYPEC_CONTROL_COMMAND_CLEAR_EVENTS, 5872 TYPEC_CONTROL_COMMAND_ENTER_MODE, 5873 TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY, 5874 TYPEC_CONTROL_COMMAND_USB_MUX_SET, 5875 TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE, 5876 TYPEC_CONTROL_COMMAND_SEND_VDM_REQ, 5877 }; 5878 5879 /* Replies the AP may specify to the TBT EnterMode command as a UFP */ 5880 enum typec_tbt_ufp_reply { 5881 TYPEC_TBT_UFP_REPLY_NAK, 5882 TYPEC_TBT_UFP_REPLY_ACK, 5883 }; 5884 5885 struct typec_usb_mux_set { 5886 uint8_t mux_index; /* Index of the mux to set in the chain */ 5887 uint8_t mux_flags; /* USB_PD_MUX_*-encoded USB mux state to set */ 5888 } __ec_align1; 5889 5890 #define VDO_MAX_SIZE 7 5891 5892 struct typec_vdm_req { 5893 /* VDM data, including VDM header */ 5894 uint32_t vdm_data[VDO_MAX_SIZE]; 5895 /* Number of 32-bit fields filled in */ 5896 uint8_t vdm_data_objects; 5897 /* Partner to address - see enum typec_partner_type */ 5898 uint8_t partner_type; 5899 } __ec_align1; 5900 5901 struct ec_params_typec_control { 5902 uint8_t port; 5903 uint8_t command; /* enum typec_control_command */ 5904 uint16_t reserved; 5905 5906 /* 5907 * This section will be interpreted based on |command|. Define a 5908 * placeholder structure to avoid having to increase the size and bump 5909 * the command version when adding new sub-commands. 5910 */ 5911 union { 5912 uint32_t clear_events_mask; 5913 uint8_t mode_to_enter; /* enum typec_mode */ 5914 uint8_t tbt_ufp_reply; /* enum typec_tbt_ufp_reply */ 5915 struct typec_usb_mux_set mux_params; 5916 /* Used for VMD_REQ */ 5917 struct typec_vdm_req vdm_req_params; 5918 uint8_t placeholder[128]; 5919 }; 5920 } __ec_align1; 5921 5922 /* 5923 * Gather all status information for a port. 5924 * 5925 * Note: this covers many of the return fields from the deprecated 5926 * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the 5927 * discovery data. The "enum pd_cc_states" is defined with the deprecated 5928 * EC_CMD_USB_PD_CONTROL command. 5929 * 5930 * This also combines in the EC_CMD_USB_PD_MUX_INFO flags. 5931 */ 5932 #define EC_CMD_TYPEC_STATUS 0x0133 5933 5934 /* 5935 * Power role. 5936 * 5937 * Note this is also used for PD header creation, and values align to those in 5938 * the Power Delivery Specification Revision 3.0 (See 5939 * 6.2.1.1.4 Port Power Role). 5940 */ 5941 enum pd_power_role { 5942 PD_ROLE_SINK = 0, 5943 PD_ROLE_SOURCE = 1 5944 }; 5945 5946 /* 5947 * Data role. 5948 * 5949 * Note this is also used for PD header creation, and the first two values 5950 * align to those in the Power Delivery Specification Revision 3.0 (See 5951 * 6.2.1.1.6 Port Data Role). 5952 */ 5953 enum pd_data_role { 5954 PD_ROLE_UFP = 0, 5955 PD_ROLE_DFP = 1, 5956 PD_ROLE_DISCONNECTED = 2, 5957 }; 5958 5959 enum pd_vconn_role { 5960 PD_ROLE_VCONN_OFF = 0, 5961 PD_ROLE_VCONN_SRC = 1, 5962 }; 5963 5964 /* 5965 * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2, 5966 * regardless of whether a debug accessory is connected. 5967 */ 5968 enum tcpc_cc_polarity { 5969 /* 5970 * _CCx: is used to indicate the polarity while not connected to 5971 * a Debug Accessory. Only one CC line will assert a resistor and 5972 * the other will be open. 5973 */ 5974 POLARITY_CC1 = 0, 5975 POLARITY_CC2 = 1, 5976 5977 /* 5978 * _CCx_DTS is used to indicate the polarity while connected to a 5979 * SRC Debug Accessory. Assert resistors on both lines. 5980 */ 5981 POLARITY_CC1_DTS = 2, 5982 POLARITY_CC2_DTS = 3, 5983 5984 /* 5985 * The current TCPC code relies on these specific POLARITY values. 5986 * Adding in a check to verify if the list grows for any reason 5987 * that this will give a hint that other places need to be 5988 * adjusted. 