~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/ptp_clock_kernel.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  * PTP 1588 clock support
  4  *
  5  * Copyright (C) 2010 OMICRON electronics GmbH
  6  */
  7 
  8 #ifndef _PTP_CLOCK_KERNEL_H_
  9 #define _PTP_CLOCK_KERNEL_H_
 10 
 11 #include <linux/device.h>
 12 #include <linux/pps_kernel.h>
 13 #include <linux/ptp_clock.h>
 14 #include <linux/timecounter.h>
 15 #include <linux/skbuff.h>
 16 
 17 #define PTP_CLOCK_NAME_LEN      32
 18 /**
 19  * struct ptp_clock_request - request PTP clock event
 20  *
 21  * @type:   The type of the request.
 22  *          EXTTS:  Configure external trigger timestamping
 23  *          PEROUT: Configure periodic output signal (e.g. PPS)
 24  *          PPS:    trigger internal PPS event for input
 25  *                  into kernel PPS subsystem
 26  * @extts:  describes configuration for external trigger timestamping.
 27  *          This is only valid when event == PTP_CLK_REQ_EXTTS.
 28  * @perout: describes configuration for periodic output.
 29  *          This is only valid when event == PTP_CLK_REQ_PEROUT.
 30  */
 31 
 32 struct ptp_clock_request {
 33         enum {
 34                 PTP_CLK_REQ_EXTTS,
 35                 PTP_CLK_REQ_PEROUT,
 36                 PTP_CLK_REQ_PPS,
 37         } type;
 38         union {
 39                 struct ptp_extts_request extts;
 40                 struct ptp_perout_request perout;
 41         };
 42 };
 43 
 44 struct system_device_crosststamp;
 45 
 46 /**
 47  * struct ptp_system_timestamp - system time corresponding to a PHC timestamp
 48  * @pre_ts: system timestamp before capturing PHC
 49  * @post_ts: system timestamp after capturing PHC
 50  */
 51 struct ptp_system_timestamp {
 52         struct timespec64 pre_ts;
 53         struct timespec64 post_ts;
 54 };
 55 
 56 /**
 57  * struct ptp_clock_info - describes a PTP hardware clock
 58  *
 59  * @owner:     The clock driver should set to THIS_MODULE.
 60  * @name:      A short "friendly name" to identify the clock and to
 61  *             help distinguish PHY based devices from MAC based ones.
 62  *             The string is not meant to be a unique id.
 63  * @max_adj:   The maximum possible frequency adjustment, in parts per billon.
 64  * @n_alarm:   The number of programmable alarms.
 65  * @n_ext_ts:  The number of external time stamp channels.
 66  * @n_per_out: The number of programmable periodic signals.
 67  * @n_pins:    The number of programmable pins.
 68  * @pps:       Indicates whether the clock supports a PPS callback.
 69  * @pin_config: Array of length 'n_pins'. If the number of
 70  *              programmable pins is nonzero, then drivers must
 71  *              allocate and initialize this array.
 72  *
 73  * clock operations
 74  *
 75  * @adjfine:  Adjusts the frequency of the hardware clock.
 76  *            parameter scaled_ppm: Desired frequency offset from
 77  *            nominal frequency in parts per million, but with a
 78  *            16 bit binary fractional field.
 79  *
 80  * @adjphase:  Indicates that the PHC should use an internal servo
 81  *             algorithm to correct the provided phase offset.
 82  *             parameter delta: PHC servo phase adjustment target
 83  *                              in nanoseconds.
 84  *
 85  * @getmaxphase:  Advertises maximum offset that can be provided
 86  *                to the hardware clock's phase control functionality
 87  *                through adjphase.
 88  *
 89  * @adjtime:  Shifts the time of the hardware clock.
 90  *            parameter delta: Desired change in nanoseconds.
 91  *
 92  * @gettime64:  Reads the current time from the hardware clock.
 93  *              This method is deprecated.  New drivers should implement
 94  *              the @gettimex64 method instead.
 95  *              parameter ts: Holds the result.
 96  *
 97  * @gettimex64:  Reads the current time from the hardware clock and optionally
 98  *               also the system clock.
 99  *               parameter ts: Holds the PHC timestamp.
100  *               parameter sts: If not NULL, it holds a pair of timestamps from
101  *               the system clock. The first reading is made right before
102  *               reading the lowest bits of the PHC timestamp and the second
103  *               reading immediately follows that.
