1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_RCULIST_H 3 #define _LINUX_RCULIST_H 4 5 #ifdef __KERNEL__ 6 7 /* 8 * RCU-protected list version 9 */ 10 #include <linux/list.h> 11 #include <linux/rcupdate.h> 12 13 /* 14 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 15 * @list: list to be initialized 16 * 17 * You should instead use INIT_LIST_HEAD() for normal initialization and 18 * cleanup tasks, when readers have no access to the list being initialized. 19 * However, if the list being initialized is visible to readers, you 20 * need to keep the compiler from being too mischievous. 21 */ 22 static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 23 { 24 WRITE_ONCE(list->next, list); 25 WRITE_ONCE(list->prev, list); 26 } 27 28 /* 29 * return the ->next pointer of a list_head in an rcu safe 30 * way, we must not access it directly 31 */ 32 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 33 34 /** 35 * list_tail_rcu - returns the prev pointer of the head of the list 36 * @head: the head of the list 37 * 38 * Note: This should only be used with the list header, and even then 39 * only if list_del() and similar primitives are not also used on the 40 * list header. 41 */ 42 #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 43 44 /* 45 * Check during list traversal that we are within an RCU reader 46 */ 47 48 #define check_arg_count_one(dummy) 49 50 #ifdef CONFIG_PROVE_RCU_LIST 51 #define __list_check_rcu(dummy, cond, extra...) \ 52 ({ \ 53 check_arg_count_one(extra); \ 54 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 55 "RCU-list traversed in non-reader section!"); \ 56 }) 57 58 #define __list_check_srcu(cond) \ 59 ({ \ 60 RCU_LOCKDEP_WARN(!(cond), \ 61 "RCU-list traversed without holding the required lock!");\ 62 }) 63 #else 64 #define __list_check_rcu(dummy, cond, extra...) \ 65 ({ check_arg_count_one(extra); }) 66 67 #define __list_check_srcu(cond) ({ }) 68 #endif 69 70 /* 71 * Insert a new entry between two known consecutive entries. 72 * 73 * This is only for internal list manipulation where we know 74 * the prev/next entries already! 75 */ 76 static inline void __list_add_rcu(struct list_head *new, 77 struct list_head *prev, struct list_head *next) 78 { 79 if (!__list_add_valid(new, prev, next)) 80 return; 81 82 new->next = next; 83 new->prev = prev; 84 rcu_assign_pointer(list_next_rcu(prev), new); 85 next->prev = new; 86 } 87 88 /** 89 * list_add_rcu - add a new entry to rcu-protected list 90 * @new: new entry to be added 91 * @head: list head to add it after 92 * 93 * Insert a new entry after the specified head. 94 * This is good for implementing stacks. 95 * 96 * The caller must take whatever precautions are necessary 97 * (such as holding appropriate locks) to avoid racing 98 * with another list-mutation primitive, such as list_add_rcu() 99 * or list_del_rcu(), running on this same list. 100 * However, it is perfectly legal to run concurrently with 101 * the _rcu list-traversal primitives, such as 102 * list_for_each_entry_rcu(). 103 */ 104 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 105 { 106 __list_add_rcu(new, head, head->next); 107 } 108 109 /** 110 * list_add_tail_rcu - add a new entry to rcu-protected list 111 * @new: new entry to be added 112 * @head: list head to add it before 113 * 114 * Insert a new entry before the specified head. 115 * This is useful for implementing queues. 116 * 117 * The caller must take whatever precautions are necessary 118 * (such as holding appropriate locks) to avoid racing 119 * with another list-mutation primitive, such as list_add_tail_rcu() 120 * or list_del_rcu(), running on this same list. 121 * However, it is perfectly legal to run concurrently with 122 * the _rcu list-traversal primitives, such as 123 * list_for_each_entry_rcu(). 124 */ 125 static inline void list_add_tail_rcu(struct list_head *new, 126 struct list_head *head) 127 { 128 __list_add_rcu(new, head->prev, head); 129 } 130 131 /** 132 * list_del_rcu - deletes entry from list without re-initialization 133 * @entry: the element to delete from the list. 134 * 135 * Note: list_empty() on entry does not return true after this, 136 * the entry is in an undefined state. It is useful for RCU based 137 * lockfree traversal. 