5989 */ 5990 POLARITY_COUNT 5991 }; 5992 5993 #define PD_STATUS_EVENT_SOP_DISC_DONE BIT(0) 5994 #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE BIT(1) 5995 #define PD_STATUS_EVENT_HARD_RESET BIT(2) 5996 #define PD_STATUS_EVENT_DISCONNECTED BIT(3) 5997 #define PD_STATUS_EVENT_MUX_0_SET_DONE BIT(4) 5998 #define PD_STATUS_EVENT_MUX_1_SET_DONE BIT(5) 5999 #define PD_STATUS_EVENT_VDM_REQ_REPLY BIT(6) 6000 #define PD_STATUS_EVENT_VDM_REQ_FAILED BIT(7) 6001 #define PD_STATUS_EVENT_VDM_ATTENTION BIT(8) 6002 6003 struct ec_params_typec_status { 6004 uint8_t port; 6005 } __ec_align1; 6006 6007 struct ec_response_typec_status { 6008 uint8_t pd_enabled; /* PD communication enabled - bool */ 6009 uint8_t dev_connected; /* Device connected - bool */ 6010 uint8_t sop_connected; /* Device is SOP PD capable - bool */ 6011 uint8_t source_cap_count; /* Number of Source Cap PDOs */ 6012 6013 uint8_t power_role; /* enum pd_power_role */ 6014 uint8_t data_role; /* enum pd_data_role */ 6015 uint8_t vconn_role; /* enum pd_vconn_role */ 6016 uint8_t sink_cap_count; /* Number of Sink Cap PDOs */ 6017 6018 uint8_t polarity; /* enum tcpc_cc_polarity */ 6019 uint8_t cc_state; /* enum pd_cc_states */ 6020 uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */ 6021 uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */ 6022 6023 char tc_state[32]; /* TC state name */ 6024 6025 uint32_t events; /* PD_STATUS_EVENT bitmask */ 6026 6027 /* 6028 * BCD PD revisions for partners 6029 * 6030 * The format has the PD major reversion in the upper nibble, and PD 6031 * minor version in the next nibble. Following two nibbles are 6032 * currently 0. 6033 * ex. PD 3.2 would map to 0x3200 6034 * 6035 * PD major/minor will be 0 if no PD device is connected. 6036 */ 6037 uint16_t sop_revision; 6038 uint16_t sop_prime_revision; 6039 6040 uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */ 6041 6042 uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */ 6043 } __ec_align1; 6044 6045 /* 6046 * Gather the response to the most recent VDM REQ from the AP, as well 6047 * as popping the oldest VDM:Attention from the DPM queue 6048 */ 6049 #define EC_CMD_TYPEC_VDM_RESPONSE 0x013C 6050 6051 struct ec_params_typec_vdm_response { 6052 uint8_t port; 6053 } __ec_align1; 6054 6055 struct ec_response_typec_vdm_response { 6056 /* Number of 32-bit fields filled in */ 6057 uint8_t vdm_data_objects; 6058 /* Partner to address - see enum typec_partner_type */ 6059 uint8_t partner_type; 6060 /* enum ec_status describing VDM response */ 6061 uint16_t vdm_response_err; 6062 /* VDM data, including VDM header */ 6063 uint32_t vdm_response[VDO_MAX_SIZE]; 6064 /* Number of 32-bit Attention fields filled in */ 6065 uint8_t vdm_attention_objects; 6066 /* Number of remaining messages to consume */ 6067 uint8_t vdm_attention_left; 6068 /* Reserved */ 6069 uint16_t reserved1; 6070 /* VDM:Attention contents */ 6071 uint32_t vdm_attention[2]; 6072 } __ec_align1; 6073 6074 #undef VDO_MAX_SIZE 6075 6076 /*****************************************************************************/ 6077 /* The command range 0x200-0x2FF is reserved for Rotor. */ 6078 6079 /*****************************************************************************/ 6080 /* 6081 * Reserve a range of host commands for the CR51 firmware. 6082 */ 6083 #define EC_CMD_CR51_BASE 0x0300 6084 #define EC_CMD_CR51_LAST 0x03FF 6085 6086 /*****************************************************************************/ 6087 /* Fingerprint MCU commands: range 0x0400-0x040x */ 6088 6089 /* Fingerprint SPI sensor passthru command: prototyping ONLY */ 6090 #define EC_CMD_FP_PASSTHRU 0x0400 6091 6092 #define EC_FP_FLAG_NOT_COMPLETE 0x1 6093 6094 struct ec_params_fp_passthru { 6095 uint16_t len; /* Number of bytes to write then read */ 6096 uint16_t flags; /* EC_FP_FLAG_xxx */ 6097 uint8_t data[]; /* Data to send */ 6098 } __ec_align2; 6099 6100 /* Configure