~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/skbuff.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  *      Definitions for the 'struct sk_buff' memory handlers.
  4  *
  5  *      Authors:
  6  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  7  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
  8  */
  9 
 10 #ifndef _LINUX_SKBUFF_H
 11 #define _LINUX_SKBUFF_H
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/compiler.h>
 15 #include <linux/time.h>
 16 #include <linux/bug.h>
 17 #include <linux/bvec.h>
 18 #include <linux/cache.h>
 19 #include <linux/rbtree.h>
 20 #include <linux/socket.h>
 21 #include <linux/refcount.h>
 22 
 23 #include <linux/atomic.h>
 24 #include <asm/types.h>
 25 #include <linux/spinlock.h>
 26 #include <net/checksum.h>
 27 #include <linux/rcupdate.h>
 28 #include <linux/dma-mapping.h>
 29 #include <linux/netdev_features.h>
 30 #include <net/flow_dissector.h>
 31 #include <linux/in6.h>
 32 #include <linux/if_packet.h>
 33 #include <linux/llist.h>
 34 #include <net/flow.h>
 35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 36 #include <linux/netfilter/nf_conntrack_common.h>
 37 #endif
 38 #include <net/net_debug.h>
 39 #include <net/dropreason-core.h>
 40 #include <net/netmem.h>
 41 
 42 /**
 43  * DOC: skb checksums
 44  *
 45  * The interface for checksum offload between the stack and networking drivers
 46  * is as follows...
 47  *
 48  * IP checksum related features
 49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 50  *
 51  * Drivers advertise checksum offload capabilities in the features of a device.
 52  * From the stack's point of view these are capabilities offered by the driver.
 53  * A driver typically only advertises features that it is capable of offloading
 54  * to its device.
 55  *
 56  * .. flat-table:: Checksum related device features
 57  *   :widths: 1 10
 58  *
 59  *   * - %NETIF_F_HW_CSUM
 60  *     - The driver (or its device) is able to compute one
 61  *       IP (one's complement) checksum for any combination
 62  *       of protocols or protocol layering. The checksum is
 63  *       computed and set in a packet per the CHECKSUM_PARTIAL
 64  *       interface (see below).
 65  *
 66  *   * - %NETIF_F_IP_CSUM
 67  *     - Driver (device) is only able to checksum plain
 68  *       TCP or UDP packets over IPv4. These are specifically
 69  *       unencapsulated packets of the form IPv4|TCP or
 70  *       IPv4|UDP where the Protocol field in the IPv4 header
 71  *       is TCP or UDP. The IPv4 header may contain IP options.
 72  *       This feature cannot be set in features for a device
 73  *       with NETIF_F_HW_CSUM also set. This feature is being
 74  *       DEPRECATED (see below).
 75  *
 76  *   * - %NETIF_F_IPV6_CSUM
 77  *     - Driver (device) is only able to checksum plain
 78  *       TCP or UDP packets over IPv6. These are specifically
 79  *       unencapsulated packets of the form IPv6|TCP or
 80  *       IPv6|UDP where the Next Header field in the IPv6
 81  *       header is either TCP or UDP. IPv6 extension headers
 82  *       are not supported with this feature. This feature
 83  *       cannot be set in features for a device with
 84  *       NETIF_F_HW_CSUM also set. This feature is being
 85  *       DEPRECATED (see below).
 86  *
 87  *   * - %NETIF_F_RXCSUM
 88  *     - Driver (device) performs receive checksum offload.
 89  *       This flag is only used to disable the RX checksum
 90  *       feature for a device. The stack will accept receive
 91  *       checksum indication in packets received on a device
 92  *       regardless of whether NETIF_F_RXCSUM is set.
 93  *
 94  * Checksumming of received packets by device
 95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 96  *
 97  * Indication of checksum verification is set in &sk_buff.ip_summed.
 98  * Possible values are:
 99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *       offloading the SCTP CRC in a packet. To perform this offload the stack
217  *       will set csum_start and csum_offset accordingly, set ip_summed to
218  *       %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *       in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *       A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *       must verify which offload is configured for a packet by testing the
222  *       value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *       resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *       CRC in a packet. To perform this offload the stack will set ip_summed
228  *       to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *       accordingly. Note that there is no indication in the skbuff that the
230  *       %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *       both IP checksum offload and FCOE CRC offload must verify which offload
232  *       is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE           0
248 #define CHECKSUM_UNNECESSARY    1
249 #define CHECKSUM_COMPLETE       2
250 #define CHECKSUM_PARTIAL        3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL      3
254 
255 #define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)    \
257         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +                                          \
273                          SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
274                          SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289         enum {
290                 BRNF_PROTO_UNCHANGED,
291                 BRNF_PROTO_8021Q,
292                 BRNF_PROTO_PPPOE
293         } orig_proto:8;
294         u8                      pkt_otherhost:1;
295         u8                      in_prerouting:1;
296         u8                      bridged_dnat:1;
297         u8                      sabotage_in_done:1;
298         __u16                   frag_max_size;
299         int                     physinif;
300 
301         /* always valid & non-NULL from FORWARD on, for physdev match */
302         struct net_device       *physoutdev;
303         union {
304                 /* prerouting: detect dnat in orig/reply direction */
305                 __be32          ipv4_daddr;
306                 struct in6_addr ipv6_daddr;
307 
308                 /* after prerouting + nat detected: store original source
309                  * mac since neigh resolution overwrites it, only used while
310                  * skb is out in neigh layer.
311                  */
312                 char neigh_header[8];
313         };
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323         union {
324                 u64 act_miss_cookie;
325                 __u32 chain;
326         };
327         __u16 mru;
328         __u16 zone;
329         u8 post_ct:1;
330         u8 post_ct_snat:1;
331         u8 post_ct_dnat:1;
332         u8 act_miss:1; /* Set if act_miss_cookie is used */
333         u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338         /* These two members must be first to match sk_buff. */
339         struct_group_tagged(sk_buff_list, list,
340                 struct sk_buff  *next;
341                 struct sk_buff  *prev;
342         );
343 
344         __u32           qlen;
345         spinlock_t      lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS    0xFFFF
360 
361 typedef struct skb_frag {
362         netmem_ref netmem;
363         unsigned int len;
364         unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373         return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383         frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393         frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403         frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413         if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414                 return true;
415 #endif
416         return false;
417 }
418 
419 /**
420  *      skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *      @f:             skb frag to operate on
423  *      @f_off:         offset from start of f->netmem
424  *      @f_len:         length from f_off to loop over
425  *      @p:             (temp var) current page
426  *      @p_off:         (temp var) offset from start of current page,
427  *                                 non-zero only on first page.
428  *      @p_len:         (temp var) length in current page,
429  *                                 < PAGE_SIZE only on first and last page.
430  *      @copied:        (temp var) length so far, excluding current p_len.
431  *
432  *      A fragment can hold a compound page, in which case per-page
433  *      operations, notably kmap_atomic, must be called for each
434  *      regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
437         for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
438              p_off = (f_off) & (PAGE_SIZE - 1),                         \
439              p_len = skb_frag_must_loop(p) ?                            \
440              min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
441              copied = 0;                                                \
442              copied < f_len;                                            \
443              copied += p_len, p++, p_off = 0,                           \
444              p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:           hardware time stamp transformed into duration
449  *                      since arbitrary point in time
450  * @netdev_data:        address/cookie of network device driver used as
451  *                      reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463         union {
464                 ktime_t hwtstamp;
465                 void *netdev_data;
466         };
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471         /* generate hardware time stamp */
472         SKBTX_HW_TSTAMP = 1 << 0,
473 
474         /* generate software time stamp when queueing packet to NIC */
475         SKBTX_SW_TSTAMP = 1 << 1,
476 
477         /* device driver is going to provide hardware time stamp */
478         SKBTX_IN_PROGRESS = 1 << 2,
479 
480         /* generate hardware time stamp based on cycles if supported */
481         SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482 
483         /* generate wifi status information (where possible) */
484         SKBTX_WIFI_STATUS = 1 << 4,
485 
486         /* determine hardware time stamp based on time or cycles */
487         SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488 
489         /* generate software time stamp when entering packet scheduling */
490         SKBTX_SCHED_TSTAMP = 1 << 6,
491 };
492 
493 #define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
494                                  SKBTX_SCHED_TSTAMP)
495 #define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | \
496                                  SKBTX_HW_TSTAMP_USE_CYCLES | \
497                                  SKBTX_ANY_SW_TSTAMP)
498 
499 /* Definitions for flags in struct skb_shared_info */
500 enum {
501         /* use zcopy routines */
502         SKBFL_ZEROCOPY_ENABLE = BIT(0),
503 
504         /* This indicates at least one fragment might be overwritten
505          * (as in vmsplice(), sendfile() ...)
506          * If we need to compute a TX checksum, we'll need to copy
507          * all frags to avoid possible bad checksum
508          */
509         SKBFL_SHARED_FRAG = BIT(1),
510 
511         /* segment contains only zerocopy data and should not be
512          * charged to the kernel memory.
513          */
514         SKBFL_PURE_ZEROCOPY = BIT(2),
515 
516         SKBFL_DONT_ORPHAN = BIT(3),
517 
518         /* page references are managed by the ubuf_info, so it's safe to
519          * use frags only up until ubuf_info is released
520          */
521         SKBFL_MANAGED_FRAG_REFS = BIT(4),
522 };
523 
524 #define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY      (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526                                  SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
527 
528 struct ubuf_info_ops {
529         void (*complete)(struct sk_buff *, struct ubuf_info *,
530                          bool zerocopy_success);
531         /* has to be compatible with skb_zcopy_set() */
532         int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
533 };
534 
535 /*
536  * The callback notifies userspace to release buffers when skb DMA is done in
537  * lower device, the skb last reference should be 0 when calling this.
538  * The zerocopy_success argument is true if zero copy transmit occurred,
539  * false on data copy or out of memory error caused by data copy attempt.
540  * The ctx field is used to track device context.
541  * The desc field is used to track userspace buffer index.
542  */
543 struct ubuf_info {
544         const struct ubuf_info_ops *ops;
545         refcount_t refcnt;
546         u8 flags;
547 };
548 
549 struct ubuf_info_msgzc {
550         struct ubuf_info ubuf;
551 
552         union {
553                 struct {
554                         unsigned long desc;
555                         void *ctx;
556                 };
557                 struct {
558                         u32 id;
559                         u16 len;
560                         u16 zerocopy:1;
561                         u32 bytelen;
562                 };
563         };
564 
565         struct mmpin {
566                 struct user_struct *user;
567                 unsigned int num_pg;
568         } mmp;
569 };
570 
571 #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
572 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573                                              ubuf)
574 
575 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576 void mm_unaccount_pinned_pages(struct mmpin *mmp);
577 
578 /* Preserve some data across TX submission and completion.
579  *
580  * Note, this state is stored in the driver. Extending the layout
581  * might need some special care.
582  */
583 struct xsk_tx_metadata_compl {
584         __u64 *tx_timestamp;
585 };
586 
587 /* This data is invariant across clones and lives at
588  * the end of the header data, ie. at skb->end.
589  */
590 struct skb_shared_info {
591         __u8            flags;
592         __u8            meta_len;
593         __u8            nr_frags;
594         __u8            tx_flags;
595         unsigned short  gso_size;
596         /* Warning: this field is not always filled in (UFO)! */
597         unsigned short  gso_segs;
598         struct sk_buff  *frag_list;
599         union {
600                 struct skb_shared_hwtstamps hwtstamps;
601                 struct xsk_tx_metadata_compl xsk_meta;
602         };
603         unsigned int    gso_type;
604         u32             tskey;
605 
606         /*
607          * Warning : all fields before dataref are cleared in __alloc_skb()
608          */
609         atomic_t        dataref;
610         unsigned int    xdp_frags_size;
611 
612         /* Intermediate layers must ensure that destructor_arg
613          * remains valid until skb destructor */
614         void *          destructor_arg;
615 
616         /* must be last field, see pskb_expand_head() */
617         skb_frag_t      frags[MAX_SKB_FRAGS];
618 };
619 
620 /**
621  * DOC: dataref and headerless skbs
622  *
623  * Transport layers send out clones of payload skbs they hold for
624  * retransmissions. To allow lower layers of the stack to prepend their headers
625  * we split &skb_shared_info.dataref into two halves.
626  * The lower 16 bits count the overall number of references.
627  * The higher 16 bits indicate how many of the references are payload-only.
628  * skb_header_cloned() checks if skb is allowed to add / write the headers.
629  *
630  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631  * (via __skb_header_release()). Any clone created from marked skb will get
632  * &sk_buff.hdr_len populated with the available headroom.
633  * If there's the only clone in existence it's able to modify the headroom
634  * at will. The sequence of calls inside the transport layer is::
635  *
636  *  <alloc skb>
637  *  skb_reserve()
638  *  __skb_header_release()
639  *  skb_clone()
640  *  // send the clone down the stack
641  *
642  * This is not a very generic construct and it depends on the transport layers
643  * doing the right thing. In practice there's usually only one payload-only skb.
644  * Having multiple payload-only skbs with different lengths of hdr_len is not
645  * possible. The payload-only skbs should never leave their owner.
646  */
647 #define SKB_DATAREF_SHIFT 16
648 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649 
650 
651 enum {
652         SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
653         SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
654         SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
655 };
656 
657 enum {
658         SKB_GSO_TCPV4 = 1 << 0,
659 
660         /* This indicates the skb is from an untrusted source. */
661         SKB_GSO_DODGY = 1 << 1,
662 
663         /* This indicates the tcp segment has CWR set. */
664         SKB_GSO_TCP_ECN = 1 << 2,
665 
666         SKB_GSO_TCP_FIXEDID = 1 << 3,
667 
668         SKB_GSO_TCPV6 = 1 << 4,
669 
670         SKB_GSO_FCOE = 1 << 5,
671 
672         SKB_GSO_GRE = 1 << 6,
673 
674         SKB_GSO_GRE_CSUM = 1 << 7,
675 
676         SKB_GSO_IPXIP4 = 1 << 8,
677 
678         SKB_GSO_IPXIP6 = 1 << 9,
679 
680         SKB_GSO_UDP_TUNNEL = 1 << 10,
681 
682         SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
683 
684         SKB_GSO_PARTIAL = 1 << 12,
685 
686         SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
687 
688         SKB_GSO_SCTP = 1 << 14,
689 
690         SKB_GSO_ESP = 1 << 15,
691 
692         SKB_GSO_UDP = 1 << 16,
693 
694         SKB_GSO_UDP_L4 = 1 << 17,
695 
696         SKB_GSO_FRAGLIST = 1 << 18,
697 };
698 
699 #if BITS_PER_LONG > 32
700 #define NET_SKBUFF_DATA_USES_OFFSET 1
701 #endif
702 
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 typedef unsigned int sk_buff_data_t;
705 #else
706 typedef unsigned char *sk_buff_data_t;
707 #endif
708 
709 enum skb_tstamp_type {
710         SKB_CLOCK_REALTIME,
711         SKB_CLOCK_MONOTONIC,
712         SKB_CLOCK_TAI,
713         __SKB_CLOCK_MAX = SKB_CLOCK_TAI,
714 };
715 
716 /**
717  * DOC: Basic sk_buff geometry
718  *
719  * struct sk_buff itself is a metadata structure and does not hold any packet
720  * data. All the data is held in associated buffers.
721  *
722  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
723  * into two parts:
724  *
725  *  - data buffer, containing headers and sometimes payload;
726  *    this is the part of the skb operated on by the common helpers
727  *    such as skb_put() or skb_pull();
728  *  - shared info (struct skb_shared_info) which holds an array of pointers
729  *    to read-only data in the (page, offset, length) format.
730  *
731  * Optionally &skb_shared_info.frag_list may point to another skb.
732  *
733  * Basic diagram may look like this::
734  *
735  *                                  ---------------
736  *                                 | sk_buff       |
737  *                                  ---------------
738  *     ,---------------------------  + head
739  *    /          ,-----------------  + data
740  *   /          /      ,-----------  + tail
741  *  |          |      |            , + end
742  *  |          |      |           |
743  *  v          v      v           v
744  *   -----------------------------------------------
745  *  | headroom | data |  tailroom | skb_shared_info |
746  *   -----------------------------------------------
747  *                                 + [page frag]
748  *                                 + [page frag]
749  *                                 + [page frag]
750  *                                 + [page frag]       ---------
751  *                                 + frag_list    --> | sk_buff |
752  *                                                     ---------
753  *
754  */
755 
756 /**
757  *      struct sk_buff - socket buffer
758  *      @next: Next buffer in list
759  *      @prev: Previous buffer in list
760  *      @tstamp: Time we arrived/left
761  *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
762  *              for retransmit timer
763  *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
764  *      @list: queue head
765  *      @ll_node: anchor in an llist (eg socket defer_list)
766  *      @sk: Socket we are owned by
767  *      @dev: Device we arrived on/are leaving by
768  *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
769  *      @cb: Control buffer. Free for use by every layer. Put private vars here
770  *      @_skb_refdst: destination entry (with norefcount bit)
771  *      @len: Length of actual data
772  *      @data_len: Data length
773  *      @mac_len: Length of link layer header
774  *      @hdr_len: writable header length of cloned skb
775  *      @csum: Checksum (must include start/offset pair)
776  *      @csum_start: Offset from skb->head where checksumming should start
777  *      @csum_offset: Offset from csum_start where checksum should be stored
778  *      @priority: Packet queueing priority
779  *      @ignore_df: allow local fragmentation
780  *      @cloned: Head may be cloned (check refcnt to be sure)
781  *      @ip_summed: Driver fed us an IP checksum
782  *      @nohdr: Payload reference only, must not modify header
783  *      @pkt_type: Packet class
784  *      @fclone: skbuff clone status
785  *      @ipvs_property: skbuff is owned by ipvs
786  *      @inner_protocol_type: whether the inner protocol is
787  *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
788  *      @remcsum_offload: remote checksum offload is enabled
789  *      @offload_fwd_mark: Packet was L2-forwarded in hardware
790  *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
791  *      @tc_skip_classify: do not classify packet. set by IFB device
792  *      @tc_at_ingress: used within tc_classify to distinguish in/egress
793  *      @redirected: packet was redirected by packet classifier
794  *      @from_ingress: packet was redirected from the ingress path
795  *      @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
796  *      @peeked: this packet has been seen already, so stats have been
797  *              done for it, don't do them again
798  *      @nf_trace: netfilter packet trace flag
799  *      @protocol: Packet protocol from driver
800  *      @destructor: Destruct function
801  *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
802  *      @_sk_redir: socket redirection information for skmsg
803  *      @_nfct: Associated connection, if any (with nfctinfo bits)
804  *      @skb_iif: ifindex of device we arrived on
805  *      @tc_index: Traffic control index
806  *      @hash: the packet hash
807  *      @queue_mapping: Queue mapping for multiqueue devices
808  *      @head_frag: skb was allocated from page fragments,
809  *              not allocated by kmalloc() or vmalloc().