138 * 139 * In particular, it means that we can not poison the forward 140 * pointers that may still be used for walking the list. 141 * 142 * The caller must take whatever precautions are necessary 143 * (such as holding appropriate locks) to avoid racing 144 * with another list-mutation primitive, such as list_del_rcu() 145 * or list_add_rcu(), running on this same list. 146 * However, it is perfectly legal to run concurrently with 147 * the _rcu list-traversal primitives, such as 148 * list_for_each_entry_rcu(). 149 * 150 * Note that the caller is not permitted to immediately free 151 * the newly deleted entry. Instead, either synchronize_rcu() 152 * or call_rcu() must be used to defer freeing until an RCU 153 * grace period has elapsed. 154 */ 155 static inline void list_del_rcu(struct list_head *entry) 156 { 157 __list_del_entry(entry); 158 entry->prev = LIST_POISON2; 159 } 160 161 /** 162 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 163 * @n: the element to delete from the hash list. 164 * 165 * Note: list_unhashed() on the node return true after this. It is 166 * useful for RCU based read lockfree traversal if the writer side 167 * must know if the list entry is still hashed or already unhashed. 168 * 169 * In particular, it means that we can not poison the forward pointers 170 * that may still be used for walking the hash list and we can only 171 * zero the pprev pointer so list_unhashed() will return true after 172 * this. 173 * 174 * The caller must take whatever precautions are necessary (such as 175 * holding appropriate locks) to avoid racing with another 176 * list-mutation primitive, such as hlist_add_head_rcu() or 177 * hlist_del_rcu(), running on this same list. However, it is 178 * perfectly legal to run concurrently with the _rcu list-traversal 179 * primitives, such as hlist_for_each_entry_rcu(). 180 */ 181 static inline void hlist_del_init_rcu(struct hlist_node *n) 182 { 183 if (!hlist_unhashed(n)) { 184 __hlist_del(n); 185 WRITE_ONCE(n->pprev, NULL); 186 } 187 } 188 189 /** 190 * list_replace_rcu - replace old entry by new one 191 * @old : the element to be replaced 192 * @new : the new element to insert 193 * 194 * The @old entry will be replaced with the @new entry atomically. 195 * Note: @old should not be empty. 196 */ 197 static inline void list_replace_rcu(struct list_head *old, 198 struct list_head *new) 199 { 200 new->next = old->next; 201 new->prev = old->prev; 202 rcu_assign_pointer(list_next_rcu(new->prev), new); 203 new->next->prev = new; 204 old->prev = LIST_POISON2; 205 } 206 207 /** 208 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 209 * @list: the RCU-protected list to splice 210 * @prev: points to the last element of the existing list 211 * @next: points to the first element of the existing list 212 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 213 * 214 * The list pointed to by @prev and @next can be RCU-read traversed 215 * concurrently with this function. 216 * 217 * Note that this function blocks. 218 * 219 * Important note: the caller must take whatever action is necessary to prevent 220 * any other updates to the existing list. In principle, it is possible to 221 * modify the list as soon as sync() begins execution. If this sort of thing 222 * becomes necessary, an alternative version based on call_rcu() could be 223 * created. But only if -really- needed -- there is no shortage of RCU API 224 * members. 225 */ 226 static inline void __list_splice_init_rcu(struct list_head *list, 227 struct list_head *prev, 228 struct list_head *next, 229 void (*sync)(void)) 230 { 231 struct list_head *first = list->next; 232 struct list_head *last = list->prev; 233 234 /* 235 * "first" and "last" tracking list, so initialize it. RCU readers 236 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 237 * instead of INIT_LIST_HEAD(). 238 */ 239 240 INIT_LIST_HEAD_RCU(list); 241 242 /* 243 * At this point, the list body still points to the source list. 244 * Wait for any readers to finish using the list before splicing 245 * the list body into the new list. Any new readers will see 246 * an empty list. 247 */ 248 249 sync(); 250 ASSERT_EXCLUSIVE_ACCESS(*first); 251 ASSERT_EXCLUSIVE_ACCESS(*last); 252 253 /* 254 * Readers are finished with the source list, so perform splice. 