1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/spinlock.h> 19 #include <linux/notifier.h> 20 21 /* 22 * All voltages, currents, charges, energies, time and temperatures in uV, 23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 24 * stated. It's driver's job to convert its raw values to units in which 25 * this class operates. 26 */ 27 28 /* 29 * For systems where the charger determines the maximum battery capacity 30 * the min and max fields should be used to present these values to user 31 * space. Unused/unknown fields will not appear in sysfs. 32 */ 33 34 enum { 35 POWER_SUPPLY_STATUS_UNKNOWN = 0, 36 POWER_SUPPLY_STATUS_CHARGING, 37 POWER_SUPPLY_STATUS_DISCHARGING, 38 POWER_SUPPLY_STATUS_NOT_CHARGING, 39 POWER_SUPPLY_STATUS_FULL, 40 }; 41 42 /* What algorithm is the charger using? */ 43 enum { 44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 45 POWER_SUPPLY_CHARGE_TYPE_NONE, 46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 53 }; 54 55 enum { 56 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 57 POWER_SUPPLY_HEALTH_GOOD, 58 POWER_SUPPLY_HEALTH_OVERHEAT, 59 POWER_SUPPLY_HEALTH_DEAD, 60 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 62 POWER_SUPPLY_HEALTH_COLD, 63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 65 POWER_SUPPLY_HEALTH_OVERCURRENT, 66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 67 POWER_SUPPLY_HEALTH_WARM, 68 POWER_SUPPLY_HEALTH_COOL, 69 POWER_SUPPLY_HEALTH_HOT, 70 POWER_SUPPLY_HEALTH_NO_BATTERY, 71 }; 72 73 enum { 74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 75 POWER_SUPPLY_TECHNOLOGY_NiMH, 76 POWER_SUPPLY_TECHNOLOGY_LION, 77 POWER_SUPPLY_TECHNOLOGY_LIPO, 78 POWER_SUPPLY_TECHNOLOGY_LiFe, 79 POWER_SUPPLY_TECHNOLOGY_NiCd, 80 POWER_SUPPLY_TECHNOLOGY_LiMn, 81 }; 82 83 enum { 84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 86 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 89 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 90 }; 91 92 enum { 93 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 94 POWER_SUPPLY_SCOPE_SYSTEM, 95 POWER_SUPPLY_SCOPE_DEVICE, 96 }; 97 98 enum power_supply_property { 99 /* Properties of type `int' */ 100 POWER_SUPPLY_PROP_STATUS = 0, 101 POWER_SUPPLY_PROP_CHARGE_TYPE, 102 POWER_SUPPLY_PROP_HEALTH, 103 POWER_SUPPLY_PROP_PRESENT, 104 POWER_SUPPLY_PROP_ONLINE, 105 POWER_SUPPLY_PROP_AUTHENTIC, 106 POWER_SUPPLY_PROP_TECHNOLOGY, 107 POWER_SUPPLY_PROP_CYCLE_COUNT, 108 POWER_SUPPLY_PROP_VOLTAGE_MAX, 109 POWER_SUPPLY_PROP_VOLTAGE_MIN, 110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 112 POWER_SUPPLY_PROP_VOLTAGE_NOW, 113 POWER_SUPPLY_PROP_VOLTAGE_AVG, 114 POWER_SUPPLY_PROP_VOLTAGE_OCV, 115 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 116 POWER_SUPPLY_PROP_CURRENT_MAX, 117 POWER_SUPPLY_PROP_CURRENT_NOW, 118 POWER_SUPPLY_PROP_CURRENT_AVG, 119 POWER_SUPPLY_PROP_CURRENT_BOOT, 120 POWER_SUPPLY_PROP_POWER_NOW, 121 POWER_SUPPLY_PROP_POWER_AVG, 122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 124 POWER_SUPPLY_PROP_CHARGE_FULL, 125 POWER_SUPPLY_PROP_CHARGE_EMPTY, 126 POWER_SUPPLY_PROP_CHARGE_NOW, 127 POWER_SUPPLY_PROP_CHARGE_AVG, 128 POWER_SUPPLY_PROP_CHARGE_COUNTER, 129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 143 POWER_SUPPLY_PROP_ENERGY_FULL, 144 POWER_SUPPLY_PROP_ENERGY_EMPTY, 145 POWER_SUPPLY_PROP_ENERGY_NOW, 146 POWER_SUPPLY_PROP_ENERGY_AVG, 147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 151 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 152 POWER_SUPPLY_PROP_TEMP, 153 POWER_SUPPLY_PROP_TEMP_MAX, 154 POWER_SUPPLY_PROP_TEMP_MIN, 155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 157 POWER_SUPPLY_PROP_TEMP_AMBIENT, 158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 165 POWER_SUPPLY_PROP_USB_TYPE, 166 POWER_SUPPLY_PROP_SCOPE, 167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 169 POWER_SUPPLY_PROP_CALIBRATE, 170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 172 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 173 /* Properties of type `const char *' */ 174 POWER_SUPPLY_PROP_MODEL_NAME, 175 POWER_SUPPLY_PROP_MANUFACTURER, 176 POWER_SUPPLY_PROP_SERIAL_NUMBER, 177 }; 178 179 enum power_supply_type { 180 POWER_SUPPLY_TYPE_UNKNOWN = 0, 181 POWER_SUPPLY_TYPE_BATTERY, 182 POWER_SUPPLY_TYPE_UPS, 183 POWER_SUPPLY_TYPE_MAINS, 184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 193 }; 194 195 enum power_supply_usb_type { 196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 206 }; 207 208 enum power_supply_charge_behaviour { 209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 212 }; 213 214 enum power_supply_notifier_events { 215 PSY_EVENT_PROP_CHANGED, 216 }; 217 218 union power_supply_propval { 219 int intval; 220 const char *strval; 221 }; 222 223 struct device_node; 224 struct power_supply; 225 226 /* Run-time