1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * <linux/usb/gadget.h> 4 * 5 * We call the USB code inside a Linux-based peripheral device a "gadget" 6 * driver, except for the hardware-specific bus glue. One USB host can 7 * talk to many USB gadgets, but the gadgets are only able to communicate 8 * to one host. 9 * 10 * 11 * (C) Copyright 2002-2004 by David Brownell 12 * All Rights Reserved. 13 */ 14 15 #ifndef __LINUX_USB_GADGET_H 16 #define __LINUX_USB_GADGET_H 17 18 #include <linux/configfs.h> 19 #include <linux/device.h> 20 #include <linux/errno.h> 21 #include <linux/init.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/scatterlist.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 #include <linux/usb/ch9.h> 28 29 #define UDC_TRACE_STR_MAX 512 30 31 struct usb_ep; 32 33 /** 34 * struct usb_request - describes one i/o request 35 * @buf: Buffer used for data. Always provide this; some controllers 36 * only use PIO, or don't use DMA for some endpoints. 37 * @dma: DMA address corresponding to 'buf'. If you don't set this 38 * field, and the usb controller needs one, it is responsible 39 * for mapping and unmapping the buffer. 40 * @sg: a scatterlist for SG-capable controllers. 41 * @num_sgs: number of SG entries 42 * @num_mapped_sgs: number of SG entries mapped to DMA (internal) 43 * @length: Length of that data 44 * @stream_id: The stream id, when USB3.0 bulk streams are being used 45 * @is_last: Indicates if this is the last request of a stream_id before 46 * switching to a different stream (required for DWC3 controllers). 47 * @no_interrupt: If true, hints that no completion irq is needed. 48 * Helpful sometimes with deep request queues that are handled 49 * directly by DMA controllers. 50 * @zero: If true, when writing data, makes the last packet be "short" 51 * by adding a zero length packet as needed; 52 * @short_not_ok: When reading data, makes short packets be 53 * treated as errors (queue stops advancing till cleanup). 54 * @dma_mapped: Indicates if request has been mapped to DMA (internal) 55 * @sg_was_mapped: Set if the scatterlist has been mapped before the request 56 * @complete: Function called when request completes, so this request and 57 * its buffer may be re-used. The function will always be called with 58 * interrupts disabled, and it must not sleep. 59 * Reads terminate with a short packet, or when the buffer fills, 60 * whichever comes first. When writes terminate, some data bytes 61 * will usually still be in flight (often in a hardware fifo). 62 * Errors (for reads or writes) stop the queue from advancing 63 * until the completion function returns, so that any transfers 64 * invalidated by the error may first be dequeued. 65 * @context: For use by the completion callback 66 * @list: For use by the gadget driver. 67 * @frame_number: Reports the interval number in (micro)frame in which the 68 * isochronous transfer was transmitted or received. 69 * @status: Reports completion code, zero or a negative errno. 70 * Normally, faults block the transfer queue from advancing until 71 * the completion callback returns. 72 * Code "-ESHUTDOWN" indicates completion caused by device disconnect, 73 * or when the driver disabled the endpoint. 74 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT 75 * transfers) this may be less than the requested length. If the 76 * short_not_ok flag is set, short reads are treated as errors 77 * even when status otherwise indicates successful completion. 78 * Note that for writes (IN transfers) some data bytes may still 79 * reside in a device-side FIFO when the request is reported as 80 * complete. 81 * 82 * These are allocated/freed through the endpoint they're used with. The 83 * hardware's driver can add extra per-request data to the memory it returns, 84 * which often avoids separate memory allocations (potential failures), 85 * later when the request is queued. 86 * 87 * Request flags affect request handling, such as whether a zero length 88 * packet is written (the "zero" flag), whether a short read should be 89 * treated as an error (blocking request queue advance, the "short_not_ok" 90 * flag), or hinting that an interrupt is not required (the "no_interrupt" 91 * flag, for use with deep request queues). 92 * 93 * Bulk endpoints can use any size buffers, and can also be used for interrupt 94 * transfers. interrupt-only endpoints can be much less functional. 95 * 96 * NOTE: this is analogous to 'struct urb' on the host side, except that 97 * it's thinner and promotes more pre-allocation. 98 */ 99 100 struct usb_request { 101 void *buf; 102 unsigned length; 103 dma_addr_t dma; 104 105 struct scatterlist *sg; 106 unsigned num_sgs; 107 unsigned num_mapped_sgs; 108 109 unsigned stream_id:16; 110 unsigned is_last:1; 111 unsigned no_interrupt:1; 112 unsigned zero:1; 113 unsigned short_not_ok:1; 114 unsigned dma_mapped:1; 115 unsigned sg_was_mapped:1; 116 117 void (*complete)(struct usb_ep *ep, 118 struct usb_request *req); 119 void *context; 120 struct list_head list; 121 122 unsigned frame_number; /* ISO ONLY */ 123 124 int status; 125 unsigned actual; 126 }; 127 128 /*-------------------------------------------------------------------------*/ 129 130 /* endpoint-specific parts of the api to the usb controller hardware. 