~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/rdma/ib_verbs.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
  2 /*
  3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
  4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
  5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
  6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
  7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
  8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 10  */
 11 
 12 #ifndef IB_VERBS_H
 13 #define IB_VERBS_H
 14 
 15 #include <linux/ethtool.h>
 16 #include <linux/types.h>
 17 #include <linux/device.h>
 18 #include <linux/dma-mapping.h>
 19 #include <linux/kref.h>
 20 #include <linux/list.h>
 21 #include <linux/rwsem.h>
 22 #include <linux/workqueue.h>
 23 #include <linux/irq_poll.h>
 24 #include <uapi/linux/if_ether.h>
 25 #include <net/ipv6.h>
 26 #include <net/ip.h>
 27 #include <linux/string.h>
 28 #include <linux/slab.h>
 29 #include <linux/netdevice.h>
 30 #include <linux/refcount.h>
 31 #include <linux/if_link.h>
 32 #include <linux/atomic.h>
 33 #include <linux/mmu_notifier.h>
 34 #include <linux/uaccess.h>
 35 #include <linux/cgroup_rdma.h>
 36 #include <linux/irqflags.h>
 37 #include <linux/preempt.h>
 38 #include <linux/dim.h>
 39 #include <uapi/rdma/ib_user_verbs.h>
 40 #include <rdma/rdma_counter.h>
 41 #include <rdma/restrack.h>
 42 #include <rdma/signature.h>
 43 #include <uapi/rdma/rdma_user_ioctl.h>
 44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
 45 
 46 #define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
 47 
 48 struct ib_umem_odp;
 49 struct ib_uqp_object;
 50 struct ib_usrq_object;
 51 struct ib_uwq_object;
 52 struct rdma_cm_id;
 53 struct ib_port;
 54 struct hw_stats_device_data;
 55 
 56 extern struct workqueue_struct *ib_wq;
 57 extern struct workqueue_struct *ib_comp_wq;
 58 extern struct workqueue_struct *ib_comp_unbound_wq;
 59 
 60 struct ib_ucq_object;
 61 
 62 __printf(3, 4) __cold
 63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
 64                   const char *format, ...);
 65 __printf(2, 3) __cold
 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
 67 __printf(2, 3) __cold
 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
 69 __printf(2, 3) __cold
 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
 71 __printf(2, 3) __cold
 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
 73 __printf(2, 3) __cold
 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
 75 __printf(2, 3) __cold
 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
 77 __printf(2, 3) __cold
 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
 79 
 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
 81         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 82 #define ibdev_dbg(__dev, format, args...)                       \
 83         dynamic_ibdev_dbg(__dev, format, ##args)
 84 #else
 85 __printf(2, 3) __cold
 86 static inline
 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
 88 #endif
 89 
 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
 91 do {                                                                    \
 92         static DEFINE_RATELIMIT_STATE(_rs,                              \
 93                                       DEFAULT_RATELIMIT_INTERVAL,       \
 94                                       DEFAULT_RATELIMIT_BURST);         \
 95         if (__ratelimit(&_rs))                                          \
 96                 ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
 97 } while (0)
 98 
 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100         ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102         ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104         ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106         ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108         ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110         ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112         ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113 
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118 do {                                                                    \
119         static DEFINE_RATELIMIT_STATE(_rs,                              \
120                                       DEFAULT_RATELIMIT_INTERVAL,       \
121                                       DEFAULT_RATELIMIT_BURST);         \
122         DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123         if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124                 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125                                     ##__VA_ARGS__);                     \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132 
133 union ib_gid {
134         u8      raw[16];
135         struct {
136                 __be64  subnet_prefix;
137                 __be64  interface_id;
138         } global;
139 };
140 
141 extern union ib_gid zgid;
142 
143 enum ib_gid_type {
144         IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145         IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146         IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147         IB_GID_TYPE_SIZE
148 };
149 
150 #define ROCE_V2_UDP_DPORT      4791
151 struct ib_gid_attr {
152         struct net_device __rcu *ndev;
153         struct ib_device        *device;
154         union ib_gid            gid;
155         enum ib_gid_type        gid_type;
156         u16                     index;
157         u32                     port_num;
158 };
159 
160 enum {
161         /* set the local administered indication */
162         IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
163 };
164 
165 enum rdma_transport_type {
166         RDMA_TRANSPORT_IB,
167         RDMA_TRANSPORT_IWARP,
168         RDMA_TRANSPORT_USNIC,
169         RDMA_TRANSPORT_USNIC_UDP,
170         RDMA_TRANSPORT_UNSPECIFIED,
171 };
172 
173 enum rdma_protocol_type {
174         RDMA_PROTOCOL_IB,
175         RDMA_PROTOCOL_IBOE,
176         RDMA_PROTOCOL_IWARP,
177         RDMA_PROTOCOL_USNIC_UDP
178 };
179 
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182 
183 enum rdma_network_type {
184         RDMA_NETWORK_IB,
185         RDMA_NETWORK_ROCE_V1,
186         RDMA_NETWORK_IPV4,
187         RDMA_NETWORK_IPV6
188 };
189 
190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192         if (network_type == RDMA_NETWORK_IPV4 ||
193             network_type == RDMA_NETWORK_IPV6)
194                 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195         else if (network_type == RDMA_NETWORK_ROCE_V1)
196                 return IB_GID_TYPE_ROCE;
197         else
198                 return IB_GID_TYPE_IB;
199 }
200 
201 static inline enum rdma_network_type
202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204         if (attr->gid_type == IB_GID_TYPE_IB)
205                 return RDMA_NETWORK_IB;
206 
207         if (attr->gid_type == IB_GID_TYPE_ROCE)
208                 return RDMA_NETWORK_ROCE_V1;
209 
210         if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211                 return RDMA_NETWORK_IPV4;
212         else
213                 return RDMA_NETWORK_IPV6;
214 }
215 
216 enum rdma_link_layer {
217         IB_LINK_LAYER_UNSPECIFIED,
218         IB_LINK_LAYER_INFINIBAND,
219         IB_LINK_LAYER_ETHERNET,
220 };
221 
222 enum ib_device_cap_flags {
223         IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224         IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225         IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226         IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227         IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228         IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229         IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230         IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231         IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232         /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233         IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234         IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235         IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236         IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237         IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238 
239         /* Reserved, old SEND_W_INV = 1 << 16,*/
240         IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241         /*
242          * Devices should set IB_DEVICE_UD_IP_SUM if they support
243          * insertion of UDP and TCP checksum on outgoing UD IPoIB
244          * messages and can verify the validity of checksum for
245          * incoming messages.  Setting this flag implies that the
246          * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247          */
248         IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249         IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250 
251         /*
252          * This device supports the IB "base memory management extension",
253          * which includes support for fast registrations (IB_WR_REG_MR,
254          * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255          * also be set by any iWarp device which must support FRs to comply
256          * to the iWarp verbs spec.  iWarp devices also support the
257          * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258          * stag.
259          */
260         IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261         IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262         IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263         IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264         /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265         IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266         IB_DEVICE_MANAGED_FLOW_STEERING =
267                 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268         /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269         IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270         /* The device supports padding incoming writes to cacheline. */
271         IB_DEVICE_PCI_WRITE_END_PADDING =
272                 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273         /* Placement type attributes */
274         IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275         IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276         IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277 };
278 
279 enum ib_kernel_cap_flags {
280         /*
281          * This device supports a per-device lkey or stag that can be
282          * used without performing a memory registration for the local
283          * memory.  Note that ULPs should never check this flag, but
284          * instead of use the local_dma_lkey flag in the ib_pd structure,
285          * which will always contain a usable lkey.
286          */
287         IBK_LOCAL_DMA_LKEY = 1 << 0,
288         /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289         IBK_INTEGRITY_HANDOVER = 1 << 1,
290         /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291         IBK_ON_DEMAND_PAGING = 1 << 2,
292         /* IB_MR_TYPE_SG_GAPS is supported */
293         IBK_SG_GAPS_REG = 1 << 3,
294         /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295         IBK_ALLOW_USER_UNREG = 1 << 4,
296 
297         /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298         IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299         /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300         IBK_UD_TSO = 1 << 6,
301         /* iopib will use the device ops:
302          *   get_vf_config
303          *   get_vf_guid
304          *   get_vf_stats
305          *   set_vf_guid
306          *   set_vf_link_state
307          */
308         IBK_VIRTUAL_FUNCTION = 1 << 7,
309         /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310         IBK_RDMA_NETDEV_OPA = 1 << 8,
311 };
312 
313 enum ib_atomic_cap {
314         IB_ATOMIC_NONE,
315         IB_ATOMIC_HCA,
316         IB_ATOMIC_GLOB
317 };
318 
319 enum ib_odp_general_cap_bits {
320         IB_ODP_SUPPORT          = 1 << 0,
321         IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322 };
323 
324 enum ib_odp_transport_cap_bits {
325         IB_ODP_SUPPORT_SEND     = 1 << 0,
326         IB_ODP_SUPPORT_RECV     = 1 << 1,
327         IB_ODP_SUPPORT_WRITE    = 1 << 2,
328         IB_ODP_SUPPORT_READ     = 1 << 3,
329         IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
330         IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331 };
332 
333 struct ib_odp_caps {
334         uint64_t general_caps;
335         struct {
336                 uint32_t  rc_odp_caps;
337                 uint32_t  uc_odp_caps;
338                 uint32_t  ud_odp_caps;
339                 uint32_t  xrc_odp_caps;
340         } per_transport_caps;
341 };
342 
343 struct ib_rss_caps {
344         /* Corresponding bit will be set if qp type from
345          * 'enum ib_qp_type' is supported, e.g.