104  *
105  * @getcrosststamp:  Reads the current time from the hardware clock and
106  *                   system clock simultaneously.
107  *                   parameter cts: Contains timestamp (device,system) pair,
108  *                   where system time is realtime and monotonic.
109  *
110  * @settime64:  Set the current time on the hardware clock.
111  *              parameter ts: Time value to set.
112  *
113  * @getcycles64:  Reads the current free running cycle counter from the hardware
114  *                clock.
115  *                If @getcycles64 and @getcyclesx64 are not supported, then
116  *                @gettime64 or @gettimex64 will be used as default
117  *                implementation.
118  *                parameter ts: Holds the result.
119  *
120  * @getcyclesx64:  Reads the current free running cycle counter from the
121  *                 hardware clock and optionally also the system clock.
122  *                 If @getcycles64 and @getcyclesx64 are not supported, then
123  *                 @gettimex64 will be used as default implementation if
124  *                 available.
125  *                 parameter ts: Holds the PHC timestamp.
126  *                 parameter sts: If not NULL, it holds a pair of timestamps
127  *                 from the system clock. The first reading is made right before
128  *                 reading the lowest bits of the PHC timestamp and the second
129  *                 reading immediately follows that.
130  *
131  * @getcrosscycles:  Reads the current free running cycle counter from the
132  *                   hardware clock and system clock simultaneously.
133  *                   If @getcycles64 and @getcyclesx64 are not supported, then
134  *                   @getcrosststamp will be used as default implementation if
135  *                   available.
136  *                   parameter cts: Contains timestamp (device,system) pair,
137  *                   where system time is realtime and monotonic.
138  *
139  * @enable:   Request driver to enable or disable an ancillary feature.
140  *            parameter request: Desired resource to enable or disable.
141  *            parameter on: Caller passes one to enable or zero to disable.
142  *
143  * @verify:   Confirm that a pin can perform a given function. The PTP
144  *            Hardware Clock subsystem maintains the 'pin_config'
145  *            array on behalf of the drivers, but the PHC subsystem
146  *            assumes that every pin can perform every function. This
147  *            hook gives drivers a way of telling the core about
148  *            limitations on specific pins. This function must return
149  *            zero if the function can be assigned to this pin, and
150  *            nonzero otherwise.
151  *            parameter pin: index of the pin in question.
152  *            parameter func: the desired function to use.
153  *            parameter chan: the function channel index to use.
154  *
155  * @do_aux_work:  Request driver to perform auxiliary (periodic) operations
156  *                Driver should return delay of the next auxiliary work
157  *                scheduling time (>=0) or negative value in case further
158  *                scheduling is not required.
159  *
160  * Drivers should embed their ptp_clock_info within a private
161  * structure, obtaining a reference to it using container_of().
162  *
163  * The callbacks must all return zero on success, non-zero otherwise.
164  */
165 
166 struct ptp_clock_info {
167         struct module *owner;
168         char name[PTP_CLOCK_NAME_LEN];
169         s32 max_adj;
170         int n_alarm;
171         int n_ext_ts;
172         int n_per_out;
173         int n_pins;
174         int pps;
175         struct ptp_pin_desc *pin_config;
176         int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
177         int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
178         s32 (*getmaxphase)(struct ptp_clock_info *ptp);
179         int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
180         int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
181         int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
182                           struct ptp_system_timestamp *sts);
183         int (*getcrosststamp)(struct ptp_clock_info *ptp,
184                               struct system_device_crosststamp *cts);
185         int (*settime64)(struct ptp_clock_info *p, const struct timespec64 *ts);
186         int (*getcycles64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
187         int (*getcyclesx64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
188                             struct ptp_system_timestamp *sts);
189         int (*getcrosscycles)(struct ptp_clock_info *ptp,
190                               struct system_device_crosststamp *cts);
191         int (*enable)(struct ptp_clock_info *ptp,
192                       struct ptp_clock_request *request, int on);
193         int (*verify)(struct ptp_clock_info *ptp, unsigned int pin,
194                       enum ptp_pin_function func, unsigned int chan);
195         long (*do_aux_work)(struct ptp_clock_info *ptp);
196 };
197 
198 struct ptp_clock;
199 
200 enum ptp_clock_events {
201         PTP_CLOCK_ALARM,
202         PTP_CLOCK_EXTTS,
203         PTP_CLOCK_EXTOFF,
204         PTP_CLOCK_PPS,
205         PTP_CLOCK_PPSUSR,
206 };
207 
208 /**
209  * struct ptp_clock_event - decribes a PTP hardware clock event
210  *
211  * @type:  One of the ptp_clock_events enumeration values.