131 * unlike the urb model, (de)multiplexing layers are not required. 132 * (so this api could slash overhead if used on the host side...) 133 * 134 * note that device side usb controllers commonly differ in how many 135 * endpoints they support, as well as their capabilities. 136 */ 137 struct usb_ep_ops { 138 int (*enable) (struct usb_ep *ep, 139 const struct usb_endpoint_descriptor *desc); 140 int (*disable) (struct usb_ep *ep); 141 void (*dispose) (struct usb_ep *ep); 142 143 struct usb_request *(*alloc_request) (struct usb_ep *ep, 144 gfp_t gfp_flags); 145 void (*free_request) (struct usb_ep *ep, struct usb_request *req); 146 147 int (*queue) (struct usb_ep *ep, struct usb_request *req, 148 gfp_t gfp_flags); 149 int (*dequeue) (struct usb_ep *ep, struct usb_request *req); 150 151 int (*set_halt) (struct usb_ep *ep, int value); 152 int (*set_wedge) (struct usb_ep *ep); 153 154 int (*fifo_status) (struct usb_ep *ep); 155 void (*fifo_flush) (struct usb_ep *ep); 156 }; 157 158 /** 159 * struct usb_ep_caps - endpoint capabilities description 160 * @type_control:Endpoint supports control type (reserved for ep0). 161 * @type_iso:Endpoint supports isochronous transfers. 162 * @type_bulk:Endpoint supports bulk transfers. 163 * @type_int:Endpoint supports interrupt transfers. 164 * @dir_in:Endpoint supports IN direction. 165 * @dir_out:Endpoint supports OUT direction. 166 */ 167 struct usb_ep_caps { 168 unsigned type_control:1; 169 unsigned type_iso:1; 170 unsigned type_bulk:1; 171 unsigned type_int:1; 172 unsigned dir_in:1; 173 unsigned dir_out:1; 174 }; 175 176 #define USB_EP_CAPS_TYPE_CONTROL 0x01 177 #define USB_EP_CAPS_TYPE_ISO 0x02 178 #define USB_EP_CAPS_TYPE_BULK 0x04 179 #define USB_EP_CAPS_TYPE_INT 0x08 180 #define USB_EP_CAPS_TYPE_ALL \ 181 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT) 182 #define USB_EP_CAPS_DIR_IN 0x01 183 #define USB_EP_CAPS_DIR_OUT 0x02 184 #define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT) 185 186 #define USB_EP_CAPS(_type, _dir) \ 187 { \ 188 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \ 189 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \ 190 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \ 191 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \ 192 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \ 193 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \ 194 } 195 196 /** 197 * struct usb_ep - device side representation of USB endpoint 198 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk" 199 * @ops: Function pointers used to access hardware-specific operations. 200 * @ep_list:the gadget's ep_list holds all of its endpoints 201 * @caps:The structure describing types and directions supported by endpoint. 202 * @enabled: The current endpoint enabled/disabled state. 203 * @claimed: True if this endpoint is claimed by a function. 204 * @maxpacket:The maximum packet size used on this endpoint. The initial 205 * value can sometimes be reduced (hardware allowing), according to 206 * the endpoint descriptor used to configure the endpoint. 207 * @maxpacket_limit:The maximum packet size value which can be handled by this 208 * endpoint. It's set once by UDC driver when endpoint is initialized, and 209 * should not be changed. Should not be confused with maxpacket. 210 * @max_streams: The maximum number of streams supported 211 * by this EP (0 - 16, actual number is 2^n) 212 * @mult: multiplier, 'mult' value for SS Isoc EPs 213 * @maxburst: the maximum number of bursts supported by this EP (for usb3) 214 * @driver_data:for use by the gadget driver. 215 * @address: used to identify the endpoint when finding descriptor that 216 * matches connection speed 217 * @desc: endpoint descriptor. This pointer is set before the endpoint is 218 * enabled and remains valid until the endpoint is disabled. 219 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion 220 * descriptor that is used to configure the endpoint 221 * 222 * the bus controller driver lists all the general purpose endpoints in 223 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list, 224 * and is accessed only in response to a driver setup() callback. 