810  *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
811  *      @pp_recycle: mark the packet for recycling instead of freeing (implies
812  *              page_pool support on driver)
813  *      @active_extensions: active extensions (skb_ext_id types)
814  *      @ndisc_nodetype: router type (from link layer)
815  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
816  *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
817  *              ports.
818  *      @sw_hash: indicates hash was computed in software stack
819  *      @wifi_acked_valid: wifi_acked was set
820  *      @wifi_acked: whether frame was acked on wifi or not
821  *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
822  *      @encapsulation: indicates the inner headers in the skbuff are valid
823  *      @encap_hdr_csum: software checksum is needed
824  *      @csum_valid: checksum is already valid
825  *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
826  *      @csum_complete_sw: checksum was completed by software
827  *      @csum_level: indicates the number of consecutive checksums found in
828  *              the packet minus one that have been verified as
829  *              CHECKSUM_UNNECESSARY (max 3)
830  *      @dst_pending_confirm: need to confirm neighbour
831  *      @decrypted: Decrypted SKB
832  *      @slow_gro: state present at GRO time, slower prepare step required
833  *      @tstamp_type: When set, skb->tstamp has the
834  *              delivery_time clock base of skb->tstamp.
835  *      @napi_id: id of the NAPI struct this skb came from
836  *      @sender_cpu: (aka @napi_id) source CPU in XPS
837  *      @alloc_cpu: CPU which did the skb allocation.
838  *      @secmark: security marking
839  *      @mark: Generic packet mark
840  *      @reserved_tailroom: (aka @mark) number of bytes of free space available
841  *              at the tail of an sk_buff
842  *      @vlan_all: vlan fields (proto & tci)
843  *      @vlan_proto: vlan encapsulation protocol
844  *      @vlan_tci: vlan tag control information
845  *      @inner_protocol: Protocol (encapsulation)
846  *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
847  *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
848  *      @inner_transport_header: Inner transport layer header (encapsulation)
849  *      @inner_network_header: Network layer header (encapsulation)
850  *      @inner_mac_header: Link layer header (encapsulation)
851  *      @transport_header: Transport layer header
852  *      @network_header: Network layer header
853  *      @mac_header: Link layer header
854  *      @kcov_handle: KCOV remote handle for remote coverage collection
855  *      @tail: Tail pointer
856  *      @end: End pointer
857  *      @head: Head of buffer
858  *      @data: Data head pointer
859  *      @truesize: Buffer size
860  *      @users: User count - see {datagram,tcp}.c
861  *      @extensions: allocated extensions, valid if active_extensions is nonzero
862  */
863 
864 struct sk_buff {
865         union {
866                 struct {
867                         /* These two members must be first to match sk_buff_head. */
868                         struct sk_buff          *next;
869                         struct sk_buff          *prev;
870 
871                         union {
872                                 struct net_device       *dev;
873                                 /* Some protocols might use this space to store information,
874                                  * while device pointer would be NULL.
875                                  * UDP receive path is one user.
876                                  */
877                                 unsigned long           dev_scratch;
878                         };
879                 };
880                 struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
881                 struct list_head        list;
882                 struct llist_node       ll_node;
883         };
884 
885         struct sock             *sk;
886 
887         union {
888                 ktime_t         tstamp;
889                 u64             skb_mstamp_ns; /* earliest departure time */
890         };
891         /*
892          * This is the control buffer. It is free to use for every
893          * layer. Please put your private variables there. If you
894          * want to keep them across layers you have to do a skb_clone()
895          * first. This is owned by whoever has the skb queued ATM.
896          */
897         char                    cb[48] __aligned(8);
898 
899         union {
900                 struct {
901                         unsigned long   _skb_refdst;
902                         void            (*destructor)(struct sk_buff *skb);
903                 };
904                 struct list_head        tcp_tsorted_anchor;
905 #ifdef CONFIG_NET_SOCK_MSG
906                 unsigned long           _sk_redir;
907 #endif
908         };
909 
910 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
911         unsigned long            _nfct;
912 #endif
913         unsigned int            len,
914                                 data_len;
915         __u16                   mac_len,
916                                 hdr_len;
917 
918         /* Following fields are _not_ copied in __copy_skb_header()
919          * Note that queue_mapping is here mostly to fill a hole.
920          */
921         __u16                   queue_mapping;
922 
923 /* if you move cloned around you also must adapt those constants */
924 #ifdef __BIG_ENDIAN_BITFIELD
925 #define CLONED_MASK     (1 << 7)
926 #else
927 #define CLONED_MASK     1
928 #endif
929 #define CLONED_OFFSET           offsetof(struct sk_buff, __cloned_offset)
930 
931         /* private: */
932         __u8                    __cloned_offset[0];
933         /* public: */
934         __u8                    cloned:1,
935                                 nohdr:1,
936                                 fclone:2,
937                                 peeked:1,
938                                 head_frag:1,
939                                 pfmemalloc:1,
940                                 pp_recycle:1; /* page_pool recycle indicator */
941 #ifdef CONFIG_SKB_EXTENSIONS
942         __u8                    active_extensions;
943 #endif
944 
945         /* Fields enclosed in headers group are copied
946          * using a single memcpy() in __copy_skb_header()
947          */
948         struct_group(headers,
949 
950         /* private: */
951         __u8                    __pkt_type_offset[0];
952         /* public: */
953         __u8                    pkt_type:3; /* see PKT_TYPE_MAX */
954         __u8                    ignore_df:1;
955         __u8                    dst_pending_confirm:1;
956         __u8                    ip_summed:2;
957         __u8                    ooo_okay:1;
958 
959         /* private: */
960         __u8                    __mono_tc_offset[0];
961         /* public: */
962         __u8                    tstamp_type:2;  /* See skb_tstamp_type */
963 #ifdef CONFIG_NET_XGRESS
964         __u8                    tc_at_ingress:1;        /* See TC_AT_INGRESS_MASK */
965         __u8                    tc_skip_classify:1;
966 #endif
967         __u8                    remcsum_offload:1;
968         __u8                    csum_complete_sw:1;
969         __u8                    csum_level:2;
970         __u8                    inner_protocol_type:1;
971 
972         __u8                    l4_hash:1;
973         __u8                    sw_hash:1;
974 #ifdef CONFIG_WIRELESS
975         __u8                    wifi_acked_valid:1;
976         __u8                    wifi_acked:1;
977 #endif
978         __u8                    no_fcs:1;
979         /* Indicates the inner headers are valid in the skbuff. */
980         __u8                    encapsulation:1;
981         __u8                    encap_hdr_csum:1;
982         __u8                    csum_valid:1;
983 #ifdef CONFIG_IPV6_NDISC_NODETYPE
984         __u8                    ndisc_nodetype:2;
985 #endif
986 
987 #if IS_ENABLED(CONFIG_IP_VS)
988         __u8                    ipvs_property:1;
989 #endif
990 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
991         __u8                    nf_trace:1;
992 #endif
993 #ifdef CONFIG_NET_SWITCHDEV
994         __u8                    offload_fwd_mark:1;
995         __u8                    offload_l3_fwd_mark:1;
996 #endif
997         __u8                    redirected:1;
998 #ifdef CONFIG_NET_REDIRECT
999         __u8                    from_ingress:1;
1000 #endif
1001 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1002         __u8                    nf_skip_egress:1;
1003 #endif
1004 #ifdef CONFIG_SKB_DECRYPTED
1005         __u8                    decrypted:1;
1006 #endif
1007         __u8                    slow_gro:1;
1008 #if IS_ENABLED(CONFIG_IP_SCTP)
1009         __u8                    csum_not_inet:1;
1010 #endif
1011 
1012 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1013         __u16                   tc_index;       /* traffic control index */
1014 #endif
1015 
1016         u16                     alloc_cpu;
1017 
1018         union {
1019                 __wsum          csum;
1020                 struct {
1021                         __u16   csum_start;
1022                         __u16   csum_offset;
1023                 };
1024         };
1025         __u32                   priority;
1026         int                     skb_iif;
1027         __u32                   hash;
1028         union {
1029                 u32             vlan_all;
1030                 struct {
1031                         __be16  vlan_proto;
1032                         __u16   vlan_tci;
1033                 };
1034         };
1035 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1036         union {
1037                 unsigned int    napi_id;
1038                 unsigned int    sender_cpu;
1039         };
1040 #endif
1041 #ifdef CONFIG_NETWORK_SECMARK
1042         __u32           secmark;
1043 #endif
1044 
1045         union {
1046                 __u32           mark;
1047                 __u32           reserved_tailroom;
1048         };
1049 
1050         union {
1051                 __be16          inner_protocol;
1052                 __u8            inner_ipproto;
1053         };
1054 
1055         __u16                   inner_transport_header;
1056         __u16                   inner_network_header;
1057         __u16                   inner_mac_header;
1058 
1059         __be16                  protocol;
1060         __u16                   transport_header;
1061         __u16                   network_header;
1062         __u16                   mac_header;
1063 
1064 #ifdef CONFIG_KCOV
1065         u64                     kcov_handle;
1066 #endif
1067 
1068         ); /* end headers group */
1069 
1070         /* These elements must be at the end, see alloc_skb() for details.  */
1071         sk_buff_data_t          tail;
1072         sk_buff_data_t          end;
1073         unsigned char           *head,
1074                                 *data;
1075         unsigned int            truesize;
1076         refcount_t              users;
1077 
1078 #ifdef CONFIG_SKB_EXTENSIONS
1079         /* only usable after checking ->active_extensions != 0 */
1080         struct skb_ext          *extensions;
1081 #endif
1082 };
1083 
1084 /* if you move pkt_type around you also must adapt those constants */
1085 #ifdef __BIG_ENDIAN_BITFIELD
1086 #define PKT_TYPE_MAX    (7 << 5)
1087 #else
1088 #define PKT_TYPE_MAX    7
1089 #endif
1090 #define PKT_TYPE_OFFSET         offsetof(struct sk_buff, __pkt_type_offset)
1091 
1092 /* if you move tc_at_ingress or tstamp_type
1093  * around, you also must adapt these constants.
1094  */
1095 #ifdef __BIG_ENDIAN_BITFIELD
1096 #define SKB_TSTAMP_TYPE_MASK            (3 << 6)
1097 #define SKB_TSTAMP_TYPE_RSHIFT          (6)
1098 #define TC_AT_INGRESS_MASK              (1 << 5)
1099 #else
1100 #define SKB_TSTAMP_TYPE_MASK            (3)
1101 #define TC_AT_INGRESS_MASK              (1 << 2)
1102 #endif
1103 #define SKB_BF_MONO_TC_OFFSET           offsetof(struct sk_buff, __mono_tc_offset)
1104 
1105 #ifdef __KERNEL__
1106 /*
1107  *      Handling routines are only of interest to the kernel
1108  */
1109 
1110 #define SKB_ALLOC_FCLONE        0x01
1111 #define SKB_ALLOC_RX            0x02
1112 #define SKB_ALLOC_NAPI          0x04
1113 
1114 /**
1115  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1116  * @skb: buffer
1117  */
1118 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1119 {
1120         return unlikely(skb->pfmemalloc);
1121 }
1122 
1123 /*
1124  * skb might have a dst pointer attached, refcounted or not.
1125  * _skb_refdst low order bit is set if refcount was _not_ taken
1126  */
1127 #define SKB_DST_NOREF   1UL
1128 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1129 
1130 /**
1131  * skb_dst - returns skb dst_entry
1132  * @skb: buffer
1133  *
1134  * Returns skb dst_entry, regardless of reference taken or not.
1135  */
1136 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1137 {
1138         /* If refdst was not refcounted, check we still are in a
1139          * rcu_read_lock section
1140          */
1141         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1142                 !rcu_read_lock_held() &&
1143                 !rcu_read_lock_bh_held());
1144         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1145 }
1146 
1147 /**
1148  * skb_dst_set - sets skb dst
1149  * @skb: buffer
1150  * @dst: dst entry
1151  *
1152  * Sets skb dst, assuming a reference was taken on dst and should
1153  * be released by skb_dst_drop()
1154  */
1155 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157         skb->slow_gro |= !!dst;
1158         skb->_skb_refdst = (unsigned long)dst;
1159 }
1160 
1161 /**
1162  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1163  * @skb: buffer
1164  * @dst: dst entry
1165  *
1166  * Sets skb dst, assuming a reference was not taken on dst.
1167  * If dst entry is cached, we do not take reference and dst_release
1168  * will be avoided by refdst_drop. If dst entry is not cached, we take
1169  * reference, so that last dst_release can destroy the dst immediately.
1170  */
1171 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1172 {
1173         WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1174         skb->slow_gro |= !!dst;
1175         skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1176 }
1177 
1178 /**
1179  * skb_dst_is_noref - Test if skb dst isn't refcounted
1180  * @skb: buffer
1181  */
1182 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1183 {
1184         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1185 }
1186 
1187 /* For mangling skb->pkt_type from user space side from applications
1188  * such as nft, tc, etc, we only allow a conservative subset of
1189  * possible pkt_types to be set.
1190 */
1191 static inline bool skb_pkt_type_ok(u32 ptype)
1192 {
1193         return ptype <= PACKET_OTHERHOST;
1194 }
1195 
1196 /**
1197  * skb_napi_id - Returns the skb's NAPI id
1198  * @skb: buffer
1199  */
1200 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1201 {
1202 #ifdef CONFIG_NET_RX_BUSY_POLL
1203         return skb->napi_id;
1204 #else
1205         return 0;
1206 #endif
1207 }
1208 
1209 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1210 {
1211 #ifdef CONFIG_WIRELESS
1212         return skb->wifi_acked_valid;
1213 #else
1214         return 0;
1215 #endif
1216 }
1217 
1218 /**
1219  * skb_unref - decrement the skb's reference count
1220  * @skb: buffer
1221  *
1222  * Returns true if we can free the skb.
1223  */
1224 static inline bool skb_unref(struct sk_buff *skb)
1225 {
1226         if (unlikely(!skb))
1227                 return false;
1228         if (likely(refcount_read(&skb->users) == 1))
1229                 smp_rmb();
1230         else if (likely(!refcount_dec_and_test(&skb->users)))
1231                 return false;
1232 
1233         return true;
1234 }
1235 
1236 static inline bool skb_data_unref(const struct sk_buff *skb,
1237                                   struct skb_shared_info *shinfo)
1238 {
1239         int bias;
1240 
1241         if (!skb->cloned)
1242                 return true;
1243 
1244         bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1245 
1246         if (atomic_read(&shinfo->dataref) == bias)
1247                 smp_rmb();
1248         else if (atomic_sub_return(bias, &shinfo->dataref))
1249                 return false;
1250 
1251         return true;
1252 }
1253 
1254 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1255                                       enum skb_drop_reason reason);
1256 
1257 static inline void
1258 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1259 {
1260         sk_skb_reason_drop(NULL, skb, reason);
1261 }
1262 
1263 /**
1264  *      kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1265  *      @skb: buffer to free
1266  */
1267 static inline void kfree_skb(struct sk_buff *skb)
1268 {
1269         kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1270 }
1271 
1272 void skb_release_head_state(struct sk_buff *skb);
1273 void kfree_skb_list_reason(struct sk_buff *segs,
1274                            enum skb_drop_reason reason);
1275 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1276 void skb_tx_error(struct sk_buff *skb);
1277 
1278 static inline void kfree_skb_list(struct sk_buff *segs)
1279 {
1280         kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1281 }
1282 
1283 #ifdef CONFIG_TRACEPOINTS
1284 void consume_skb(struct sk_buff *skb);
1285 #else
1286 static inline void consume_skb(struct sk_buff *skb)
1287 {
1288         return kfree_skb(skb);
1289 }
1290 #endif
1291 
1292 void __consume_stateless_skb(struct sk_buff *skb);
1293 void  __kfree_skb(struct sk_buff *skb);
1294 
1295 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1296 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1297                       bool *fragstolen, int *delta_truesize);
1298 
1299 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1300                             int node);
1301 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1302 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1303 struct sk_buff *build_skb_around(struct sk_buff *skb,
1304                                  void *data, unsigned int frag_size);
1305 void skb_attempt_defer_free(struct sk_buff *skb);
1306 
1307 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1308 struct sk_buff *slab_build_skb(void *data);
1309 
1310 /**
1311  * alloc_skb - allocate a network buffer
1312  * @size: size to allocate
1313  * @priority: allocation mask
1314  *
1315  * This function is a convenient wrapper around __alloc_skb().
