~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/ptrace.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_PTRACE_H
  3 #define _LINUX_PTRACE_H
  4 
  5 #include <linux/compiler.h>             /* For unlikely.  */
  6 #include <linux/sched.h>                /* For struct task_struct.  */
  7 #include <linux/sched/signal.h>         /* For send_sig(), same_thread_group(), etc. */
  8 #include <linux/err.h>                  /* for IS_ERR_VALUE */
  9 #include <linux/bug.h>                  /* For BUG_ON.  */
 10 #include <linux/pid_namespace.h>        /* For task_active_pid_ns.  */
 11 #include <uapi/linux/ptrace.h>
 12 #include <linux/seccomp.h>
 13 
 14 /* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */
 15 struct syscall_info {
 16         __u64                   sp;
 17         struct seccomp_data     data;
 18 };
 19 
 20 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
 21                             void *buf, int len, unsigned int gup_flags);
 22 
 23 /*
 24  * Ptrace flags
 25  *
 26  * The owner ship rules for task->ptrace which holds the ptrace
 27  * flags is simple.  When a task is running it owns it's task->ptrace
 28  * flags.  When the a task is stopped the ptracer owns task->ptrace.
 29  */
 30 
 31 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
 32 #define PT_PTRACED      0x00000001
 33 
 34 #define PT_OPT_FLAG_SHIFT       3
 35 /* PT_TRACE_* event enable flags */
 36 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
 37 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
 38 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 39 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 40 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
 41 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
 42 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
 43 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
 44 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
 45 
 46 #define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
 47 #define PT_SUSPEND_SECCOMP      (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
 48 
 49 extern long arch_ptrace(struct task_struct *child, long request,
 50                         unsigned long addr, unsigned long data);
 51 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
 52 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
 53 extern void ptrace_disable(struct task_struct *);
 54 extern int ptrace_request(struct task_struct *child, long request,
 55                           unsigned long addr, unsigned long data);
 56 extern int ptrace_notify(int exit_code, unsigned long message);
 57 extern void __ptrace_link(struct task_struct *child,
 58                           struct task_struct *new_parent,
 59                           const struct cred *ptracer_cred);
 60 extern void __ptrace_unlink(struct task_struct *child);
 61 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
 62 #define PTRACE_MODE_READ        0x01
 63 #define PTRACE_MODE_ATTACH      0x02
 64 #define PTRACE_MODE_NOAUDIT     0x04
 65 #define PTRACE_MODE_FSCREDS     0x08
 66 #define PTRACE_MODE_REALCREDS   0x10
 67 
 68 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
 69 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
 70 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
 71 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
 72 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
 73 
 74 /**
 75  * ptrace_may_access - check whether the caller is permitted to access
 76  * a target task.
 77  * @task: target task
 78  * @mode: selects type of access and caller credentials
 79  *
 80  * Returns true on success, false on denial.
 81  *
 82  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
 83  * be set in @mode to specify whether the access was requested through
 84  * a filesystem syscall (should use effective capabilities and fsuid
 85  * of the caller) or through an explicit syscall such as
 86  * process_vm_writev or ptrace (and should use the real credentials).
 87  */
 88 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
 89 
 90 static inline int ptrace_reparented(struct task_struct *child)
 91 {
 92         return !same_thread_group(child->real_parent, child->parent);
 93 }
 94 
 95 static inline void ptrace_unlink(struct task_struct *child)
 96 {
 97         if (unlikely(child->ptrace))
 98                 __ptrace_unlink(child);
 99 }
100 
101 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
102                             unsigned long data);
103 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
104                             unsigned long data);
105 
106 /**
107  * ptrace_parent - return the task that is tracing the given task
108  * @task: task to consider
109  *
110  * Returns %NULL if no one is tracing @task, or the &struct task_struct
111  * pointer to its tracer.
112  *
113  * Must called under rcu_read_lock().  The pointer returned might be kept
114  * live only by RCU.  During exec, this may be called with task_lock() held
115  * on @task, still held from when check_unsafe_exec() was called.
116  */
117 static inline struct task_struct *ptrace_parent(struct task_struct *task)
118 {
119         if (unlikely(task->ptrace))
120                 return rcu_dereference(task->parent);
121         return NULL;
122 }
123 
124 /**
125  * ptrace_event_enabled - test whether a ptrace event is enabled
126  * @task: ptracee of interest
127  * @event: %PTRACE_EVENT_* to test
128  *
129  * Test whether @event is enabled for ptracee @task.