specific power supply configuration */ 227 struct power_supply_config { 228 struct device_node *of_node; 229 struct fwnode_handle *fwnode; 230 231 /* Driver private data */ 232 void *drv_data; 233 234 /* Device specific sysfs attributes */ 235 const struct attribute_group **attr_grp; 236 237 char **supplied_to; 238 size_t num_supplicants; 239 }; 240 241 /* Description of power supply */ 242 struct power_supply_desc { 243 const char *name; 244 enum power_supply_type type; 245 u8 charge_behaviours; 246 const enum power_supply_usb_type *usb_types; 247 size_t num_usb_types; 248 const enum power_supply_property *properties; 249 size_t num_properties; 250 251 /* 252 * Functions for drivers implementing power supply class. 253 * These shouldn't be called directly by other drivers for accessing 254 * this power supply. Instead use power_supply_*() functions (for 255 * example power_supply_get_property()). 256 */ 257 int (*get_property)(struct power_supply *psy, 258 enum power_supply_property psp, 259 union power_supply_propval *val); 260 int (*set_property)(struct power_supply *psy, 261 enum power_supply_property psp, 262 const union power_supply_propval *val); 263 /* 264 * property_is_writeable() will be called during registration 265 * of power supply. If this happens during device probe then it must 266 * not access internal data of device (because probe did not end). 267 */ 268 int (*property_is_writeable)(struct power_supply *psy, 269 enum power_supply_property psp); 270 void (*external_power_changed)(struct power_supply *psy); 271 void (*set_charged)(struct power_supply *psy); 272 273 /* 274 * Set if thermal zone should not be created for this power supply. 275 * For example for virtual supplies forwarding calls to actual 276 * sensors or other supplies. 277 */ 278 bool no_thermal; 279 /* For APM emulation, think legacy userspace. */ 280 int use_for_apm; 281 }; 282 283 struct power_supply { 284 const struct power_supply_desc *desc; 285 286 char **supplied_to; 287 size_t num_supplicants; 288 289 char **supplied_from; 290 size_t num_supplies; 291 struct device_node *of_node; 292 293 /* Driver private data */ 294 void *drv_data; 295 296 /* private */ 297 struct device dev; 298 struct work_struct changed_work; 299 struct delayed_work deferred_register_work; 300 spinlock_t changed_lock; 301 bool changed; 302 bool initialized; 303 bool removing; 304 atomic_t use_cnt; 305 struct power_supply_battery_info *battery_info; 306 #ifdef CONFIG_THERMAL 307 struct thermal_zone_device *tzd; 308 struct thermal_cooling_device *tcd; 309 #endif 310 311 #ifdef CONFIG_LEDS_TRIGGERS 312 struct led_trigger *trig; 313 struct led_trigger *charging_trig; 314 struct led_trigger *full_trig; 315 struct led_trigger *charging_blink_full_solid_trig; 316 struct led_trigger *charging_orange_full_green_trig; 317 #endif 318 }; 319 320 /* 321 * This is recommended structure to specify static power supply parameters. 322 * Generic one, parametrizable for different power supplies. Power supply 323 * class itself does not use it, but that's what implementing most platform 324 * drivers, should try reuse for consistency. 325 */ 326 327 struct power_supply_info { 328 const char *name; 329 int technology; 330 int voltage_max_design; 331 int voltage_min_design; 332 int charge_full_design; 333 int charge_empty_design; 334 int energy_full_design; 335 int energy_empty_design; 336 int use_for_apm; 337 }; 338 339 struct power_supply_battery_ocv_table { 340 int ocv; /* microVolts */ 341 int capacity; /* percent */ 342 }; 343 344 struct power_supply_resistance_temp_table { 345 int temp; /* celsius */ 346 int resistance; /* internal resistance percent */ 347 }; 348 349 struct power_supply_vbat_ri_table { 350 int vbat_uv; /* Battery voltage in microvolt */ 351 int ri_uohm; /* Internal resistance in microohm */ 352 }; 353 354 /** 355 * struct power_supply_maintenance_charge_table - setting for maintenace charging 356 * @charge_current_max_ua: maintenance charging current that is used to keep 357 * the charge of the battery full as current is consumed after full charging. 358 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 359 * reach this voltage the maintenance charging current is turned off. It is 360 * turned back on if we fall below this voltage. 361 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 362 * lower than the constant_charge_voltage_max_uv. We can apply this settings 363 * charge_current_max_ua until we get back up to this voltage. 364 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 365 * time in minutes. We will only use maintenance charging in this setting 366 * for a certain amount of time, then we will first move to the next 367 * maintenance charge current and voltage pair in respective array and wait 368 * for the next safety timer timeout, or, if we reached the last maintencance 369 * charging setting, disable charging until we reach 370 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 371 * These timers should be chosen to align with the typical discharge curve 372 * for the battery. 