225 */ 226 227 struct usb_ep { 228 void *driver_data; 229 230 const char *name; 231 const struct usb_ep_ops *ops; 232 const struct usb_endpoint_descriptor *desc; 233 const struct usb_ss_ep_comp_descriptor *comp_desc; 234 struct list_head ep_list; 235 struct usb_ep_caps caps; 236 bool claimed; 237 bool enabled; 238 unsigned mult:2; 239 unsigned maxburst:5; 240 u8 address; 241 u16 maxpacket; 242 u16 maxpacket_limit; 243 u16 max_streams; 244 }; 245 246 /*-------------------------------------------------------------------------*/ 247 248 #if IS_ENABLED(CONFIG_USB_GADGET) 249 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit); 250 int usb_ep_enable(struct usb_ep *ep); 251 int usb_ep_disable(struct usb_ep *ep); 252 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags); 253 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req); 254 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags); 255 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req); 256 int usb_ep_set_halt(struct usb_ep *ep); 257 int usb_ep_clear_halt(struct usb_ep *ep); 258 int usb_ep_set_wedge(struct usb_ep *ep); 259 int usb_ep_fifo_status(struct usb_ep *ep); 260 void usb_ep_fifo_flush(struct usb_ep *ep); 261 #else 262 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 263 unsigned maxpacket_limit) 264 { } 265 static inline int usb_ep_enable(struct usb_ep *ep) 266 { return 0; } 267 static inline int usb_ep_disable(struct usb_ep *ep) 268 { return 0; } 269 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 270 gfp_t gfp_flags) 271 { return NULL; } 272 static inline void usb_ep_free_request(struct usb_ep *ep, 273 struct usb_request *req) 274 { } 275 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, 276 gfp_t gfp_flags) 277 { return 0; } 278 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 279 { return 0; } 280 static inline int usb_ep_set_halt(struct usb_ep *ep) 281 { return 0; } 282 static inline int usb_ep_clear_halt(struct usb_ep *ep) 283 { return 0; } 284 static inline int usb_ep_set_wedge(struct usb_ep *ep) 285 { return 0; } 286 static inline int usb_ep_fifo_status(struct usb_ep *ep) 287 { return 0; } 288 static inline void usb_ep_fifo_flush(struct usb_ep *ep) 289 { } 290 #endif /* USB_GADGET */ 291 292 /*-------------------------------------------------------------------------*/ 293 294 struct usb_dcd_config_params { 295 __u8 bU1devExitLat; /* U1 Device exit Latency */ 296 #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */ 297 __le16 bU2DevExitLat; /* U2 Device exit Latency */ 298 #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */ 299 __u8 besl_baseline; /* Recommended baseline BESL (0-15) */ 300 __u8 besl_deep; /* Recommended deep BESL (0-15) */ 301 #define USB_DEFAULT_BESL_UNSPECIFIED 0xFF /* No recommended value */ 302 }; 303 304 305 struct usb_gadget; 306 struct usb_gadget_driver; 307 struct usb_udc; 308 309 /* the rest of the api to the controller hardware: device operations, 310 * which don't involve endpoints (or i/o). 311 */ 312 struct usb_gadget_ops { 313 int (*get_frame)(struct usb_gadget *); 314 int (*wakeup)(struct usb_gadget *); 315 int (*func_wakeup)(struct usb_gadget *gadget, int intf_id); 316 int (*set_remote_wakeup)(struct usb_gadget *, int set); 317 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered); 318 int (*vbus_session) (struct usb_gadget *, int is_active); 319 int (*vbus_draw) (struct usb_gadget *, unsigned mA); 320 int (*pullup) (struct usb_gadget *, int is_on); 321 int (*ioctl)(struct usb_gadget *, 322 unsigned code, unsigned long param); 323 void (*get_config_params)(struct usb_gadget *, 324 struct usb_dcd_config_params *); 325 int (*udc_start)(struct usb_gadget *, 326 struct usb_gadget_driver *); 327 int (*udc_stop)(struct usb_gadget *); 328 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed); 329 void (*udc_set_ssp_rate)(struct usb_gadget *gadget, 330 enum usb_ssp_rate rate); 331 void (*udc_async_callbacks)(struct usb_gadget *gadget, bool enable); 332 struct usb_ep *(*match_ep)(struct usb_gadget *, 333 struct usb_endpoint_descriptor *, 334 struct usb_ss_ep_comp_descriptor *); 335 int (*check_config)(struct usb_gadget *gadget); 336 }; 337 338 /** 339 * struct usb_gadget - represents a usb device 340 * @work: (internal use) Workqueue to be used for sysfs_notify() 341 * @udc: struct usb_udc pointer for this gadget 342 * @ops: Function pointers used to access hardware-specific operations. 343 * @ep0: Endpoint zero, used when reading or writing responses to 344 * driver setup() requests 345 * @ep_list: List of other endpoints supported by the device. 346 * @speed: Speed of current connection to USB host. 347 * @max_speed: Maximal speed the UDC can handle. UDC must support this 348 * and all slower speeds. 349 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count. 350 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC 351 * can handle. The UDC must support this and all slower speeds and lower 352 * number of lanes. 353 * @state: the state we are now (attached, suspended, configured, etc) 354 * @name: Identifies the controller hardware type. Used in diagnostics 355 * and sometimes configuration. 356 * @dev: Driver model state for this abstract device. 357 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP 358 * @out_epnum: last used out ep number 359 * @in_epnum: last used in ep number 360 * @mA: last set mA value 361 * @otg_caps: OTG capabilities of this gadget. 