~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/net/red.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef __NET_SCHED_RED_H
  3 #define __NET_SCHED_RED_H
  4 
  5 #include <linux/types.h>
  6 #include <linux/bug.h>
  7 #include <net/pkt_sched.h>
  8 #include <net/inet_ecn.h>
  9 #include <net/dsfield.h>
 10 #include <linux/reciprocal_div.h>
 11 
 12 /*      Random Early Detection (RED) algorithm.
 13         =======================================
 14 
 15         Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
 16         for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
 17 
 18         This file codes a "divisionless" version of RED algorithm
 19         as written down in Fig.17 of the paper.
 20 
 21         Short description.
 22         ------------------
 23 
 24         When a new packet arrives we calculate the average queue length:
 25 
 26         avg = (1-W)*avg + W*current_queue_len,
 27 
 28         W is the filter time constant (chosen as 2^(-Wlog)), it controls
 29         the inertia of the algorithm. To allow larger bursts, W should be
 30         decreased.
 31 
 32         if (avg > th_max) -> packet marked (dropped).
 33         if (avg < th_min) -> packet passes.
 34         if (th_min < avg < th_max) we calculate probability:
 35 
 36         Pb = max_P * (avg - th_min)/(th_max-th_min)
 37 
 38         and mark (drop) packet with this probability.
 39         Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
 40         max_P should be small (not 1), usually 0.01..0.02 is good value.
 41 
 42         max_P is chosen as a number, so that max_P/(th_max-th_min)
 43         is a negative power of two in order arithmetics to contain
 44         only shifts.
 45 
 46 
 47         Parameters, settable by user:
 48         -----------------------------
 49 
 50         qth_min         - bytes (should be < qth_max/2)
 51         qth_max         - bytes (should be at least 2*qth_min and less limit)
 52         Wlog            - bits (<32) log(1/W).
 53         Plog            - bits (<32)
 54 
 55         Plog is related to max_P by formula:
 56 
 57         max_P = (qth_max-qth_min)/2^Plog;
 58 
 59         F.e. if qth_max=128K and qth_min=32K, then Plog=22
 60         corresponds to max_P=0.02
 61 
 62         Scell_log
 63         Stab
 64 
 65         Lookup table for log((1-W)^(t/t_ave).
 66 
 67 
 68         NOTES:
 69 
 70         Upper bound on W.
 71         -----------------
 72 
 73         If you want to allow bursts of L packets of size S,
 74         you should choose W:
 75 
 76         L + 1 - th_min/S < (1-(1-W)^L)/W
 77 
 78         th_min/S = 32         th_min/S = 4
 79 
 80         log(W)  L
 81         -1      33
 82         -2      35
 83         -3      39
 84         -4      46
 85         -5      57
 86         -6      75
 87         -7      101
 88         -8      135
 89         -9      190
 90         etc.
 91  */
 92 
 93 /*
 94  * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
 95  * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
 96  *
 97  * Every 500 ms:
 98  *  if (avg > target and max_p <= 0.5)
 99  *   increase max_p : max_p += alpha;
100  *  else if (avg < target and max_p >= 0.01)
101  *   decrease max_p : max_p *= beta;
102  *
103  * target :[qth_min + 0.4*(qth_min - qth_max),
104  *          qth_min + 0.6*(qth_min - qth_max)].
105  * alpha : min(0.01, max_p / 4)
106  * beta : 0.9
107  * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108  * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109  */
110 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111 
112 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
113 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
114 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115 
116 #define RED_STAB_SIZE   256
117 #define RED_STAB_MASK   (RED_STAB_SIZE - 1)
118 
119 struct red_stats {
120         u32             prob_drop;      /* Early probability drops */
121         u32             prob_mark;      /* Early probability marks */
122         u32             forced_drop;    /* Forced drops, qavg > max_thresh */
123         u32             forced_mark;    /* Forced marks, qavg > max_thresh */
124         u32             pdrop;          /* Drops due to queue limits */
125 };
126 
127 struct red_parms {
128         /* Parameters */
129         u32             qth_min;        /* Min avg length threshold: Wlog scaled */
130         u32             qth_max;        /* Max avg length threshold: Wlog scaled */
131         u32             Scell_max;
132         u32             max_P;          /* probability, [0 .. 1.0] 32 scaled */
133         /* reciprocal_value(max_P / qth_delta) */
134         struct reciprocal_value max_P_reciprocal;
135         u32             qth_delta;      /* max_th - min_th */
136         u32             target_min;     /* min_th + 0.4*(max_th - min_th) */
137         u32             target_max;     /* min_th + 0.6*(max_th - min_th) */
138         u8              Scell_log;
139         u8              Wlog;           /* log(W)               */
140         u8              Plog;           /* random number bits   */
141         u8              Stab[RED_STAB_SIZE];
142 };
143 
144 struct red_vars {
145         /* Variables */
146         int             qcount;         /* Number of packets since last random