the Fingerprint MCU behavior */ 6101 #define EC_CMD_FP_MODE 0x0402 6102 6103 /* Put the sensor in its lowest power mode */ 6104 #define FP_MODE_DEEPSLEEP BIT(0) 6105 /* Wait to see a finger on the sensor */ 6106 #define FP_MODE_FINGER_DOWN BIT(1) 6107 /* Poll until the finger has left the sensor */ 6108 #define FP_MODE_FINGER_UP BIT(2) 6109 /* Capture the current finger image */ 6110 #define FP_MODE_CAPTURE BIT(3) 6111 /* Finger enrollment session on-going */ 6112 #define FP_MODE_ENROLL_SESSION BIT(4) 6113 /* Enroll the current finger image */ 6114 #define FP_MODE_ENROLL_IMAGE BIT(5) 6115 /* Try to match the current finger image */ 6116 #define FP_MODE_MATCH BIT(6) 6117 /* Reset and re-initialize the sensor. */ 6118 #define FP_MODE_RESET_SENSOR BIT(7) 6119 /* special value: don't change anything just read back current mode */ 6120 #define FP_MODE_DONT_CHANGE BIT(31) 6121 6122 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP | \ 6123 FP_MODE_FINGER_DOWN | \ 6124 FP_MODE_FINGER_UP | \ 6125 FP_MODE_CAPTURE | \ 6126 FP_MODE_ENROLL_SESSION | \ 6127 FP_MODE_ENROLL_IMAGE | \ 6128 FP_MODE_MATCH | \ 6129 FP_MODE_RESET_SENSOR | \ 6130 FP_MODE_DONT_CHANGE) 6131 6132 /* Capture types defined in bits [30..28] */ 6133 #define FP_MODE_CAPTURE_TYPE_SHIFT 28 6134 #define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT) 6135 /* 6136 * This enum must remain ordered, if you add new values you must ensure that 6137 * FP_CAPTURE_TYPE_MAX is still the last one. 6138 */ 6139 enum fp_capture_type { 6140 /* Full blown vendor-defined capture (produces 'frame_size' bytes) */ 6141 FP_CAPTURE_VENDOR_FORMAT = 0, 6142 /* Simple raw image capture (produces width x height x bpp bits) */ 6143 FP_CAPTURE_SIMPLE_IMAGE = 1, 6144 /* Self test pattern (e.g. checkerboard) */ 6145 FP_CAPTURE_PATTERN0 = 2, 6146 /* Self test pattern (e.g. inverted checkerboard) */ 6147 FP_CAPTURE_PATTERN1 = 3, 6148 /* Capture for Quality test with fixed contrast */ 6149 FP_CAPTURE_QUALITY_TEST = 4, 6150 /* Capture for pixel reset value test */ 6151 FP_CAPTURE_RESET_TEST = 5, 6152 FP_CAPTURE_TYPE_MAX, 6153 }; 6154 /* Extracts the capture type from the sensor 'mode' word */ 6155 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \ 6156 >> FP_MODE_CAPTURE_TYPE_SHIFT) 6157 6158 struct ec_params_fp_mode { 6159 uint32_t mode; /* as defined by FP_MODE_ constants */ 6160 } __ec_align4; 6161 6162 struct ec_response_fp_mode { 6163 uint32_t mode; /* as defined by FP_MODE_ constants */ 6164 } __ec_align4; 6165 6166 /* Retrieve Fingerprint sensor information */ 6167 #define EC_CMD_FP_INFO 0x0403 6168 6169 /* Number of dead pixels detected on the last maintenance */ 6170 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF) 6171 /* Unknown number of dead pixels detected on the last maintenance */ 6172 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF) 6173 /* No interrupt from the sensor */ 6174 #define FP_ERROR_NO_IRQ BIT(12) 6175 /* SPI communication error */ 6176 #define FP_ERROR_SPI_COMM BIT(13) 6177 /* Invalid sensor Hardware ID */ 6178 #define FP_ERROR_BAD_HWID BIT(14) 6179 /* Sensor initialization failed */ 6180 #define FP_ERROR_INIT_FAIL BIT(15) 6181 6182 struct ec_response_fp_info_v0 { 6183 /* Sensor identification */ 6184 uint32_t vendor_id; 6185 uint32_t product_id; 6186 uint32_t model_id; 6187 uint32_t version; 6188 /* Image frame characteristics */ 6189 uint32_t frame_size; 6190 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ 6191 uint16_t width; 6192 uint16_t height; 6193 uint16_t bpp; 6194 uint16_t errors; /* see FP_ERROR_ flags above */ 6195 } __ec_align4; 6196 6197 struct ec_response_fp_info { 6198 /* Sensor identification */ 6199 uint32_t vendor_id; 6200 uint32_t product_id; 6201 uint32_t model_id; 6202 uint32_t version; 6203 /* Image frame characteristics */ 6204 