255 * The order is important if the new list is global and accessible 256 * to concurrent RCU readers. Note that RCU readers are not 257 * permitted to traverse the prev pointers without excluding 258 * this function. 259 */ 260 261 last->next = next; 262 rcu_assign_pointer(list_next_rcu(prev), first); 263 first->prev = prev; 264 next->prev = last; 265 } 266 267 /** 268 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 269 * designed for stacks. 270 * @list: the RCU-protected list to splice 271 * @head: the place in the existing list to splice the first list into 272 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 273 */ 274 static inline void list_splice_init_rcu(struct list_head *list, 275 struct list_head *head, 276 void (*sync)(void)) 277 { 278 if (!list_empty(list)) 279 __list_splice_init_rcu(list, head, head->next, sync); 280 } 281 282 /** 283 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 284 * list, designed for queues. 285 * @list: the RCU-protected list to splice 286 * @head: the place in the existing list to splice the first list into 287 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 288 */ 289 static inline void list_splice_tail_init_rcu(struct list_head *list, 290 struct list_head *head, 291 void (*sync)(void)) 292 { 293 if (!list_empty(list)) 294 __list_splice_init_rcu(list, head->prev, head, sync); 295 } 296 297 /** 298 * list_entry_rcu - get the struct for this entry 299 * @ptr: the &struct list_head pointer. 300 * @type: the type of the struct this is embedded in. 301 * @member: the name of the list_head within the struct. 302 * 303 * This primitive may safely run concurrently with the _rcu list-mutation 304 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 305 */ 306 #define list_entry_rcu(ptr, type, member) \ 307 container_of(READ_ONCE(ptr), type, member) 308 309 /* 310 * Where are list_empty_rcu() and list_first_entry_rcu()? 311 * 312 * They do not exist because they would lead to subtle race conditions: 313 * 314 * if (!list_empty_rcu(mylist)) { 315 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 316 * do_something(bar); 317 * } 318 * 319 * The list might be non-empty when list_empty_rcu() checks it, but it 320 * might have become empty by the time that list_first_entry_rcu() rereads 321 * the ->next pointer, which would result in a SEGV. 322 * 323 * When not using RCU, it is OK for list_first_entry() to re-read that 324 * pointer because both functions should be protected by some lock that 325 * blocks writers. 326 * 327 * When using RCU, list_empty() uses READ_ONCE() to fetch the 328 * RCU-protected ->next pointer and then compares it to the address of the 329 * list head. However, it neither dereferences this pointer nor provides 330 * this pointer to its caller. Thus, READ_ONCE() suffices (that is, 331 * rcu_dereference() is not needed), which means that list_empty() can be 332 * used anywhere you would want to use list_empty_rcu(). Just don't 333 * expect anything useful to happen if you do a subsequent lockless 334 * call to list_first_entry_rcu()!!! 335 * 336 * See list_first_or_null_rcu for an alternative. 337 */ 338 339 /** 340 * list_first_or_null_rcu - get the first element from a list 341 * @ptr: the list head to take the element from. 342 * @type: the type of the struct this is embedded in. 343 * @member: the name of the list_head within the struct. 344 * 345 * Note that if the list is empty, it returns NULL. 346 * 347 * This primitive may safely run concurrently with the _rcu list-mutation 348 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 349 */ 350 #define list_first_or_null_rcu(ptr, type, member) \ 351 ({ \ 352 struct list_head *__ptr = (ptr); \ 353 struct list_head *__next = READ_ONCE(__ptr->next); \ 354 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 355 }) 356 357 /** 358 * list_next_or_null_rcu - get the next element from a list 359 * @head: the head for the list. 360 * @ptr: the list head to take the next element from. 361 * @type: the type of the struct this is embedded in. 362 * @member: the name of the list_head within the struct. 363 * 364 * Note that if the ptr is at the end of the list, NULL is returned. 