147                                            number generation */
148         u32             qR;             /* Cached random number */
149 
150         unsigned long   qavg;           /* Average queue length: Wlog scaled */
151         ktime_t         qidlestart;     /* Start of current idle period */
152 };
153 
154 static inline u32 red_maxp(u8 Plog)
155 {
156         return Plog < 32 ? (~0U >> Plog) : ~0U;
157 }
158 
159 static inline void red_set_vars(struct red_vars *v)
160 {
161         /* Reset average queue length, the value is strictly bound
162          * to the parameters below, reseting hurts a bit but leaving
163          * it might result in an unreasonable qavg for a while. --TGR
164          */
165         v->qavg         = 0;
166 
167         v->qcount       = -1;
168 }
169 
170 static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
171                                     u8 Scell_log, u8 *stab)
172 {
173         if (fls(qth_min) + Wlog >= 32)
174                 return false;
175         if (fls(qth_max) + Wlog >= 32)
176                 return false;
177         if (Scell_log >= 32)
178                 return false;
179         if (qth_max < qth_min)
180                 return false;
181         if (stab) {
182                 int i;
183 
184                 for (i = 0; i < RED_STAB_SIZE; i++)
185                         if (stab[i] >= 32)
186                                 return false;
187         }
188         return true;
189 }
190 
191 static inline int red_get_flags(unsigned char qopt_flags,
192                                 unsigned char historic_mask,
193                                 struct nlattr *flags_attr,
194                                 unsigned char supported_mask,
195                                 struct nla_bitfield32 *p_flags,
196                                 unsigned char *p_userbits,
197                                 struct netlink_ext_ack *extack)
198 {
199         struct nla_bitfield32 flags;
200 
201         if (qopt_flags && flags_attr) {
202                 NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
203                 return -EINVAL;
204         }
205 
206         if (flags_attr) {
207                 flags = nla_get_bitfield32(flags_attr);
208         } else {
209                 flags.selector = historic_mask;
210                 flags.value = qopt_flags & historic_mask;
211         }
212 
213         *p_flags = flags;
214         *p_userbits = qopt_flags & ~historic_mask;
215         return 0;
216 }
217 
218 static inline int red_validate_flags(unsigned char flags,
219                                      struct netlink_ext_ack *extack)
220 {
221         if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
222                 NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
223                 return -EINVAL;
224         }
225 
226         return 0;
227 }
228 
229 static inline void red_set_parms(struct red_parms *p,
230                                  u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
231                                  u8 Scell_log, u8 *stab, u32 max_P)
232 {
233         int delta = qth_max - qth_min;
234         u32 max_p_delta;
235 
236         WRITE_ONCE(p->qth_min, qth_min << Wlog);
237         WRITE_ONCE(p->qth_max, qth_max << Wlog);
238         WRITE_ONCE(p->Wlog, Wlog);
239         WRITE_ONCE(p->Plog, Plog);
240         if (delta <= 0)
241                 delta = 1;
242         p->qth_delta    = delta;
243         if (!max_P) {
244                 max_P = red_maxp(Plog);
245                 max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
246         }
247         WRITE_ONCE(p->max_P, max_P);
248         max_p_delta = max_P / delta;
249         max_p_delta = max(max_p_delta, 1U);
250         p->max_P_reciprocal  = reciprocal_value(max_p_delta);
251 
252         /* RED Adaptative target :
253          * [min_th + 0.4*(min_th - max_th),
254          *  min_th + 0.6*(min_th - max_th)].
255          */
256         delta /= 5;
257         p->target_min = qth_min + 2*delta;
258         p->target_max = qth_min + 3*delta;
259 
260         WRITE_ONCE(p->Scell_log, Scell_log);
261         p->Scell_max    = (255 << Scell_log);
262 
263         if (stab)
264                 memcpy(p->Stab, stab, sizeof(p->Stab));
265 }
266 
267 static inline int red_is_idling(const struct red_vars *v)
268 {
269         return v->qidlestart != 0;
270 }
271 
272 static inline void red_start_of_idle_period(struct red_vars *v)
273 {
274         v->qidlestart = ktime_get();
275 }
276 
277 static inline void red_end_of_idle_period(struct red_vars *v)
278 {
279         v->qidlestart = 0;
280 }
281 
282 static inline void red_restart(struct red_vars *v)
283 {
284         red_end_of_idle_period(v);
285         v->qavg = 0;
286         v->qcount = -1;
287 }
288 
289 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
290                                                          const struct red_vars *v)
291 {
292         s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
293         long us_idle = min_t(s64, delta, p->Scell_max);
294         int  shift;
295 
296         /*
297          * The problem: ideally, average length queue recalculation should
298          * be done over constant clock intervals. This is too expensive, so
299          * that the calculation is driven by outgoing packets.