362 * @sg_supported: true if we can handle scatter-gather 363 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the 364 * gadget driver must provide a USB OTG descriptor. 365 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable 366 * is in the Mini-AB jack, and HNP has been used to switch roles 367 * so that the "A" device currently acts as A-Peripheral, not A-Host. 368 * @a_hnp_support: OTG device feature flag, indicating that the A-Host 369 * supports HNP at this port. 370 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host 371 * only supports HNP on a different root port. 372 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host 373 * enabled HNP support. 374 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device 375 * in peripheral mode can support HNP polling. 376 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral 377 * or B-Peripheral wants to take host role. 378 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to 379 * MaxPacketSize. 380 * @quirk_altset_not_supp: UDC controller doesn't support alt settings. 381 * @quirk_stall_not_supp: UDC controller doesn't support stalling. 382 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP. 383 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in 384 * u_ether.c to improve performance. 385 * @is_selfpowered: if the gadget is self-powered. 386 * @deactivated: True if gadget is deactivated - in deactivated state it cannot 387 * be connected. 388 * @connected: True if gadget is connected. 389 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag 390 * indicates that it supports LPM as per the LPM ECN & errata. 391 * @wakeup_capable: True if gadget is capable of sending remote wakeup. 392 * @wakeup_armed: True if gadget is armed by the host for remote wakeup. 393 * @irq: the interrupt number for device controller. 394 * @id_number: a unique ID number for ensuring that gadget names are distinct 395 * 396 * Gadgets have a mostly-portable "gadget driver" implementing device 397 * functions, handling all usb configurations and interfaces. Gadget 398 * drivers talk to hardware-specific code indirectly, through ops vectors. 399 * That insulates the gadget driver from hardware details, and packages 400 * the hardware endpoints through generic i/o queues. The "usb_gadget" 401 * and "usb_ep" interfaces provide that insulation from the hardware. 402 * 403 * Except for the driver data, all fields in this structure are 404 * read-only to the gadget driver. That driver data is part of the 405 * "driver model" infrastructure in 2.6 (and later) kernels, and for 406 * earlier systems is grouped in a similar structure that's not known 407 * to the rest of the kernel. 408 * 409 * Values of the three OTG device feature flags are updated before the 410 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before 411 * driver suspend() calls. They are valid only when is_otg, and when the 412 * device is acting as a B-Peripheral (so is_a_peripheral is false). 413 */ 414 struct usb_gadget { 415 struct work_struct work; 416 struct usb_udc *udc; 417 /* readonly to gadget driver */ 418 const struct usb_gadget_ops *ops; 419 struct usb_ep *ep0; 420 struct list_head ep_list; /* of usb_ep */ 421 enum usb_device_speed speed; 422 enum usb_device_speed max_speed; 423 424 /* USB SuperSpeed Plus only */ 425 enum usb_ssp_rate ssp_rate; 426 enum usb_ssp_rate max_ssp_rate; 427 428 enum usb_device_state state; 429 const char *name; 430 struct device dev; 431 unsigned isoch_delay; 432 unsigned out_epnum; 433 unsigned in_epnum; 434 unsigned mA; 435 struct usb_otg_caps *otg_caps; 436 437 unsigned sg_supported:1; 438 unsigned is_otg:1; 439 unsigned is_a_peripheral:1; 440 unsigned b_hnp_enable:1; 441 unsigned a_hnp_support:1; 442 unsigned a_alt_hnp_support:1; 443 unsigned hnp_polling_support:1; 444 unsigned host_request_flag:1; 445 unsigned quirk_ep_out_aligned_size:1; 446 unsigned quirk_altset_not_supp:1; 447 unsigned quirk_stall_not_supp:1; 448 unsigned quirk_zlp_not_supp:1; 449 unsigned quirk_avoids_skb_reserve:1; 450 unsigned is_selfpowered:1; 451 unsigned deactivated:1; 452 unsigned connected:1; 453 unsigned lpm_capable:1; 454 unsigned wakeup_capable:1; 455 unsigned wakeup_armed:1; 456 int irq; 457 int id_number; 458 }; 459 #define work_to_gadget(w) (container_of((w), struct usb_gadget, work)) 460 461 /* Interface to the device model */ 462 static inline void set_gadget_data(struct usb_gadget *gadget, void *data) 463 { dev_set_drvdata(&gadget->dev, data); } 464 static inline void *get_gadget_data(struct usb_gadget *gadget) 465 { return dev_get_drvdata(&gadget->dev); } 466 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev) 467 { 468 return container_of(dev, struct usb_gadget, dev); 469 } 470 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget) 471 { 472 get_device(&gadget->dev); 473 return gadget; 474 } 475 static inline void usb_put_gadget(struct