365 * 366 * This primitive may safely run concurrently with the _rcu list-mutation 367 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 368 */ 369 #define list_next_or_null_rcu(head, ptr, type, member) \ 370 ({ \ 371 struct list_head *__head = (head); \ 372 struct list_head *__ptr = (ptr); \ 373 struct list_head *__next = READ_ONCE(__ptr->next); \ 374 likely(__next != __head) ? list_entry_rcu(__next, type, \ 375 member) : NULL; \ 376 }) 377 378 /** 379 * list_for_each_entry_rcu - iterate over rcu list of given type 380 * @pos: the type * to use as a loop cursor. 381 * @head: the head for your list. 382 * @member: the name of the list_head within the struct. 383 * @cond: optional lockdep expression if called from non-RCU protection. 384 * 385 * This list-traversal primitive may safely run concurrently with 386 * the _rcu list-mutation primitives such as list_add_rcu() 387 * as long as the traversal is guarded by rcu_read_lock(). 388 */ 389 #define list_for_each_entry_rcu(pos, head, member, cond...) \ 390 for (__list_check_rcu(dummy, ## cond, 0), \ 391 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 392 &pos->member != (head); \ 393 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 394 395 /** 396 * list_for_each_entry_srcu - iterate over rcu list of given type 397 * @pos: the type * to use as a loop cursor. 398 * @head: the head for your list. 399 * @member: the name of the list_head within the struct. 400 * @cond: lockdep expression for the lock required to traverse the list. 401 * 402 * This list-traversal primitive may safely run concurrently with 403 * the _rcu list-mutation primitives such as list_add_rcu() 404 * as long as the traversal is guarded by srcu_read_lock(). 405 * The lockdep expression srcu_read_lock_held() can be passed as the 406 * cond argument from read side. 407 */ 408 #define list_for_each_entry_srcu(pos, head, member, cond) \ 409 for (__list_check_srcu(cond), \ 410 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 411 &pos->member != (head); \ 412 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 413 414 /** 415 * list_entry_lockless - get the struct for this entry 416 * @ptr: the &struct list_head pointer. 417 * @type: the type of the struct this is embedded in. 418 * @member: the name of the list_head within the struct. 419 * 420 * This primitive may safely run concurrently with the _rcu 421 * list-mutation primitives such as list_add_rcu(), but requires some 422 * implicit RCU read-side guarding. One example is running within a special 423 * exception-time environment where preemption is disabled and where lockdep 424 * cannot be invoked. Another example is when items are added to the list, 425 * but never deleted. 426 */ 427 #define list_entry_lockless(ptr, type, member) \ 428 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 429 430 /** 431 * list_for_each_entry_lockless - iterate over rcu list of given type 432 * @pos: the type * to use as a loop cursor. 433 * @head: the head for your list. 434 * @member: the name of the list_struct within the struct. 435 * 436 * This primitive may safely run concurrently with the _rcu 437 * list-mutation primitives such as list_add_rcu(), but requires some 438 * implicit RCU read-side guarding. One example is running within a special 439 * exception-time environment where preemption is disabled and where lockdep 440 * cannot be invoked. Another example is when items are added to the list, 441 * but never deleted. 442 */ 443 #define list_for_each_entry_lockless(pos, head, member) \ 444 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 445 &pos->member != (head); \ 446 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 447 448 /** 449 * list_for_each_entry_continue_rcu - continue iteration over list of given type 450 * @pos: the type * to use as a loop cursor. 451 * @head: the head for your list. 452 * @member: the name of the list_head within the struct. 453 * 454 * Continue to iterate over list of given type, continuing after 455 * the current position which must have been in the list when the RCU read 456 * lock was taken. 457 * This would typically require either that you obtained the node from a 458 * previous walk of the list in the same RCU read-side critical section, or 459 * that you held some sort of non-RCU reference (such as a reference count) 460 * to keep the node alive *and* in the list. 461 * 462 * This iterator is similar to list_for_each_entry_from_rcu() except 463 * this starts after the given position and that one starts at the given 464 * position. 