346          * supported_qpts |= 1 << IB_QPT_UD
347          */
348         u32 supported_qpts;
349         u32 max_rwq_indirection_tables;
350         u32 max_rwq_indirection_table_size;
351 };
352 
353 enum ib_tm_cap_flags {
354         /*  Support tag matching with rendezvous offload for RC transport */
355         IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357 
358 struct ib_tm_caps {
359         /* Max size of RNDV header */
360         u32 max_rndv_hdr_size;
361         /* Max number of entries in tag matching list */
362         u32 max_num_tags;
363         /* From enum ib_tm_cap_flags */
364         u32 flags;
365         /* Max number of outstanding list operations */
366         u32 max_ops;
367         /* Max number of SGE in tag matching entry */
368         u32 max_sge;
369 };
370 
371 struct ib_cq_init_attr {
372         unsigned int    cqe;
373         u32             comp_vector;
374         u32             flags;
375 };
376 
377 enum ib_cq_attr_mask {
378         IB_CQ_MODERATE = 1 << 0,
379 };
380 
381 struct ib_cq_caps {
382         u16     max_cq_moderation_count;
383         u16     max_cq_moderation_period;
384 };
385 
386 struct ib_dm_mr_attr {
387         u64             length;
388         u64             offset;
389         u32             access_flags;
390 };
391 
392 struct ib_dm_alloc_attr {
393         u64     length;
394         u32     alignment;
395         u32     flags;
396 };
397 
398 struct ib_device_attr {
399         u64                     fw_ver;
400         __be64                  sys_image_guid;
401         u64                     max_mr_size;
402         u64                     page_size_cap;
403         u32                     vendor_id;
404         u32                     vendor_part_id;
405         u32                     hw_ver;
406         int                     max_qp;
407         int                     max_qp_wr;
408         u64                     device_cap_flags;
409         u64                     kernel_cap_flags;
410         int                     max_send_sge;
411         int                     max_recv_sge;
412         int                     max_sge_rd;
413         int                     max_cq;
414         int                     max_cqe;
415         int                     max_mr;
416         int                     max_pd;
417         int                     max_qp_rd_atom;
418         int                     max_ee_rd_atom;
419         int                     max_res_rd_atom;
420         int                     max_qp_init_rd_atom;
421         int                     max_ee_init_rd_atom;
422         enum ib_atomic_cap      atomic_cap;
423         enum ib_atomic_cap      masked_atomic_cap;
424         int                     max_ee;
425         int                     max_rdd;
426         int                     max_mw;
427         int                     max_raw_ipv6_qp;
428         int                     max_raw_ethy_qp;
429         int                     max_mcast_grp;
430         int                     max_mcast_qp_attach;
431         int                     max_total_mcast_qp_attach;
432         int                     max_ah;
433         int                     max_srq;
434         int                     max_srq_wr;
435         int                     max_srq_sge;
436         unsigned int            max_fast_reg_page_list_len;
437         unsigned int            max_pi_fast_reg_page_list_len;
438         u16                     max_pkeys;
439         u8                      local_ca_ack_delay;
440         int                     sig_prot_cap;
441         int                     sig_guard_cap;
442         struct ib_odp_caps      odp_caps;
443         uint64_t                timestamp_mask;
444         uint64_t                hca_core_clock; /* in KHZ */
445         struct ib_rss_caps      rss_caps;
446         u32                     max_wq_type_rq;
447         u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
448         struct ib_tm_caps       tm_caps;
449         struct ib_cq_caps       cq_caps;
450         u64                     max_dm_size;
451         /* Max entries for sgl for optimized performance per READ */
452         u32                     max_sgl_rd;
453 };
454 
455 enum ib_mtu {
456         IB_MTU_256  = 1,
457         IB_MTU_512  = 2,
458         IB_MTU_1024 = 3,
459         IB_MTU_2048 = 4,
460         IB_MTU_4096 = 5
461 };
462 
463 enum opa_mtu {
464         OPA_MTU_8192 = 6,
465         OPA_MTU_10240 = 7
466 };
467 
468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470         switch (mtu) {
471         case IB_MTU_256:  return  256;
472         case IB_MTU_512:  return  512;
473         case IB_MTU_1024: return 1024;
474         case IB_MTU_2048: return 2048;
475         case IB_MTU_4096: return 4096;
476         default:          return -1;
477         }
478 }
479 
480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482         if (mtu >= 4096)
483                 return IB_MTU_4096;
484         else if (mtu >= 2048)
485                 return IB_MTU_2048;
486         else if (mtu >= 1024)
487                 return IB_MTU_1024;
488         else if (mtu >= 512)
489                 return IB_MTU_512;
490         else
491                 return IB_MTU_256;
492 }
493 
494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496         switch (mtu) {
497         case OPA_MTU_8192:
498                 return 8192;
499         case OPA_MTU_10240:
500                 return 10240;
501         default:
502                 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503         }
504 }
505 
506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508         if (mtu >= 10240)
509                 return OPA_MTU_10240;
510         else if (mtu >= 8192)
511                 return OPA_MTU_8192;
512         else
513                 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515 
516 enum ib_port_state {
517         IB_PORT_NOP             = 0,
518         IB_PORT_DOWN            = 1,
519         IB_PORT_INIT            = 2,
520         IB_PORT_ARMED           = 3,
521         IB_PORT_ACTIVE          = 4,
522         IB_PORT_ACTIVE_DEFER    = 5
523 };
524 
525 enum ib_port_phys_state {
526         IB_PORT_PHYS_STATE_SLEEP = 1,
527         IB_PORT_PHYS_STATE_POLLING = 2,
528         IB_PORT_PHYS_STATE_DISABLED = 3,
529         IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530         IB_PORT_PHYS_STATE_LINK_UP = 5,
531         IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532         IB_PORT_PHYS_STATE_PHY_TEST = 7,
533 };
534 
535 enum ib_port_width {
536         IB_WIDTH_1X     = 1,
537         IB_WIDTH_2X     = 16,
538         IB_WIDTH_4X     = 2,
539         IB_WIDTH_8X     = 4,
540         IB_WIDTH_12X    = 8
541 };
542 
543 static inline int ib_width_enum_to_int(enum ib_port_width width)
544 {
545         switch (width) {
546         case IB_WIDTH_1X:  return  1;
547         case IB_WIDTH_2X:  return  2;
548         case IB_WIDTH_4X:  return  4;
549         case IB_WIDTH_8X:  return  8;
550         case IB_WIDTH_12X: return 12;
551         default:          return -1;
552         }
553 }
554 
555 enum ib_port_speed {
556         IB_SPEED_SDR    = 1,
557         IB_SPEED_DDR    = 2,
558         IB_SPEED_QDR    = 4,
559         IB_SPEED_FDR10  = 8,
560         IB_SPEED_FDR    = 16,
561         IB_SPEED_EDR    = 32,
562         IB_SPEED_HDR    = 64,
563         IB_SPEED_NDR    = 128,
564         IB_SPEED_XDR    = 256,
565 };
566 
567 enum ib_stat_flag {
568         IB_STAT_FLAG_OPTIONAL = 1 << 0,
569 };
570 
571 /**
572  * struct rdma_stat_desc
573  * @name - The name of the counter
574  * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575  * @priv - Driver private information; Core code should not use
576  */
577 struct rdma_stat_desc {
578         const char *name;
579         unsigned int flags;
580         const void *priv;
581 };
582 
583 /**
584  * struct rdma_hw_stats
585  * @lock - Mutex to protect parallel write access to lifespan and values
586  *    of counters, which are 64bits and not guaranteed to be written
587  *    atomicaly on 32bits systems.
588  * @timestamp - Used by the core code to track when the last update was
589  * @lifespan - Used by the core code to determine how old the counters
590  *   should be before being updated again.  Stored in jiffies, defaults
591  *   to 10 milliseconds, drivers can override the default be specifying
592  *   their own value during their allocation routine.