1316  */
1317 static inline struct sk_buff *alloc_skb(unsigned int size,
1318                                         gfp_t priority)
1319 {
1320         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1321 }
1322 
1323 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1324                                      unsigned long data_len,
1325                                      int max_page_order,
1326                                      int *errcode,
1327                                      gfp_t gfp_mask);
1328 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1329 
1330 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1331 struct sk_buff_fclones {
1332         struct sk_buff  skb1;
1333 
1334         struct sk_buff  skb2;
1335 
1336         refcount_t      fclone_ref;
1337 };
1338 
1339 /**
1340  *      skb_fclone_busy - check if fclone is busy
1341  *      @sk: socket
1342  *      @skb: buffer
1343  *
1344  * Returns true if skb is a fast clone, and its clone is not freed.
1345  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1346  * so we also check that didn't happen.
1347  */
1348 static inline bool skb_fclone_busy(const struct sock *sk,
1349                                    const struct sk_buff *skb)
1350 {
1351         const struct sk_buff_fclones *fclones;
1352 
1353         fclones = container_of(skb, struct sk_buff_fclones, skb1);
1354 
1355         return skb->fclone == SKB_FCLONE_ORIG &&
1356                refcount_read(&fclones->fclone_ref) > 1 &&
1357                READ_ONCE(fclones->skb2.sk) == sk;
1358 }
1359 
1360 /**
1361  * alloc_skb_fclone - allocate a network buffer from fclone cache
1362  * @size: size to allocate
1363  * @priority: allocation mask
1364  *
1365  * This function is a convenient wrapper around __alloc_skb().
1366  */
1367 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1368                                                gfp_t priority)
1369 {
1370         return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1371 }
1372 
1373 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1374 void skb_headers_offset_update(struct sk_buff *skb, int off);
1375 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1377 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1379 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1380                                    gfp_t gfp_mask, bool fclone);
1381 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1382                                           gfp_t gfp_mask)
1383 {
1384         return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1385 }
1386 
1387 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1388 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1389                                      unsigned int headroom);
1390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1391 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1392                                 int newtailroom, gfp_t priority);
1393 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1394                                      int offset, int len);
1395 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1396                               int offset, int len);
1397 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1398 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1399 
1400 /**
1401  *      skb_pad                 -       zero pad the tail of an skb
1402  *      @skb: buffer to pad
1403  *      @pad: space to pad
1404  *
1405  *      Ensure that a buffer is followed by a padding area that is zero
1406  *      filled. Used by network drivers which may DMA or transfer data
1407  *      beyond the buffer end onto the wire.
1408  *
1409  *      May return error in out of memory cases. The skb is freed on error.
1410  */
1411 static inline int skb_pad(struct sk_buff *skb, int pad)
1412 {
1413         return __skb_pad(skb, pad, true);
1414 }
1415 #define dev_kfree_skb(a)        consume_skb(a)
1416 
1417 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1418                          int offset, size_t size, size_t max_frags);
1419 
1420 struct skb_seq_state {
1421         __u32           lower_offset;
1422         __u32           upper_offset;
1423         __u32           frag_idx;
1424         __u32           stepped_offset;
1425         struct sk_buff  *root_skb;
1426         struct sk_buff  *cur_skb;
1427         __u8            *frag_data;
1428         __u32           frag_off;
1429 };
1430 
1431 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1432                           unsigned int to, struct skb_seq_state *st);
1433 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1434                           struct skb_seq_state *st);
1435 void skb_abort_seq_read(struct skb_seq_state *st);
1436 
1437 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1438                            unsigned int to, struct ts_config *config);
1439 
1440 /*
1441  * Packet hash types specify the type of hash in skb_set_hash.
1442  *
1443  * Hash types refer to the protocol layer addresses which are used to
1444  * construct a packet's hash. The hashes are used to differentiate or identify
1445  * flows of the protocol layer for the hash type. Hash types are either
1446  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1447  *
1448  * Properties of hashes:
1449  *
1450  * 1) Two packets in different flows have different hash values
1451  * 2) Two packets in the same flow should have the same hash value
1452  *
1453  * A hash at a higher layer is considered to be more specific. A driver should
1454  * set the most specific hash possible.
1455  *
1456  * A driver cannot indicate a more specific hash than the layer at which a hash
1457  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1458  *
1459  * A driver may indicate a hash level which is less specific than the
1460  * actual layer the hash was computed on. For instance, a hash computed
1461  * at L4 may be considered an L3 hash. This should only be done if the
1462  * driver can't unambiguously determine that the HW computed the hash at
1463  * the higher layer. Note that the "should" in the second property above
1464  * permits this.
1465  */
1466 enum pkt_hash_types {
1467         PKT_HASH_TYPE_NONE,     /* Undefined type */
1468         PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1469         PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1470         PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1471 };
1472 
1473 static inline void skb_clear_hash(struct sk_buff *skb)
1474 {
1475         skb->hash = 0;
1476         skb->sw_hash = 0;
1477         skb->l4_hash = 0;
1478 }
1479 
1480 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1481 {
1482         if (!skb->l4_hash)
1483                 skb_clear_hash(skb);
1484 }
1485 
1486 static inline void
1487 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1488 {
1489         skb->l4_hash = is_l4;
1490         skb->sw_hash = is_sw;
1491         skb->hash = hash;
1492 }
1493 
1494 static inline void
1495 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1496 {
1497         /* Used by drivers to set hash from HW */
1498         __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1499 }
1500 
1501 static inline void
1502 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1503 {
1504         __skb_set_hash(skb, hash, true, is_l4);
1505 }
1506 
1507 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1508 
1509 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1510 {
1511         return __skb_get_hash_symmetric_net(NULL, skb);
1512 }
1513 
1514 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1515 u32 skb_get_poff(const struct sk_buff *skb);
1516 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1517                    const struct flow_keys_basic *keys, int hlen);
1518 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1519                             const void *data, int hlen_proto);
1520 
1521 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1522                                         int thoff, u8 ip_proto)
1523 {
1524         return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1525 }
1526 
1527 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1528                              const struct flow_dissector_key *key,
1529                              unsigned int key_count);
1530 
1531 struct bpf_flow_dissector;
1532 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1533                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1534 
1535 bool __skb_flow_dissect(const struct net *net,
1536                         const struct sk_buff *skb,
1537                         struct flow_dissector *flow_dissector,
1538                         void *target_container, const void *data,
1539                         __be16 proto, int nhoff, int hlen, unsigned int flags);
1540 
1541 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1542                                     struct flow_dissector *flow_dissector,
1543                                     void *target_container, unsigned int flags)
1544 {
1545         return __skb_flow_dissect(NULL, skb, flow_dissector,
1546                                   target_container, NULL, 0, 0, 0, flags);
1547 }
1548 
1549 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1550                                               struct flow_keys *flow,
1551                                               unsigned int flags)
1552 {
1553         memset(flow, 0, sizeof(*flow));
1554         return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1555                                   flow, NULL, 0, 0, 0, flags);
1556 }
1557 
1558 static inline bool
1559 skb_flow_dissect_flow_keys_basic(const struct net *net,
1560                                  const struct sk_buff *skb,
1561                                  struct flow_keys_basic *flow,
1562                                  const void *data, __be16 proto,
1563                                  int nhoff, int hlen, unsigned int flags)
1564 {
1565         memset(flow, 0, sizeof(*flow));
1566         return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1567                                   data, proto, nhoff, hlen, flags);
1568 }
1569 
1570 void skb_flow_dissect_meta(const struct sk_buff *skb,
1571                            struct flow_dissector *flow_dissector,
1572                            void *target_container);
1573 
1574 /* Gets a skb connection tracking info, ctinfo map should be a
1575  * map of mapsize to translate enum ip_conntrack_info states
1576  * to user states.
1577  */
1578 void
1579 skb_flow_dissect_ct(const struct sk_buff *skb,
1580                     struct flow_dissector *flow_dissector,
1581                     void *target_container,
1582                     u16 *ctinfo_map, size_t mapsize,
1583                     bool post_ct, u16 zone);
1584 void
1585 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1586                              struct flow_dissector *flow_dissector,
1587                              void *target_container);
1588 
1589 void skb_flow_dissect_hash(const struct sk_buff *skb,
1590                            struct flow_dissector *flow_dissector,
1591                            void *target_container);
1592 
1593 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1594 {
1595         if (!skb->l4_hash && !skb->sw_hash)
1596                 __skb_get_hash_net(net, skb);
1597 
1598         return skb->hash;
1599 }
1600 
1601 static inline __u32 skb_get_hash(struct sk_buff *skb)
1602 {
1603         if (!skb->l4_hash && !skb->sw_hash)
1604                 __skb_get_hash_net(NULL, skb);
1605 
1606         return skb->hash;
1607 }
1608 
1609 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1610 {
1611         if (!skb->l4_hash && !skb->sw_hash) {
1612                 struct flow_keys keys;
1613                 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1614 
1615                 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1616         }
1617 
1618         return skb->hash;
1619 }
1620 
1621 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1622                            const siphash_key_t *perturb);
1623 
1624 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1625 {
1626         return skb->hash;
1627 }
1628 
1629 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1630 {
1631         to->hash = from->hash;
1632         to->sw_hash = from->sw_hash;
1633         to->l4_hash = from->l4_hash;
1634 };
1635 
1636 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1637                                     const struct sk_buff *skb2)
1638 {
1639 #ifdef CONFIG_SKB_DECRYPTED
1640         return skb2->decrypted - skb1->decrypted;
1641 #else
1642         return 0;
1643 #endif
1644 }
1645 
1646 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1647 {
1648 #ifdef CONFIG_SKB_DECRYPTED
1649         return skb->decrypted;
1650 #else
1651         return false;
1652 #endif
1653 }
1654 
1655 static inline void skb_copy_decrypted(struct sk_buff *to,
1656                                       const struct sk_buff *from)
1657 {
1658 #ifdef CONFIG_SKB_DECRYPTED
1659         to->decrypted = from->decrypted;
1660 #endif
1661 }
1662 
1663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1664 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1665 {
1666         return skb->head + skb->end;
1667 }
1668 
1669 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1670 {
1671         return skb->end;
1672 }
1673 
1674 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1675 {
1676         skb->end = offset;
1677 }
1678 #else
1679 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1680 {
1681         return skb->end;
1682 }
1683 
1684 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1685 {
1686         return skb->end - skb->head;
1687 }
1688 
1689 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1690 {
1691         skb->end = skb->head + offset;
1692 }
1693 #endif
1694 
1695 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1696 
1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1698                                        struct ubuf_info *uarg);
1699 
1700 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1701 
1702 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1703                             struct sk_buff *skb, struct iov_iter *from,
1704                             size_t length);
1705 
1706 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1707                                 struct iov_iter *from, size_t length);
1708 
1709 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1710                                           struct msghdr *msg, int len)
1711 {
1712         return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1713 }
1714 
1715 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1716                              struct msghdr *msg, int len,
1717                              struct ubuf_info *uarg);
1718 
1719 /* Internal */
1720 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1721 
1722 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1723 {
1724         return &skb_shinfo(skb)->hwtstamps;
1725 }
1726 
1727 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1728 {
1729         bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1730 
1731         return is_zcopy ? skb_uarg(skb) : NULL;
1732 }
1733 
1734 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1735 {
1736         return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1737 }
1738 
1739 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1740 {
1741         return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1742 }
1743 
1744 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1745                                        const struct sk_buff *skb2)
1746 {
1747         return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1748 }
1749 
1750 static inline void net_zcopy_get(struct ubuf_info *uarg)
1751 {
1752         refcount_inc(&uarg->refcnt);
1753 }
1754 
1755 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1756 {
1757         skb_shinfo(skb)->destructor_arg = uarg;
1758         skb_shinfo(skb)->flags |= uarg->flags;
1759 }
1760 
1761 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1762                                  bool *have_ref)
1763 {
1764         if (skb && uarg && !skb_zcopy(skb)) {
1765                 if (unlikely(have_ref && *have_ref))
1766                         *have_ref = false;
1767                 else
1768                         net_zcopy_get(uarg);
1769                 skb_zcopy_init(skb, uarg);
1770         }
1771 }
1772 
1773 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1774 {
1775         skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1776         skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1777 }
1778 
1779 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1780 {
1781         return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1782 }
1783 
1784 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1785 {
1786         return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1787 }
1788 
1789 static inline void net_zcopy_put(struct ubuf_info *uarg)
1790 {
1791         if (uarg)
1792                 uarg->ops->complete(NULL, uarg, true);
1793 }
1794 
1795 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1796 {
1797         if (uarg) {
1798                 if (uarg->ops == &msg_zerocopy_ubuf_ops)
1799                         msg_zerocopy_put_abort(uarg, have_uref);
1800                 else if (have_uref)
1801                         net_zcopy_put(uarg);
1802         }
1803 }
1804 
1805 /* Release a reference on a zerocopy structure */
1806 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1807 {
1808         struct ubuf_info *uarg = skb_zcopy(skb);
1809 
1810         if (uarg) {
1811                 if (!skb_zcopy_is_nouarg(skb))
1812                         uarg->ops->complete(skb, uarg, zerocopy_success);
1813 
1814                 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1815         }
1816 }
1817 
1818 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1819 
1820 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1821 {
1822         if (unlikely(skb_zcopy_managed(skb)))
1823                 __skb_zcopy_downgrade_managed(skb);
1824 }
1825 
1826 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1827 {
1828         skb->next = NULL;
1829 }
1830 
1831 static inline void skb_poison_list(struct sk_buff *skb)
1832 {
1833 #ifdef CONFIG_DEBUG_NET
1834         skb->next = SKB_LIST_POISON_NEXT;
1835 #endif
1836 }
1837 
1838 /* Iterate through singly-linked GSO fragments of an skb. */
1839 #define skb_list_walk_safe(first, skb, next_skb)                               \
1840         for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1841              (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1842 
1843 static inline void skb_list_del_init(struct sk_buff *skb)
1844 {
1845         __list_del_entry(&skb->list);
1846         skb_mark_not_on_list(skb);
1847 }
1848 
1849 /**
1850  *      skb_queue_empty - check if a queue is empty
1851  *      @list: queue head
1852  *
1853  *      Returns true if the queue is empty, false otherwise.
1854  */
1855 static inline int skb_queue_empty(const struct sk_buff_head *list)
1856 {
1857         return list->next == (const struct sk_buff *) list;
1858 }
1859 
1860 /**
1861  *      skb_queue_empty_lockless - check if a queue is empty
1862  *      @list: queue head
1863  *
1864  *      Returns true if the queue is empty, false otherwise.
1865  *      This variant can be used in lockless contexts.
1866  */
1867 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1868 {
1869         return READ_ONCE(list->next) == (const struct sk_buff *) list;
1870 }
1871 
1872 
1873 /**
1874  *      skb_queue_is_last - check if skb is the last entry in the queue
1875  *      @list: queue head
1876  *      @skb: buffer
1877  *
1878  *      Returns true if @skb is the last buffer on the list.
1879  */
1880 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1881                                      const struct sk_buff *skb)
1882 {
1883         return skb->next == (const struct sk_buff *) list;
1884 }
1885 
1886 /**
1887  *      skb_queue_is_first - check if skb is the first entry in the queue
1888  *      @list: queue head
1889  *      @skb: buffer
1890  *
1891  *      Returns true if @skb is the first buffer on the list.
1892  */
1893 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1894                                       const struct sk_buff *skb)
1895 {
1896         return skb->prev == (const struct sk_buff *) list;
1897 }
1898 
1899 /**
1900  *      skb_queue_next - return the next packet in the queue
1901  *      @list: queue head
1902  *      @skb: current buffer
1903  *
1904  *      Return the next packet in @list after @skb.  It is only valid to
1905  *      call this if skb_queue_is_last() evaluates to false.
1906  */
1907 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1908                                              const struct sk_buff *skb)
1909 {
1910         /* This BUG_ON may seem severe, but if we just return then we
1911          * are going to dereference garbage.
1912          */
1913         BUG_ON(skb_queue_is_last(list, skb));
1914         return skb->next;
1915 }
1916 
1917 /**
1918  *      skb_queue_prev - return the prev packet in the queue
1919  *      @list: queue head
1920  *      @skb: current buffer
1921  *
1922  *      Return the prev packet in @list before @skb.  It is only valid to
1923  *      call this if skb_queue_is_first() evaluates to false.
1924  */
1925 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1926                                              const struct sk_buff *skb)
1927 {
1928         /* This BUG_ON may seem severe, but if we just return then we
1929          * are going to dereference garbage.
1930          */
1931         BUG_ON(skb_queue_is_first(list, skb));
1932         return skb->prev;
1933 }
1934 
1935 /**
1936  *      skb_get - reference buffer
1937  *      @skb: buffer to reference
1938  *
1939  *      Makes another reference to a socket buffer and returns a pointer
1940  *      to the buffer.
1941  */
1942 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1943 {
1944         refcount_inc(&skb->users);
1945         return skb;
1946 }
1947 
1948 /*
1949  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1950  */
1951 
1952 /**
1953  *      skb_cloned - is the buffer a clone
1954  *      @skb: buffer to check
1955  *
1956  *      Returns true if the buffer was generated with skb_clone() and is
1957  *      one of multiple shared copies of the buffer. Cloned buffers are
1958  *      shared data so must not be written to under normal circumstances.
1959  */
1960 static inline int skb_cloned(const struct sk_buff *skb)
1961 {
1962         return skb->cloned &&
1963                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1964 }
1965 
1966 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1967 {
1968         might_sleep_if(gfpflags_allow_blocking(pri));
1969 
1970         if (skb_cloned(skb))
1971                 return pskb_expand_head(skb, 0, 0, pri);
1972 
1973         return 0;
1974 }
1975 
1976 /* This variant of skb_unclone() makes sure skb->truesize
1977  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1978  *
1979  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1980  * when various debugging features are in place.