130  *
131  * Returns %true if @event is enabled, %false otherwise.
132  */
133 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
134 {
135         return task->ptrace & PT_EVENT_FLAG(event);
136 }
137 
138 /**
139  * ptrace_event - possibly stop for a ptrace event notification
140  * @event:      %PTRACE_EVENT_* value to report
141  * @message:    value for %PTRACE_GETEVENTMSG to return
142  *
143  * Check whether @event is enabled and, if so, report @event and @message
144  * to the ptrace parent.
145  *
146  * Called without locks.
147  */
148 static inline void ptrace_event(int event, unsigned long message)
149 {
150         if (unlikely(ptrace_event_enabled(current, event))) {
151                 ptrace_notify((event << 8) | SIGTRAP, message);
152         } else if (event == PTRACE_EVENT_EXEC) {
153                 /* legacy EXEC report via SIGTRAP */
154                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
155                         send_sig(SIGTRAP, current, 0);
156         }
157 }
158 
159 /**
160  * ptrace_event_pid - possibly stop for a ptrace event notification
161  * @event:      %PTRACE_EVENT_* value to report
162  * @pid:        process identifier for %PTRACE_GETEVENTMSG to return
163  *
164  * Check whether @event is enabled and, if so, report @event and @pid
165  * to the ptrace parent.  @pid is reported as the pid_t seen from the
166  * ptrace parent's pid namespace.
167  *
168  * Called without locks.
169  */
170 static inline void ptrace_event_pid(int event, struct pid *pid)
171 {
172         /*
173          * FIXME: There's a potential race if a ptracer in a different pid
174          * namespace than parent attaches between computing message below and
175          * when we acquire tasklist_lock in ptrace_stop().  If this happens,
176          * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
177          */
178         unsigned long message = 0;
179         struct pid_namespace *ns;
180 
181         rcu_read_lock();
182         ns = task_active_pid_ns(rcu_dereference(current->parent));
183         if (ns)
184                 message = pid_nr_ns(pid, ns);
185         rcu_read_unlock();
186 
187         ptrace_event(event, message);
188 }
189 
190 /**
191  * ptrace_init_task - initialize ptrace state for a new child
192  * @child:              new child task
193  * @ptrace:             true if child should be ptrace'd by parent's tracer
194  *
195  * This is called immediately after adding @child to its parent's children
196  * list.  @ptrace is false in the normal case, and true to ptrace @child.
197  *
198  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
199  */
200 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
201 {
202         INIT_LIST_HEAD(&child->ptrace_entry);
203         INIT_LIST_HEAD(&child->ptraced);
204         child->jobctl = 0;
205         child->ptrace = 0;
206         child->parent = child->real_parent;
207 
208         if (unlikely(ptrace) && current->ptrace) {
209                 child->ptrace = current->ptrace;
210                 __ptrace_link(child, current->parent, current->ptracer_cred);
211 
212                 if (child->ptrace & PT_SEIZED)
213                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
214                 else
215                         sigaddset(&child->pending.signal, SIGSTOP);
216         }
217         else
218                 child->ptracer_cred = NULL;
219 }
220 
221 /**
222  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
223  * @task:       task in %EXIT_DEAD state
224  *
225  * Called with write_lock(&tasklist_lock) held.
226  */
227 static inline void ptrace_release_task(struct task_struct *task)
228 {
229         BUG_ON(!list_empty(&task->ptraced));
230         ptrace_unlink(task);
231         BUG_ON(!list_empty(&task->ptrace_entry));
232 }
233 
234 #ifndef force_successful_syscall_return
235 /*
236  * System call handlers that, upon successful completion, need to return a
237  * negative value should call force_successful_syscall_return() right before
238  * returning.  On architectures where the syscall convention provides for a
239  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
240  * others), this macro can be used to ensure that the error flag will not get
241  * set.  On architectures which do not support a separate error flag, the macro
242  * is a no-op and the spurious error condition needs to be filtered out by some
243  * other means (e.g., in user-level, by passing an extra argument to the
244  * syscall handler, or something along those lines).