593  * @descs - Array of pointers to static descriptors used for the counters
594  *   in directory.
595  * @is_disabled - A bitmap to indicate each counter is currently disabled
596  *   or not.
597  * @num_counters - How many hardware counters there are.  If name is
598  *   shorter than this number, a kernel oops will result.  Driver authors
599  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600  *   in their code to prevent this.
601  * @value - Array of u64 counters that are accessed by the sysfs code and
602  *   filled in by the drivers get_stats routine
603  */
604 struct rdma_hw_stats {
605         struct mutex    lock; /* Protect lifespan and values[] */
606         unsigned long   timestamp;
607         unsigned long   lifespan;
608         const struct rdma_stat_desc *descs;
609         unsigned long   *is_disabled;
610         int             num_counters;
611         u64             value[] __counted_by(num_counters);
612 };
613 
614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615 
616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617         const struct rdma_stat_desc *descs, int num_counters,
618         unsigned long lifespan);
619 
620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621 
622 /* Define bits for the various functionality this port needs to be supported by
623  * the core.
624  */
625 /* Management                           0x00000FFF */
626 #define RDMA_CORE_CAP_IB_MAD            0x00000001
627 #define RDMA_CORE_CAP_IB_SMI            0x00000002
628 #define RDMA_CORE_CAP_IB_CM             0x00000004
629 #define RDMA_CORE_CAP_IW_CM             0x00000008
630 #define RDMA_CORE_CAP_IB_SA             0x00000010
631 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
632 
633 /* Address format                       0x000FF000 */
634 #define RDMA_CORE_CAP_AF_IB             0x00001000
635 #define RDMA_CORE_CAP_ETH_AH            0x00002000
636 #define RDMA_CORE_CAP_OPA_AH            0x00004000
637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
638 
639 /* Protocol                             0xFFF00000 */
640 #define RDMA_CORE_CAP_PROT_IB           0x00100000
641 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
642 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
645 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
646 
647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648                                         | RDMA_CORE_CAP_PROT_ROCE     \
649                                         | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650 
651 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
652                                         | RDMA_CORE_CAP_IB_MAD \
653                                         | RDMA_CORE_CAP_IB_SMI \
654                                         | RDMA_CORE_CAP_IB_CM  \
655                                         | RDMA_CORE_CAP_IB_SA  \
656                                         | RDMA_CORE_CAP_AF_IB)
657 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
658                                         | RDMA_CORE_CAP_IB_MAD  \
659                                         | RDMA_CORE_CAP_IB_CM   \
660                                         | RDMA_CORE_CAP_AF_IB   \
661                                         | RDMA_CORE_CAP_ETH_AH)
662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
663                                         (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664                                         | RDMA_CORE_CAP_IB_MAD  \
665                                         | RDMA_CORE_CAP_IB_CM   \
666                                         | RDMA_CORE_CAP_AF_IB   \
667                                         | RDMA_CORE_CAP_ETH_AH)
668 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
669                                         | RDMA_CORE_CAP_IW_CM)
670 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
671                                         | RDMA_CORE_CAP_OPA_MAD)
672 
673 #define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
674 
675 #define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
676 
677 struct ib_port_attr {
678         u64                     subnet_prefix;
679         enum ib_port_state      state;
680         enum ib_mtu             max_mtu;
681         enum ib_mtu             active_mtu;
682         u32                     phys_mtu;
683         int                     gid_tbl_len;
684         unsigned int            ip_gids:1;
685         /* This is the value from PortInfo CapabilityMask, defined by IBA */
686         u32                     port_cap_flags;
687         u32                     max_msg_sz;
688         u32                     bad_pkey_cntr;
689         u32                     qkey_viol_cntr;
690         u16                     pkey_tbl_len;
691         u32                     sm_lid;
692         u32                     lid;
693         u8                      lmc;
694         u8                      max_vl_num;
695         u8                      sm_sl;
696         u8                      subnet_timeout;
697         u8                      init_type_reply;
698         u8                      active_width;
699         u16                     active_speed;
700         u8                      phys_state;
701         u16                     port_cap_flags2;
702 };
703 
704 enum ib_device_modify_flags {
705         IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706         IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
707 };
708 
709 #define IB_DEVICE_NODE_DESC_MAX 64
710 
711 struct ib_device_modify {
712         u64     sys_image_guid;
713         char    node_desc[IB_DEVICE_NODE_DESC_MAX];
714 };
715 
716 enum ib_port_modify_flags {
717         IB_PORT_SHUTDOWN                = 1,
718         IB_PORT_INIT_TYPE               = (1<<2),
719         IB_PORT_RESET_QKEY_CNTR         = (1<<3),
720         IB_PORT_OPA_MASK_CHG            = (1<<4)
721 };
722 
723 struct ib_port_modify {
724         u32     set_port_cap_mask;
725         u32     clr_port_cap_mask;
726         u8      init_type;
727 };
728 
729 enum ib_event_type {
730         IB_EVENT_CQ_ERR,
731         IB_EVENT_QP_FATAL,
732         IB_EVENT_QP_REQ_ERR,
733         IB_EVENT_QP_ACCESS_ERR,
734         IB_EVENT_COMM_EST,
735         IB_EVENT_SQ_DRAINED,
736         IB_EVENT_PATH_MIG,
737         IB_EVENT_PATH_MIG_ERR,
738         IB_EVENT_DEVICE_FATAL,
739         IB_EVENT_PORT_ACTIVE,
740         IB_EVENT_PORT_ERR,
741         IB_EVENT_LID_CHANGE,
742         IB_EVENT_PKEY_CHANGE,
743         IB_EVENT_SM_CHANGE,
744         IB_EVENT_SRQ_ERR,
745         IB_EVENT_SRQ_LIMIT_REACHED,
746         IB_EVENT_QP_LAST_WQE_REACHED,
747         IB_EVENT_CLIENT_REREGISTER,
748         IB_EVENT_GID_CHANGE,
749         IB_EVENT_WQ_FATAL,
750 };
751 
752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753 
754 struct ib_event {
755         struct ib_device        *device;
756         union {
757                 struct ib_cq    *cq;
758                 struct ib_qp    *qp;
759                 struct ib_srq   *srq;
760                 struct ib_wq    *wq;
761                 u32             port_num;
762         } element;
763         enum ib_event_type      event;
764 };
765 
766 struct ib_event_handler {
767         struct ib_device *device;
768         void            (*handler)(struct ib_event_handler *, struct ib_event *);
769         struct list_head  list;
770 };
771 
772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
773         do {                                                    \
774                 (_ptr)->device  = _device;                      \
775                 (_ptr)->handler = _handler;                     \
776                 INIT_LIST_HEAD(&(_ptr)->list);                  \
777         } while (0)
778 
779 struct ib_global_route {
780         const struct ib_gid_attr *sgid_attr;
781         union ib_gid    dgid;
782         u32             flow_label;
783         u8              sgid_index;
784         u8              hop_limit;
785         u8              traffic_class;
786 };
787 
788 struct ib_grh {
789         __be32          version_tclass_flow;
790         __be16          paylen;
791         u8              next_hdr;
792         u8              hop_limit;
793         union ib_gid    sgid;
794         union ib_gid    dgid;
795 };
796 
797 union rdma_network_hdr {
798         struct ib_grh ibgrh;
799         struct {
800                 /* The IB spec states that if it's IPv4, the header
801                  * is located in the last 20 bytes of the header.
802                  */
803                 u8              reserved[20];
804                 struct iphdr    roce4grh;
805         };
806 };
807 
808 #define IB_QPN_MASK             0xFFFFFF
809 
810 enum {
811         IB_MULTICAST_QPN = 0xffffff
812 };
813 
814 #define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
815 #define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
816 
817 enum ib_ah_flags {
818         IB_AH_GRH       = 1
819 };
820 
821 enum ib_rate {
822         IB_RATE_PORT_CURRENT = 0,
823         IB_RATE_2_5_GBPS = 2,
824         IB_RATE_5_GBPS   = 5,
825         IB_RATE_10_GBPS  = 3,
826         IB_RATE_20_GBPS  = 6,
827         IB_RATE_30_GBPS  = 4,
828         IB_RATE_40_GBPS  = 7,
829         IB_RATE_60_GBPS  = 8,
830         IB_RATE_80_GBPS  = 9,
831         IB_RATE_120_GBPS = 10,
832         IB_RATE_14_GBPS  = 11,
833         IB_RATE_56_GBPS  = 12,
834         IB_RATE_112_GBPS = 13,
835         IB_RATE_168_GBPS = 14,
836         IB_RATE_25_GBPS  = 15,
837         IB_RATE_100_GBPS = 16,
838         IB_RATE_200_GBPS = 17,
839         IB_RATE_300_GBPS = 18,
840         IB_RATE_28_GBPS  = 19,
841         IB_RATE_50_GBPS  = 20,
842         IB_RATE_400_GBPS = 21,
843         IB_RATE_600_GBPS = 22,
844         IB_RATE_800_GBPS = 23,
845 };
846 
847 /**
848  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
850  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851  * @rate: rate to convert.