1981  */
1982 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1983 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1984 {
1985         might_sleep_if(gfpflags_allow_blocking(pri));
1986 
1987         if (skb_cloned(skb))
1988                 return __skb_unclone_keeptruesize(skb, pri);
1989         return 0;
1990 }
1991 
1992 /**
1993  *      skb_header_cloned - is the header a clone
1994  *      @skb: buffer to check
1995  *
1996  *      Returns true if modifying the header part of the buffer requires
1997  *      the data to be copied.
1998  */
1999 static inline int skb_header_cloned(const struct sk_buff *skb)
2000 {
2001         int dataref;
2002 
2003         if (!skb->cloned)
2004                 return 0;
2005 
2006         dataref = atomic_read(&skb_shinfo(skb)->dataref);
2007         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2008         return dataref != 1;
2009 }
2010 
2011 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2012 {
2013         might_sleep_if(gfpflags_allow_blocking(pri));
2014 
2015         if (skb_header_cloned(skb))
2016                 return pskb_expand_head(skb, 0, 0, pri);
2017 
2018         return 0;
2019 }
2020 
2021 /**
2022  * __skb_header_release() - allow clones to use the headroom
2023  * @skb: buffer to operate on
2024  *
2025  * See "DOC: dataref and headerless skbs".
2026  */
2027 static inline void __skb_header_release(struct sk_buff *skb)
2028 {
2029         skb->nohdr = 1;
2030         atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2031 }
2032 
2033 
2034 /**
2035  *      skb_shared - is the buffer shared
2036  *      @skb: buffer to check
2037  *
2038  *      Returns true if more than one person has a reference to this
2039  *      buffer.
2040  */
2041 static inline int skb_shared(const struct sk_buff *skb)
2042 {
2043         return refcount_read(&skb->users) != 1;
2044 }
2045 
2046 /**
2047  *      skb_share_check - check if buffer is shared and if so clone it
2048  *      @skb: buffer to check
2049  *      @pri: priority for memory allocation
2050  *
2051  *      If the buffer is shared the buffer is cloned and the old copy
2052  *      drops a reference. A new clone with a single reference is returned.
2053  *      If the buffer is not shared the original buffer is returned. When
2054  *      being called from interrupt status or with spinlocks held pri must
2055  *      be GFP_ATOMIC.
2056  *
2057  *      NULL is returned on a memory allocation failure.
2058  */
2059 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2060 {
2061         might_sleep_if(gfpflags_allow_blocking(pri));
2062         if (skb_shared(skb)) {
2063                 struct sk_buff *nskb = skb_clone(skb, pri);
2064 
2065                 if (likely(nskb))
2066                         consume_skb(skb);
2067                 else
2068                         kfree_skb(skb);
2069                 skb = nskb;
2070         }
2071         return skb;
2072 }
2073 
2074 /*
2075  *      Copy shared buffers into a new sk_buff. We effectively do COW on
2076  *      packets to handle cases where we have a local reader and forward
2077  *      and a couple of other messy ones. The normal one is tcpdumping
2078  *      a packet that's being forwarded.
2079  */
2080 
2081 /**
2082  *      skb_unshare - make a copy of a shared buffer
2083  *      @skb: buffer to check
2084  *      @pri: priority for memory allocation
2085  *
2086  *      If the socket buffer is a clone then this function creates a new
2087  *      copy of the data, drops a reference count on the old copy and returns
2088  *      the new copy with the reference count at 1. If the buffer is not a clone
2089  *      the original buffer is returned. When called with a spinlock held or
2090  *      from interrupt state @pri must be %GFP_ATOMIC
2091  *
2092  *      %NULL is returned on a memory allocation failure.
2093  */
2094 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2095                                           gfp_t pri)
2096 {
2097         might_sleep_if(gfpflags_allow_blocking(pri));
2098         if (skb_cloned(skb)) {
2099                 struct sk_buff *nskb = skb_copy(skb, pri);
2100 
2101                 /* Free our shared copy */
2102                 if (likely(nskb))
2103                         consume_skb(skb);
2104                 else
2105                         kfree_skb(skb);
2106                 skb = nskb;
2107         }
2108         return skb;
2109 }
2110 
2111 /**
2112  *      skb_peek - peek at the head of an &sk_buff_head
2113  *      @list_: list to peek at
2114  *
2115  *      Peek an &sk_buff. Unlike most other operations you _MUST_
2116  *      be careful with this one. A peek leaves the buffer on the
2117  *      list and someone else may run off with it. You must hold
2118  *      the appropriate locks or have a private queue to do this.
2119  *
2120  *      Returns %NULL for an empty list or a pointer to the head element.
2121  *      The reference count is not incremented and the reference is therefore
2122  *      volatile. Use with caution.
2123  */
2124 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2125 {
2126         struct sk_buff *skb = list_->next;
2127 
2128         if (skb == (struct sk_buff *)list_)
2129                 skb = NULL;
2130         return skb;
2131 }
2132 
2133 /**
2134  *      __skb_peek - peek at the head of a non-empty &sk_buff_head
2135  *      @list_: list to peek at
2136  *
2137  *      Like skb_peek(), but the caller knows that the list is not empty.
2138  */
2139 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2140 {
2141         return list_->next;
2142 }
2143 
2144 /**
2145  *      skb_peek_next - peek skb following the given one from a queue
2146  *      @skb: skb to start from
2147  *      @list_: list to peek at
2148  *
2149  *      Returns %NULL when the end of the list is met or a pointer to the
2150  *      next element. The reference count is not incremented and the
2151  *      reference is therefore volatile. Use with caution.
2152  */
2153 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2154                 const struct sk_buff_head *list_)
2155 {
2156         struct sk_buff *next = skb->next;
2157 
2158         if (next == (struct sk_buff *)list_)
2159                 next = NULL;
2160         return next;
2161 }
2162 
2163 /**
2164  *      skb_peek_tail - peek at the tail of an &sk_buff_head
2165  *      @list_: list to peek at
2166  *
2167  *      Peek an &sk_buff. Unlike most other operations you _MUST_
2168  *      be careful with this one. A peek leaves the buffer on the
2169  *      list and someone else may run off with it. You must hold
2170  *      the appropriate locks or have a private queue to do this.
2171  *
2172  *      Returns %NULL for an empty list or a pointer to the tail element.
2173  *      The reference count is not incremented and the reference is therefore
2174  *      volatile. Use with caution.
2175  */
2176 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2177 {
2178         struct sk_buff *skb = READ_ONCE(list_->prev);
2179 
2180         if (skb == (struct sk_buff *)list_)
2181                 skb = NULL;
2182         return skb;
2183 
2184 }
2185 
2186 /**
2187  *      skb_queue_len   - get queue length
2188  *      @list_: list to measure
2189  *
2190  *      Return the length of an &sk_buff queue.
2191  */
2192 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2193 {
2194         return list_->qlen;
2195 }
2196 
2197 /**
2198  *      skb_queue_len_lockless  - get queue length
2199  *      @list_: list to measure
2200  *
2201  *      Return the length of an &sk_buff queue.
2202  *      This variant can be used in lockless contexts.
2203  */
2204 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2205 {
2206         return READ_ONCE(list_->qlen);
2207 }
2208 
2209 /**
2210  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2211  *      @list: queue to initialize
2212  *
2213  *      This initializes only the list and queue length aspects of
2214  *      an sk_buff_head object.  This allows to initialize the list
2215  *      aspects of an sk_buff_head without reinitializing things like
2216  *      the spinlock.  It can also be used for on-stack sk_buff_head
2217  *      objects where the spinlock is known to not be used.
2218  */
2219 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2220 {
2221         list->prev = list->next = (struct sk_buff *)list;
2222         list->qlen = 0;
2223 }
2224 
2225 /*
2226  * This function creates a split out lock class for each invocation;
2227  * this is needed for now since a whole lot of users of the skb-queue
2228  * infrastructure in drivers have different locking usage (in hardirq)
2229  * than the networking core (in softirq only). In the long run either the
2230  * network layer or drivers should need annotation to consolidate the
2231  * main types of usage into 3 classes.
2232  */
2233 static inline void skb_queue_head_init(struct sk_buff_head *list)
2234 {
2235         spin_lock_init(&list->lock);
2236         __skb_queue_head_init(list);
2237 }
2238 
2239 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2240                 struct lock_class_key *class)
2241 {
2242         skb_queue_head_init(list);
2243         lockdep_set_class(&list->lock, class);
2244 }
2245 
2246 /*
2247  *      Insert an sk_buff on a list.
2248  *
2249  *      The "__skb_xxxx()" functions are the non-atomic ones that
2250  *      can only be called with interrupts disabled.
2251  */
2252 static inline void __skb_insert(struct sk_buff *newsk,
2253                                 struct sk_buff *prev, struct sk_buff *next,
2254                                 struct sk_buff_head *list)
2255 {
2256         /* See skb_queue_empty_lockless() and skb_peek_tail()
2257          * for the opposite READ_ONCE()
2258          */
2259         WRITE_ONCE(newsk->next, next);
2260         WRITE_ONCE(newsk->prev, prev);
2261         WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2262         WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2263         WRITE_ONCE(list->qlen, list->qlen + 1);
2264 }
2265 
2266 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2267                                       struct sk_buff *prev,
2268                                       struct sk_buff *next)
2269 {
2270         struct sk_buff *first = list->next;
2271         struct sk_buff *last = list->prev;
2272 
2273         WRITE_ONCE(first->prev, prev);
2274         WRITE_ONCE(prev->next, first);
2275 
2276         WRITE_ONCE(last->next, next);
2277         WRITE_ONCE(next->prev, last);
2278 }
2279 
2280 /**
2281  *      skb_queue_splice - join two skb lists, this is designed for stacks
2282  *      @list: the new list to add
2283  *      @head: the place to add it in the first list
2284  */
2285 static inline void skb_queue_splice(const struct sk_buff_head *list,
2286                                     struct sk_buff_head *head)
2287 {
2288         if (!skb_queue_empty(list)) {
2289                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2290                 head->qlen += list->qlen;
2291         }
2292 }
2293 
2294 /**
2295  *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2296  *      @list: the new list to add
2297  *      @head: the place to add it in the first list
2298  *
2299  *      The list at @list is reinitialised
2300  */
2301 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2302                                          struct sk_buff_head *head)
2303 {
2304         if (!skb_queue_empty(list)) {
2305                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2306                 head->qlen += list->qlen;
2307                 __skb_queue_head_init(list);
2308         }
2309 }
2310 
2311 /**
2312  *      skb_queue_splice_tail - join two skb lists, each list being a queue
2313  *      @list: the new list to add
2314  *      @head: the place to add it in the first list
2315  */
2316 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2317                                          struct sk_buff_head *head)
2318 {
2319         if (!skb_queue_empty(list)) {
2320                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2321                 head->qlen += list->qlen;
2322         }
2323 }
2324 
2325 /**
2326  *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2327  *      @list: the new list to add
2328  *      @head: the place to add it in the first list
2329  *
2330  *      Each of the lists is a queue.
2331  *      The list at @list is reinitialised
2332  */
2333 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2334                                               struct sk_buff_head *head)
2335 {
2336         if (!skb_queue_empty(list)) {
2337                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2338                 head->qlen += list->qlen;
2339                 __skb_queue_head_init(list);
2340         }
2341 }
2342 
2343 /**
2344  *      __skb_queue_after - queue a buffer at the list head
2345  *      @list: list to use
2346  *      @prev: place after this buffer
2347  *      @newsk: buffer to queue
2348  *
2349  *      Queue a buffer int the middle of a list. This function takes no locks
2350  *      and you must therefore hold required locks before calling it.
2351  *
2352  *      A buffer cannot be placed on two lists at the same time.
2353  */
2354 static inline void __skb_queue_after(struct sk_buff_head *list,
2355                                      struct sk_buff *prev,
2356                                      struct sk_buff *newsk)
2357 {
2358         __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2359 }
2360 
2361 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2362                 struct sk_buff_head *list);
2363 
2364 static inline void __skb_queue_before(struct sk_buff_head *list,
2365                                       struct sk_buff *next,
2366                                       struct sk_buff *newsk)
2367 {
2368         __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2369 }
2370 
2371 /**
2372  *      __skb_queue_head - queue a buffer at the list head
2373  *      @list: list to use
2374  *      @newsk: buffer to queue
2375  *
2376  *      Queue a buffer at the start of a list. This function takes no locks
2377  *      and you must therefore hold required locks before calling it.
2378  *
2379  *      A buffer cannot be placed on two lists at the same time.
2380  */
2381 static inline void __skb_queue_head(struct sk_buff_head *list,
2382                                     struct sk_buff *newsk)
2383 {
2384         __skb_queue_after(list, (struct sk_buff *)list, newsk);
2385 }
2386 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2387 
2388 /**
2389  *      __skb_queue_tail - queue a buffer at the list tail
2390  *      @list: list to use
2391  *      @newsk: buffer to queue
2392  *
2393  *      Queue a buffer at the end of a list. This function takes no locks
2394  *      and you must therefore hold required locks before calling it.
2395  *
2396  *      A buffer cannot be placed on two lists at the same time.
2397  */
2398 static inline void __skb_queue_tail(struct sk_buff_head *list,
2399                                    struct sk_buff *newsk)
2400 {
2401         __skb_queue_before(list, (struct sk_buff *)list, newsk);
2402 }
2403 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2404 
2405 /*
2406  * remove sk_buff from list. _Must_ be called atomically, and with
2407  * the list known..
2408  */
2409 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2410 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2411 {
2412         struct sk_buff *next, *prev;
2413 
2414         WRITE_ONCE(list->qlen, list->qlen - 1);
2415         next       = skb->next;
2416         prev       = skb->prev;
2417         skb->next  = skb->prev = NULL;
2418         WRITE_ONCE(next->prev, prev);
2419         WRITE_ONCE(prev->next, next);
2420 }
2421 
2422 /**
2423  *      __skb_dequeue - remove from the head of the queue
2424  *      @list: list to dequeue from
2425  *
2426  *      Remove the head of the list. This function does not take any locks
2427  *      so must be used with appropriate locks held only. The head item is
2428  *      returned or %NULL if the list is empty.
2429  */
2430 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2431 {
2432         struct sk_buff *skb = skb_peek(list);
2433         if (skb)
2434                 __skb_unlink(skb, list);
2435         return skb;
2436 }
2437 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2438 
2439 /**
2440  *      __skb_dequeue_tail - remove from the tail of the queue
2441  *      @list: list to dequeue from
2442  *
2443  *      Remove the tail of the list. This function does not take any locks
2444  *      so must be used with appropriate locks held only. The tail item is
2445  *      returned or %NULL if the list is empty.
2446  */
2447 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2448 {
2449         struct sk_buff *skb = skb_peek_tail(list);
2450         if (skb)
2451                 __skb_unlink(skb, list);
2452         return skb;
2453 }
2454 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2455 
2456 
2457 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2458 {
2459         return skb->data_len;
2460 }
2461 
2462 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2463 {
2464         return skb->len - skb->data_len;
2465 }
2466 
2467 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2468 {
2469         unsigned int i, len = 0;
2470 
2471         for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2472                 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2473         return len;
2474 }
2475 
2476 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2477 {
2478         return skb_headlen(skb) + __skb_pagelen(skb);
2479 }
2480 
2481 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2482                                              netmem_ref netmem, int off,
2483                                              int size)
2484 {
2485         frag->netmem = netmem;
2486         frag->offset = off;
2487         skb_frag_size_set(frag, size);
2488 }
2489 
2490 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2491                                            struct page *page,
2492                                            int off, int size)
2493 {
2494         skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2495 }
2496 
2497 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2498                                                 int i, netmem_ref netmem,
2499                                                 int off, int size)
2500 {
2501         skb_frag_t *frag = &shinfo->frags[i];
2502 
2503         skb_frag_fill_netmem_desc(frag, netmem, off, size);
2504 }
2505 
2506 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2507                                               int i, struct page *page,
2508                                               int off, int size)
2509 {
2510         __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2511                                      size);
2512 }
2513 
2514 /**
2515  * skb_len_add - adds a number to len fields of skb
2516  * @skb: buffer to add len to
2517  * @delta: number of bytes to add
2518  */
2519 static inline void skb_len_add(struct sk_buff *skb, int delta)
2520 {
2521         skb->len += delta;
2522         skb->data_len += delta;
2523         skb->truesize += delta;
2524 }
2525 
2526 /**
2527  * __skb_fill_netmem_desc - initialise a fragment in an skb
2528  * @skb: buffer containing fragment to be initialised
2529  * @i: fragment index to initialise
2530  * @netmem: the netmem to use for this fragment
2531  * @off: the offset to the data with @page
2532  * @size: the length of the data
2533  *
2534  * Initialises the @i'th fragment of @skb to point to &size bytes at
2535  * offset @off within @page.
2536  *
2537  * Does not take any additional reference on the fragment.
2538  */
2539 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2540                                           netmem_ref netmem, int off, int size)
2541 {
2542         struct page *page = netmem_to_page(netmem);
2543 
2544         __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2545 
2546         /* Propagate page pfmemalloc to the skb if we can. The problem is
2547          * that not all callers have unique ownership of the page but rely
2548          * on page_is_pfmemalloc doing the right thing(tm).
2549          */
2550         page = compound_head(page);
2551         if (page_is_pfmemalloc(page))
2552                 skb->pfmemalloc = true;
2553 }
2554 
2555 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2556                                         struct page *page, int off, int size)
2557 {
2558         __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2559 }
2560 
2561 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2562                                         netmem_ref netmem, int off, int size)
2563 {
2564         __skb_fill_netmem_desc(skb, i, netmem, off, size);
2565         skb_shinfo(skb)->nr_frags = i + 1;
2566 }
2567 
2568 /**
2569  * skb_fill_page_desc - initialise a paged fragment in an skb
2570  * @skb: buffer containing fragment to be initialised
2571  * @i: paged fragment index to initialise
2572  * @page: the page to use for this fragment
2573  * @off: the offset to the data with @page
2574  * @size: the length of the data
2575  *
2576  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2577  * @skb to point to @size bytes at offset @off within @page. In
2578  * addition updates @skb such that @i is the last fragment.