uint32_t frame_size; 6205 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */ 6206 uint16_t width; 6207 uint16_t height; 6208 uint16_t bpp; 6209 uint16_t errors; /* see FP_ERROR_ flags above */ 6210 /* Template/finger current information */ 6211 uint32_t template_size; /* max template size in bytes */ 6212 uint16_t template_max; /* maximum number of fingers/templates */ 6213 uint16_t template_valid; /* number of valid fingers/templates */ 6214 uint32_t template_dirty; /* bitmap of templates with MCU side changes */ 6215 uint32_t template_version; /* version of the template format */ 6216 } __ec_align4; 6217 6218 /* Get the last captured finger frame or a template content */ 6219 #define EC_CMD_FP_FRAME 0x0404 6220 6221 /* constants defining the 'offset' field which also contains the frame index */ 6222 #define FP_FRAME_INDEX_SHIFT 28 6223 /* Frame buffer where the captured image is stored */ 6224 #define FP_FRAME_INDEX_RAW_IMAGE 0 6225 /* First frame buffer holding a template */ 6226 #define FP_FRAME_INDEX_TEMPLATE 1 6227 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT) 6228 #define FP_FRAME_OFFSET_MASK 0x0FFFFFFF 6229 6230 /* Version of the format of the encrypted templates. */ 6231 #define FP_TEMPLATE_FORMAT_VERSION 3 6232 6233 /* Constants for encryption parameters */ 6234 #define FP_CONTEXT_NONCE_BYTES 12 6235 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t)) 6236 #define FP_CONTEXT_TAG_BYTES 16 6237 #define FP_CONTEXT_SALT_BYTES 16 6238 #define FP_CONTEXT_TPM_BYTES 32 6239 6240 struct ec_fp_template_encryption_metadata { 6241 /* 6242 * Version of the structure format (N=3). 6243 */ 6244 uint16_t struct_version; 6245 /* Reserved bytes, set to 0. */ 6246 uint16_t reserved; 6247 /* 6248 * The salt is *only* ever used for key derivation. The nonce is unique, 6249 * a different one is used for every message. 6250 */ 6251 uint8_t nonce[FP_CONTEXT_NONCE_BYTES]; 6252 uint8_t salt[FP_CONTEXT_SALT_BYTES]; 6253 uint8_t tag[FP_CONTEXT_TAG_BYTES]; 6254 }; 6255 6256 struct ec_params_fp_frame { 6257 /* 6258 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE 6259 * in the high nibble, and the real offset within the frame in 6260 * FP_FRAME_OFFSET_MASK. 6261 */ 6262 uint32_t offset; 6263 uint32_t size; 6264 } __ec_align4; 6265 6266 /* Load a template into the MCU */ 6267 #define EC_CMD_FP_TEMPLATE 0x0405 6268 6269 /* Flag in the 'size' field indicating that the full template has been sent */ 6270 #define FP_TEMPLATE_COMMIT 0x80000000 6271 6272 struct ec_params_fp_template { 6273 uint32_t offset; 6274 uint32_t size; 6275 uint8_t data[]; 6276 } __ec_align4; 6277 6278 /* Clear the current fingerprint user context and set a new one */ 6279 #define EC_CMD_FP_CONTEXT 0x0406 6280 6281 struct ec_params_fp_context { 6282 uint32_t userid[FP_CONTEXT_USERID_WORDS]; 6283 } __ec_align4; 6284 6285 #define EC_CMD_FP_STATS 0x0407 6286 6287 #define FPSTATS_CAPTURE_INV BIT(0) 6288 #define FPSTATS_MATCHING_INV BIT(1) 6289 6290 struct ec_response_fp_stats { 6291 uint32_t capture_time_us; 6292 uint32_t matching_time_us; 6293 uint32_t overall_time_us; 6294 struct { 6295 uint32_t lo; 6296 uint32_t hi; 6297 } overall_t0; 6298 uint8_t timestamps_invalid; 6299 int8_t template_matched; 6300 } __ec_align2; 6301 6302 #define EC_CMD_FP_SEED 0x0408 6303 struct ec_params_fp_seed { 6304 /* 6305 * Version of the structure format (N=3). 