852  */
853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854 
855 /**
856  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858  * @rate: rate to convert.
859  */
860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861 
862 
863 /**
864  * enum ib_mr_type - memory region type
865  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
866  *                            normal registration
867  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
868  *                            register any arbitrary sg lists (without
869  *                            the normal mr constraints - see
870  *                            ib_map_mr_sg)
871  * @IB_MR_TYPE_DM:            memory region that is used for device
872  *                            memory registration
873  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
874  *                            application
875  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
876  *                            without address translations (VA=PA)
877  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
878  *                            data integrity operations
879  */
880 enum ib_mr_type {
881         IB_MR_TYPE_MEM_REG,
882         IB_MR_TYPE_SG_GAPS,
883         IB_MR_TYPE_DM,
884         IB_MR_TYPE_USER,
885         IB_MR_TYPE_DMA,
886         IB_MR_TYPE_INTEGRITY,
887 };
888 
889 enum ib_mr_status_check {
890         IB_MR_CHECK_SIG_STATUS = 1,
891 };
892 
893 /**
894  * struct ib_mr_status - Memory region status container
895  *
896  * @fail_status: Bitmask of MR checks status. For each
897  *     failed check a corresponding status bit is set.
898  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899  *     failure.
900  */
901 struct ib_mr_status {
902         u32                 fail_status;
903         struct ib_sig_err   sig_err;
904 };
905 
906 /**
907  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908  * enum.
909  * @mult: multiple to convert.
910  */
911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912 
913 struct rdma_ah_init_attr {
914         struct rdma_ah_attr *ah_attr;
915         u32 flags;
916         struct net_device *xmit_slave;
917 };
918 
919 enum rdma_ah_attr_type {
920         RDMA_AH_ATTR_TYPE_UNDEFINED,
921         RDMA_AH_ATTR_TYPE_IB,
922         RDMA_AH_ATTR_TYPE_ROCE,
923         RDMA_AH_ATTR_TYPE_OPA,
924 };
925 
926 struct ib_ah_attr {
927         u16                     dlid;
928         u8                      src_path_bits;
929 };
930 
931 struct roce_ah_attr {
932         u8                      dmac[ETH_ALEN];
933 };
934 
935 struct opa_ah_attr {
936         u32                     dlid;
937         u8                      src_path_bits;
938         bool                    make_grd;
939 };
940 
941 struct rdma_ah_attr {
942         struct ib_global_route  grh;
943         u8                      sl;
944         u8                      static_rate;
945         u32                     port_num;
946         u8                      ah_flags;
947         enum rdma_ah_attr_type type;
948         union {
949                 struct ib_ah_attr ib;
950                 struct roce_ah_attr roce;
951                 struct opa_ah_attr opa;
952         };
953 };
954 
955 enum ib_wc_status {
956         IB_WC_SUCCESS,
957         IB_WC_LOC_LEN_ERR,
958         IB_WC_LOC_QP_OP_ERR,
959         IB_WC_LOC_EEC_OP_ERR,
960         IB_WC_LOC_PROT_ERR,
961         IB_WC_WR_FLUSH_ERR,
962         IB_WC_MW_BIND_ERR,
963         IB_WC_BAD_RESP_ERR,
964         IB_WC_LOC_ACCESS_ERR,
965         IB_WC_REM_INV_REQ_ERR,
966         IB_WC_REM_ACCESS_ERR,
967         IB_WC_REM_OP_ERR,
968         IB_WC_RETRY_EXC_ERR,
969         IB_WC_RNR_RETRY_EXC_ERR,
970         IB_WC_LOC_RDD_VIOL_ERR,
971         IB_WC_REM_INV_RD_REQ_ERR,
972         IB_WC_REM_ABORT_ERR,
973         IB_WC_INV_EECN_ERR,
974         IB_WC_INV_EEC_STATE_ERR,
975         IB_WC_FATAL_ERR,
976         IB_WC_RESP_TIMEOUT_ERR,
977         IB_WC_GENERAL_ERR
978 };
979 
980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981 
982 enum ib_wc_opcode {
983         IB_WC_SEND = IB_UVERBS_WC_SEND,
984         IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985         IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986         IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987         IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988         IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989         IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990         IB_WC_LSO = IB_UVERBS_WC_TSO,
991         IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992         IB_WC_REG_MR,
993         IB_WC_MASKED_COMP_SWAP,
994         IB_WC_MASKED_FETCH_ADD,
995         IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996 /*
997  * Set value of IB_WC_RECV so consumers can test if a completion is a
998  * receive by testing (opcode & IB_WC_RECV).
999  */
1000         IB_WC_RECV                      = 1 << 7,
1001         IB_WC_RECV_RDMA_WITH_IMM
1002 };
1003 
1004 enum ib_wc_flags {
1005         IB_WC_GRH               = 1,
1006         IB_WC_WITH_IMM          = (1<<1),
1007         IB_WC_WITH_INVALIDATE   = (1<<2),
1008         IB_WC_IP_CSUM_OK        = (1<<3),
1009         IB_WC_WITH_SMAC         = (1<<4),
1010         IB_WC_WITH_VLAN         = (1<<5),
1011         IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
1012 };
1013 
1014 struct ib_wc {
1015         union {
1016                 u64             wr_id;
1017                 struct ib_cqe   *wr_cqe;
1018         };
1019         enum ib_wc_status       status;
1020         enum ib_wc_opcode       opcode;
1021         u32                     vendor_err;
1022         u32                     byte_len;
1023         struct ib_qp           *qp;
1024         union {
1025                 __be32          imm_data;
1026                 u32             invalidate_rkey;
1027         } ex;
1028         u32                     src_qp;
1029         u32                     slid;
1030         int                     wc_flags;
1031         u16                     pkey_index;
1032         u8                      sl;
1033         u8                      dlid_path_bits;
1034         u32 port_num; /* valid only for DR SMPs on switches */
1035         u8                      smac[ETH_ALEN];
1036         u16                     vlan_id;
1037         u8                      network_hdr_type;
1038 };
1039 
1040 enum ib_cq_notify_flags {
1041         IB_CQ_SOLICITED                 = 1 << 0,
1042         IB_CQ_NEXT_COMP                 = 1 << 1,
1043         IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044         IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
1045 };
1046 
1047 enum ib_srq_type {
1048         IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049         IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050         IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051 };
1052 
1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054 {
1055         return srq_type == IB_SRQT_XRC ||
1056                srq_type == IB_SRQT_TM;
1057 }
1058 
1059 enum ib_srq_attr_mask {
1060         IB_SRQ_MAX_WR   = 1 << 0,
1061         IB_SRQ_LIMIT    = 1 << 1,
1062 };
1063 
1064 struct ib_srq_attr {
1065         u32     max_wr;
1066         u32     max_sge;
1067         u32     srq_limit;
1068 };
1069 
1070 struct ib_srq_init_attr {
1071         void                  (*event_handler)(struct ib_event *, void *);
1072         void                   *srq_context;
1073         struct ib_srq_attr      attr;
1074         enum ib_srq_type        srq_type;
1075 
1076         struct {
1077                 struct ib_cq   *cq;
1078                 union {
1079                         struct {
1080                                 struct ib_xrcd *xrcd;
1081                         } xrc;
1082 
1083                         struct {
1084                                 u32             max_num_tags;
1085                         } tag_matching;
1086                 };
1087         } ext;
1088 };
1089 
1090 struct ib_qp_cap {
1091         u32     max_send_wr;
1092         u32     max_recv_wr;
1093         u32     max_send_sge;
1094         u32     max_recv_sge;
1095         u32     max_inline_data;
1096 
1097         /*
1098          * Maximum number of rdma_rw_ctx structures in flight at a time.
1099          * ib_create_qp() will calculate the right amount of needed WRs
1100          * and MRs based on this.
1101          */
1102         u32     max_rdma_ctxs;
1103 };
1104 
1105 enum ib_sig_type {
1106         IB_SIGNAL_ALL_WR,
1107         IB_SIGNAL_REQ_WR
1108 };
1109 
1110 enum ib_qp_type {
1111         /*
1112          * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113          * here (and in that order) since the MAD layer uses them as
1114          * indices into a 2-entry table.
1115          */
1116         IB_QPT_SMI,
1117         IB_QPT_GSI,
1118 
1119         IB_QPT_RC = IB_UVERBS_QPT_RC,
1120         IB_QPT_UC = IB_UVERBS_QPT_UC,
1121         IB_QPT_UD = IB_UVERBS_QPT_UD,
1122         IB_QPT_RAW_IPV6,
1123         IB_QPT_RAW_ETHERTYPE,
1124         IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125         IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126         IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127         IB_QPT_MAX,
1128         IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129         /* Reserve a range for qp types internal to the low level driver.