2579  *
2580  * Does not take any additional reference on the fragment.
2581  */
2582 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2583                                       struct page *page, int off, int size)
2584 {
2585         skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2586 }
2587 
2588 /**
2589  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2590  * @skb: buffer containing fragment to be initialised
2591  * @i: paged fragment index to initialise
2592  * @page: the page to use for this fragment
2593  * @off: the offset to the data with @page
2594  * @size: the length of the data
2595  *
2596  * Variant of skb_fill_page_desc() which does not deal with
2597  * pfmemalloc, if page is not owned by us.
2598  */
2599 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2600                                             struct page *page, int off,
2601                                             int size)
2602 {
2603         struct skb_shared_info *shinfo = skb_shinfo(skb);
2604 
2605         __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2606         shinfo->nr_frags = i + 1;
2607 }
2608 
2609 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2610                             int off, int size, unsigned int truesize);
2611 
2612 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2613                                    struct page *page, int off, int size,
2614                                    unsigned int truesize)
2615 {
2616         skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2617                                truesize);
2618 }
2619 
2620 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2621                           unsigned int truesize);
2622 
2623 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2624 
2625 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2626 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2627 {
2628         return skb->head + skb->tail;
2629 }
2630 
2631 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2632 {
2633         skb->tail = skb->data - skb->head;
2634 }
2635 
2636 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2637 {
2638         skb_reset_tail_pointer(skb);
2639         skb->tail += offset;
2640 }
2641 
2642 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2643 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2644 {
2645         return skb->tail;
2646 }
2647 
2648 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2649 {
2650         skb->tail = skb->data;
2651 }
2652 
2653 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2654 {
2655         skb->tail = skb->data + offset;
2656 }
2657 
2658 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2659 
2660 static inline void skb_assert_len(struct sk_buff *skb)
2661 {
2662 #ifdef CONFIG_DEBUG_NET
2663         if (WARN_ONCE(!skb->len, "%s\n", __func__))
2664                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2665 #endif /* CONFIG_DEBUG_NET */
2666 }
2667 
2668 /*
2669  *      Add data to an sk_buff
2670  */
2671 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2672 void *skb_put(struct sk_buff *skb, unsigned int len);
2673 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2674 {
2675         void *tmp = skb_tail_pointer(skb);
2676         SKB_LINEAR_ASSERT(skb);
2677         skb->tail += len;
2678         skb->len  += len;
2679         return tmp;
2680 }
2681 
2682 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2683 {
2684         void *tmp = __skb_put(skb, len);
2685 
2686         memset(tmp, 0, len);
2687         return tmp;
2688 }
2689 
2690 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2691                                    unsigned int len)
2692 {
2693         void *tmp = __skb_put(skb, len);
2694 
2695         memcpy(tmp, data, len);
2696         return tmp;
2697 }
2698 
2699 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2700 {
2701         *(u8 *)__skb_put(skb, 1) = val;
2702 }
2703 
2704 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2705 {
2706         void *tmp = skb_put(skb, len);
2707 
2708         memset(tmp, 0, len);
2709 
2710         return tmp;
2711 }
2712 
2713 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2714                                  unsigned int len)
2715 {
2716         void *tmp = skb_put(skb, len);
2717 
2718         memcpy(tmp, data, len);
2719 
2720         return tmp;
2721 }
2722 
2723 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2724 {
2725         *(u8 *)skb_put(skb, 1) = val;
2726 }
2727 
2728 void *skb_push(struct sk_buff *skb, unsigned int len);
2729 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2730 {
2731         DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2732 
2733         skb->data -= len;
2734         skb->len  += len;
2735         return skb->data;
2736 }
2737 
2738 void *skb_pull(struct sk_buff *skb, unsigned int len);
2739 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2740 {
2741         DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2742 
2743         skb->len -= len;
2744         if (unlikely(skb->len < skb->data_len)) {
2745 #if defined(CONFIG_DEBUG_NET)
2746                 skb->len += len;
2747                 pr_err("__skb_pull(len=%u)\n", len);
2748                 skb_dump(KERN_ERR, skb, false);
2749 #endif
2750                 BUG();
2751         }
2752         return skb->data += len;
2753 }
2754 
2755 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2756 {
2757         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2758 }
2759 
2760 void *skb_pull_data(struct sk_buff *skb, size_t len);
2761 
2762 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2763 
2764 static inline enum skb_drop_reason
2765 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2766 {
2767         DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2768 
2769         if (likely(len <= skb_headlen(skb)))
2770                 return SKB_NOT_DROPPED_YET;
2771 
2772         if (unlikely(len > skb->len))
2773                 return SKB_DROP_REASON_PKT_TOO_SMALL;
2774 
2775         if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2776                 return SKB_DROP_REASON_NOMEM;
2777 
2778         return SKB_NOT_DROPPED_YET;
2779 }
2780 
2781 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2782 {
2783         return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2784 }
2785 
2786 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2787 {
2788         if (!pskb_may_pull(skb, len))
2789                 return NULL;
2790 
2791         skb->len -= len;
2792         return skb->data += len;
2793 }
2794 
2795 void skb_condense(struct sk_buff *skb);
2796 
2797 /**
2798  *      skb_headroom - bytes at buffer head
2799  *      @skb: buffer to check
2800  *
2801  *      Return the number of bytes of free space at the head of an &sk_buff.
2802  */
2803 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2804 {
2805         return skb->data - skb->head;
2806 }
2807 
2808 /**
2809  *      skb_tailroom - bytes at buffer end
2810  *      @skb: buffer to check
2811  *
2812  *      Return the number of bytes of free space at the tail of an sk_buff
2813  */
2814 static inline int skb_tailroom(const struct sk_buff *skb)
2815 {
2816         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2817 }
2818 
2819 /**
2820  *      skb_availroom - bytes at buffer end
2821  *      @skb: buffer to check
2822  *
2823  *      Return the number of bytes of free space at the tail of an sk_buff
2824  *      allocated by sk_stream_alloc()
2825  */
2826 static inline int skb_availroom(const struct sk_buff *skb)
2827 {
2828         if (skb_is_nonlinear(skb))
2829                 return 0;
2830 
2831         return skb->end - skb->tail - skb->reserved_tailroom;
2832 }
2833 
2834 /**
2835  *      skb_reserve - adjust headroom
2836  *      @skb: buffer to alter
2837  *      @len: bytes to move
2838  *
2839  *      Increase the headroom of an empty &sk_buff by reducing the tail
2840  *      room. This is only allowed for an empty buffer.
2841  */
2842 static inline void skb_reserve(struct sk_buff *skb, int len)
2843 {
2844         skb->data += len;
2845         skb->tail += len;
2846 }
2847 
2848 /**
2849  *      skb_tailroom_reserve - adjust reserved_tailroom
2850  *      @skb: buffer to alter
2851  *      @mtu: maximum amount of headlen permitted
2852  *      @needed_tailroom: minimum amount of reserved_tailroom
2853  *
2854  *      Set reserved_tailroom so that headlen can be as large as possible but
2855  *      not larger than mtu and tailroom cannot be smaller than
2856  *      needed_tailroom.
2857  *      The required headroom should already have been reserved before using
2858  *      this function.
2859  */
2860 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2861                                         unsigned int needed_tailroom)
2862 {
2863         SKB_LINEAR_ASSERT(skb);
2864         if (mtu < skb_tailroom(skb) - needed_tailroom)
2865                 /* use at most mtu */
2866                 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2867         else
2868                 /* use up to all available space */
2869                 skb->reserved_tailroom = needed_tailroom;
2870 }
2871 
2872 #define ENCAP_TYPE_ETHER        0
2873 #define ENCAP_TYPE_IPPROTO      1
2874 
2875 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2876                                           __be16 protocol)
2877 {
2878         skb->inner_protocol = protocol;
2879         skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2880 }
2881 
2882 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2883                                          __u8 ipproto)
2884 {
2885         skb->inner_ipproto = ipproto;
2886         skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2887 }
2888 
2889 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2890 {
2891         skb->inner_mac_header = skb->mac_header;
2892         skb->inner_network_header = skb->network_header;
2893         skb->inner_transport_header = skb->transport_header;
2894 }
2895 
2896 static inline void skb_reset_mac_len(struct sk_buff *skb)
2897 {
2898         skb->mac_len = skb->network_header - skb->mac_header;
2899 }
2900 
2901 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2902                                                         *skb)
2903 {
2904         return skb->head + skb->inner_transport_header;
2905 }
2906 
2907 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2908 {
2909         return skb_inner_transport_header(skb) - skb->data;
2910 }
2911 
2912 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2913 {
2914         skb->inner_transport_header = skb->data - skb->head;
2915 }
2916 
2917 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2918                                                    const int offset)
2919 {
2920         skb_reset_inner_transport_header(skb);
2921         skb->inner_transport_header += offset;
2922 }
2923 
2924 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2925 {
2926         return skb->head + skb->inner_network_header;
2927 }
2928 
2929 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2930 {
2931         skb->inner_network_header = skb->data - skb->head;
2932 }
2933 
2934 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2935                                                 const int offset)
2936 {
2937         skb_reset_inner_network_header(skb);
2938         skb->inner_network_header += offset;
2939 }
2940 
2941 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2942 {
2943         return skb->inner_network_header > 0;
2944 }
2945 
2946 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2947 {
2948         return skb->head + skb->inner_mac_header;
2949 }
2950 
2951 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2952 {
2953         skb->inner_mac_header = skb->data - skb->head;
2954 }
2955 
2956 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2957                                             const int offset)
2958 {
2959         skb_reset_inner_mac_header(skb);
2960         skb->inner_mac_header += offset;
2961 }
2962 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2963 {
2964         return skb->transport_header != (typeof(skb->transport_header))~0U;
2965 }
2966 
2967 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2968 {
2969         DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2970         return skb->head + skb->transport_header;
2971 }
2972 
2973 static inline void skb_reset_transport_header(struct sk_buff *skb)
2974 {
2975         skb->transport_header = skb->data - skb->head;
2976 }
2977 
2978 static inline void skb_set_transport_header(struct sk_buff *skb,
2979                                             const int offset)
2980 {
2981         skb_reset_transport_header(skb);
2982         skb->transport_header += offset;
2983 }
2984 
2985 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2986 {
2987         return skb->head + skb->network_header;
2988 }
2989 
2990 static inline void skb_reset_network_header(struct sk_buff *skb)
2991 {
2992         skb->network_header = skb->data - skb->head;
2993 }
2994 
2995 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2996 {
2997         skb_reset_network_header(skb);
2998         skb->network_header += offset;
2999 }
3000 
3001 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
3002 {
3003         return skb->mac_header != (typeof(skb->mac_header))~0U;
3004 }
3005 
3006 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3007 {
3008         DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3009         return skb->head + skb->mac_header;
3010 }
3011 
3012 static inline int skb_mac_offset(const struct sk_buff *skb)
3013 {
3014         return skb_mac_header(skb) - skb->data;
3015 }
3016 
3017 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3018 {
3019         DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3020         return skb->network_header - skb->mac_header;
3021 }
3022 
3023 static inline void skb_unset_mac_header(struct sk_buff *skb)
3024 {
3025         skb->mac_header = (typeof(skb->mac_header))~0U;
3026 }
3027 
3028 static inline void skb_reset_mac_header(struct sk_buff *skb)
3029 {
3030         skb->mac_header = skb->data - skb->head;
3031 }
3032 
3033 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3034 {
3035         skb_reset_mac_header(skb);
3036         skb->mac_header += offset;
3037 }
3038 
3039 static inline void skb_pop_mac_header(struct sk_buff *skb)
3040 {
3041         skb->mac_header = skb->network_header;
3042 }
3043 
3044 static inline void skb_probe_transport_header(struct sk_buff *skb)
3045 {
3046         struct flow_keys_basic keys;
3047 
3048         if (skb_transport_header_was_set(skb))
3049                 return;
3050 
3051         if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3052                                              NULL, 0, 0, 0, 0))
3053                 skb_set_transport_header(skb, keys.control.thoff);
3054 }
3055 
3056 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3057 {
3058         if (skb_mac_header_was_set(skb)) {
3059                 const unsigned char *old_mac = skb_mac_header(skb);
3060 
3061                 skb_set_mac_header(skb, -skb->mac_len);
3062                 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3063         }
3064 }
3065 
3066 /* Move the full mac header up to current network_header.
3067  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3068  * Must be provided the complete mac header length.
3069  */
3070 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3071 {
3072         if (skb_mac_header_was_set(skb)) {
3073                 const unsigned char *old_mac = skb_mac_header(skb);
3074 
3075                 skb_set_mac_header(skb, -full_mac_len);
3076                 memmove(skb_mac_header(skb), old_mac, full_mac_len);
3077                 __skb_push(skb, full_mac_len - skb->mac_len);
3078         }
3079 }
3080 
3081 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3082 {
3083         return skb->csum_start - skb_headroom(skb);
3084 }
3085 
3086 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3087 {
3088         return skb->head + skb->csum_start;
3089 }
3090 
3091 static inline int skb_transport_offset(const struct sk_buff *skb)
3092 {
3093         return skb_transport_header(skb) - skb->data;
3094 }
3095 
3096 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3097 {
3098         DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3099         return skb->transport_header - skb->network_header;
3100 }
3101 
3102 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3103 {
3104         return skb->inner_transport_header - skb->inner_network_header;
3105 }
3106 
3107 static inline int skb_network_offset(const struct sk_buff *skb)
3108 {
3109         return skb_network_header(skb) - skb->data;
3110 }
3111 
3112 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3113 {
3114         return skb_inner_network_header(skb) - skb->data;
3115 }
3116 
3117 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3118 {
3119         return pskb_may_pull(skb, skb_network_offset(skb) + len);
3120 }
3121 
3122 /*
3123  * CPUs often take a performance hit when accessing unaligned memory
3124  * locations. The actual performance hit varies, it can be small if the
3125  * hardware handles it or large if we have to take an exception and fix it
3126  * in software.
3127  *
3128  * Since an ethernet header is 14 bytes network drivers often end up with
3129  * the IP header at an unaligned offset. The IP header can be aligned by
3130  * shifting the start of the packet by 2 bytes. Drivers should do this
3131  * with:
3132  *
3133  * skb_reserve(skb, NET_IP_ALIGN);
3134  *
3135  * The downside to this alignment of the IP header is that the DMA is now
3136  * unaligned. On some architectures the cost of an unaligned DMA is high
3137  * and this cost outweighs the gains made by aligning the IP header.
3138  *
3139  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3140  * to be overridden.
3141  */
3142 #ifndef NET_IP_ALIGN
3143 #define NET_IP_ALIGN    2
3144 #endif
3145 
3146 /*
3147  * The networking layer reserves some headroom in skb data (via
3148  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3149  * the header has to grow. In the default case, if the header has to grow
3150  * 32 bytes or less we avoid the reallocation.
3151  *
3152  * Unfortunately this headroom changes the DMA alignment of the resulting
3153  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3154  * on some architectures. An architecture can override this value,
3155  * perhaps setting it to a cacheline in size (since that will maintain
3156  * cacheline alignment of the DMA). It must be a power of 2.
3157  *
3158  * Various parts of the networking layer expect at least 32 bytes of
3159  * headroom, you should not reduce this.
3160  *
3161  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3162  * to reduce average number of cache lines per packet.
3163  * get_rps_cpu() for example only access one 64 bytes aligned block :
3164  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3165  */
3166 #ifndef NET_SKB_PAD
3167 #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
3168 #endif
3169 
3170 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3171 
3172 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3173 {
3174         if (WARN_ON(skb_is_nonlinear(skb)))
3175                 return;
3176         skb->len = len;
3177         skb_set_tail_pointer(skb, len);
3178 }
3179 
3180 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3181 {
3182         __skb_set_length(skb, len);
3183 }
3184 
3185 void skb_trim(struct sk_buff *skb, unsigned int len);
3186 
3187 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3188 {
3189         if (skb->data_len)
3190                 return ___pskb_trim(skb, len);
3191         __skb_trim(skb, len);
3192         return 0;
3193 }
3194 
3195 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3196 {
3197         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3198 }
3199 
3200 /**
3201  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3202  *      @skb: buffer to alter
3203  *      @len: new length
3204  *
3205  *      This is identical to pskb_trim except that the caller knows that
3206  *      the skb is not cloned so we should never get an error due to out-
3207  *      of-memory.
3208  */
3209 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3210 {
3211         int err = pskb_trim(skb, len);
3212         BUG_ON(err);
3213 }
3214 
3215 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3216 {
3217         unsigned int diff = len - skb->len;
3218 
3219         if (skb_tailroom(skb) < diff) {
3220                 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3221                                            GFP_ATOMIC);
3222                 if (ret)
3223                         return ret;
3224         }
3225         __skb_set_length(skb, len);
3226         return 0;
3227 }
3228 
3229 /**
3230  *      skb_orphan - orphan a buffer
3231  *      @skb: buffer to orphan
3232  *
3233  *      If a buffer currently has an owner then we call the owner's
3234  *      destructor function and make the @skb unowned. The buffer continues
3235  *      to exist but is no longer charged to its former owner.
3236  */
3237 static inline void skb_orphan(struct sk_buff *skb)
3238 {
3239         if (skb->destructor) {
3240                 skb->destructor(skb);
3241                 skb->destructor = NULL;
3242                 skb->sk         = NULL;
3243         } else {
3244                 BUG_ON(skb->sk);
3245         }
3246 }
3247 
3248 /**
3249  *      skb_orphan_frags - orphan the frags contained in a buffer
3250  *      @skb: buffer to orphan frags from
3251  *      @gfp_mask: allocation mask for replacement pages
3252  *
3253  *      For each frag in the SKB which needs a destructor (i.e. has an
3254  *      owner) create a copy of that frag and release the original
3255  *      page by calling the destructor.