373 * 374 * Ordinary CC/CV charging will stop charging when the charge current goes 375 * below charge_term_current_ua, and then restart it (if the device is still 376 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 377 * consumer products because the power usage while connected to a charger is 378 * not zero, and devices are not manufactured to draw power directly from the 379 * charger: instead they will at all times dissipate the battery a little, like 380 * the power used in standby mode. This will over time give a charge graph 381 * such as this: 382 * 383 * Energy 384 * ^ ... ... ... ... ... ... ... 385 * | . . . . . . . . . . . . . 386 * | .. . .. . .. . .. . .. . .. . .. 387 * |. .. .. .. .. .. .. 388 * +-------------------------------------------------------------------> t 389 * 390 * Practically this means that the Li-ions are wandering back and forth in the 391 * battery and this causes degeneration of the battery anode and cathode. 392 * To prolong the life of the battery, maintenance charging is applied after 393 * reaching charge_term_current_ua to hold up the charge in the battery while 394 * consuming power, thus lowering the wear on the battery: 395 * 396 * Energy 397 * ^ ....................................... 398 * | . ...................... 399 * | .. 400 * |. 401 * +-------------------------------------------------------------------> t 402 * 403 * Maintenance charging uses the voltages from this table: a table of settings 404 * is traversed using a slightly lower current and voltage than what is used for 405 * CC/CV charging. The maintenance charging will for safety reasons not go on 406 * indefinately: we lower the current and voltage with successive maintenance 407 * settings, then disable charging completely after we reach the last one, 408 * and after that we do not restart charging until we reach 409 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 410 * ordinary CC/CV charging from there. 411 * 412 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 413 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 414 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 415 * After this the charge cycle is restarted waiting for 416 * charge_restart_voltage_uv. 417 * 418 * For most mobile electronics this type of maintenance charging is enough for 419 * the user to disconnect the device and make use of it before both maintenance 420 * charging cycles are complete, if the current and voltage has been chosen 421 * appropriately. These need to be determined from battery discharge curves 422 * and expected standby current. 423 * 424 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 425 * charging, ordinary CC/CV charging is restarted. This can happen if the 426 * device is e.g. actively used during charging, so more current is drawn than 427 * the expected stand-by current. Also overvoltage protection will be applied 428 * as usual. 429 */ 430 struct power_supply_maintenance_charge_table { 431 int charge_current_max_ua; 432 int charge_voltage_max_uv; 433 int charge_safety_timer_minutes; 434 }; 435 436 #define POWER_SUPPLY_OCV_TEMP_MAX 20 437 438 /** 439 * struct power_supply_battery_info - information about batteries 440 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 441 * @energy_full_design_uwh: energy content when fully charged in microwatt 442 * hours 443 * @charge_full_design_uah: charge content when fully charged in microampere 444 * hours 445 * @voltage_min_design_uv: minimum voltage across the poles when the battery 446 * is at minimum voltage level in microvolts. If the voltage drops below this 447 * level the battery will need precharging when using CC/CV charging. 448 * @voltage_max_design_uv: voltage across the poles when the battery is fully 449 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 450 * printed on the label of the battery. 451 * @tricklecharge_current_ua: the tricklecharge current used when trickle 452 * charging the battery in microamperes. This is the charging phase when the 453 * battery is completely empty and we need to carefully trickle in some 454 * charge until we reach the precharging voltage. 455 * @precharge_current_ua: current to use in the precharge phase in microamperes, 456 * the precharge rate is limited by limiting the current to this value. 