300          * When the queue is idle we have to model this clock by hand.
301          *
302          * SF+VJ proposed to "generate":
303          *
304          *      m = idletime / (average_pkt_size / bandwidth)
305          *
306          * dummy packets as a burst after idle time, i.e.
307          *
308          *      v->qavg *= (1-W)^m
309          *
310          * This is an apparently overcomplicated solution (f.e. we have to
311          * precompute a table to make this calculation in reasonable time)
312          * I believe that a simpler model may be used here,
313          * but it is field for experiments.
314          */
315 
316         shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
317 
318         if (shift)
319                 return v->qavg >> shift;
320         else {
321                 /* Approximate initial part of exponent with linear function:
322                  *
323                  *      (1-W)^m ~= 1-mW + ...
324                  *
325                  * Seems, it is the best solution to
326                  * problem of too coarse exponent tabulation.
327                  */
328                 us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
329 
330                 if (us_idle < (v->qavg >> 1))
331                         return v->qavg - us_idle;
332                 else
333                         return v->qavg >> 1;
334         }
335 }
336 
337 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
338                                                        const struct red_vars *v,
339                                                        unsigned int backlog)
340 {
341         /*
342          * NOTE: v->qavg is fixed point number with point at Wlog.
343          * The formula below is equvalent to floating point
344          * version:
345          *
346          *      qavg = qavg*(1-W) + backlog*W;
347          *
348          * --ANK (980924)
349          */
350         return v->qavg + (backlog - (v->qavg >> p->Wlog));
351 }
352 
353 static inline unsigned long red_calc_qavg(const struct red_parms *p,
354                                           const struct red_vars *v,
355                                           unsigned int backlog)
356 {
357         if (!red_is_idling(v))
358                 return red_calc_qavg_no_idle_time(p, v, backlog);
359         else
360                 return red_calc_qavg_from_idle_time(p, v);
361 }
362 
363 
364 static inline u32 red_random(const struct red_parms *p)
365 {
366         return reciprocal_divide(get_random_u32(), p->max_P_reciprocal);
367 }
368 
369 static inline int red_mark_probability(const struct red_parms *p,
370                                        const struct red_vars *v,
371                                        unsigned long qavg)
372 {
373         /* The formula used below causes questions.
374 
375            OK. qR is random number in the interval
376                 (0..1/max_P)*(qth_max-qth_min)
377            i.e. 0..(2^Plog). If we used floating point
378            arithmetics, it would be: (2^Plog)*rnd_num,
379            where rnd_num is less 1.
380 
381            Taking into account, that qavg have fixed
382            point at Wlog, two lines
383            below have the following floating point equivalent:
384 
385            max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
386 
387            Any questions? --ANK (980924)
388          */
389         return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
390 }
391 
392 enum {
393         RED_BELOW_MIN_THRESH,
394         RED_BETWEEN_TRESH,
395         RED_ABOVE_MAX_TRESH,
396 };
397 
398 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
399 {
400         if (qavg < p->qth_min)
401                 return RED_BELOW_MIN_THRESH;
402         else if (qavg >= p->qth_max)
403                 return RED_ABOVE_MAX_TRESH;
404         else
405                 return RED_BETWEEN_TRESH;
406 }
407 
408 enum {
409         RED_DONT_MARK,
410         RED_PROB_MARK,
411         RED_HARD_MARK,
412 };
413 
414 static inline int red_action(const struct red_parms *p,
415                              struct red_vars *v,
416                              unsigned long qavg)
417 {
418         switch (red_cmp_thresh(p, qavg)) {
419                 case RED_BELOW_MIN_THRESH:
420                         v->qcount = -1;
421                         return RED_DONT_MARK;
422 
423                 case RED_BETWEEN_TRESH:
424                         if (++v->qcount) {
425                                 if (red_mark_probability(p, v, qavg)) {
426                                         v->qcount = 0;
427                                         v->qR = red_random(p);
428                                         return RED_PROB_MARK;
429                                 }
430                         } else
431                                 v->qR = red_random(p);
432 
433                         return RED_DONT_MARK;
434 
435                 case RED_ABOVE_MAX_TRESH:
436                         v->qcount = -1;
437                         return RED_HARD_MARK;
438         }
439 
440         BUG();
441         return RED_DONT_MARK;
442 }
443 
444 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
445 {
446         unsigned long qavg;
447         u32 max_p_delta;
448 
449         qavg = v->qavg;
450         if (red_is_idling(v))
451                 qavg = red_calc_qavg_from_idle_time(p, v);
452 
453         /* v->qavg is fixed point number with point at Wlog */
454         qavg >>= p->Wlog;
455 
456         if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
457                 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
458         else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
459                 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
460 
461         max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
462         max_p_delta = max(max_p_delta, 1U);
463         p->max_P_reciprocal = reciprocal_value(max_p_delta);
464 }
465 #endif
466 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php