usb_gadget *gadget) 476 { 477 put_device(&gadget->dev); 478 } 479 extern void usb_initialize_gadget(struct device *parent, 480 struct usb_gadget *gadget, void (*release)(struct device *dev)); 481 extern int usb_add_gadget(struct usb_gadget *gadget); 482 extern void usb_del_gadget(struct usb_gadget *gadget); 483 484 /* Legacy device-model interface */ 485 extern int usb_add_gadget_udc_release(struct device *parent, 486 struct usb_gadget *gadget, void (*release)(struct device *dev)); 487 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget); 488 extern void usb_del_gadget_udc(struct usb_gadget *gadget); 489 extern char *usb_get_gadget_udc_name(void); 490 491 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */ 492 #define gadget_for_each_ep(tmp, gadget) \ 493 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list) 494 495 /** 496 * usb_ep_align - returns @len aligned to ep's maxpacketsize. 497 * @ep: the endpoint whose maxpacketsize is used to align @len 498 * @len: buffer size's length to align to @ep's maxpacketsize 499 * 500 * This helper is used to align buffer's size to an ep's maxpacketsize. 501 */ 502 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len) 503 { 504 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc); 505 506 return round_up(len, max_packet_size); 507 } 508 509 /** 510 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget 511 * requires quirk_ep_out_aligned_size, otherwise returns len. 512 * @g: controller to check for quirk 513 * @ep: the endpoint whose maxpacketsize is used to align @len 514 * @len: buffer size's length to align to @ep's maxpacketsize 515 * 516 * This helper is used in case it's required for any reason to check and maybe 517 * align buffer's size to an ep's maxpacketsize. 518 */ 519 static inline size_t 520 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len) 521 { 522 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len; 523 } 524 525 /** 526 * gadget_is_altset_supported - return true iff the hardware supports 527 * altsettings 528 * @g: controller to check for quirk 529 */ 530 static inline int gadget_is_altset_supported(struct usb_gadget *g) 531 { 532 return !g->quirk_altset_not_supp; 533 } 534 535 /** 536 * gadget_is_stall_supported - return true iff the hardware supports stalling 537 * @g: controller to check for quirk 538 */ 539 static inline int gadget_is_stall_supported(struct usb_gadget *g) 540 { 541 return !g->quirk_stall_not_supp; 542 } 543 544 /** 545 * gadget_is_zlp_supported - return true iff the hardware supports zlp 546 * @g: controller to check for quirk 547 */ 548 static inline int gadget_is_zlp_supported(struct usb_gadget *g) 549 { 550 return !g->quirk_zlp_not_supp; 551 } 552 553 /** 554 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid 555 * skb_reserve to improve performance. 556 * @g: controller to check for quirk 557 */ 558 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g) 559 { 560 return g->quirk_avoids_skb_reserve; 561 } 562 563 /** 564 * gadget_is_dualspeed - return true iff the hardware handles high speed 565 * @g: controller that might support both high and full speeds 566 */ 567 static inline int gadget_is_dualspeed(struct usb_gadget *g) 568 { 569 return g->max_speed >= USB_SPEED_HIGH; 570 } 571 572 /** 573 * gadget_is_superspeed() - return true if the hardware handles superspeed 574 * @g: controller that might support superspeed 575 */ 576 static inline int gadget_is_superspeed(struct usb_gadget *g) 577 { 578 return g->max_speed >= USB_SPEED_SUPER; 579 } 580 581 /** 582 * gadget_is_superspeed_plus() - return true if the hardware handles 583 * superspeed plus 584 * @g: controller that might support superspeed plus 585 */ 586 static inline int gadget_is_superspeed_plus(struct usb_gadget *g) 587 { 588 return g->max_speed >= USB_SPEED_SUPER_PLUS; 589 } 590 591 /** 592 * gadget_is_otg - return true iff the hardware is OTG-ready 593 * @g: controller that might have a Mini-AB connector 594 * 595 * This is a runtime test, since kernels with a USB-OTG stack sometimes 596 * run on boards which only have a Mini-B (or Mini-A) connector. 597 */ 598 static inline int gadget_is_otg(struct usb_gadget *g) 599 { 600 #ifdef CONFIG_USB_OTG 601 return g->is_otg; 602 #else 603 return 0; 604 #endif 605 } 606 607 /*-------------------------------------------------------------------------*/ 608 609 #if IS_ENABLED(CONFIG_USB_GADGET) 610 int usb_gadget_frame_number(struct usb_gadget *gadget); 611 int usb_gadget_wakeup(struct usb_gadget *gadget); 612 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set); 613 int usb_gadget_set_selfpowered(struct usb_gadget *gadget); 614 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget); 615 int usb_gadget_vbus_connect(struct usb_gadget *gadget); 616 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA); 617 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget); 618 int usb_gadget_connect(struct usb_gadget *gadget); 619 