457 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 458 * microvolts. When we pass this voltage we will nominally switch over to the 459 * CC (constant current) charging phase defined by constant_charge_current_ua 460 * and constant_charge_voltage_max_uv. 461 * @charge_term_current_ua: when the current in the CV (constant voltage) 462 * charging phase drops below this value in microamperes the charging will 463 * terminate completely and not restart until the voltage over the battery 464 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 465 * @charge_restart_voltage_uv: when the battery has been fully charged by 466 * CC/CV charging and charging has been disabled, and the voltage subsequently 467 * drops below this value in microvolts, the charging will be restarted 468 * (typically using CV charging). 469 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 470 * voltage_max_design_uv and we reach this voltage level, all charging must 471 * stop and emergency procedures take place, such as shutting down the system 472 * in some cases. 473 * @constant_charge_current_max_ua: current in microamperes to use in the CC 474 * (constant current) charging phase. The charging rate is limited 475 * by this current. This is the main charging phase and as the current is 476 * constant into the battery the voltage slowly ascends to 477 * constant_charge_voltage_max_uv. 478 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 479 * the CC (constant current) charging phase and the beginning of the CV 480 * (constant voltage) charging phase. 481 * @maintenance_charge: an array of maintenance charging settings to be used 482 * after the main CC/CV charging phase is complete. 483 * @maintenance_charge_size: the number of maintenance charging settings in 484 * maintenance_charge. 485 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 486 * enters low alert temperature, i.e. if the internal temperature is between 487 * temp_alert_min and temp_min. No matter the charging phase, this 488 * and alert_high_temp_charge_voltage_uv will be applied. 489 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 490 * but for the charging voltage. 491 * @alert_high_temp_charge_current_ua: The charging current to use if the 492 * battery enters high alert temperature, i.e. if the internal temperature is 493 * between temp_alert_max and temp_max. No matter the charging phase, this 494 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 495 * the charging current as an evasive manouver. 496 * @alert_high_temp_charge_voltage_uv: Same as 497 * alert_high_temp_charge_current_ua, but for the charging voltage. 498 * @factory_internal_resistance_uohm: the internal resistance of the battery 499 * at fabrication time, expressed in microohms. This resistance will vary 500 * depending on the lifetime and charge of the battery, so this is just a 501 * nominal ballpark figure. This internal resistance is given for the state 502 * when the battery is discharging. 503 * @factory_internal_resistance_charging_uohm: the internal resistance of the 504 * battery at fabrication time while charging, expressed in microohms. 505 * The charging process will affect the internal resistance of the battery 506 * so this value provides a better resistance under these circumstances. 507 * This resistance will vary depending on the lifetime and charge of the 508 * battery, so this is just a nominal ballpark figure. 509 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 510 * temperature indices. This is an array of temperatures in degrees Celsius 511 * indicating which capacity table to use for a certain temperature, since 512 * the capacity for reasons of chemistry will be different at different 513 * temperatures. Determining capacity is a multivariate problem and the 514 * temperature is the first variable we determine. 515 * @temp_ambient_alert_min: the battery will go outside of operating conditions 516 * when the ambient temperature goes below this temperature in degrees 517 * Celsius. 518 * @temp_ambient_alert_max: the battery will go outside of operating conditions 519 * when the ambient temperature goes above this temperature in degrees 520 * Celsius. 521 * @temp_alert_min: the battery should issue an alert if the internal 522 * temperature goes below this temperature in degrees Celsius. 523 * @temp_alert_max: the battery should issue an alert if the internal 524 * temperature goes above this temperature in degrees Celsius. 525 * @temp_min: the battery will go outside of operating conditions when 526 * the internal temperature goes below this temperature in degrees Celsius. 527 * Normally this means the system should shut down. 528 * @temp_max: the battery will go outside of operating conditions when 529 * the internal temperature goes above this temperature in degrees Celsius. 530 * Normally this means the system should shut down. 531 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 532 * ocv_table and a size for each entry in ocv_table_size. These arrays 533 * determine the capacity in percent in relation to the voltage in microvolts 534 * at the indexed temperature. 