245  */
246 #define force_successful_syscall_return() do { } while (0)
247 #endif
248 
249 #ifndef is_syscall_success
250 /*
251  * On most systems we can tell if a syscall is a success based on if the retval
252  * is an error value.  On some systems like ia64 and powerpc they have different
253  * indicators of success/failure and must define their own.
254  */
255 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
256 #endif
257 
258 /*
259  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
260  *
261  * These do-nothing inlines are used when the arch does not
262  * implement single-step.  The kerneldoc comments are here
263  * to document the interface for all arch definitions.
264  */
265 
266 #ifndef arch_has_single_step
267 /**
268  * arch_has_single_step - does this CPU support user-mode single-step?
269  *
270  * If this is defined, then there must be function declarations or
271  * inlines for user_enable_single_step() and user_disable_single_step().
272  * arch_has_single_step() should evaluate to nonzero iff the machine
273  * supports instruction single-step for user mode.
274  * It can be a constant or it can test a CPU feature bit.
275  */
276 #define arch_has_single_step()          (0)
277 
278 /**
279  * user_enable_single_step - single-step in user-mode task
280  * @task: either current or a task stopped in %TASK_TRACED
281  *
282  * This can only be called when arch_has_single_step() has returned nonzero.
283  * Set @task so that when it returns to user mode, it will trap after the
284  * next single instruction executes.  If arch_has_block_step() is defined,
285  * this must clear the effects of user_enable_block_step() too.
286  */
287 static inline void user_enable_single_step(struct task_struct *task)
288 {
289         BUG();                  /* This can never be called.  */
290 }
291 
292 /**
293  * user_disable_single_step - cancel user-mode single-step
294  * @task: either current or a task stopped in %TASK_TRACED
295  *
296  * Clear @task of the effects of user_enable_single_step() and
297  * user_enable_block_step().  This can be called whether or not either
298  * of those was ever called on @task, and even if arch_has_single_step()
299  * returned zero.
300  */
301 static inline void user_disable_single_step(struct task_struct *task)
302 {
303 }
304 #else
305 extern void user_enable_single_step(struct task_struct *);
306 extern void user_disable_single_step(struct task_struct *);
307 #endif  /* arch_has_single_step */
308 
309 #ifndef arch_has_block_step
310 /**
311  * arch_has_block_step - does this CPU support user-mode block-step?
312  *
313  * If this is defined, then there must be a function declaration or inline
314  * for user_enable_block_step(), and arch_has_single_step() must be defined
315  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
316  * supports step-until-branch for user mode.  It can be a constant or it
317  * can test a CPU feature bit.
318  */
319 #define arch_has_block_step()           (0)
320 
321 /**
322  * user_enable_block_step - step until branch in user-mode task
323  * @task: either current or a task stopped in %TASK_TRACED
324  *
325  * This can only be called when arch_has_block_step() has returned nonzero,
326  * and will never be called when single-instruction stepping is being used.
327  * Set @task so that when it returns to user mode, it will trap after the
328  * next branch or trap taken.
329  */
330 static inline void user_enable_block_step(struct task_struct *task)
331 {
332         BUG();                  /* This can never be called.  */
333 }
334 #else
335 extern void user_enable_block_step(struct task_struct *);
336 #endif  /* arch_has_block_step */
337 
338 #ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT
339 extern void user_single_step_report(struct pt_regs *regs);
340 #else
341 static inline void user_single_step_report(struct pt_regs *regs)
342 {
343         kernel_siginfo_t info;
344         clear_siginfo(&info);
345         info.si_signo = SIGTRAP;
346         info.si_errno = 0;
347         info.si_code = SI_USER;
348         info.si_pid = 0;
349         info.si_uid = 0;
350         force_sig_info(&info);
351 }
352 #endif
353 
354 #ifndef arch_ptrace_stop_needed
355 /**
356  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
357  *
358  * This is called with the siglock held, to decide whether or not it's
359  * necessary to release the siglock and call arch_ptrace_stop().  It can be
360  * defined to a constant if arch_ptrace_stop() is never required, or always
361  * is.  On machines where this makes sense, it should be defined to a quick
362  * test to optimize out calling arch_ptrace_stop() when it would be
363  * superfluous.  For example, if the thread has not been back to user mode
364  * since the last stop, the thread state might indicate that nothing needs
365  * to be done.