3256  */
3257 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3258 {
3259         if (likely(!skb_zcopy(skb)))
3260                 return 0;
3261         if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3262                 return 0;
3263         return skb_copy_ubufs(skb, gfp_mask);
3264 }
3265 
3266 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3267 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3268 {
3269         if (likely(!skb_zcopy(skb)))
3270                 return 0;
3271         return skb_copy_ubufs(skb, gfp_mask);
3272 }
3273 
3274 /**
3275  *      __skb_queue_purge_reason - empty a list
3276  *      @list: list to empty
3277  *      @reason: drop reason
3278  *
3279  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3280  *      the list and one reference dropped. This function does not take the
3281  *      list lock and the caller must hold the relevant locks to use it.
3282  */
3283 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3284                                             enum skb_drop_reason reason)
3285 {
3286         struct sk_buff *skb;
3287 
3288         while ((skb = __skb_dequeue(list)) != NULL)
3289                 kfree_skb_reason(skb, reason);
3290 }
3291 
3292 static inline void __skb_queue_purge(struct sk_buff_head *list)
3293 {
3294         __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3295 }
3296 
3297 void skb_queue_purge_reason(struct sk_buff_head *list,
3298                             enum skb_drop_reason reason);
3299 
3300 static inline void skb_queue_purge(struct sk_buff_head *list)
3301 {
3302         skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3303 }
3304 
3305 unsigned int skb_rbtree_purge(struct rb_root *root);
3306 void skb_errqueue_purge(struct sk_buff_head *list);
3307 
3308 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3309 
3310 /**
3311  * netdev_alloc_frag - allocate a page fragment
3312  * @fragsz: fragment size
3313  *
3314  * Allocates a frag from a page for receive buffer.
3315  * Uses GFP_ATOMIC allocations.
3316  */
3317 static inline void *netdev_alloc_frag(unsigned int fragsz)
3318 {
3319         return __netdev_alloc_frag_align(fragsz, ~0u);
3320 }
3321 
3322 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3323                                             unsigned int align)
3324 {
3325         WARN_ON_ONCE(!is_power_of_2(align));
3326         return __netdev_alloc_frag_align(fragsz, -align);
3327 }
3328 
3329 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3330                                    gfp_t gfp_mask);
3331 
3332 /**
3333  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
3334  *      @dev: network device to receive on
3335  *      @length: length to allocate
3336  *
3337  *      Allocate a new &sk_buff and assign it a usage count of one. The
3338  *      buffer has unspecified headroom built in. Users should allocate
3339  *      the headroom they think they need without accounting for the
3340  *      built in space. The built in space is used for optimisations.
3341  *
3342  *      %NULL is returned if there is no free memory. Although this function
3343  *      allocates memory it can be called from an interrupt.
3344  */
3345 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3346                                                unsigned int length)
3347 {
3348         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3349 }
3350 
3351 /* legacy helper around __netdev_alloc_skb() */
3352 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3353                                               gfp_t gfp_mask)
3354 {
3355         return __netdev_alloc_skb(NULL, length, gfp_mask);
3356 }
3357 
3358 /* legacy helper around netdev_alloc_skb() */
3359 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3360 {
3361         return netdev_alloc_skb(NULL, length);
3362 }
3363 
3364 
3365 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3366                 unsigned int length, gfp_t gfp)
3367 {
3368         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3369 
3370         if (NET_IP_ALIGN && skb)
3371                 skb_reserve(skb, NET_IP_ALIGN);
3372         return skb;
3373 }
3374 
3375 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3376                 unsigned int length)
3377 {
3378         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3379 }
3380 
3381 static inline void skb_free_frag(void *addr)
3382 {
3383         page_frag_free(addr);
3384 }
3385 
3386 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3387 
3388 static inline void *napi_alloc_frag(unsigned int fragsz)
3389 {
3390         return __napi_alloc_frag_align(fragsz, ~0u);
3391 }
3392 
3393 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3394                                           unsigned int align)
3395 {
3396         WARN_ON_ONCE(!is_power_of_2(align));
3397         return __napi_alloc_frag_align(fragsz, -align);
3398 }
3399 
3400 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3401 void napi_consume_skb(struct sk_buff *skb, int budget);
3402 
3403 void napi_skb_free_stolen_head(struct sk_buff *skb);
3404 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3405 
3406 /**
3407  * __dev_alloc_pages - allocate page for network Rx
3408  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3409  * @order: size of the allocation
3410  *
3411  * Allocate a new page.
3412  *
3413  * %NULL is returned if there is no free memory.
3414 */
3415 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3416                                              unsigned int order)
3417 {
3418         /* This piece of code contains several assumptions.
3419          * 1.  This is for device Rx, therefore a cold page is preferred.
3420          * 2.  The expectation is the user wants a compound page.
3421          * 3.  If requesting a order 0 page it will not be compound
3422          *     due to the check to see if order has a value in prep_new_page
3423          * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3424          *     code in gfp_to_alloc_flags that should be enforcing this.
3425          */
3426         gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3427 
3428         return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3429 }
3430 #define __dev_alloc_pages(...)  alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3431 
3432 /*
3433  * This specialized allocator has to be a macro for its allocations to be
3434  * accounted separately (to have a separate alloc_tag).
3435  */
3436 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3437 
3438 /**
3439  * __dev_alloc_page - allocate a page for network Rx
3440  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3441  *
3442  * Allocate a new page.
3443  *
3444  * %NULL is returned if there is no free memory.
3445  */
3446 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3447 {
3448         return __dev_alloc_pages_noprof(gfp_mask, 0);
3449 }
3450 #define __dev_alloc_page(...)   alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3451 
3452 /*
3453  * This specialized allocator has to be a macro for its allocations to be
3454  * accounted separately (to have a separate alloc_tag).
3455  */
3456 #define dev_alloc_page()        dev_alloc_pages(0)
3457 
3458 /**
3459  * dev_page_is_reusable - check whether a page can be reused for network Rx
3460  * @page: the page to test
3461  *
3462  * A page shouldn't be considered for reusing/recycling if it was allocated
3463  * under memory pressure or at a distant memory node.
3464  *
3465  * Returns false if this page should be returned to page allocator, true
3466  * otherwise.
3467  */
3468 static inline bool dev_page_is_reusable(const struct page *page)
3469 {
3470         return likely(page_to_nid(page) == numa_mem_id() &&
3471                       !page_is_pfmemalloc(page));
3472 }
3473 
3474 /**
3475  *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3476  *      @page: The page that was allocated from skb_alloc_page
3477  *      @skb: The skb that may need pfmemalloc set
3478  */
3479 static inline void skb_propagate_pfmemalloc(const struct page *page,
3480                                             struct sk_buff *skb)
3481 {
3482         if (page_is_pfmemalloc(page))
3483                 skb->pfmemalloc = true;
3484 }
3485 
3486 /**
3487  * skb_frag_off() - Returns the offset of a skb fragment
3488  * @frag: the paged fragment
3489  */
3490 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3491 {
3492         return frag->offset;
3493 }
3494 
3495 /**
3496  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3497  * @frag: skb fragment
3498  * @delta: value to add
3499  */
3500 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3501 {
3502         frag->offset += delta;
3503 }
3504 
3505 /**
3506  * skb_frag_off_set() - Sets the offset of a skb fragment
3507  * @frag: skb fragment
3508  * @offset: offset of fragment
3509  */
3510 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3511 {
3512         frag->offset = offset;
3513 }
3514 
3515 /**
3516  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3517  * @fragto: skb fragment where offset is set
3518  * @fragfrom: skb fragment offset is copied from
3519  */
3520 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3521                                      const skb_frag_t *fragfrom)
3522 {
3523         fragto->offset = fragfrom->offset;
3524 }
3525 
3526 /**
3527  * skb_frag_page - retrieve the page referred to by a paged fragment
3528  * @frag: the paged fragment
3529  *
3530  * Returns the &struct page associated with @frag.
3531  */
3532 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3533 {
3534         return netmem_to_page(frag->netmem);
3535 }
3536 
3537 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3538                     unsigned int headroom);
3539 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3540                          struct bpf_prog *prog);
3541 /**
3542  * skb_frag_address - gets the address of the data contained in a paged fragment
3543  * @frag: the paged fragment buffer
3544  *
3545  * Returns the address of the data within @frag. The page must already
3546  * be mapped.
3547  */
3548 static inline void *skb_frag_address(const skb_frag_t *frag)
3549 {
3550         return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3551 }
3552 
3553 /**
3554  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3555  * @frag: the paged fragment buffer
3556  *
3557  * Returns the address of the data within @frag. Checks that the page
3558  * is mapped and returns %NULL otherwise.
3559  */
3560 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3561 {
3562         void *ptr = page_address(skb_frag_page(frag));
3563         if (unlikely(!ptr))
3564                 return NULL;
3565 
3566         return ptr + skb_frag_off(frag);
3567 }
3568 
3569 /**
3570  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3571  * @fragto: skb fragment where page is set
3572  * @fragfrom: skb fragment page is copied from
3573  */
3574 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3575                                       const skb_frag_t *fragfrom)
3576 {
3577         fragto->netmem = fragfrom->netmem;
3578 }
3579 
3580 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3581 
3582 /**
3583  * skb_frag_dma_map - maps a paged fragment via the DMA API
3584  * @dev: the device to map the fragment to
3585  * @frag: the paged fragment to map
3586  * @offset: the offset within the fragment (starting at the
3587  *          fragment's own offset)
3588  * @size: the number of bytes to map
3589  * @dir: the direction of the mapping (``PCI_DMA_*``)
3590  *
3591  * Maps the page associated with @frag to @device.
3592  */
3593 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3594                                           const skb_frag_t *frag,
3595                                           size_t offset, size_t size,
3596                                           enum dma_data_direction dir)
3597 {
3598         return dma_map_page(dev, skb_frag_page(frag),
3599                             skb_frag_off(frag) + offset, size, dir);
3600 }
3601 
3602 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3603                                         gfp_t gfp_mask)
3604 {
3605         return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3606 }
3607 
3608 
3609 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3610                                                   gfp_t gfp_mask)
3611 {
3612         return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3613 }
3614 
3615 
3616 /**
3617  *      skb_clone_writable - is the header of a clone writable
3618  *      @skb: buffer to check
3619  *      @len: length up to which to write
3620  *
3621  *      Returns true if modifying the header part of the cloned buffer
3622  *      does not requires the data to be copied.
3623  */
3624 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3625 {
3626         return !skb_header_cloned(skb) &&
3627                skb_headroom(skb) + len <= skb->hdr_len;
3628 }
3629 
3630 static inline int skb_try_make_writable(struct sk_buff *skb,
3631                                         unsigned int write_len)
3632 {
3633         return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3634                pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3635 }
3636 
3637 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3638                             int cloned)
3639 {
3640         int delta = 0;
3641 
3642         if (headroom > skb_headroom(skb))
3643                 delta = headroom - skb_headroom(skb);
3644 
3645         if (delta || cloned)
3646                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3647                                         GFP_ATOMIC);
3648         return 0;
3649 }
3650 
3651 /**
3652  *      skb_cow - copy header of skb when it is required
3653  *      @skb: buffer to cow
3654  *      @headroom: needed headroom
3655  *
3656  *      If the skb passed lacks sufficient headroom or its data part
3657  *      is shared, data is reallocated. If reallocation fails, an error
3658  *      is returned and original skb is not changed.
3659  *
3660  *      The result is skb with writable area skb->head...skb->tail
3661  *      and at least @headroom of space at head.
3662  */
3663 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3664 {
3665         return __skb_cow(skb, headroom, skb_cloned(skb));
3666 }
3667 
3668 /**
3669  *      skb_cow_head - skb_cow but only making the head writable
3670  *      @skb: buffer to cow
3671  *      @headroom: needed headroom
3672  *
3673  *      This function is identical to skb_cow except that we replace the
3674  *      skb_cloned check by skb_header_cloned.  It should be used when
3675  *      you only need to push on some header and do not need to modify
3676  *      the data.
3677  */
3678 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3679 {
3680         return __skb_cow(skb, headroom, skb_header_cloned(skb));
3681 }
3682 
3683 /**
3684  *      skb_padto       - pad an skbuff up to a minimal size
3685  *      @skb: buffer to pad
3686  *      @len: minimal length
3687  *
3688  *      Pads up a buffer to ensure the trailing bytes exist and are
3689  *      blanked. If the buffer already contains sufficient data it
3690  *      is untouched. Otherwise it is extended. Returns zero on
3691  *      success. The skb is freed on error.
3692  */
3693 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3694 {
3695         unsigned int size = skb->len;
3696         if (likely(size >= len))
3697                 return 0;
3698         return skb_pad(skb, len - size);
3699 }
3700 
3701 /**
3702  *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3703  *      @skb: buffer to pad
3704  *      @len: minimal length
3705  *      @free_on_error: free buffer on error
3706  *
3707  *      Pads up a buffer to ensure the trailing bytes exist and are
3708  *      blanked. If the buffer already contains sufficient data it
3709  *      is untouched. Otherwise it is extended. Returns zero on
3710  *      success. The skb is freed on error if @free_on_error is true.
3711  */
3712 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3713                                                unsigned int len,
3714                                                bool free_on_error)
3715 {
3716         unsigned int size = skb->len;
3717 
3718         if (unlikely(size < len)) {
3719                 len -= size;
3720                 if (__skb_pad(skb, len, free_on_error))
3721                         return -ENOMEM;
3722                 __skb_put(skb, len);
3723         }
3724         return 0;
3725 }
3726 
3727 /**
3728  *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3729  *      @skb: buffer to pad
3730  *      @len: minimal length
3731  *
3732  *      Pads up a buffer to ensure the trailing bytes exist and are
3733  *      blanked. If the buffer already contains sufficient data it
3734  *      is untouched. Otherwise it is extended. Returns zero on
3735  *      success. The skb is freed on error.
3736  */
3737 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3738 {
3739         return __skb_put_padto(skb, len, true);
3740 }
3741 
3742 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3743         __must_check;
3744 
3745 static inline int skb_add_data(struct sk_buff *skb,
3746                                struct iov_iter *from, int copy)
3747 {
3748         const int off = skb->len;
3749 
3750         if (skb->ip_summed == CHECKSUM_NONE) {
3751                 __wsum csum = 0;
3752                 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3753                                                  &csum, from)) {
3754                         skb->csum = csum_block_add(skb->csum, csum, off);
3755                         return 0;
3756                 }
3757         } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3758                 return 0;
3759 
3760         __skb_trim(skb, off);
3761         return -EFAULT;
3762 }
3763 
3764 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3765                                     const struct page *page, int off)
3766 {
3767         if (skb_zcopy(skb))
3768                 return false;
3769         if (i) {
3770                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3771 
3772                 return page == skb_frag_page(frag) &&
3773                        off == skb_frag_off(frag) + skb_frag_size(frag);
3774         }
3775         return false;
3776 }
3777 
3778 static inline int __skb_linearize(struct sk_buff *skb)
3779 {
3780         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3781 }
3782 
3783 /**
3784  *      skb_linearize - convert paged skb to linear one
3785  *      @skb: buffer to linarize
3786  *
3787  *      If there is no free memory -ENOMEM is returned, otherwise zero
3788  *      is returned and the old skb data released.
3789  */
3790 static inline int skb_linearize(struct sk_buff *skb)
3791 {
3792         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3793 }
3794 
3795 /**
3796  * skb_has_shared_frag - can any frag be overwritten
3797  * @skb: buffer to test
3798  *
3799  * Return true if the skb has at least one frag that might be modified
3800  * by an external entity (as in vmsplice()/sendfile())
3801  */
3802 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3803 {
3804         return skb_is_nonlinear(skb) &&
3805                skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3806 }
3807 
3808 /**
3809  *      skb_linearize_cow - make sure skb is linear and writable
3810  *      @skb: buffer to process
3811  *
3812  *      If there is no free memory -ENOMEM is returned, otherwise zero
3813  *      is returned and the old skb data released.
3814  */
3815 static inline int skb_linearize_cow(struct sk_buff *skb)
3816 {
3817         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3818                __skb_linearize(skb) : 0;
3819 }
3820 
3821 static __always_inline void
3822 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3823                      unsigned int off)
3824 {
3825         if (skb->ip_summed == CHECKSUM_COMPLETE)
3826                 skb->csum = csum_block_sub(skb->csum,
3827                                            csum_partial(start, len, 0), off);
3828         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3829                  skb_checksum_start_offset(skb) < 0)
3830                 skb->ip_summed = CHECKSUM_NONE;
3831 }
3832 
3833 /**
3834  *      skb_postpull_rcsum - update checksum for received skb after pull
3835  *      @skb: buffer to update
3836  *      @start: start of data before pull
3837  *      @len: length of data pulled
3838  *
3839  *      After doing a pull on a received packet, you need to call this to
3840  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3841  *      CHECKSUM_NONE so that it can be recomputed from scratch.
3842  */
3843 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3844                                       const void *start, unsigned int len)
3845 {
3846         if (skb->ip_summed == CHECKSUM_COMPLETE)
3847                 skb->csum = wsum_negate(csum_partial(start, len,
3848                                                      wsum_negate(skb->csum)));
3849         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3850                  skb_checksum_start_offset(skb) < 0)
3851                 skb->ip_summed = CHECKSUM_NONE;
3852 }
3853 
3854 static __always_inline void
3855 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3856                      unsigned int off)
3857 {
3858         if (skb->ip_summed == CHECKSUM_COMPLETE)
3859                 skb->csum = csum_block_add(skb->csum,
3860                                            csum_partial(start, len, 0), off);
3861 }
3862 
3863 /**
3864  *      skb_postpush_rcsum - update checksum for received skb after push
3865  *      @skb: buffer to update
3866  *      @start: start of data after push
3867  *      @len: length of data pushed
3868  *
3869  *      After doing a push on a received packet, you need to call this to
3870  *      update the CHECKSUM_COMPLETE checksum.