535 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 536 * each entry in the array of capacity arrays in ocv_table. 537 * @resist_table: this is a table that correlates a battery temperature to the 538 * expected internal resistance at this temperature. The resistance is given 539 * as a percentage of factory_internal_resistance_uohm. Knowing the 540 * resistance of the battery is usually necessary for calculating the open 541 * circuit voltage (OCV) that is then used with the ocv_table to calculate 542 * the capacity of the battery. The resist_table must be ordered descending 543 * by temperature: highest temperature with lowest resistance first, lowest 544 * temperature with highest resistance last. 545 * @resist_table_size: the number of items in the resist_table. 546 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 547 * to internal resistance (Ri). The resistance is given in microohm for the 548 * corresponding voltage in microvolts. The internal resistance is used to 549 * determine the open circuit voltage so that we can determine the capacity 550 * of the battery. These voltages to resistance tables apply when the battery 551 * is discharging. The table must be ordered descending by voltage: highest 552 * voltage first. 553 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 554 * table. 555 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 556 * when the battery is charging. Being under charge changes the battery's 557 * internal resistance characteristics so a separate table is needed.* 558 * The table must be ordered descending by voltage: highest voltage first. 559 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 560 * table. 561 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 562 * in ohms for this battery, if an identification resistor is mounted 563 * between a third battery terminal and ground. This scheme is used by a lot 564 * of mobile device batteries. 565 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 566 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 567 * tolerance is 10% we will detect a proper battery if the BTI resistance 568 * is between 6300 and 7700 Ohm. 569 * 570 * This is the recommended struct to manage static battery parameters, 571 * populated by power_supply_get_battery_info(). Most platform drivers should 572 * use these for consistency. 573 * 574 * Its field names must correspond to elements in enum power_supply_property. 575 * The default field value is -EINVAL or NULL for pointers. 576 * 577 * CC/CV CHARGING: 578 * 579 * The charging parameters here assume a CC/CV charging scheme. This method 580 * is most common with Lithium Ion batteries (other methods are possible) and 581 * looks as follows: 582 * 583 * ^ Battery voltage 584 * | --- overvoltage_limit_uv 585 * | 586 * | ................................................... 587 * | .. constant_charge_voltage_max_uv 588 * | .. 589 * | . 590 * | . 591 * | . 592 * | . 593 * | . 594 * | .. precharge_voltage_max_uv 595 * | .. 596 * |. (trickle charging) 597 * +------------------------------------------------------------------> time 598 * 599 * ^ Current into the battery 600 * | 601 * | ............. constant_charge_current_max_ua 602 * | . . 603 * | . . 604 * | . . 605 * | . . 606 * | . .. 607 * | . .... 608 * | . ..... 609 * | ... precharge_current_ua ....... charge_term_current_ua 610 * | . . 611 * | . . 612 * |.... tricklecharge_current_ua . 613 * | . 614 * +-----------------------------------------------------------------> time 615 * 616 * These diagrams are synchronized on time and the voltage and current 617 * follow each other. 618 * 619 * With CC/CV charging commence over time like this for an empty battery: 620 * 621 * 1. When the battery is completely empty it may need to be charged with 622 * an especially small current so that electrons just "trickle in", 623 * this is the tricklecharge_current_ua. 624 * 625 * 2. Next a small initial pre-charge current (precharge_current_ua) 626 * is applied if the voltage is below precharge_voltage_max_uv until we 627 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 628 * to as "trickle charging" but the use in the Linux kernel is different 629 * see below! 630 * 631 * 3. Then the main charging current is applied, which is called the constant 632 * current (CC) phase. A current regulator is set up to allow 633 * constant_charge_current_max_ua of current to flow into the battery. 634 * The chemical reaction in the battery will make the voltage go up as 635 * charge goes into the battery. This current is applied until we reach 636 * the constant_charge_voltage_max_uv voltage. 