6306 */ 6307 uint16_t struct_version; 6308 /* Reserved bytes, set to 0. */ 6309 uint16_t reserved; 6310 /* Seed from the TPM. */ 6311 uint8_t seed[FP_CONTEXT_TPM_BYTES]; 6312 } __ec_align4; 6313 6314 #define EC_CMD_FP_ENC_STATUS 0x0409 6315 6316 /* FP TPM seed has been set or not */ 6317 #define FP_ENC_STATUS_SEED_SET BIT(0) 6318 6319 struct ec_response_fp_encryption_status { 6320 /* Used bits in encryption engine status */ 6321 uint32_t valid_flags; 6322 /* Encryption engine status */ 6323 uint32_t status; 6324 } __ec_align4; 6325 6326 /*****************************************************************************/ 6327 /* Touchpad MCU commands: range 0x0500-0x05FF */ 6328 6329 /* Perform touchpad self test */ 6330 #define EC_CMD_TP_SELF_TEST 0x0500 6331 6332 /* Get number of frame types, and the size of each type */ 6333 #define EC_CMD_TP_FRAME_INFO 0x0501 6334 6335 struct ec_response_tp_frame_info { 6336 uint32_t n_frames; 6337 uint32_t frame_sizes[]; 6338 } __ec_align4; 6339 6340 /* Create a snapshot of current frame readings */ 6341 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502 6342 6343 /* Read the frame */ 6344 #define EC_CMD_TP_FRAME_GET 0x0503 6345 6346 struct ec_params_tp_frame_get { 6347 uint32_t frame_index; 6348 uint32_t offset; 6349 uint32_t size; 6350 } __ec_align4; 6351 6352 /*****************************************************************************/ 6353 /* EC-EC communication commands: range 0x0600-0x06FF */ 6354 6355 #define EC_COMM_TEXT_MAX 8 6356 6357 /* 6358 * Get battery static information, i.e. information that never changes, or 6359 * very infrequently. 6360 */ 6361 #define EC_CMD_BATTERY_GET_STATIC 0x0600 6362 6363 /** 6364 * struct ec_params_battery_static_info - Battery static info parameters 6365 * @index: Battery index. 6366 */ 6367 struct ec_params_battery_static_info { 6368 uint8_t index; 6369 } __ec_align_size1; 6370 6371 /** 6372 * struct ec_response_battery_static_info - Battery static info response 6373 * @design_capacity: Battery Design Capacity (mAh) 6374 * @design_voltage: Battery Design Voltage (mV) 6375 * @manufacturer: Battery Manufacturer String 6376 * @model: Battery Model Number String 6377 * @serial: Battery Serial Number String 6378 * @type: Battery Type String 6379 * @cycle_count: Battery Cycle Count 6380 */ 6381 struct ec_response_battery_static_info { 6382 uint16_t design_capacity; 6383 uint16_t design_voltage; 6384 char manufacturer[EC_COMM_TEXT_MAX]; 6385 char model[EC_COMM_TEXT_MAX]; 6386 char serial[EC_COMM_TEXT_MAX]; 6387 char type[EC_COMM_TEXT_MAX]; 6388 /* TODO(crbug.com/795991): Consider moving to dynamic structure. */ 6389 uint32_t cycle_count; 6390 } __ec_align4; 6391 6392 /* 6393 * Get battery dynamic information, i.e. information that is likely to change 6394 * every time it is read. 6395 */ 6396 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601 6397 6398 /** 6399 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters 6400 * @index: Battery index. 6401 */ 6402 struct ec_params_battery_dynamic_info { 6403 uint8_t index; 6404 } __ec_align_size1; 6405 6406 /** 6407 * struct ec_response_battery_dynamic_info - Battery dynamic info response 6408 * @actual_voltage: Battery voltage (mV) 6409 * @actual_current: Battery current (mA); negative=discharging 6410 * @remaining_capacity: Remaining capacity (mAh) 6411 * @full_capacity: Capacity (mAh, might change occasionally) 6412 * @flags: Flags, see EC_BATT_FLAG_* 6413 * @desired_voltage: Charging voltage desired by battery (mV) 6414 * @desired_current: Charging current desired by battery (mA) 6415 */ 6416 struct ec_response_battery_dynamic_info { 6417 int16_t actual_voltage; 6418 int16_t actual_current; 6419 int16_t remaining_capacity; 6420 int16_t full_capacity; 6421 int16_t flags; 6422 int16_t desired_voltage; 6423 int16_t desired_current; 6424 } __ec_align2; 6425 6426 /* 6427 * Control charger chip. Used to control charger chip on the slave. 6428 */ 6429 #define EC_CMD_CHARGER_CONTROL 0x0602 6430 6431 /** 6432 * struct ec_params_charger_control - Charger control parameters 6433 * @max_current: Charger current (mA). Positive to allow base to draw up to 6434 * max_current and (possibly) charge battery, negative to request current 6435 * from base (OTG). 