1130          * These qp types will not be visible at the IB core layer, so the
1131          * IB_QPT_MAX usages should not be affected in the core layer
1132          */
1133         IB_QPT_RESERVED1 = 0x1000,
1134         IB_QPT_RESERVED2,
1135         IB_QPT_RESERVED3,
1136         IB_QPT_RESERVED4,
1137         IB_QPT_RESERVED5,
1138         IB_QPT_RESERVED6,
1139         IB_QPT_RESERVED7,
1140         IB_QPT_RESERVED8,
1141         IB_QPT_RESERVED9,
1142         IB_QPT_RESERVED10,
1143 };
1144 
1145 enum ib_qp_create_flags {
1146         IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1147         IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   =
1148                 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149         IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150         IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151         IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152         IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1153         IB_QP_CREATE_INTEGRITY_EN               = 1 << 6,
1154         IB_QP_CREATE_NETDEV_USE                 = 1 << 7,
1155         IB_QP_CREATE_SCATTER_FCS                =
1156                 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157         IB_QP_CREATE_CVLAN_STRIPPING            =
1158                 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159         IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1160         IB_QP_CREATE_PCI_WRITE_END_PADDING      =
1161                 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162         /* reserve bits 26-31 for low level drivers' internal use */
1163         IB_QP_CREATE_RESERVED_START             = 1 << 26,
1164         IB_QP_CREATE_RESERVED_END               = 1 << 31,
1165 };
1166 
1167 /*
1168  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169  * callback to destroy the passed in QP.
1170  */
1171 
1172 struct ib_qp_init_attr {
1173         /* This callback occurs in workqueue context */
1174         void                  (*event_handler)(struct ib_event *, void *);
1175 
1176         void                   *qp_context;
1177         struct ib_cq           *send_cq;
1178         struct ib_cq           *recv_cq;
1179         struct ib_srq          *srq;
1180         struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1181         struct ib_qp_cap        cap;
1182         enum ib_sig_type        sq_sig_type;
1183         enum ib_qp_type         qp_type;
1184         u32                     create_flags;
1185 
1186         /*
1187          * Only needed for special QP types, or when using the RW API.
1188          */
1189         u32                     port_num;
1190         struct ib_rwq_ind_table *rwq_ind_tbl;
1191         u32                     source_qpn;
1192 };
1193 
1194 struct ib_qp_open_attr {
1195         void                  (*event_handler)(struct ib_event *, void *);
1196         void                   *qp_context;
1197         u32                     qp_num;
1198         enum ib_qp_type         qp_type;
1199 };
1200 
1201 enum ib_rnr_timeout {
1202         IB_RNR_TIMER_655_36 =  0,
1203         IB_RNR_TIMER_000_01 =  1,
1204         IB_RNR_TIMER_000_02 =  2,
1205         IB_RNR_TIMER_000_03 =  3,
1206         IB_RNR_TIMER_000_04 =  4,
1207         IB_RNR_TIMER_000_06 =  5,
1208         IB_RNR_TIMER_000_08 =  6,
1209         IB_RNR_TIMER_000_12 =  7,
1210         IB_RNR_TIMER_000_16 =  8,
1211         IB_RNR_TIMER_000_24 =  9,
1212         IB_RNR_TIMER_000_32 = 10,
1213         IB_RNR_TIMER_000_48 = 11,
1214         IB_RNR_TIMER_000_64 = 12,
1215         IB_RNR_TIMER_000_96 = 13,
1216         IB_RNR_TIMER_001_28 = 14,
1217         IB_RNR_TIMER_001_92 = 15,
1218         IB_RNR_TIMER_002_56 = 16,
1219         IB_RNR_TIMER_003_84 = 17,
1220         IB_RNR_TIMER_005_12 = 18,
1221         IB_RNR_TIMER_007_68 = 19,
1222         IB_RNR_TIMER_010_24 = 20,
1223         IB_RNR_TIMER_015_36 = 21,
1224         IB_RNR_TIMER_020_48 = 22,
1225         IB_RNR_TIMER_030_72 = 23,
1226         IB_RNR_TIMER_040_96 = 24,
1227         IB_RNR_TIMER_061_44 = 25,
1228         IB_RNR_TIMER_081_92 = 26,
1229         IB_RNR_TIMER_122_88 = 27,
1230         IB_RNR_TIMER_163_84 = 28,
1231         IB_RNR_TIMER_245_76 = 29,
1232         IB_RNR_TIMER_327_68 = 30,
1233         IB_RNR_TIMER_491_52 = 31
1234 };
1235 
1236 enum ib_qp_attr_mask {
1237         IB_QP_STATE                     = 1,
1238         IB_QP_CUR_STATE                 = (1<<1),
1239         IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1240         IB_QP_ACCESS_FLAGS              = (1<<3),
1241         IB_QP_PKEY_INDEX                = (1<<4),
1242         IB_QP_PORT                      = (1<<5),
1243         IB_QP_QKEY                      = (1<<6),
1244         IB_QP_AV                        = (1<<7),
1245         IB_QP_PATH_MTU                  = (1<<8),
1246         IB_QP_TIMEOUT                   = (1<<9),
1247         IB_QP_RETRY_CNT                 = (1<<10),
1248         IB_QP_RNR_RETRY                 = (1<<11),
1249         IB_QP_RQ_PSN                    = (1<<12),
1250         IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1251         IB_QP_ALT_PATH                  = (1<<14),
1252         IB_QP_MIN_RNR_TIMER             = (1<<15),
1253         IB_QP_SQ_PSN                    = (1<<16),
1254         IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1255         IB_QP_PATH_MIG_STATE            = (1<<18),
1256         IB_QP_CAP                       = (1<<19),
1257         IB_QP_DEST_QPN                  = (1<<20),
1258         IB_QP_RESERVED1                 = (1<<21),
1259         IB_QP_RESERVED2                 = (1<<22),
1260         IB_QP_RESERVED3                 = (1<<23),
1261         IB_QP_RESERVED4                 = (1<<24),
1262         IB_QP_RATE_LIMIT                = (1<<25),
1263 
1264         IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265 };
1266 
1267 enum ib_qp_state {
1268         IB_QPS_RESET,
1269         IB_QPS_INIT,
1270         IB_QPS_RTR,
1271         IB_QPS_RTS,
1272         IB_QPS_SQD,
1273         IB_QPS_SQE,
1274         IB_QPS_ERR
1275 };
1276 
1277 enum ib_mig_state {
1278         IB_MIG_MIGRATED,
1279         IB_MIG_REARM,
1280         IB_MIG_ARMED
1281 };
1282 
1283 enum ib_mw_type {
1284         IB_MW_TYPE_1 = 1,
1285         IB_MW_TYPE_2 = 2
1286 };
1287 
1288 struct ib_qp_attr {
1289         enum ib_qp_state        qp_state;
1290         enum ib_qp_state        cur_qp_state;
1291         enum ib_mtu             path_mtu;
1292         enum ib_mig_state       path_mig_state;
1293         u32                     qkey;
1294         u32                     rq_psn;
1295         u32                     sq_psn;
1296         u32                     dest_qp_num;
1297         int                     qp_access_flags;
1298         struct ib_qp_cap        cap;
1299         struct rdma_ah_attr     ah_attr;
1300         struct rdma_ah_attr     alt_ah_attr;
1301         u16                     pkey_index;
1302         u16                     alt_pkey_index;
1303         u8                      en_sqd_async_notify;
1304         u8                      sq_draining;
1305         u8                      max_rd_atomic;
1306         u8                      max_dest_rd_atomic;
1307         u8                      min_rnr_timer;
1308         u32                     port_num;
1309         u8                      timeout;
1310         u8                      retry_cnt;
1311         u8                      rnr_retry;
1312         u32                     alt_port_num;
1313         u8                      alt_timeout;
1314         u32                     rate_limit;
1315         struct net_device       *xmit_slave;
1316 };
1317 
1318 enum ib_wr_opcode {
1319         /* These are shared with userspace */
1320         IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321         IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322         IB_WR_SEND = IB_UVERBS_WR_SEND,
1323         IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324         IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325         IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326         IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327         IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328         IB_WR_LSO = IB_UVERBS_WR_TSO,
1329         IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330         IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331         IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332         IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333                 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334         IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335                 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336         IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337         IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338 
1339         /* These are kernel only and can not be issued by userspace */
1340         IB_WR_REG_MR = 0x20,
1341         IB_WR_REG_MR_INTEGRITY,
1342 
1343         /* reserve values for low level drivers' internal use.
1344          * These values will not be used at all in the ib core layer.