3871  */
3872 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3873                                       const void *start, unsigned int len)
3874 {
3875         __skb_postpush_rcsum(skb, start, len, 0);
3876 }
3877 
3878 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3879 
3880 /**
3881  *      skb_push_rcsum - push skb and update receive checksum
3882  *      @skb: buffer to update
3883  *      @len: length of data pulled
3884  *
3885  *      This function performs an skb_push on the packet and updates
3886  *      the CHECKSUM_COMPLETE checksum.  It should be used on
3887  *      receive path processing instead of skb_push unless you know
3888  *      that the checksum difference is zero (e.g., a valid IP header)
3889  *      or you are setting ip_summed to CHECKSUM_NONE.
3890  */
3891 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3892 {
3893         skb_push(skb, len);
3894         skb_postpush_rcsum(skb, skb->data, len);
3895         return skb->data;
3896 }
3897 
3898 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3899 /**
3900  *      pskb_trim_rcsum - trim received skb and update checksum
3901  *      @skb: buffer to trim
3902  *      @len: new length
3903  *
3904  *      This is exactly the same as pskb_trim except that it ensures the
3905  *      checksum of received packets are still valid after the operation.
3906  *      It can change skb pointers.
3907  */
3908 
3909 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3910 {
3911         if (likely(len >= skb->len))
3912                 return 0;
3913         return pskb_trim_rcsum_slow(skb, len);
3914 }
3915 
3916 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3917 {
3918         if (skb->ip_summed == CHECKSUM_COMPLETE)
3919                 skb->ip_summed = CHECKSUM_NONE;
3920         __skb_trim(skb, len);
3921         return 0;
3922 }
3923 
3924 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3925 {
3926         if (skb->ip_summed == CHECKSUM_COMPLETE)
3927                 skb->ip_summed = CHECKSUM_NONE;
3928         return __skb_grow(skb, len);
3929 }
3930 
3931 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3932 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3933 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3934 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3935 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3936 
3937 #define skb_queue_walk(queue, skb) \
3938                 for (skb = (queue)->next;                                       \
3939                      skb != (struct sk_buff *)(queue);                          \
3940                      skb = skb->next)
3941 
3942 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
3943                 for (skb = (queue)->next, tmp = skb->next;                      \
3944                      skb != (struct sk_buff *)(queue);                          \
3945                      skb = tmp, tmp = skb->next)
3946 
3947 #define skb_queue_walk_from(queue, skb)                                         \
3948                 for (; skb != (struct sk_buff *)(queue);                        \
3949                      skb = skb->next)
3950 
3951 #define skb_rbtree_walk(skb, root)                                              \
3952                 for (skb = skb_rb_first(root); skb != NULL;                     \
3953                      skb = skb_rb_next(skb))
3954 
3955 #define skb_rbtree_walk_from(skb)                                               \
3956                 for (; skb != NULL;                                             \
3957                      skb = skb_rb_next(skb))
3958 
3959 #define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3960                 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3961                      skb = tmp)
3962 
3963 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3964                 for (tmp = skb->next;                                           \
3965                      skb != (struct sk_buff *)(queue);                          \
3966                      skb = tmp, tmp = skb->next)
3967 
3968 #define skb_queue_reverse_walk(queue, skb) \
3969                 for (skb = (queue)->prev;                                       \
3970                      skb != (struct sk_buff *)(queue);                          \
3971                      skb = skb->prev)
3972 
3973 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3974                 for (skb = (queue)->prev, tmp = skb->prev;                      \
3975                      skb != (struct sk_buff *)(queue);                          \
3976                      skb = tmp, tmp = skb->prev)
3977 
3978 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3979                 for (tmp = skb->prev;                                           \
3980                      skb != (struct sk_buff *)(queue);                          \
3981                      skb = tmp, tmp = skb->prev)
3982 
3983 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3984 {
3985         return skb_shinfo(skb)->frag_list != NULL;
3986 }
3987 
3988 static inline void skb_frag_list_init(struct sk_buff *skb)
3989 {
3990         skb_shinfo(skb)->frag_list = NULL;
3991 }
3992 
3993 #define skb_walk_frags(skb, iter)       \
3994         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3995 
3996 
3997 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3998                                 int *err, long *timeo_p,
3999                                 const struct sk_buff *skb);
4000 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4001                                           struct sk_buff_head *queue,
4002                                           unsigned int flags,
4003                                           int *off, int *err,
4004                                           struct sk_buff **last);
4005 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4006                                         struct sk_buff_head *queue,
4007                                         unsigned int flags, int *off, int *err,
4008                                         struct sk_buff **last);
4009 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4010                                     struct sk_buff_head *sk_queue,
4011                                     unsigned int flags, int *off, int *err);
4012 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4013 __poll_t datagram_poll(struct file *file, struct socket *sock,
4014                            struct poll_table_struct *wait);
4015 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4016                            struct iov_iter *to, int size);
4017 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4018                                         struct msghdr *msg, int size)
4019 {
4020         return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4021 }
4022 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4023                                    struct msghdr *msg);
4024 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4025                            struct iov_iter *to, int len,
4026                            struct ahash_request *hash);
4027 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4028                                  struct iov_iter *from, int len);
4029 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4030 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4031 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4032 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4033 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4034 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4035                               int len);
4036 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4037                     struct pipe_inode_info *pipe, unsigned int len,
4038                     unsigned int flags);
4039 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4040                          int len);
4041 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4042 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4043 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4044 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4045                  int len, int hlen);
4046 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4047 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4048 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4049 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4050 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4051                                  unsigned int offset);
4052 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4053 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4054 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4055 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4056 int skb_vlan_pop(struct sk_buff *skb);
4057 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4058 int skb_eth_pop(struct sk_buff *skb);
4059 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4060                  const unsigned char *src);
4061 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4062                   int mac_len, bool ethernet);
4063 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4064                  bool ethernet);
4065 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4066 int skb_mpls_dec_ttl(struct sk_buff *skb);
4067 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4068                              gfp_t gfp);
4069 
4070 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4071 {
4072         return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4073 }
4074 
4075 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4076 {
4077         return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4078 }
4079 
4080 struct skb_checksum_ops {
4081         __wsum (*update)(const void *mem, int len, __wsum wsum);
4082         __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4083 };
4084 
4085 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4086 
4087 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4088                       __wsum csum, const struct skb_checksum_ops *ops);
4089 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4090                     __wsum csum);
4091 
4092 static inline void * __must_check
4093 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4094                      const void *data, int hlen, void *buffer)
4095 {
4096         if (likely(hlen - offset >= len))
4097                 return (void *)data + offset;
4098 
4099         if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4100                 return NULL;
4101 
4102         return buffer;
4103 }
4104 
4105 static inline void * __must_check
4106 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4107 {
4108         return __skb_header_pointer(skb, offset, len, skb->data,
4109                                     skb_headlen(skb), buffer);
4110 }
4111 
4112 static inline void * __must_check
4113 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4114 {
4115         if (likely(skb_headlen(skb) - offset >= len))
4116                 return skb->data + offset;
4117         return NULL;
4118 }
4119 
4120 /**
4121  *      skb_needs_linearize - check if we need to linearize a given skb
4122  *                            depending on the given device features.
4123  *      @skb: socket buffer to check
4124  *      @features: net device features
4125  *
4126  *      Returns true if either:
4127  *      1. skb has frag_list and the device doesn't support FRAGLIST, or
4128  *      2. skb is fragmented and the device does not support SG.
4129  */
4130 static inline bool skb_needs_linearize(struct sk_buff *skb,
4131                                        netdev_features_t features)
4132 {
4133         return skb_is_nonlinear(skb) &&
4134                ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4135                 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4136 }
4137 
4138 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4139                                              void *to,
4140                                              const unsigned int len)
4141 {
4142         memcpy(to, skb->data, len);
4143 }
4144 
4145 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4146                                                     const int offset, void *to,
4147                                                     const unsigned int len)
4148 {
4149         memcpy(to, skb->data + offset, len);
4150 }
4151 
4152 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4153                                            const void *from,
4154                                            const unsigned int len)
4155 {
4156         memcpy(skb->data, from, len);
4157 }
4158 
4159 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4160                                                   const int offset,
4161                                                   const void *from,
4162                                                   const unsigned int len)
4163 {
4164         memcpy(skb->data + offset, from, len);
4165 }
4166 
4167 void skb_init(void);
4168 
4169 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4170 {
4171         return skb->tstamp;
4172 }
4173 
4174 /**
4175  *      skb_get_timestamp - get timestamp from a skb
4176  *      @skb: skb to get stamp from
4177  *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
4178  *
4179  *      Timestamps are stored in the skb as offsets to a base timestamp.
4180  *      This function converts the offset back to a struct timeval and stores
4181  *      it in stamp.
4182  */
4183 static inline void skb_get_timestamp(const struct sk_buff *skb,
4184                                      struct __kernel_old_timeval *stamp)
4185 {
4186         *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4187 }
4188 
4189 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4190                                          struct __kernel_sock_timeval *stamp)
4191 {
4192         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4193 
4194         stamp->tv_sec = ts.tv_sec;
4195         stamp->tv_usec = ts.tv_nsec / 1000;
4196 }
4197 
4198 static inline void skb_get_timestampns(const struct sk_buff *skb,
4199                                        struct __kernel_old_timespec *stamp)
4200 {
4201         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4202 
4203         stamp->tv_sec = ts.tv_sec;
4204         stamp->tv_nsec = ts.tv_nsec;
4205 }
4206 
4207 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4208                                            struct __kernel_timespec *stamp)
4209 {
4210         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4211 
4212         stamp->tv_sec = ts.tv_sec;
4213         stamp->tv_nsec = ts.tv_nsec;
4214 }
4215 
4216 static inline void __net_timestamp(struct sk_buff *skb)
4217 {
4218         skb->tstamp = ktime_get_real();
4219         skb->tstamp_type = SKB_CLOCK_REALTIME;
4220 }
4221 
4222 static inline ktime_t net_timedelta(ktime_t t)
4223 {
4224         return ktime_sub(ktime_get_real(), t);
4225 }
4226 
4227 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4228                                          u8 tstamp_type)
4229 {
4230         skb->tstamp = kt;
4231 
4232         if (kt)
4233                 skb->tstamp_type = tstamp_type;
4234         else
4235                 skb->tstamp_type = SKB_CLOCK_REALTIME;
4236 }
4237 
4238 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4239                                                     ktime_t kt, clockid_t clockid)
4240 {
4241         u8 tstamp_type = SKB_CLOCK_REALTIME;
4242 
4243         switch (clockid) {
4244         case CLOCK_REALTIME:
4245                 break;
4246         case CLOCK_MONOTONIC:
4247                 tstamp_type = SKB_CLOCK_MONOTONIC;
4248                 break;
4249         case CLOCK_TAI:
4250                 tstamp_type = SKB_CLOCK_TAI;
4251                 break;
4252         default:
4253                 WARN_ON_ONCE(1);
4254                 kt = 0;
4255         }
4256 
4257         skb_set_delivery_time(skb, kt, tstamp_type);
4258 }
4259 
4260 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4261 
4262 /* It is used in the ingress path to clear the delivery_time.
4263  * If needed, set the skb->tstamp to the (rcv) timestamp.
4264  */
4265 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4266 {
4267         if (skb->tstamp_type) {
4268                 skb->tstamp_type = SKB_CLOCK_REALTIME;
4269                 if (static_branch_unlikely(&netstamp_needed_key))
4270                         skb->tstamp = ktime_get_real();
4271                 else
4272                         skb->tstamp = 0;
4273         }
4274 }
4275 
4276 static inline void skb_clear_tstamp(struct sk_buff *skb)
4277 {
4278         if (skb->tstamp_type)
4279                 return;
4280 
4281         skb->tstamp = 0;
4282 }
4283 
4284 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4285 {
4286         if (skb->tstamp_type)
4287                 return 0;
4288 
4289         return skb->tstamp;
4290 }
4291 
4292 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4293 {
4294         if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4295                 return skb->tstamp;
4296 
4297         if (static_branch_unlikely(&netstamp_needed_key) || cond)
4298                 return ktime_get_real();
4299 
4300         return 0;
4301 }
4302 
4303 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4304 {
4305         return skb_shinfo(skb)->meta_len;
4306 }
4307 
4308 static inline void *skb_metadata_end(const struct sk_buff *skb)
4309 {
4310         return skb_mac_header(skb);
4311 }
4312 
4313 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4314                                           const struct sk_buff *skb_b,
4315                                           u8 meta_len)
4316 {
4317         const void *a = skb_metadata_end(skb_a);
4318         const void *b = skb_metadata_end(skb_b);
4319         u64 diffs = 0;
4320 
4321         if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4322             BITS_PER_LONG != 64)
4323                 goto slow;
4324 
4325         /* Using more efficient variant than plain call to memcmp(). */
4326         switch (meta_len) {
4327 #define __it(x, op) (x -= sizeof(u##op))
4328 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4329         case 32: diffs |= __it_diff(a, b, 64);
4330                 fallthrough;
4331         case 24: diffs |= __it_diff(a, b, 64);
4332                 fallthrough;
4333         case 16: diffs |= __it_diff(a, b, 64);
4334                 fallthrough;
4335         case  8: diffs |= __it_diff(a, b, 64);
4336                 break;
4337         case 28: diffs |= __it_diff(a, b, 64);
4338                 fallthrough;
4339         case 20: diffs |= __it_diff(a, b, 64);
4340                 fallthrough;
4341         case 12: diffs |= __it_diff(a, b, 64);
4342                 fallthrough;
4343         case  4: diffs |= __it_diff(a, b, 32);
4344                 break;
4345         default:
4346 slow:
4347                 return memcmp(a - meta_len, b - meta_len, meta_len);
4348         }
4349         return diffs;
4350 }
4351 
4352 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4353                                         const struct sk_buff *skb_b)
4354 {
4355         u8 len_a = skb_metadata_len(skb_a);
4356         u8 len_b = skb_metadata_len(skb_b);
4357 
4358         if (!(len_a | len_b))
4359                 return false;
4360 
4361         return len_a != len_b ?
4362                true : __skb_metadata_differs(skb_a, skb_b, len_a);
4363 }
4364 
4365 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4366 {
4367         skb_shinfo(skb)->meta_len = meta_len;
4368 }
4369 
4370 static inline void skb_metadata_clear(struct sk_buff *skb)
4371 {
4372         skb_metadata_set(skb, 0);
4373 }
4374 
4375 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4376 
4377 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4378 
4379 void skb_clone_tx_timestamp(struct sk_buff *skb);
4380 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4381 
4382 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4383 
4384 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4385 {
4386 }
4387 
4388 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4389 {
4390         return false;
4391 }
4392 
4393 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4394 
4395 /**
4396  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4397  *
4398  * PHY drivers may accept clones of transmitted packets for
4399  * timestamping via their phy_driver.txtstamp method. These drivers
4400  * must call this function to return the skb back to the stack with a
4401  * timestamp.
4402  *
4403  * @skb: clone of the original outgoing packet
4404  * @hwtstamps: hardware time stamps
4405  *
4406  */
4407 void skb_complete_tx_timestamp(struct sk_buff *skb,
4408                                struct skb_shared_hwtstamps *hwtstamps);
4409 
4410 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4411                      struct skb_shared_hwtstamps *hwtstamps,
4412                      struct sock *sk, int tstype);
4413 
4414 /**
4415  * skb_tstamp_tx - queue clone of skb with send time stamps
4416  * @orig_skb:   the original outgoing packet
4417  * @hwtstamps:  hardware time stamps, may be NULL if not available
4418  *
4419  * If the skb has a socket associated, then this function clones the
4420  * skb (thus sharing the actual data and optional structures), stores
4421  * the optional hardware time stamping information (if non NULL) or
4422  * generates a software time stamp (otherwise), then queues the clone
4423  * to the error queue of the socket.  Errors are silently ignored.
4424  */
4425 void skb_tstamp_tx(struct sk_buff *orig_skb,
4426                    struct skb_shared_hwtstamps *hwtstamps);
4427 
4428 /**
4429  * skb_tx_timestamp() - Driver hook for transmit timestamping
4430  *
4431  * Ethernet MAC Drivers should call this function in their hard_xmit()
4432  * function immediately before giving the sk_buff to the MAC hardware.
4433  *
4434  * Specifically, one should make absolutely sure that this function is
4435  * called before TX completion of this packet can trigger.  Otherwise
4436  * the packet could potentially already be freed.
4437  *
4438  * @skb: A socket buffer.
4439  */
4440 static inline void skb_tx_timestamp(struct sk_buff *skb)
4441 {
4442         skb_clone_tx_timestamp(skb);
4443         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4444                 skb_tstamp_tx(skb, NULL);
4445 }
4446 
4447 /**
4448  * skb_complete_wifi_ack - deliver skb with wifi status
4449  *
4450  * @skb: the original outgoing packet
4451  * @acked: ack status
4452  *
4453  */
4454 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4455 
4456 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4457 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4458 
4459 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4460 {
4461         return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4462                 skb->csum_valid ||
4463                 (skb->ip_summed == CHECKSUM_PARTIAL &&
4464                  skb_checksum_start_offset(skb) >= 0));
4465 }
4466 
4467 /**
4468  *      skb_checksum_complete - Calculate checksum of an entire packet
4469  *      @skb: packet to process
4470  *
4471  *      This function calculates the checksum over the entire packet plus
4472  *      the value of skb->csum.  The latter can be used to supply the
4473  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
4474  *      checksum.
4475  *
4476  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
4477  *      this function can be used to verify that checksum on received
4478  *      packets.  In that case the function should return zero if the
4479  *      checksum is correct.  In particular, this function will return zero
4480  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4481  *      hardware has already verified the correctness of the checksum.