6436 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is 6437 * >= 0. 6438 * @allow_charging: Allow base battery charging (only makes sense if 6439 * max_current > 0). 6440 */ 6441 struct ec_params_charger_control { 6442 int16_t max_current; 6443 uint16_t otg_voltage; 6444 uint8_t allow_charging; 6445 } __ec_align_size1; 6446 6447 /* Get ACK from the USB-C SS muxes */ 6448 #define EC_CMD_USB_PD_MUX_ACK 0x0603 6449 6450 struct ec_params_usb_pd_mux_ack { 6451 uint8_t port; /* USB-C port number */ 6452 } __ec_align1; 6453 6454 /*****************************************************************************/ 6455 /* 6456 * Reserve a range of host commands for board-specific, experimental, or 6457 * special purpose features. These can be (re)used without updating this file. 6458 * 6459 * CAUTION: Don't go nuts with this. Shipping products should document ALL 6460 * their EC commands for easier development, testing, debugging, and support. 6461 * 6462 * All commands MUST be #defined to be 4-digit UPPER CASE hex values 6463 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work. 6464 * 6465 * In your experimental code, you may want to do something like this: 6466 * 6467 * #define EC_CMD_MAGIC_FOO 0x0000 6468 * #define EC_CMD_MAGIC_BAR 0x0001 6469 * #define EC_CMD_MAGIC_HEY 0x0002 6470 * 6471 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler, 6472 * EC_VER_MASK(0); 6473 * 6474 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler, 6475 * EC_VER_MASK(0); 6476 * 6477 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler, 6478 * EC_VER_MASK(0); 6479 */ 6480 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00 6481 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF 6482 6483 /* 6484 * Given the private host command offset, calculate the true private host 6485 * command value. 6486 */ 6487 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \ 6488 (EC_CMD_BOARD_SPECIFIC_BASE + (command)) 6489 6490 /*****************************************************************************/ 6491 /* 6492 * Passthru commands 6493 * 6494 * Some platforms have sub-processors chained to each other. For example. 6495 * 6496 * AP <--> EC <--> PD MCU 6497 * 6498 * The top 2 bits of the command number are used to indicate which device the 6499 * command is intended for. Device 0 is always the device receiving the 6500 * command; other device mapping is board-specific. 6501 * 6502 * When a device receives a command to be passed to a sub-processor, it passes 6503 * it on with the device number set back to 0. This allows the sub-processor 6504 * to remain blissfully unaware of whether the command originated on the next 6505 * device up the chain, or was passed through from the AP. 6506 * 6507 * In the above example, if the AP wants to send command 0x0002 to the PD MCU, 6508 * AP sends command 0x4002 to the EC 6509 * EC sends command 0x0002 to the PD MCU 6510 * EC forwards PD MCU response back to the AP 6511 */ 6512 6513 /* Offset and max command number for sub-device n */ 6514 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) 6515 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) 6516 6517 /*****************************************************************************/ 6518 /* 6519 * Deprecated constants. These constants have been renamed for clarity. The 6520 * meaning and size has not changed. Programs that use the old names should 6521 * switch to the new names soon, as the old names may not be carried forward 6522 * forever. 6523 */ 6524 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE 6525 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 6526 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE 6527 6528 6529 6530 #endif /* __CROS_EC_COMMANDS_H */ 6531
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.