465 */ 466 #define list_for_each_entry_continue_rcu(pos, head, member) \ 467 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 468 &pos->member != (head); \ 469 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 470 471 /** 472 * list_for_each_entry_from_rcu - iterate over a list from current point 473 * @pos: the type * to use as a loop cursor. 474 * @head: the head for your list. 475 * @member: the name of the list_node within the struct. 476 * 477 * Iterate over the tail of a list starting from a given position, 478 * which must have been in the list when the RCU read lock was taken. 479 * This would typically require either that you obtained the node from a 480 * previous walk of the list in the same RCU read-side critical section, or 481 * that you held some sort of non-RCU reference (such as a reference count) 482 * to keep the node alive *and* in the list. 483 * 484 * This iterator is similar to list_for_each_entry_continue_rcu() except 485 * this starts from the given position and that one starts from the position 486 * after the given position. 487 */ 488 #define list_for_each_entry_from_rcu(pos, head, member) \ 489 for (; &(pos)->member != (head); \ 490 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 491 492 /** 493 * hlist_del_rcu - deletes entry from hash list without re-initialization 494 * @n: the element to delete from the hash list. 495 * 496 * Note: list_unhashed() on entry does not return true after this, 497 * the entry is in an undefined state. It is useful for RCU based 498 * lockfree traversal. 499 * 500 * In particular, it means that we can not poison the forward 501 * pointers that may still be used for walking the hash list. 502 * 503 * The caller must take whatever precautions are necessary 504 * (such as holding appropriate locks) to avoid racing 505 * with another list-mutation primitive, such as hlist_add_head_rcu() 506 * or hlist_del_rcu(), running on this same list. 507 * However, it is perfectly legal to run concurrently with 508 * the _rcu list-traversal primitives, such as 509 * hlist_for_each_entry(). 510 */ 511 static inline void hlist_del_rcu(struct hlist_node *n) 512 { 513 __hlist_del(n); 514 WRITE_ONCE(n->pprev, LIST_POISON2); 515 } 516 517 /** 518 * hlist_replace_rcu - replace old entry by new one 519 * @old : the element to be replaced 520 * @new : the new element to insert 521 * 522 * The @old entry will be replaced with the @new entry atomically. 523 */ 524 static inline void hlist_replace_rcu(struct hlist_node *old, 525 struct hlist_node *new) 526 { 527 struct hlist_node *next = old->next; 528 529 new->next = next; 530 WRITE_ONCE(new->pprev, old->pprev); 531 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 532 if (next) 533 WRITE_ONCE(new->next->pprev, &new->next); 534 WRITE_ONCE(old->pprev, LIST_POISON2); 535 } 536 537 /** 538 * hlists_swap_heads_rcu - swap the lists the hlist heads point to 539 * @left: The hlist head on the left 540 * @right: The hlist head on the right 541 * 542 * The lists start out as [@left ][node1 ... ] and 543 * [@right ][node2 ... ] 544 * The lists end up as [@left ][node2 ... ] 545 * [@right ][node1 ... ] 546 */ 547 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) 548 { 549 struct hlist_node *node1 = left->first; 550 struct hlist_node *node2 = right->first; 551 552 rcu_assign_pointer(left->first, node2); 553 rcu_assign_pointer(right->first, node1); 554 WRITE_ONCE(node2->pprev, &left->first); 555 WRITE_ONCE(node1->pprev, &right->first); 556 } 557 558 /* 559 * return the first or the next element in an RCU protected hlist 560 */ 561 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 562 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 563 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 564 565 /** 566 * hlist_add_head_rcu 567 * @n: the element to add to the hash list. 568 * @h: the list to add to. 569 * 570 * Description: 571 * Adds the specified element to the specified hlist, 572 * while permitting racing traversals. 573 * 574 * The caller must take whatever precautions are necessary 575 * (such as holding appropriate locks) to avoid racing 576 * with another list-mutation primitive, such as hlist_add_head_rcu() 577 * or hlist_del_rcu(), running on this same list. 578 * However, it is perfectly legal to run concurrently with 579 * the _rcu list-traversal primitives, such as 580 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 581 * problems on Alpha CPUs. Regardless of the type of CPU, the 582 * list-traversal primitive must be guarded by rcu_read_lock(). 