212  * @index: Identifies the source of the event.
213  * @timestamp: When the event occurred (%PTP_CLOCK_EXTTS only).
214  * @offset:    When the event occurred (%PTP_CLOCK_EXTOFF only).
215  * @pps_times: When the event occurred (%PTP_CLOCK_PPSUSR only).
216  */
217 
218 struct ptp_clock_event {
219         int type;
220         int index;
221         union {
222                 u64 timestamp;
223                 s64 offset;
224                 struct pps_event_time pps_times;
225         };
226 };
227 
228 /**
229  * scaled_ppm_to_ppb() - convert scaled ppm to ppb
230  *
231  * @ppm:    Parts per million, but with a 16 bit binary fractional field
232  */
233 static inline long scaled_ppm_to_ppb(long ppm)
234 {
235         /*
236          * The 'freq' field in the 'struct timex' is in parts per
237          * million, but with a 16 bit binary fractional field.
238          *
239          * We want to calculate
240          *
241          *    ppb = scaled_ppm * 1000 / 2^16
242          *
243          * which simplifies to
244          *
245          *    ppb = scaled_ppm * 125 / 2^13
246          */
247         s64 ppb = 1 + ppm;
248 
249         ppb *= 125;
250         ppb >>= 13;
251         return (long)ppb;
252 }
253 
254 /**
255  * diff_by_scaled_ppm - Calculate difference using scaled ppm
256  * @base: the base increment value to adjust
257  * @scaled_ppm: scaled parts per million to adjust by
258  * @diff: on return, the absolute value of calculated diff
259  *
260  * Calculate the difference to adjust the base increment using scaled parts
261  * per million.
262  *
263  * Use mul_u64_u64_div_u64 to perform the difference calculation in avoid
264  * possible overflow.
265  *
266  * Returns: true if scaled_ppm is negative, false otherwise
267  */
268 static inline bool diff_by_scaled_ppm(u64 base, long scaled_ppm, u64 *diff)
269 {
270         bool negative = false;
271 
272         if (scaled_ppm < 0) {
273                 negative = true;
274                 scaled_ppm = -scaled_ppm;
275         }
276 
277         *diff = mul_u64_u64_div_u64(base, (u64)scaled_ppm, 1000000ULL << 16);
278 
279         return negative;
280 }
281 
282 /**
283  * adjust_by_scaled_ppm - Adjust a base increment by scaled parts per million
284  * @base: the base increment value to adjust
285  * @scaled_ppm: scaled parts per million frequency adjustment
286  *
287  * Helper function which calculates a new increment value based on the
288  * requested scaled parts per million adjustment.
289  */
290 static inline u64 adjust_by_scaled_ppm(u64 base, long scaled_ppm)
291 {
292         u64 diff;
293 
294         if (diff_by_scaled_ppm(base, scaled_ppm, &diff))
295                 return base - diff;
296 
297         return base + diff;
298 }
299 
300 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
301 
302 /**
303  * ptp_clock_register() - register a PTP hardware clock driver
304  *
305  * @info:   Structure describing the new clock.
306  * @parent: Pointer to the parent device of the new clock.
307  *
308  * Returns a valid pointer on success or PTR_ERR on failure.  If PHC
309  * support is missing at the configuration level, this function
310  * returns NULL, and drivers are expected to gracefully handle that
311  * case separately.
312  */
313 
314 extern struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
315                                             struct device *parent);
316 
317 /**
318  * ptp_clock_unregister() - unregister a PTP hardware clock driver
319  *
320  * @ptp:  The clock to remove from service.
321  */
322 
323 extern int ptp_clock_unregister(struct ptp_clock *ptp);
324 
325 /**
326  * ptp_clock_event() - notify the PTP layer about an event
327  *
328  * @ptp:    The clock obtained from ptp_clock_register().
329  * @event:  Message structure describing the event.
330  */
331 
332 extern void ptp_clock_event(struct ptp_clock *ptp,
333                             struct ptp_clock_event *event);
334 
335 /**
336  * ptp_clock_index() - obtain the device index of a PTP clock
337  *
338  * @ptp:    The clock obtained from ptp_clock_register().