4482  */
4483 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4484 {
4485         return skb_csum_unnecessary(skb) ?
4486                0 : __skb_checksum_complete(skb);
4487 }
4488 
4489 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4490 {
4491         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4492                 if (skb->csum_level == 0)
4493                         skb->ip_summed = CHECKSUM_NONE;
4494                 else
4495                         skb->csum_level--;
4496         }
4497 }
4498 
4499 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4500 {
4501         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4502                 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4503                         skb->csum_level++;
4504         } else if (skb->ip_summed == CHECKSUM_NONE) {
4505                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4506                 skb->csum_level = 0;
4507         }
4508 }
4509 
4510 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4511 {
4512         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4513                 skb->ip_summed = CHECKSUM_NONE;
4514                 skb->csum_level = 0;
4515         }
4516 }
4517 
4518 /* Check if we need to perform checksum complete validation.
4519  *
4520  * Returns true if checksum complete is needed, false otherwise
4521  * (either checksum is unnecessary or zero checksum is allowed).
4522  */
4523 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4524                                                   bool zero_okay,
4525                                                   __sum16 check)
4526 {
4527         if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4528                 skb->csum_valid = 1;
4529                 __skb_decr_checksum_unnecessary(skb);
4530                 return false;
4531         }
4532 
4533         return true;
4534 }
4535 
4536 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4537  * in checksum_init.
4538  */
4539 #define CHECKSUM_BREAK 76
4540 
4541 /* Unset checksum-complete
4542  *
4543  * Unset checksum complete can be done when packet is being modified
4544  * (uncompressed for instance) and checksum-complete value is
4545  * invalidated.
4546  */
4547 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4548 {
4549         if (skb->ip_summed == CHECKSUM_COMPLETE)
4550                 skb->ip_summed = CHECKSUM_NONE;
4551 }
4552 
4553 /* Validate (init) checksum based on checksum complete.
4554  *
4555  * Return values:
4556  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4557  *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4558  *      checksum is stored in skb->csum for use in __skb_checksum_complete
4559  *   non-zero: value of invalid checksum
4560  *
4561  */
4562 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4563                                                        bool complete,
4564                                                        __wsum psum)
4565 {
4566         if (skb->ip_summed == CHECKSUM_COMPLETE) {
4567                 if (!csum_fold(csum_add(psum, skb->csum))) {
4568                         skb->csum_valid = 1;
4569                         return 0;
4570                 }
4571         }
4572 
4573         skb->csum = psum;
4574 
4575         if (complete || skb->len <= CHECKSUM_BREAK) {
4576                 __sum16 csum;
4577 
4578                 csum = __skb_checksum_complete(skb);
4579                 skb->csum_valid = !csum;
4580                 return csum;
4581         }
4582 
4583         return 0;
4584 }
4585 
4586 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4587 {
4588         return 0;
4589 }
4590 
4591 /* Perform checksum validate (init). Note that this is a macro since we only
4592  * want to calculate the pseudo header which is an input function if necessary.
4593  * First we try to validate without any computation (checksum unnecessary) and
4594  * then calculate based on checksum complete calling the function to compute
4595  * pseudo header.
4596  *
4597  * Return values:
4598  *   0: checksum is validated or try to in skb_checksum_complete
4599  *   non-zero: value of invalid checksum
4600  */
4601 #define __skb_checksum_validate(skb, proto, complete,                   \
4602                                 zero_okay, check, compute_pseudo)       \
4603 ({                                                                      \
4604         __sum16 __ret = 0;                                              \
4605         skb->csum_valid = 0;                                            \
4606         if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4607                 __ret = __skb_checksum_validate_complete(skb,           \
4608                                 complete, compute_pseudo(skb, proto));  \
4609         __ret;                                                          \
4610 })
4611 
4612 #define skb_checksum_init(skb, proto, compute_pseudo)                   \
4613         __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4614 
4615 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4616         __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4617 
4618 #define skb_checksum_validate(skb, proto, compute_pseudo)               \
4619         __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4620 
4621 #define skb_checksum_validate_zero_check(skb, proto, check,             \
4622                                          compute_pseudo)                \
4623         __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4624 
4625 #define skb_checksum_simple_validate(skb)                               \
4626         __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4627 
4628 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4629 {
4630         return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4631 }
4632 
4633 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4634 {
4635         skb->csum = ~pseudo;
4636         skb->ip_summed = CHECKSUM_COMPLETE;
4637 }
4638 
4639 #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4640 do {                                                                    \
4641         if (__skb_checksum_convert_check(skb))                          \
4642                 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4643 } while (0)
4644 
4645 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4646                                               u16 start, u16 offset)
4647 {
4648         skb->ip_summed = CHECKSUM_PARTIAL;
4649         skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4650         skb->csum_offset = offset - start;
4651 }
4652 
4653 /* Update skbuf and packet to reflect the remote checksum offload operation.
4654  * When called, ptr indicates the starting point for skb->csum when
4655  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4656  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4657  */
4658 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4659                                        int start, int offset, bool nopartial)
4660 {
4661         __wsum delta;
4662 
4663         if (!nopartial) {
4664                 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4665                 return;
4666         }
4667 
4668         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4669                 __skb_checksum_complete(skb);
4670                 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4671         }
4672 
4673         delta = remcsum_adjust(ptr, skb->csum, start, offset);
4674 
4675         /* Adjust skb->csum since we changed the packet */
4676         skb->csum = csum_add(skb->csum, delta);
4677 }
4678 
4679 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4680 {
4681 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4682         return (void *)(skb->_nfct & NFCT_PTRMASK);
4683 #else
4684         return NULL;
4685 #endif
4686 }
4687 
4688 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4689 {
4690 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4691         return skb->_nfct;
4692 #else
4693         return 0UL;
4694 #endif
4695 }
4696 
4697 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4698 {
4699 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4700         skb->slow_gro |= !!nfct;
4701         skb->_nfct = nfct;
4702 #endif
4703 }
4704 
4705 #ifdef CONFIG_SKB_EXTENSIONS
4706 enum skb_ext_id {
4707 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4708         SKB_EXT_BRIDGE_NF,
4709 #endif
4710 #ifdef CONFIG_XFRM
4711         SKB_EXT_SEC_PATH,
4712 #endif
4713 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4714         TC_SKB_EXT,
4715 #endif
4716 #if IS_ENABLED(CONFIG_MPTCP)
4717         SKB_EXT_MPTCP,
4718 #endif
4719 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4720         SKB_EXT_MCTP,
4721 #endif
4722         SKB_EXT_NUM, /* must be last */
4723 };
4724 
4725 /**
4726  *      struct skb_ext - sk_buff extensions
4727  *      @refcnt: 1 on allocation, deallocated on 0
4728  *      @offset: offset to add to @data to obtain extension address
4729  *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4730  *      @data: start of extension data, variable sized
4731  *
4732  *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4733  *      to use 'u8' types while allowing up to 2kb worth of extension data.
4734  */
4735 struct skb_ext {
4736         refcount_t refcnt;
4737         u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4738         u8 chunks;              /* same */
4739         char data[] __aligned(8);
4740 };
4741 
4742 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4743 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4744                     struct skb_ext *ext);
4745 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4746 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4747 void __skb_ext_put(struct skb_ext *ext);
4748 
4749 static inline void skb_ext_put(struct sk_buff *skb)
4750 {
4751         if (skb->active_extensions)
4752                 __skb_ext_put(skb->extensions);
4753 }
4754 
4755 static inline void __skb_ext_copy(struct sk_buff *dst,
4756                                   const struct sk_buff *src)
4757 {
4758         dst->active_extensions = src->active_extensions;
4759 
4760         if (src->active_extensions) {
4761                 struct skb_ext *ext = src->extensions;
4762 
4763                 refcount_inc(&ext->refcnt);
4764                 dst->extensions = ext;
4765         }
4766 }
4767 
4768 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4769 {
4770         skb_ext_put(dst);
4771         __skb_ext_copy(dst, src);
4772 }
4773 
4774 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4775 {
4776         return !!ext->offset[i];
4777 }
4778 
4779 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4780 {
4781         return skb->active_extensions & (1 << id);
4782 }
4783 
4784 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4785 {
4786         if (skb_ext_exist(skb, id))
4787                 __skb_ext_del(skb, id);
4788 }
4789 
4790 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4791 {
4792         if (skb_ext_exist(skb, id)) {
4793                 struct skb_ext *ext = skb->extensions;
4794 
4795                 return (void *)ext + (ext->offset[id] << 3);
4796         }
4797 
4798         return NULL;
4799 }
4800 
4801 static inline void skb_ext_reset(struct sk_buff *skb)
4802 {
4803         if (unlikely(skb->active_extensions)) {
4804                 __skb_ext_put(skb->extensions);
4805                 skb->active_extensions = 0;
4806         }
4807 }
4808 
4809 static inline bool skb_has_extensions(struct sk_buff *skb)
4810 {
4811         return unlikely(skb->active_extensions);
4812 }
4813 #else
4814 static inline void skb_ext_put(struct sk_buff *skb) {}
4815 static inline void skb_ext_reset(struct sk_buff *skb) {}
4816 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4817 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4818 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4819 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4820 #endif /* CONFIG_SKB_EXTENSIONS */
4821 
4822 static inline void nf_reset_ct(struct sk_buff *skb)
4823 {
4824 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4825         nf_conntrack_put(skb_nfct(skb));
4826         skb->_nfct = 0;
4827 #endif
4828 }
4829 
4830 static inline void nf_reset_trace(struct sk_buff *skb)
4831 {
4832 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4833         skb->nf_trace = 0;
4834 #endif
4835 }
4836 
4837 static inline void ipvs_reset(struct sk_buff *skb)
4838 {
4839 #if IS_ENABLED(CONFIG_IP_VS)
4840         skb->ipvs_property = 0;
4841 #endif
4842 }
4843 
4844 /* Note: This doesn't put any conntrack info in dst. */
4845 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4846                              bool copy)
4847 {
4848 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4849         dst->_nfct = src->_nfct;
4850         nf_conntrack_get(skb_nfct(src));
4851 #endif
4852 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4853         if (copy)
4854                 dst->nf_trace = src->nf_trace;
4855 #endif
4856 }
4857 
4858 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4859 {
4860 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4861         nf_conntrack_put(skb_nfct(dst));
4862 #endif
4863         dst->slow_gro = src->slow_gro;
4864         __nf_copy(dst, src, true);
4865 }
4866 
4867 #ifdef CONFIG_NETWORK_SECMARK
4868 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4869 {
4870         to->secmark = from->secmark;
4871 }
4872 
4873 static inline void skb_init_secmark(struct sk_buff *skb)
4874 {
4875         skb->secmark = 0;
4876 }
4877 #else
4878 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4879 { }
4880 
4881 static inline void skb_init_secmark(struct sk_buff *skb)
4882 { }
4883 #endif
4884 
4885 static inline int secpath_exists(const struct sk_buff *skb)
4886 {
4887 #ifdef CONFIG_XFRM
4888         return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4889 #else
4890         return 0;
4891 #endif
4892 }
4893 
4894 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4895 {
4896         return !skb->destructor &&
4897                 !secpath_exists(skb) &&
4898                 !skb_nfct(skb) &&
4899                 !skb->_skb_refdst &&
4900                 !skb_has_frag_list(skb);
4901 }
4902 
4903 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4904 {
4905         skb->queue_mapping = queue_mapping;
4906 }
4907 
4908 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4909 {
4910         return skb->queue_mapping;
4911 }
4912 
4913 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4914 {
4915         to->queue_mapping = from->queue_mapping;
4916 }
4917 
4918 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4919 {
4920         skb->queue_mapping = rx_queue + 1;
4921 }
4922 
4923 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4924 {
4925         return skb->queue_mapping - 1;
4926 }
4927 
4928 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4929 {
4930         return skb->queue_mapping != 0;
4931 }
4932 
4933 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4934 {
4935         skb->dst_pending_confirm = val;
4936 }
4937 
4938 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4939 {
4940         return skb->dst_pending_confirm != 0;
4941 }
4942 
4943 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4944 {
4945 #ifdef CONFIG_XFRM
4946         return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4947 #else
4948         return NULL;
4949 #endif
4950 }
4951 
4952 static inline bool skb_is_gso(const struct sk_buff *skb)
4953 {
4954         return skb_shinfo(skb)->gso_size;
4955 }
4956 
4957 /* Note: Should be called only if skb_is_gso(skb) is true */
4958 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4959 {
4960         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4961 }
4962 
4963 /* Note: Should be called only if skb_is_gso(skb) is true */
4964 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4965 {
4966         return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4967 }
4968 
4969 /* Note: Should be called only if skb_is_gso(skb) is true */
4970 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4971 {
4972         return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4973 }
4974 
4975 static inline void skb_gso_reset(struct sk_buff *skb)
4976 {
4977         skb_shinfo(skb)->gso_size = 0;
4978         skb_shinfo(skb)->gso_segs = 0;
4979         skb_shinfo(skb)->gso_type = 0;
4980 }
4981 
4982 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4983                                          u16 increment)
4984 {
4985         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4986                 return;
4987         shinfo->gso_size += increment;
4988 }
4989 
4990 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4991                                          u16 decrement)
4992 {
4993         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4994                 return;
4995         shinfo->gso_size -= decrement;
4996 }
4997 
4998 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4999 
5000 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5001 {
5002         /* LRO sets gso_size but not gso_type, whereas if GSO is really
5003          * wanted then gso_type will be set. */
5004         const struct skb_shared_info *shinfo = skb_shinfo(skb);
5005 
5006         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5007             unlikely(shinfo->gso_type == 0)) {
5008                 __skb_warn_lro_forwarding(skb);
5009                 return true;
5010         }
5011         return false;
5012 }
5013 
5014 static inline void skb_forward_csum(struct sk_buff *skb)
5015 {
5016         /* Unfortunately we don't support this one.  Any brave souls? */
5017         if (skb->ip_summed == CHECKSUM_COMPLETE)
5018                 skb->ip_summed = CHECKSUM_NONE;
5019 }
5020 
5021 /**
5022  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5023  * @skb: skb to check
5024  *
5025  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5026  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5027  * use this helper, to document places where we make this assertion.
5028  */
5029 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5030 {
5031         DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5032 }
5033 
5034 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5035 
5036 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5037 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5038                                      unsigned int transport_len,
5039                                      __sum16(*skb_chkf)(struct sk_buff *skb));
5040 
5041 /**
5042  * skb_head_is_locked - Determine if the skb->head is locked down
5043  * @skb: skb to check
5044  *
5045  * The head on skbs build around a head frag can be removed if they are
5046  * not cloned.  This function returns true if the skb head is locked down
5047  * due to either being allocated via kmalloc, or by being a clone with
5048  * multiple references to the head.
5049  */
5050 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5051 {
5052         return !skb->head_frag || skb_cloned(skb);
5053 }
5054 
5055 /* Local Checksum Offload.
5056  * Compute outer checksum based on the assumption that the
5057  * inner checksum will be offloaded later.
5058  * See Documentation/networking/checksum-offloads.rst for
5059  * explanation of how this works.
5060  * Fill in outer checksum adjustment (e.g. with sum of outer
5061  * pseudo-header) before calling.
5062  * Also ensure that inner checksum is in linear data area.
5063  */
5064 static inline __wsum lco_csum(struct sk_buff *skb)
5065 {
5066         unsigned char *csum_start = skb_checksum_start(skb);
5067         unsigned char *l4_hdr = skb_transport_header(skb);
5068         __wsum partial;
5069 
5070         /* Start with complement of inner checksum adjustment */
5071         partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5072                                                     skb->csum_offset));
5073 
5074         /* Add in checksum of our headers (incl. outer checksum
5075          * adjustment filled in by caller) and return result.
5076          */
5077         return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5078 }
5079 
5080 static inline bool skb_is_redirected(const struct sk_buff *skb)
5081 {
5082         return skb->redirected;
5083 }
5084 
5085 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5086 {
5087         skb->redirected = 1;
5088 #ifdef CONFIG_NET_REDIRECT
5089         skb->from_ingress = from_ingress;
5090         if (skb->from_ingress)
5091                 skb_clear_tstamp(skb);
5092 #endif
5093 }
5094 
5095 static inline void skb_reset_redirect(struct sk_buff *skb)
5096 {
5097         skb->redirected = 0;
5098 }
5099 
5100 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5101                                               bool from_ingress)
5102 {
5103         skb->redirected = 1;
5104 #ifdef CONFIG_NET_REDIRECT
5105         skb->from_ingress = from_ingress;
5106 #endif
5107 }
5108 
5109 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5110 {
5111 #if IS_ENABLED(CONFIG_IP_SCTP)
5112         return skb->csum_not_inet;
5113 #else
5114         return 0;
5115 #endif
5116 }
5117 
5118 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5119 {
5120         skb->ip_summed = CHECKSUM_NONE;
5121 #if IS_ENABLED(CONFIG_IP_SCTP)
5122         skb->csum_not_inet = 0;
5123 #endif
5124 }
5125 
5126 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5127                                        const u64 kcov_handle)
5128 {
5129 #ifdef CONFIG_KCOV
5130         skb->kcov_handle = kcov_handle;
5131 #endif
5132 }
5133 
5134 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5135 {
5136 #ifdef CONFIG_KCOV
5137         return skb->kcov_handle;
5138 #else
5139         return 0;
5140 #endif
5141 }
5142 
5143 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5144 {
5145 #ifdef CONFIG_PAGE_POOL
5146         skb->pp_recycle = 1;
5147 #endif
5148 }
5149 
5150 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5151                              ssize_t maxsize, gfp_t gfp);
5152 
5153 #endif  /* __KERNEL__ */
5154 #endif  /* _LINUX_SKBUFF_H */
5155 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php