583 */ 584 static inline void hlist_add_head_rcu(struct hlist_node *n, 585 struct hlist_head *h) 586 { 587 struct hlist_node *first = h->first; 588 589 n->next = first; 590 WRITE_ONCE(n->pprev, &h->first); 591 rcu_assign_pointer(hlist_first_rcu(h), n); 592 if (first) 593 WRITE_ONCE(first->pprev, &n->next); 594 } 595 596 /** 597 * hlist_add_tail_rcu 598 * @n: the element to add to the hash list. 599 * @h: the list to add to. 600 * 601 * Description: 602 * Adds the specified element to the specified hlist, 603 * while permitting racing traversals. 604 * 605 * The caller must take whatever precautions are necessary 606 * (such as holding appropriate locks) to avoid racing 607 * with another list-mutation primitive, such as hlist_add_head_rcu() 608 * or hlist_del_rcu(), running on this same list. 609 * However, it is perfectly legal to run concurrently with 610 * the _rcu list-traversal primitives, such as 611 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 612 * problems on Alpha CPUs. Regardless of the type of CPU, the 613 * list-traversal primitive must be guarded by rcu_read_lock(). 614 */ 615 static inline void hlist_add_tail_rcu(struct hlist_node *n, 616 struct hlist_head *h) 617 { 618 struct hlist_node *i, *last = NULL; 619 620 /* Note: write side code, so rcu accessors are not needed. */ 621 for (i = h->first; i; i = i->next) 622 last = i; 623 624 if (last) { 625 n->next = last->next; 626 WRITE_ONCE(n->pprev, &last->next); 627 rcu_assign_pointer(hlist_next_rcu(last), n); 628 } else { 629 hlist_add_head_rcu(n, h); 630 } 631 } 632 633 /** 634 * hlist_add_before_rcu 635 * @n: the new element to add to the hash list. 636 * @next: the existing element to add the new element before. 637 * 638 * Description: 639 * Adds the specified element to the specified hlist 640 * before the specified node while permitting racing traversals. 641 * 642 * The caller must take whatever precautions are necessary 643 * (such as holding appropriate locks) to avoid racing 644 * with another list-mutation primitive, such as hlist_add_head_rcu() 645 * or hlist_del_rcu(), running on this same list. 646 * However, it is perfectly legal to run concurrently with 647 * the _rcu list-traversal primitives, such as 648 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 649 * problems on Alpha CPUs. 650 */ 651 static inline void hlist_add_before_rcu(struct hlist_node *n, 652 struct hlist_node *next) 653 { 654 WRITE_ONCE(n->pprev, next->pprev); 655 n->next = next; 656 rcu_assign_pointer(hlist_pprev_rcu(n), n); 657 WRITE_ONCE(next->pprev, &n->next); 658 } 659 660 /** 661 * hlist_add_behind_rcu 662 * @n: the new element to add to the hash list. 663 * @prev: the existing element to add the new element after. 664 * 665 * Description: 666 * Adds the specified element to the specified hlist 667 * after the specified node while permitting racing traversals. 668 * 669 * The caller must take whatever precautions are necessary 670 * (such as holding appropriate locks) to avoid racing 671 * with another list-mutation primitive, such as hlist_add_head_rcu() 672 * or hlist_del_rcu(), running on this same list. 673 * However, it is perfectly legal to run concurrently with 674 * the _rcu list-traversal primitives, such as 675 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 676 * problems on Alpha CPUs. 677 */ 678 static inline void hlist_add_behind_rcu(struct hlist_node *n, 679 struct hlist_node *prev) 680 { 681 n->next = prev->next; 682 WRITE_ONCE(n->pprev, &prev->next); 683 rcu_assign_pointer(hlist_next_rcu(prev), n); 684 if (n->next) 685 WRITE_ONCE(n->next->pprev, &n->next); 686 } 687 688 #define __hlist_for_each_rcu(pos, head) \ 689 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 690 pos; \ 691 pos = rcu_dereference(hlist_next_rcu(pos))) 692 693 /** 694 * hlist_for_each_entry_rcu - iterate over rcu list of given type 695 * @pos: the type * to use as a loop cursor. 696 * @head: the head for your list. 697 * @member: the name of the hlist_node within the struct. 698 * @cond: optional lockdep expression if called from non-RCU protection. 