366  *
367  * This is guaranteed to be invoked once before a task stops for ptrace and
368  * may include arch-specific operations necessary prior to a ptrace stop.
369  */
370 #define arch_ptrace_stop_needed()       (0)
371 #endif
372 
373 #ifndef arch_ptrace_stop
374 /**
375  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
376  *
377  * This is called with no locks held when arch_ptrace_stop_needed() has
378  * just returned nonzero.  It is allowed to block, e.g. for user memory
379  * access.  The arch can have machine-specific work to be done before
380  * ptrace stops.  On ia64, register backing store gets written back to user
381  * memory here.  Since this can be costly (requires dropping the siglock),
382  * we only do it when the arch requires it for this particular stop, as
383  * indicated by arch_ptrace_stop_needed().
384  */
385 #define arch_ptrace_stop()              do { } while (0)
386 #endif
387 
388 #ifndef current_pt_regs
389 #define current_pt_regs() task_pt_regs(current)
390 #endif
391 
392 #ifndef current_user_stack_pointer
393 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
394 #endif
395 
396 #ifndef exception_ip
397 #define exception_ip(x) instruction_pointer(x)
398 #endif
399 
400 extern int task_current_syscall(struct task_struct *target, struct syscall_info *info);
401 
402 extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact);
403 
404 /*
405  * ptrace report for syscall entry and exit looks identical.
406  */
407 static inline int ptrace_report_syscall(unsigned long message)
408 {
409         int ptrace = current->ptrace;
410         int signr;
411 
412         if (!(ptrace & PT_PTRACED))
413                 return 0;
414 
415         signr = ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0),
416                               message);
417 
418         /*
419          * this isn't the same as continuing with a signal, but it will do
420          * for normal use.  strace only continues with a signal if the
421          * stopping signal is not SIGTRAP.  -brl
422          */
423         if (signr)
424                 send_sig(signr, current, 1);
425 
426         return fatal_signal_pending(current);
427 }
428 
429 /**
430  * ptrace_report_syscall_entry - task is about to attempt a system call
431  * @regs:               user register state of current task
432  *
433  * This will be called if %SYSCALL_WORK_SYSCALL_TRACE or
434  * %SYSCALL_WORK_SYSCALL_EMU have been set, when the current task has just
435  * entered the kernel for a system call.  Full user register state is
436  * available here.  Changing the values in @regs can affect the system
437  * call number and arguments to be tried.  It is safe to block here,
438  * preventing the system call from beginning.
439  *
440  * Returns zero normally, or nonzero if the calling arch code should abort
441  * the system call.  That must prevent normal entry so no system call is
442  * made.  If @task ever returns to user mode after this, its register state
443  * is unspecified, but should be something harmless like an %ENOSYS error
444  * return.  It should preserve enough information so that syscall_rollback()
445  * can work (see asm-generic/syscall.h).
446  *
447  * Called without locks, just after entering kernel mode.
448  */
449 static inline __must_check int ptrace_report_syscall_entry(
450         struct pt_regs *regs)
451 {
452         return ptrace_report_syscall(PTRACE_EVENTMSG_SYSCALL_ENTRY);
453 }
454 
455 /**
456  * ptrace_report_syscall_exit - task has just finished a system call
457  * @regs:               user register state of current task
458  * @step:               nonzero if simulating single-step or block-step
459  *
460  * This will be called if %SYSCALL_WORK_SYSCALL_TRACE has been set, when
461  * the current task has just finished an attempted system call.  Full
462  * user register state is available here.  It is safe to block here,
463  * preventing signals from being processed.
464  *
465  * If @step is nonzero, this report is also in lieu of the normal
466  * trap that would follow the system call instruction because
467  * user_enable_block_step() or user_enable_single_step() was used.
468  * In this case, %SYSCALL_WORK_SYSCALL_TRACE might not be set.
469  *
470  * Called without locks, just before checking for pending signals.
471  */
472 static inline void ptrace_report_syscall_exit(struct pt_regs *regs, int step)
473 {
474         if (step)
475                 user_single_step_report(regs);
476         else
477                 ptrace_report_syscall(PTRACE_EVENTMSG_SYSCALL_EXIT);
478 }
479 #endif
480 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php