int usb_gadget_disconnect(struct usb_gadget *gadget); 620 int usb_gadget_deactivate(struct usb_gadget *gadget); 621 int usb_gadget_activate(struct usb_gadget *gadget); 622 int usb_gadget_check_config(struct usb_gadget *gadget); 623 #else 624 static inline int usb_gadget_frame_number(struct usb_gadget *gadget) 625 { return 0; } 626 static inline int usb_gadget_wakeup(struct usb_gadget *gadget) 627 { return 0; } 628 static inline int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set) 629 { return 0; } 630 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 631 { return 0; } 632 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 633 { return 0; } 634 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget) 635 { return 0; } 636 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 637 { return 0; } 638 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 639 { return 0; } 640 static inline int usb_gadget_connect(struct usb_gadget *gadget) 641 { return 0; } 642 static inline int usb_gadget_disconnect(struct usb_gadget *gadget) 643 { return 0; } 644 static inline int usb_gadget_deactivate(struct usb_gadget *gadget) 645 { return 0; } 646 static inline int usb_gadget_activate(struct usb_gadget *gadget) 647 { return 0; } 648 static inline int usb_gadget_check_config(struct usb_gadget *gadget) 649 { return 0; } 650 #endif /* CONFIG_USB_GADGET */ 651 652 /*-------------------------------------------------------------------------*/ 653 654 /** 655 * struct usb_gadget_driver - driver for usb gadget devices 656 * @function: String describing the gadget's function 657 * @max_speed: Highest speed the driver handles. 658 * @setup: Invoked for ep0 control requests that aren't handled by 659 * the hardware level driver. Most calls must be handled by 660 * the gadget driver, including descriptor and configuration 661 * management. The 16 bit members of the setup data are in 662 * USB byte order. Called in_interrupt; this may not sleep. Driver 663 * queues a response to ep0, or returns negative to stall. 664 * @disconnect: Invoked after all transfers have been stopped, 665 * when the host is disconnected. May be called in_interrupt; this 666 * may not sleep. Some devices can't detect disconnect, so this might 667 * not be called except as part of controller shutdown. 668 * @bind: the driver's bind callback 669 * @unbind: Invoked when the driver is unbound from a gadget, 670 * usually from rmmod (after a disconnect is reported). 671 * Called in a context that permits sleeping. 672 * @suspend: Invoked on USB suspend. May be called in_interrupt. 673 * @resume: Invoked on USB resume. May be called in_interrupt. 674 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers 675 * and should be called in_interrupt. 676 * @driver: Driver model state for this driver. 677 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL, 678 * this driver will be bound to any available UDC. 679 * @match_existing_only: If udc is not found, return an error and fail 680 * the driver registration 681 * @is_bound: Allow a driver to be bound to only one gadget 682 * 683 * Devices are disabled till a gadget driver successfully bind()s, which 684 * means the driver will handle setup() requests needed to enumerate (and 685 * meet "chapter 9" requirements) then do some useful work. 686 * 687 * If gadget->is_otg is true, the gadget driver must provide an OTG 688 * descriptor during enumeration, or else fail the bind() call. In such 689 * cases, no USB traffic may flow until both bind() returns without 690 * having called usb_gadget_disconnect(), and the USB host stack has 691 * initialized. 692 * 693 * Drivers use hardware-specific knowledge to configure the usb hardware. 694 * endpoint addressing is only one of several hardware characteristics that 695 * are in descriptors the ep0 implementation returns from setup() calls. 696 * 697 * Except for ep0 implementation, most driver code shouldn't need change to 698 * run on top of different usb controllers. It'll use endpoints set up by 699 * that ep0 implementation. 700 * 701 * The usb controller driver handles a few standard usb requests. Those 702 * include set_address, and feature flags for devices, interfaces, and 703 * endpoints (the get_status, set_feature, and clear_feature requests). 704 * 705 * Accordingly, the driver's setup() callback must always implement all 706 * get_descriptor requests, returning at least a device descriptor and 707 * a configuration descriptor. Drivers must make sure the endpoint 708 * descriptors match any hardware constraints. Some hardware also constrains 709 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3). 710 * 711 * The driver's setup() callback must also implement set_configuration, 712 * and should also implement set_interface, get_configuration, and 713 * get_interface. Setting a configuration (or interface) is where 714 * endpoints should be activated or (config 0) shut down. 715 * 716 * The gadget driver's setup() callback does not have to queue a response to 717 * ep0 within the setup() call, the driver can do it after setup() returns. 