1345          */
1346         IB_WR_RESERVED1 = 0xf0,
1347         IB_WR_RESERVED2,
1348         IB_WR_RESERVED3,
1349         IB_WR_RESERVED4,
1350         IB_WR_RESERVED5,
1351         IB_WR_RESERVED6,
1352         IB_WR_RESERVED7,
1353         IB_WR_RESERVED8,
1354         IB_WR_RESERVED9,
1355         IB_WR_RESERVED10,
1356 };
1357 
1358 enum ib_send_flags {
1359         IB_SEND_FENCE           = 1,
1360         IB_SEND_SIGNALED        = (1<<1),
1361         IB_SEND_SOLICITED       = (1<<2),
1362         IB_SEND_INLINE          = (1<<3),
1363         IB_SEND_IP_CSUM         = (1<<4),
1364 
1365         /* reserve bits 26-31 for low level drivers' internal use */
1366         IB_SEND_RESERVED_START  = (1 << 26),
1367         IB_SEND_RESERVED_END    = (1 << 31),
1368 };
1369 
1370 struct ib_sge {
1371         u64     addr;
1372         u32     length;
1373         u32     lkey;
1374 };
1375 
1376 struct ib_cqe {
1377         void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378 };
1379 
1380 struct ib_send_wr {
1381         struct ib_send_wr      *next;
1382         union {
1383                 u64             wr_id;
1384                 struct ib_cqe   *wr_cqe;
1385         };
1386         struct ib_sge          *sg_list;
1387         int                     num_sge;
1388         enum ib_wr_opcode       opcode;
1389         int                     send_flags;
1390         union {
1391                 __be32          imm_data;
1392                 u32             invalidate_rkey;
1393         } ex;
1394 };
1395 
1396 struct ib_rdma_wr {
1397         struct ib_send_wr       wr;
1398         u64                     remote_addr;
1399         u32                     rkey;
1400 };
1401 
1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403 {
1404         return container_of(wr, struct ib_rdma_wr, wr);
1405 }
1406 
1407 struct ib_atomic_wr {
1408         struct ib_send_wr       wr;
1409         u64                     remote_addr;
1410         u64                     compare_add;
1411         u64                     swap;
1412         u64                     compare_add_mask;
1413         u64                     swap_mask;
1414         u32                     rkey;
1415 };
1416 
1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418 {
1419         return container_of(wr, struct ib_atomic_wr, wr);
1420 }
1421 
1422 struct ib_ud_wr {
1423         struct ib_send_wr       wr;
1424         struct ib_ah            *ah;
1425         void                    *header;
1426         int                     hlen;
1427         int                     mss;
1428         u32                     remote_qpn;
1429         u32                     remote_qkey;
1430         u16                     pkey_index; /* valid for GSI only */
1431         u32                     port_num; /* valid for DR SMPs on switch only */
1432 };
1433 
1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435 {
1436         return container_of(wr, struct ib_ud_wr, wr);
1437 }
1438 
1439 struct ib_reg_wr {
1440         struct ib_send_wr       wr;
1441         struct ib_mr            *mr;
1442         u32                     key;
1443         int                     access;
1444 };
1445 
1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447 {
1448         return container_of(wr, struct ib_reg_wr, wr);
1449 }
1450 
1451 struct ib_recv_wr {
1452         struct ib_recv_wr      *next;
1453         union {
1454                 u64             wr_id;
1455                 struct ib_cqe   *wr_cqe;
1456         };
1457         struct ib_sge          *sg_list;
1458         int                     num_sge;
1459 };
1460 
1461 enum ib_access_flags {
1462         IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463         IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464         IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465         IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466         IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467         IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468         IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469         IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470         IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471         IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472         IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473 
1474         IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475         IB_ACCESS_SUPPORTED =
1476                 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477 };
1478 
1479 /*
1480  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481  * are hidden here instead of a uapi header!
1482  */
1483 enum ib_mr_rereg_flags {
1484         IB_MR_REREG_TRANS       = 1,
1485         IB_MR_REREG_PD          = (1<<1),
1486         IB_MR_REREG_ACCESS      = (1<<2),
1487         IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1488 };
1489 
1490 struct ib_umem;
1491 
1492 enum rdma_remove_reason {
1493         /*
1494          * Userspace requested uobject deletion or initial try
1495          * to remove uobject via cleanup. Call could fail
1496          */
1497         RDMA_REMOVE_DESTROY,
1498         /* Context deletion. This call should delete the actual object itself */
1499         RDMA_REMOVE_CLOSE,
1500         /* Driver is being hot-unplugged. This call should delete the actual object itself */
1501         RDMA_REMOVE_DRIVER_REMOVE,
1502         /* uobj is being cleaned-up before being committed */
1503         RDMA_REMOVE_ABORT,
1504         /* The driver failed to destroy the uobject and is being disconnected */
1505         RDMA_REMOVE_DRIVER_FAILURE,
1506 };
1507 
1508 struct ib_rdmacg_object {
1509 #ifdef CONFIG_CGROUP_RDMA
1510         struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1511 #endif
1512 };
1513 
1514 struct ib_ucontext {
1515         struct ib_device       *device;
1516         struct ib_uverbs_file  *ufile;
1517 
1518         struct ib_rdmacg_object cg_obj;
1519         /*
1520          * Implementation details of the RDMA core, don't use in drivers:
1521          */
1522         struct rdma_restrack_entry res;
1523         struct xarray mmap_xa;
1524 };
1525 
1526 struct ib_uobject {
1527         u64                     user_handle;    /* handle given to us by userspace */
1528         /* ufile & ucontext owning this object */
1529         struct ib_uverbs_file  *ufile;
1530         /* FIXME, save memory: ufile->context == context */
1531         struct ib_ucontext     *context;        /* associated user context */
1532         void                   *object;         /* containing object */
1533         struct list_head        list;           /* link to context's list */
1534         struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1535         int                     id;             /* index into kernel idr */
1536         struct kref             ref;
1537         atomic_t                usecnt;         /* protects exclusive access */
1538         struct rcu_head         rcu;            /* kfree_rcu() overhead */
1539 
1540         const struct uverbs_api_object *uapi_object;
1541 };
1542 
1543 struct ib_udata {
1544         const void __user *inbuf;
1545         void __user *outbuf;
1546         size_t       inlen;
1547         size_t       outlen;
1548 };
1549 
1550 struct ib_pd {
1551         u32                     local_dma_lkey;
1552         u32                     flags;
1553         struct ib_device       *device;
1554         struct ib_uobject      *uobject;
1555         atomic_t                usecnt; /* count all resources */
1556 
1557         u32                     unsafe_global_rkey;
1558 
1559         /*
1560          * Implementation details of the RDMA core, don't use in drivers:
1561          */
1562         struct ib_mr           *__internal_mr;
1563         struct rdma_restrack_entry res;
1564 };
1565 
1566 struct ib_xrcd {
1567         struct ib_device       *device;
1568         atomic_t                usecnt; /* count all exposed resources */
1569         struct inode           *inode;
1570         struct rw_semaphore     tgt_qps_rwsem;
1571         struct xarray           tgt_qps;
1572 };
1573 
1574 struct ib_ah {
1575         struct ib_device        *device;
1576         struct ib_pd            *pd;
1577         struct ib_uobject       *uobject;
1578         const struct ib_gid_attr *sgid_attr;
1579         enum rdma_ah_attr_type  type;
1580 };
1581 
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583 
1584 enum ib_poll_context {
1585         IB_POLL_SOFTIRQ,           /* poll from softirq context */
1586         IB_POLL_WORKQUEUE,         /* poll from workqueue */
1587         IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588         IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589 
1590         IB_POLL_DIRECT,            /* caller context, no hw completions */
1591 };
1592 
1593 struct ib_cq {
1594         struct ib_device       *device;
1595         struct ib_ucq_object   *uobject;
1596         ib_comp_handler         comp_handler;
1597         void                  (*event_handler)(struct ib_event *, void *);
1598         void                   *cq_context;
1599         int                     cqe;
1600         unsigned int            cqe_used;
1601         atomic_t                usecnt; /* count number of work queues */
1602         enum ib_poll_context    poll_ctx;
1603         struct ib_wc            *wc;
1604         struct list_head        pool_entry;
1605         union {
1606                 struct irq_poll         iop;
1607                 struct work_struct      work;
1608         };
1609         struct workqueue_struct *comp_wq;
1610         struct dim *dim;
1611 
1612         /* updated only by trace points */
1613         ktime_t timestamp;
1614         u8 interrupt:1;
1615         u8 shared:1;
1616         unsigned int comp_vector;
1617 
1618         /*
1619          * Implementation details of the RDMA core, don't use in drivers:
1620          */
1621         struct rdma_restrack_entry res;
1622 };
1623 
1624 struct ib_srq {
1625         struct ib_device       *device;
1626         struct ib_pd           *pd;
1627         struct ib_usrq_object  *uobject;
1628         void                  (*event_handler)(struct ib_event *, void *);
1629         void                   *srq_context;
1630         enum ib_srq_type        srq_type;
1631         atomic_t                usecnt;
1632 
1633         struct {
1634                 struct ib_cq   *cq;
1635                 union {
1636                         struct {
1637                                 struct ib_xrcd *xrcd;
1638                                 u32             srq_num;
1639                         } xrc;
1640                 };
1641         } ext;
1642 
1643         /*
1644          * Implementation details of the RDMA core, don't use in drivers:
1645          */
1646         struct rdma_restrack_entry res;
1647 };
1648 
1649 enum ib_raw_packet_caps {
1650         /*
1651          * Strip cvlan from incoming packet and report it in the matching work
1652          * completion is supported.