637 * 638 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 639 * means we allow current to go into the battery, but we keep the voltage 640 * fixed. This current will continue to charge the battery while keeping 641 * the voltage the same. A chemical reaction in the battery goes on 642 * storing energy without affecting the voltage. Over time the current 643 * will slowly drop and when we reach charge_term_current_ua we will 644 * end the constant voltage phase. 645 * 646 * After this the battery is fully charged, and if we do not support maintenance 647 * charging, the charging will not restart until power dissipation makes the 648 * voltage fall so that we reach charge_restart_voltage_uv and at this point 649 * we restart charging at the appropriate phase, usually this will be inside 650 * the CV phase. 651 * 652 * If we support maintenance charging the voltage is however kept high after 653 * the CV phase with a very low current. This is meant to let the same charge 654 * go in for usage while the charger is still connected, mainly for 655 * dissipation for the power consuming entity while connected to the 656 * charger. 657 * 658 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 659 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 660 * explosions. 661 * 662 * DETERMINING BATTERY CAPACITY: 663 * 664 * Several members of the struct deal with trying to determine the remaining 665 * capacity in the battery, usually as a percentage of charge. In practice 666 * many chargers uses a so-called fuel gauge or coloumb counter that measure 667 * how much charge goes into the battery and how much goes out (+/- leak 668 * consumption). This does not help if we do not know how much capacity the 669 * battery has to begin with, such as when it is first used or was taken out 670 * and charged in a separate charger. Therefore many capacity algorithms use 671 * the open circuit voltage with a look-up table to determine the rough 672 * capacity of the battery. The open circuit voltage can be conceptualized 673 * with an ideal voltage source (V) in series with an internal resistance (Ri) 674 * like this: 675 * 676 * +-------> IBAT >----------------+ 677 * | ^ | 678 * [ ] Ri | | 679 * | | VBAT | 680 * o <---------- | | 681 * +| ^ | [ ] Rload 682 * .---. | | | 683 * | V | | OCV | | 684 * '---' | | | 685 * | | | | 686 * GND +-------------------------------+ 687 * 688 * If we disconnect the load (here simplified as a fixed resistance Rload) 689 * and measure VBAT with a infinite impedance voltage meter we will get 690 * VBAT = OCV and this assumption is sometimes made even under load, assuming 691 * Rload is insignificant. However this will be of dubious quality because the 692 * load is rarely that small and Ri is strongly nonlinear depending on 693 * temperature and how much capacity is left in the battery due to the 694 * chemistry involved. 695 * 696 * In many practical applications we cannot just disconnect the battery from 697 * the load, so instead we often try to measure the instantaneous IBAT (the 698 * current out from the battery), estimate the Ri and thus calculate the 699 * voltage drop over Ri and compensate like this: 700 * 701 * OCV = VBAT - (IBAT * Ri) 702 * 703 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 704 * (by interpolation) the Ri from the VBAT under load. These curves are highly 705 * nonlinear and may need many datapoints but can be found in datasheets for 706 * some batteries. This gives the compensated open circuit voltage (OCV) for 707 * the battery even under load. Using this method will also compensate for 708 * temperature changes in the environment: this will also make the internal 709 * resistance change, and it will affect the VBAT under load, so correlating 710 * VBAT to Ri takes both remaining capacity and temperature into consideration. 711 * 712 * Alternatively a manufacturer can specify how the capacity of the battery 713 * is dependent on the battery temperature which is the main factor affecting 714 * Ri. As we know all checmical reactions are faster when it is warm and slower 715 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 716 * voltage drops too low for example. This effect is also highly nonlinear and 717 * the purpose of the table resist_table: this will take a temperature and 718 * tell us how big percentage of Ri the specified temperature correlates to. 719 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 720 * Celsius. 