718 * The UDC driver must wait until such a response is queued before proceeding 719 * with the data/status stages of the control transfer. 720 * 721 * NOTE: Currently, a number of UDC drivers rely on USB_GADGET_DELAYED_STATUS 722 * being returned from the setup() callback, which is a bug. See the comment 723 * next to USB_GADGET_DELAYED_STATUS for details. 724 * 725 * (Note that only the default control endpoint is supported. Neither 726 * hosts nor devices generally support control traffic except to ep0.) 727 * 728 * Most devices will ignore USB suspend/resume operations, and so will 729 * not provide those callbacks. However, some may need to change modes 730 * when the host is not longer directing those activities. For example, 731 * local controls (buttons, dials, etc) may need to be re-enabled since 732 * the (remote) host can't do that any longer; or an error state might 733 * be cleared, to make the device behave identically whether or not 734 * power is maintained. 735 */ 736 struct usb_gadget_driver { 737 char *function; 738 enum usb_device_speed max_speed; 739 int (*bind)(struct usb_gadget *gadget, 740 struct usb_gadget_driver *driver); 741 void (*unbind)(struct usb_gadget *); 742 int (*setup)(struct usb_gadget *, 743 const struct usb_ctrlrequest *); 744 void (*disconnect)(struct usb_gadget *); 745 void (*suspend)(struct usb_gadget *); 746 void (*resume)(struct usb_gadget *); 747 void (*reset)(struct usb_gadget *); 748 749 /* FIXME support safe rmmod */ 750 struct device_driver driver; 751 752 char *udc_name; 753 unsigned match_existing_only:1; 754 bool is_bound:1; 755 }; 756 757 758 759 /*-------------------------------------------------------------------------*/ 760 761 /* driver modules register and unregister, as usual. 762 * these calls must be made in a context that can sleep. 763 * 764 * A gadget driver can be bound to only one gadget at a time. 765 */ 766 767 /** 768 * usb_gadget_register_driver_owner - register a gadget driver 769 * @driver: the driver being registered 770 * @owner: the driver module 771 * @mod_name: the driver module's build name 772 * Context: can sleep 773 * 774 * Call this in your gadget driver's module initialization function, 775 * to tell the underlying UDC controller driver about your driver. 776 * The @bind() function will be called to bind it to a gadget before this 777 * registration call returns. It's expected that the @bind() function will 778 * be in init sections. 779 * 780 * Use the macro defined below instead of calling this directly. 781 */ 782 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver, 783 struct module *owner, const char *mod_name); 784 785 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 786 #define usb_gadget_register_driver(driver) \ 787 usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME) 788 789 /** 790 * usb_gadget_unregister_driver - unregister a gadget driver 791 * @driver:the driver being unregistered 792 * Context: can sleep 793 * 794 * Call this in your gadget driver's module cleanup function, 795 * to tell the underlying usb controller that your driver is 796 * going away. If the controller is connected to a USB host, 797 * it will first disconnect(). The driver is also requested 798 * to unbind() and clean up any device state, before this procedure 799 * finally returns. It's expected that the unbind() functions 800 * will be in exit sections, so may not be linked in some kernels. 801 */ 802 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver); 803 804 /*-------------------------------------------------------------------------*/ 805 806 /* utility to simplify dealing with string descriptors */ 807 808 /** 809 * struct usb_string - wraps a C string and its USB id 810 * @id:the (nonzero) ID for this string 811 * @s:the string, in UTF-8 encoding 812 * 813 * If you're using usb_gadget_get_string(), use this to wrap a string 814 * together with its ID. 815 */ 816 struct usb_string { 817 u8 id; 818 const char *s; 819 }; 820 821 /** 822 * struct usb_gadget_strings - a set of USB strings in a given language 823 * @language:identifies the strings' language (0x0409 for en-us) 824 * @strings:array of strings with their ids 825 * 826 * If you're using usb_gadget_get_string(), use this to wrap all the 827 * strings for a given language. 