1653          */
1654         IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655                 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656         /*
1657          * Scatter FCS field of an incoming packet to host memory is supported.
1658          */
1659         IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660         /* Checksum offloads are supported (for both send and receive). */
1661         IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662         /*
1663          * When a packet is received for an RQ with no receive WQEs, the
1664          * packet processing is delayed.
1665          */
1666         IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667 };
1668 
1669 enum ib_wq_type {
1670         IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671 };
1672 
1673 enum ib_wq_state {
1674         IB_WQS_RESET,
1675         IB_WQS_RDY,
1676         IB_WQS_ERR
1677 };
1678 
1679 struct ib_wq {
1680         struct ib_device       *device;
1681         struct ib_uwq_object   *uobject;
1682         void                *wq_context;
1683         void                (*event_handler)(struct ib_event *, void *);
1684         struct ib_pd           *pd;
1685         struct ib_cq           *cq;
1686         u32             wq_num;
1687         enum ib_wq_state       state;
1688         enum ib_wq_type wq_type;
1689         atomic_t                usecnt;
1690 };
1691 
1692 enum ib_wq_flags {
1693         IB_WQ_FLAGS_CVLAN_STRIPPING     = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694         IB_WQ_FLAGS_SCATTER_FCS         = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695         IB_WQ_FLAGS_DELAY_DROP          = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696         IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697                                 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698 };
1699 
1700 struct ib_wq_init_attr {
1701         void                   *wq_context;
1702         enum ib_wq_type wq_type;
1703         u32             max_wr;
1704         u32             max_sge;
1705         struct  ib_cq          *cq;
1706         void                (*event_handler)(struct ib_event *, void *);
1707         u32             create_flags; /* Use enum ib_wq_flags */
1708 };
1709 
1710 enum ib_wq_attr_mask {
1711         IB_WQ_STATE             = 1 << 0,
1712         IB_WQ_CUR_STATE         = 1 << 1,
1713         IB_WQ_FLAGS             = 1 << 2,
1714 };
1715 
1716 struct ib_wq_attr {
1717         enum    ib_wq_state     wq_state;
1718         enum    ib_wq_state     curr_wq_state;
1719         u32                     flags; /* Use enum ib_wq_flags */
1720         u32                     flags_mask; /* Use enum ib_wq_flags */
1721 };
1722 
1723 struct ib_rwq_ind_table {
1724         struct ib_device        *device;
1725         struct ib_uobject      *uobject;
1726         atomic_t                usecnt;
1727         u32             ind_tbl_num;
1728         u32             log_ind_tbl_size;
1729         struct ib_wq    **ind_tbl;
1730 };
1731 
1732 struct ib_rwq_ind_table_init_attr {
1733         u32             log_ind_tbl_size;
1734         /* Each entry is a pointer to Receive Work Queue */
1735         struct ib_wq    **ind_tbl;
1736 };
1737 
1738 enum port_pkey_state {
1739         IB_PORT_PKEY_NOT_VALID = 0,
1740         IB_PORT_PKEY_VALID = 1,
1741         IB_PORT_PKEY_LISTED = 2,
1742 };
1743 
1744 struct ib_qp_security;
1745 
1746 struct ib_port_pkey {
1747         enum port_pkey_state    state;
1748         u16                     pkey_index;
1749         u32                     port_num;
1750         struct list_head        qp_list;
1751         struct list_head        to_error_list;
1752         struct ib_qp_security  *sec;
1753 };
1754 
1755 struct ib_ports_pkeys {
1756         struct ib_port_pkey     main;
1757         struct ib_port_pkey     alt;
1758 };
1759 
1760 struct ib_qp_security {
1761         struct ib_qp           *qp;
1762         struct ib_device       *dev;
1763         /* Hold this mutex when changing port and pkey settings. */
1764         struct mutex            mutex;
1765         struct ib_ports_pkeys  *ports_pkeys;
1766         /* A list of all open shared QP handles.  Required to enforce security
1767          * properly for all users of a shared QP.
1768          */
1769         struct list_head        shared_qp_list;
1770         void                   *security;
1771         bool                    destroying;
1772         atomic_t                error_list_count;
1773         struct completion       error_complete;
1774         int                     error_comps_pending;
1775 };
1776 
1777 /*
1778  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780  */
1781 struct ib_qp {
1782         struct ib_device       *device;
1783         struct ib_pd           *pd;
1784         struct ib_cq           *send_cq;
1785         struct ib_cq           *recv_cq;
1786         spinlock_t              mr_lock;
1787         int                     mrs_used;
1788         struct list_head        rdma_mrs;
1789         struct list_head        sig_mrs;
1790         struct ib_srq          *srq;
1791         struct completion       srq_completion;
1792         struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1793         struct list_head        xrcd_list;
1794 
1795         /* count times opened, mcast attaches, flow attaches */
1796         atomic_t                usecnt;
1797         struct list_head        open_list;
1798         struct ib_qp           *real_qp;
1799         struct ib_uqp_object   *uobject;
1800         void                  (*event_handler)(struct ib_event *, void *);
1801         void                  (*registered_event_handler)(struct ib_event *, void *);
1802         void                   *qp_context;
1803         /* sgid_attrs associated with the AV's */
1804         const struct ib_gid_attr *av_sgid_attr;
1805         const struct ib_gid_attr *alt_path_sgid_attr;
1806         u32                     qp_num;
1807         u32                     max_write_sge;
1808         u32                     max_read_sge;
1809         enum ib_qp_type         qp_type;
1810         struct ib_rwq_ind_table *rwq_ind_tbl;
1811         struct ib_qp_security  *qp_sec;
1812         u32                     port;
1813 
1814         bool                    integrity_en;
1815         /*
1816          * Implementation details of the RDMA core, don't use in drivers:
1817          */
1818         struct rdma_restrack_entry     res;
1819 
1820         /* The counter the qp is bind to */
1821         struct rdma_counter    *counter;
1822 };
1823 
1824 struct ib_dm {
1825         struct ib_device  *device;
1826         u32                length;
1827         u32                flags;
1828         struct ib_uobject *uobject;
1829         atomic_t           usecnt;
1830 };
1831 
1832 struct ib_mr {
1833         struct ib_device  *device;
1834         struct ib_pd      *pd;
1835         u32                lkey;
1836         u32                rkey;
1837         u64                iova;
1838         u64                length;
1839         unsigned int       page_size;
1840         enum ib_mr_type    type;
1841         bool               need_inval;
1842         union {
1843                 struct ib_uobject       *uobject;       /* user */
1844                 struct list_head        qp_entry;       /* FR */
1845         };
1846 
1847         struct ib_dm      *dm;
1848         struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1849         /*
1850          * Implementation details of the RDMA core, don't use in drivers:
1851          */
1852         struct rdma_restrack_entry res;
1853 };
1854 
1855 struct ib_mw {
1856         struct ib_device        *device;
1857         struct ib_pd            *pd;
1858         struct ib_uobject       *uobject;
1859         u32                     rkey;
1860         enum ib_mw_type         type;
1861 };
1862 
1863 /* Supported steering options */
1864 enum ib_flow_attr_type {
1865         /* steering according to rule specifications */
1866         IB_FLOW_ATTR_NORMAL             = 0x0,
1867         /* default unicast and multicast rule -
1868          * receive all Eth traffic which isn't steered to any QP
1869          */
1870         IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1871         /* default multicast rule -
1872          * receive all Eth multicast traffic which isn't steered to any QP
1873          */
1874         IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1875         /* sniffer rule - receive all port traffic */
1876         IB_FLOW_ATTR_SNIFFER            = 0x3
1877 };
1878 
1879 /* Supported steering header types */
1880 enum ib_flow_spec_type {
1881         /* L2 headers*/
1882         IB_FLOW_SPEC_ETH                = 0x20,
1883         IB_FLOW_SPEC_IB                 = 0x22,
1884         /* L3 header*/
1885         IB_FLOW_SPEC_IPV4               = 0x30,
1886         IB_FLOW_SPEC_IPV6               = 0x31,
1887         IB_FLOW_SPEC_ESP                = 0x34,
1888         /* L4 headers*/
1889         IB_FLOW_SPEC_TCP                = 0x40,
1890         IB_FLOW_SPEC_UDP                = 0x41,
1891         IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1892         IB_FLOW_SPEC_GRE                = 0x51,
1893         IB_FLOW_SPEC_MPLS               = 0x60,
1894         IB_FLOW_SPEC_INNER              = 0x100,