721 * 722 * The power supply class itself doesn't use this struct as of now. 723 */ 724 725 struct power_supply_battery_info { 726 unsigned int technology; 727 int energy_full_design_uwh; 728 int charge_full_design_uah; 729 int voltage_min_design_uv; 730 int voltage_max_design_uv; 731 int tricklecharge_current_ua; 732 int precharge_current_ua; 733 int precharge_voltage_max_uv; 734 int charge_term_current_ua; 735 int charge_restart_voltage_uv; 736 int overvoltage_limit_uv; 737 int constant_charge_current_max_ua; 738 int constant_charge_voltage_max_uv; 739 const struct power_supply_maintenance_charge_table *maintenance_charge; 740 int maintenance_charge_size; 741 int alert_low_temp_charge_current_ua; 742 int alert_low_temp_charge_voltage_uv; 743 int alert_high_temp_charge_current_ua; 744 int alert_high_temp_charge_voltage_uv; 745 int factory_internal_resistance_uohm; 746 int factory_internal_resistance_charging_uohm; 747 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 748 int temp_ambient_alert_min; 749 int temp_ambient_alert_max; 750 int temp_alert_min; 751 int temp_alert_max; 752 int temp_min; 753 int temp_max; 754 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 755 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 756 struct power_supply_resistance_temp_table *resist_table; 757 int resist_table_size; 758 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 759 int vbat2ri_discharging_size; 760 const struct power_supply_vbat_ri_table *vbat2ri_charging; 761 int vbat2ri_charging_size; 762 int bti_resistance_ohm; 763 int bti_resistance_tolerance; 764 }; 765 766 extern int power_supply_reg_notifier(struct notifier_block *nb); 767 extern void power_supply_unreg_notifier(struct notifier_block *nb); 768 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 769 extern struct power_supply *power_supply_get_by_name(const char *name); 770 extern void power_supply_put(struct power_supply *psy); 771 #else 772 static inline void power_supply_put(struct power_supply *psy) {} 773 static inline struct power_supply *power_supply_get_by_name(const char *name) 774 { return NULL; } 775 #endif 776 #ifdef CONFIG_OF 777 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 778 const char *property); 779 extern struct power_supply *devm_power_supply_get_by_phandle( 780 struct device *dev, const char *property); 781 #else /* !CONFIG_OF */ 782 static inline struct power_supply * 783 power_supply_get_by_phandle(struct device_node *np, const char *property) 784 { return NULL; } 785 static inline struct power_supply * 786 devm_power_supply_get_by_phandle(struct device *dev, const char *property) 787 { return NULL; } 788 #endif /* CONFIG_OF */ 789 790 extern const enum power_supply_property power_supply_battery_info_properties[]; 791 extern const size_t power_supply_battery_info_properties_size; 792 extern int power_supply_get_battery_info(struct power_supply *psy, 793 struct power_supply_battery_info **info_out); 794 extern void power_supply_put_battery_info(struct power_supply *psy, 795 struct power_supply_battery_info *info); 796 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 797 enum power_supply_property psp); 798 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 799 enum power_supply_property psp, 800 union power_supply_propval *val); 801 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 802 int table_len, int ocv); 803 extern struct power_supply_battery_ocv_table * 804 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 805 int temp, int *table_len); 806 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 807 int ocv, int temp); 808 extern int 809 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 810 int table_len, int temp); 811 extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 812 int vbat_uv, bool charging); 813 extern const struct power_supply_maintenance_charge_table * 814 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 815 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 816 int resistance); 817 extern void power_supply_changed(struct power_supply *psy); 818 extern int power_supply_am_i_supplied(struct power_supply *psy); 819 int power_supply_get_property_from_supplier(struct power_supply *psy, 820 enum power_supply_property psp, 821 union power_supply_propval *val); 822 extern int power_supply_set_battery_charged(struct power_supply *psy); 823 824 static inline bool 825 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 826 { 827 const struct power_supply_maintenance_charge_table *mt; 828 829 mt = power_supply_get_maintenance_charging_setting(info, 0); 830 831 return (mt != NULL); 832 } 833 834 static inline bool 835 power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 836 { 837 return ((info->vbat2ri_discharging != NULL) && 838 info->vbat2ri_discharging_size > 0); 839 } 840 841 static inline bool 842 power_supply_supports_temp2ri(struct power_supply_battery_info *info) 843 { 844 return ((info->resist_table != NULL) && 845 info->resist_table_size > 0); 846 } 847 848 #ifdef CONFIG_POWER_SUPPLY 849 extern int power_supply_is_system_supplied(void); 850 #else 851 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 852 #endif 853 854 extern int power_supply_get_property(struct power_supply *psy, 855 enum power_supply_property psp, 856 union power_supply_propval *val); 857 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 858 extern int power_supply_set_property(struct power_supply *psy, 859 enum power_supply_property psp, 860 const union power_supply_propval *val); 861 #else 862 static inline int power_supply_set_property(struct power_supply *psy, 863 enum power_supply_property psp, 864 const union power_supply_propval *val) 865 { return 0; } 866 #endif 867 extern int power_supply_property_is_writeable(struct power_supply *psy, 868 enum power_supply_property psp); 869 extern void power_supply_external_power_changed(struct power_supply *psy); 870 871 extern struct power_supply *__must_check 872 power_supply_register(struct device *parent, 873 const struct power_supply_desc *desc, 874 const struct power_supply_config *cfg); 875 extern struct power_supply *__must_check 876 power_supply_register_no_ws(struct device *parent, 877 const struct power_supply_desc *desc, 878 const struct power_supply_config *cfg); 879 extern struct power_supply *__must_check 880 devm_power_supply_register(struct device *parent, 881 const struct power_supply_desc *desc, 882 const struct power_supply_config *cfg); 883 extern struct power_supply *__must_check 884 devm_power_supply_register_no_ws(struct device *parent, 885 const struct power_supply_desc *desc, 886 const struct power_supply_config *cfg); 887 extern void power_supply_unregister(struct power_supply *psy); 888 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 889 890 #define to_power_supply(device) container_of(device, struct power_supply, dev) 891 892 extern void *power_supply_get_drvdata(struct power_supply *psy); 893 extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data)); 894 895 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 896 { 897 switch (psp) { 898 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 899 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 900 case POWER_SUPPLY_PROP_CHARGE_FULL: 901 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 902 case POWER_SUPPLY_PROP_CHARGE_NOW: 903 case POWER_SUPPLY_PROP_CHARGE_AVG: 904 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 905 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 906 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 907 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 908 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 909 case POWER_SUPPLY_PROP_CURRENT_MAX: 910 case POWER_SUPPLY_PROP_CURRENT_NOW: 911 case POWER_SUPPLY_PROP_CURRENT_AVG: 912 case POWER_SUPPLY_PROP_CURRENT_BOOT: 913 return true; 914 default: 915 break; 916 } 917 918 return false; 919 } 920 921 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 922 { 923 switch (psp) { 924 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 925 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 926 case POWER_SUPPLY_PROP_ENERGY_FULL: 927 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 928 case POWER_SUPPLY_PROP_ENERGY_NOW: 929 case POWER_SUPPLY_PROP_ENERGY_AVG: 930 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 931 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 932 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 933 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 934 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 935 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 936 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 937 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 940 case POWER_SUPPLY_PROP_POWER_NOW: 941 return true; 942 default: 943 break; 944 } 945 946 return false; 947 } 948 949 #ifdef CONFIG_POWER_SUPPLY_HWMON 950 int power_supply_add_hwmon_sysfs(struct power_supply *psy); 951 void power_supply_remove_hwmon_sysfs(struct power_supply *psy); 952 #else 953 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy) 954 { 955 return 0; 956 } 957 958 static inline 959 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {} 960 #endif 961 962 #ifdef CONFIG_SYSFS 963 ssize_t power_supply_charge_behaviour_show(struct device *dev, 964 unsigned int available_behaviours, 965 enum power_supply_charge_behaviour behaviour, 966 char *buf); 967 968 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 969 #else 970 static inline 971 ssize_t power_supply_charge_behaviour_show(struct device *dev, 972 unsigned int available_behaviours, 973 enum power_supply_charge_behaviour behaviour, 974 char *buf) 975 { 976 return -EOPNOTSUPP; 977 } 978 979 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 980 const char *buf) 981 { 982 return -EOPNOTSUPP; 983 } 984 #endif 985 986 #endif /* __LINUX_POWER_SUPPLY_H__ */ 987
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.