828 */ 829 struct usb_gadget_strings { 830 u16 language; /* 0x0409 for en-us */ 831 struct usb_string *strings; 832 }; 833 834 struct usb_gadget_string_container { 835 struct list_head list; 836 u8 *stash[]; 837 }; 838 839 /* put descriptor for string with that id into buf (buflen >= 256) */ 840 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf); 841 842 /* check if the given language identifier is valid */ 843 bool usb_validate_langid(u16 langid); 844 845 struct gadget_string { 846 struct config_item item; 847 struct list_head list; 848 char string[USB_MAX_STRING_LEN]; 849 struct usb_string usb_string; 850 }; 851 852 #define to_gadget_string(str_item)\ 853 container_of(str_item, struct gadget_string, item) 854 855 /*-------------------------------------------------------------------------*/ 856 857 /* utility to simplify managing config descriptors */ 858 859 /* write vector of descriptors into buffer */ 860 int usb_descriptor_fillbuf(void *, unsigned, 861 const struct usb_descriptor_header **); 862 863 /* build config descriptor from single descriptor vector */ 864 int usb_gadget_config_buf(const struct usb_config_descriptor *config, 865 void *buf, unsigned buflen, const struct usb_descriptor_header **desc); 866 867 /* copy a NULL-terminated vector of descriptors */ 868 struct usb_descriptor_header **usb_copy_descriptors( 869 struct usb_descriptor_header **); 870 871 /** 872 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors() 873 * @v: vector of descriptors 874 */ 875 static inline void usb_free_descriptors(struct usb_descriptor_header **v) 876 { 877 kfree(v); 878 } 879 880 struct usb_function; 881 int usb_assign_descriptors(struct usb_function *f, 882 struct usb_descriptor_header **fs, 883 struct usb_descriptor_header **hs, 884 struct usb_descriptor_header **ss, 885 struct usb_descriptor_header **ssp); 886 void usb_free_all_descriptors(struct usb_function *f); 887 888 struct usb_descriptor_header *usb_otg_descriptor_alloc( 889 struct usb_gadget *gadget); 890 int usb_otg_descriptor_init(struct usb_gadget *gadget, 891 struct usb_descriptor_header *otg_desc); 892 /*-------------------------------------------------------------------------*/ 893 894 /* utility to simplify map/unmap of usb_requests to/from DMA */ 895 896 #ifdef CONFIG_HAS_DMA 897 extern int usb_gadget_map_request_by_dev(struct device *dev, 898 struct usb_request *req, int is_in); 899 extern int usb_gadget_map_request(struct usb_gadget *gadget, 900 struct usb_request *req, int is_in); 901 902 extern void usb_gadget_unmap_request_by_dev(struct device *dev, 903 struct usb_request *req, int is_in); 904 extern void usb_gadget_unmap_request(struct usb_gadget *gadget, 905 struct usb_request *req, int is_in); 906 #else /* !CONFIG_HAS_DMA */ 907 static inline int usb_gadget_map_request_by_dev(struct device *dev, 908 struct usb_request *req, int is_in) { return -ENOSYS; } 909 static inline int usb_gadget_map_request(struct usb_gadget *gadget, 910 struct usb_request *req, int is_in) { return -ENOSYS; } 911 912 static inline void usb_gadget_unmap_request_by_dev(struct device *dev, 913 struct usb_request *req, int is_in) { } 914 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget, 915 struct usb_request *req, int is_in) { } 916 #endif /* !CONFIG_HAS_DMA */ 917 918 /*-------------------------------------------------------------------------*/ 919 920 /* utility to set gadget state properly */ 921 922 extern void usb_gadget_set_state(struct usb_gadget *gadget, 923 enum usb_device_state state); 924 925 /*-------------------------------------------------------------------------*/ 926 927 /* utility to tell udc core that the bus reset occurs */ 928 extern void usb_gadget_udc_reset(struct usb_gadget *gadget, 929 struct usb_gadget_driver *driver); 930 931 /*-------------------------------------------------------------------------*/ 932 933 /* utility to give requests back to the gadget layer */ 934 935 extern void usb_gadget_giveback_request(struct usb_ep *ep, 936 struct usb_request *req); 937 938 /*-------------------------------------------------------------------------*/ 939 940 /* utility to find endpoint by name */ 941 942 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, 943 const char *name); 944 945 /*-------------------------------------------------------------------------*/ 946 947 /* utility to check if endpoint caps match descriptor needs */ 948 949 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 950 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 951 struct usb_ss_ep_comp_descriptor *ep_comp); 952 953 /*-------------------------------------------------------------------------*/ 954 955 /* utility to update vbus status for udc core, it may be scheduled */ 956 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status); 957 958 /*-------------------------------------------------------------------------*/ 959 960 /* utility wrapping a simple endpoint selection policy */ 961 962 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *, 963 struct usb_endpoint_descriptor *); 964 965 966 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *, 967 struct usb_endpoint_descriptor *, 968 struct usb_ss_ep_comp_descriptor *); 969 970 extern void usb_ep_autoconfig_release(struct usb_ep *); 971 972 extern void usb_ep_autoconfig_reset(struct usb_gadget *); 973 974 #endif /* __LINUX_USB_GADGET_H */ 975
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.