699 * 700 * This list-traversal primitive may safely run concurrently with 701 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 702 * as long as the traversal is guarded by rcu_read_lock(). 703 */ 704 #define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 705 for (__list_check_rcu(dummy, ## cond, 0), \ 706 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 707 typeof(*(pos)), member); \ 708 pos; \ 709 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 710 &(pos)->member)), typeof(*(pos)), member)) 711 712 /** 713 * hlist_for_each_entry_srcu - iterate over rcu list of given type 714 * @pos: the type * to use as a loop cursor. 715 * @head: the head for your list. 716 * @member: the name of the hlist_node within the struct. 717 * @cond: lockdep expression for the lock required to traverse the list. 718 * 719 * This list-traversal primitive may safely run concurrently with 720 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 721 * as long as the traversal is guarded by srcu_read_lock(). 722 * The lockdep expression srcu_read_lock_held() can be passed as the 723 * cond argument from read side. 724 */ 725 #define hlist_for_each_entry_srcu(pos, head, member, cond) \ 726 for (__list_check_srcu(cond), \ 727 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 728 typeof(*(pos)), member); \ 729 pos; \ 730 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 731 &(pos)->member)), typeof(*(pos)), member)) 732 733 /** 734 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 735 * @pos: the type * to use as a loop cursor. 736 * @head: the head for your list. 737 * @member: the name of the hlist_node within the struct. 738 * 739 * This list-traversal primitive may safely run concurrently with 740 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 741 * as long as the traversal is guarded by rcu_read_lock(). 742 * 743 * This is the same as hlist_for_each_entry_rcu() except that it does 744 * not do any RCU debugging or tracing. 745 */ 746 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 747 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 748 typeof(*(pos)), member); \ 749 pos; \ 750 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 751 &(pos)->member)), typeof(*(pos)), member)) 752 753 /** 754 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 755 * @pos: the type * to use as a loop cursor. 756 * @head: the head for your list. 757 * @member: the name of the hlist_node within the struct. 758 * 759 * This list-traversal primitive may safely run concurrently with 760 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 761 * as long as the traversal is guarded by rcu_read_lock(). 762 */ 763 #define hlist_for_each_entry_rcu_bh(pos, head, member) \ 764 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 765 typeof(*(pos)), member); \ 766 pos; \ 767 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 768 &(pos)->member)), typeof(*(pos)), member)) 769 770 /** 771 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 772 * @pos: the type * to use as a loop cursor. 773 * @member: the name of the hlist_node within the struct. 774 */ 775 #define hlist_for_each_entry_continue_rcu(pos, member) \ 776 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 777 &(pos)->member)), typeof(*(pos)), member); \ 778 pos; \ 779 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 780 &(pos)->member)), typeof(*(pos)), member)) 781 782 /** 783 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 784 * @pos: the type * to use as a loop cursor. 785 * @member: the name of the hlist_node within the struct. 786 */ 787 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 788 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 789 &(pos)->member)), typeof(*(pos)), member); \ 790 pos; \ 791 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 792 &(pos)->member)), typeof(*(pos)), member)) 793 794 /** 795 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 796 * @pos: the type * to use as a loop cursor. 797 * @member: the name of the hlist_node within the struct. 798 */ 799 #define hlist_for_each_entry_from_rcu(pos, member) \ 800 for (; pos; \ 801 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 802 &(pos)->member)), typeof(*(pos)), member)) 803 804 #endif /* __KERNEL__ */ 805 #endif 806
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.