339  */
340 
341 extern int ptp_clock_index(struct ptp_clock *ptp);
342 
343 /**
344  * ptp_find_pin() - obtain the pin index of a given auxiliary function
345  *
346  * The caller must hold ptp_clock::pincfg_mux.  Drivers do not have
347  * access to that mutex as ptp_clock is an opaque type.  However, the
348  * core code acquires the mutex before invoking the driver's
349  * ptp_clock_info::enable() callback, and so drivers may call this
350  * function from that context.
351  *
352  * @ptp:    The clock obtained from ptp_clock_register().
353  * @func:   One of the ptp_pin_function enumerated values.
354  * @chan:   The particular functional channel to find.
355  * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
356  *          or -1 if the auxiliary function cannot be found.
357  */
358 
359 int ptp_find_pin(struct ptp_clock *ptp,
360                  enum ptp_pin_function func, unsigned int chan);
361 
362 /**
363  * ptp_find_pin_unlocked() - wrapper for ptp_find_pin()
364  *
365  * This function acquires the ptp_clock::pincfg_mux mutex before
366  * invoking ptp_find_pin().  Instead of using this function, drivers
367  * should most likely call ptp_find_pin() directly from their
368  * ptp_clock_info::enable() method.
369  *
370 * @ptp:    The clock obtained from ptp_clock_register().
371 * @func:   One of the ptp_pin_function enumerated values.
372 * @chan:   The particular functional channel to find.
373 * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
374 *          or -1 if the auxiliary function cannot be found.
375  */
376 
377 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
378                           enum ptp_pin_function func, unsigned int chan);
379 
380 /**
381  * ptp_schedule_worker() - schedule ptp auxiliary work
382  *
383  * @ptp:    The clock obtained from ptp_clock_register().
384  * @delay:  number of jiffies to wait before queuing
385  *          See kthread_queue_delayed_work() for more info.
386  */
387 
388 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay);
389 
390 /**
391  * ptp_cancel_worker_sync() - cancel ptp auxiliary clock
392  *
393  * @ptp:     The clock obtained from ptp_clock_register().
394  */
395 void ptp_cancel_worker_sync(struct ptp_clock *ptp);
396 
397 #else
398 static inline struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
399                                                    struct device *parent)
400 { return NULL; }
401 static inline int ptp_clock_unregister(struct ptp_clock *ptp)
402 { return 0; }
403 static inline void ptp_clock_event(struct ptp_clock *ptp,
404                                    struct ptp_clock_event *event)
405 { }
406 static inline int ptp_clock_index(struct ptp_clock *ptp)
407 { return -1; }
408 static inline int ptp_find_pin(struct ptp_clock *ptp,
409                                enum ptp_pin_function func, unsigned int chan)
410 { return -1; }
411 static inline int ptp_find_pin_unlocked(struct ptp_clock *ptp,
412                                         enum ptp_pin_function func,
413                                         unsigned int chan)
414 { return -1; }
415 static inline int ptp_schedule_worker(struct ptp_clock *ptp,
416                                       unsigned long delay)
417 { return -EOPNOTSUPP; }
418 static inline void ptp_cancel_worker_sync(struct ptp_clock *ptp)
419 { }
420 #endif
421 
422 #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK)
423 /*
424  * These are called by the network core, and don't work if PTP is in
425  * a loadable module.
426  */
427 
428 /**
429  * ptp_get_vclocks_index() - get all vclocks index on pclock, and
430  *                           caller is responsible to free memory
431  *                           of vclock_index
432  *
433  * @pclock_index: phc index of ptp pclock.
434  * @vclock_index: pointer to pointer of vclock index.
435  *
436  * return number of vclocks.
437  */
438 int ptp_get_vclocks_index(int pclock_index, int **vclock_index);
439 
440 /**
441  * ptp_convert_timestamp() - convert timestamp to a ptp vclock time
442  *
443  * @hwtstamp:     timestamp
444  * @vclock_index: phc index of ptp vclock.
445  *
446  * Returns converted timestamp, or 0 on error.
447  */
448 ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index);
449 #else
450 static inline int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
451 { return 0; }
452 static inline ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp,
453                                             int vclock_index)
454 { return 0; }
455 
456 #endif
457 
458 static inline void ptp_read_system_prets(struct ptp_system_timestamp *sts)
459 {
460         if (sts)
461                 ktime_get_real_ts64(&sts->pre_ts);
462 }
463 
464 static inline void ptp_read_system_postts(struct ptp_system_timestamp *sts)
465 {
466         if (sts)
467                 ktime_get_real_ts64(&sts->post_ts);
468 }
469 
470 #endif
471 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php