1895         /* Actions */
1896         IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1897         IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1898         IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1899         IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1900 };
1901 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1903 
1904 enum ib_flow_flags {
1905         IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906         IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907         IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1908 };
1909 
1910 struct ib_flow_eth_filter {
1911         u8      dst_mac[6];
1912         u8      src_mac[6];
1913         __be16  ether_type;
1914         __be16  vlan_tag;
1915 };
1916 
1917 struct ib_flow_spec_eth {
1918         u32                       type;
1919         u16                       size;
1920         struct ib_flow_eth_filter val;
1921         struct ib_flow_eth_filter mask;
1922 };
1923 
1924 struct ib_flow_ib_filter {
1925         __be16 dlid;
1926         __u8   sl;
1927 };
1928 
1929 struct ib_flow_spec_ib {
1930         u32                      type;
1931         u16                      size;
1932         struct ib_flow_ib_filter val;
1933         struct ib_flow_ib_filter mask;
1934 };
1935 
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938         IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939         IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1940                                     last have this flag set */
1941 };
1942 
1943 struct ib_flow_ipv4_filter {
1944         __be32  src_ip;
1945         __be32  dst_ip;
1946         u8      proto;
1947         u8      tos;
1948         u8      ttl;
1949         u8      flags;
1950 };
1951 
1952 struct ib_flow_spec_ipv4 {
1953         u32                        type;
1954         u16                        size;
1955         struct ib_flow_ipv4_filter val;
1956         struct ib_flow_ipv4_filter mask;
1957 };
1958 
1959 struct ib_flow_ipv6_filter {
1960         u8      src_ip[16];
1961         u8      dst_ip[16];
1962         __be32  flow_label;
1963         u8      next_hdr;
1964         u8      traffic_class;
1965         u8      hop_limit;
1966 } __packed;
1967 
1968 struct ib_flow_spec_ipv6 {
1969         u32                        type;
1970         u16                        size;
1971         struct ib_flow_ipv6_filter val;
1972         struct ib_flow_ipv6_filter mask;
1973 };
1974 
1975 struct ib_flow_tcp_udp_filter {
1976         __be16  dst_port;
1977         __be16  src_port;
1978 };
1979 
1980 struct ib_flow_spec_tcp_udp {
1981         u32                           type;
1982         u16                           size;
1983         struct ib_flow_tcp_udp_filter val;
1984         struct ib_flow_tcp_udp_filter mask;
1985 };
1986 
1987 struct ib_flow_tunnel_filter {
1988         __be32  tunnel_id;
1989 };
1990 
1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992  * the tunnel_id from val has the vni value
1993  */
1994 struct ib_flow_spec_tunnel {
1995         u32                           type;
1996         u16                           size;
1997         struct ib_flow_tunnel_filter  val;
1998         struct ib_flow_tunnel_filter  mask;
1999 };
2000 
2001 struct ib_flow_esp_filter {
2002         __be32  spi;
2003         __be32  seq;
2004 };
2005 
2006 struct ib_flow_spec_esp {
2007         u32                           type;
2008         u16                           size;
2009         struct ib_flow_esp_filter     val;
2010         struct ib_flow_esp_filter     mask;
2011 };
2012 
2013 struct ib_flow_gre_filter {
2014         __be16 c_ks_res0_ver;
2015         __be16 protocol;
2016         __be32 key;
2017 };
2018 
2019 struct ib_flow_spec_gre {
2020         u32                           type;
2021         u16                           size;
2022         struct ib_flow_gre_filter     val;
2023         struct ib_flow_gre_filter     mask;
2024 };
2025 
2026 struct ib_flow_mpls_filter {
2027         __be32 tag;
2028 };
2029 
2030 struct ib_flow_spec_mpls {
2031         u32                           type;
2032         u16                           size;
2033         struct ib_flow_mpls_filter     val;
2034         struct ib_flow_mpls_filter     mask;
2035 };
2036 
2037 struct ib_flow_spec_action_tag {
2038         enum ib_flow_spec_type        type;
2039         u16                           size;
2040         u32                           tag_id;
2041 };
2042 
2043 struct ib_flow_spec_action_drop {
2044         enum ib_flow_spec_type        type;
2045         u16                           size;
2046 };
2047 
2048 struct ib_flow_spec_action_handle {
2049         enum ib_flow_spec_type        type;
2050         u16                           size;
2051         struct ib_flow_action        *act;
2052 };
2053 
2054 enum ib_counters_description {
2055         IB_COUNTER_PACKETS,
2056         IB_COUNTER_BYTES,
2057 };
2058 
2059 struct ib_flow_spec_action_count {
2060         enum ib_flow_spec_type type;
2061         u16 size;
2062         struct ib_counters *counters;
2063 };
2064 
2065 union ib_flow_spec {
2066         struct {
2067                 u32                     type;
2068                 u16                     size;
2069         };
2070         struct ib_flow_spec_eth         eth;
2071         struct ib_flow_spec_ib          ib;
2072         struct ib_flow_spec_ipv4        ipv4;
2073         struct ib_flow_spec_tcp_udp     tcp_udp;
2074         struct ib_flow_spec_ipv6        ipv6;
2075         struct ib_flow_spec_tunnel      tunnel;
2076         struct ib_flow_spec_esp         esp;
2077         struct ib_flow_spec_gre         gre;
2078         struct ib_flow_spec_mpls        mpls;
2079         struct ib_flow_spec_action_tag  flow_tag;
2080         struct ib_flow_spec_action_drop drop;
2081         struct ib_flow_spec_action_handle action;
2082         struct ib_flow_spec_action_count flow_count;
2083 };
2084 
2085 struct ib_flow_attr {
2086         enum ib_flow_attr_type type;
2087         u16          size;
2088         u16          priority;
2089         u32          flags;
2090         u8           num_of_specs;
2091         u32          port;
2092         union ib_flow_spec flows[];
2093 };
2094 
2095 struct ib_flow {
2096         struct ib_qp            *qp;
2097         struct ib_device        *device;
2098         struct ib_uobject       *uobject;
2099 };
2100 
2101 enum ib_flow_action_type {
2102         IB_FLOW_ACTION_UNSPECIFIED,
2103         IB_FLOW_ACTION_ESP = 1,
2104 };
2105 
2106 struct ib_flow_action_attrs_esp_keymats {
2107         enum ib_uverbs_flow_action_esp_keymat                   protocol;
2108         union {
2109                 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2110         } keymat;
2111 };
2112 
2113 struct ib_flow_action_attrs_esp_replays {
2114         enum ib_uverbs_flow_action_esp_replay                   protocol;
2115         union {
2116                 struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2117         } replay;
2118 };
2119 
2120 enum ib_flow_action_attrs_esp_flags {
2121         /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122          * This is done in order to share the same flags between user-space and
2123          * kernel and spare an unnecessary translation.
2124          */
2125 
2126         /* Kernel flags */
2127         IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2128         IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2129 };
2130 
2131 struct ib_flow_spec_list {
2132         struct ib_flow_spec_list        *next;
2133         union ib_flow_spec              spec;
2134 };
2135 
2136 struct ib_flow_action_attrs_esp {
2137         struct ib_flow_action_attrs_esp_keymats         *keymat;
2138         struct ib_flow_action_attrs_esp_replays         *replay;
2139         struct ib_flow_spec_list                        *encap;
2140         /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141          * Value of 0 is a valid value.
2142          */
2143         u32                                             esn;
2144         u32                                             spi;
2145         u32                                             seq;
2146         u32                                             tfc_pad;
2147         /* Use enum ib_flow_action_attrs_esp_flags */
2148         u64                                             flags;
2149         u64                                             hard_limit_pkts;
2150 };
2151 
2152 struct ib_flow_action {
2153         struct ib_device                *device;
2154         struct ib_uobject               *uobject;
2155         enum ib_flow_action_type        type;
2156         atomic_t                        usecnt;
2157 };
2158 
2159 struct ib_mad;
2160 
2161 enum ib_process_mad_flags {
2162         IB_MAD_IGNORE_MKEY      = 1,
2163         IB_MAD_IGNORE_BKEY      = 2,
2164         IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165 };
2166 
2167 enum ib_mad_result {
2168         IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2169         IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2170         IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2171         IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2172 };
2173 
2174 struct ib_port_cache {
2175         u64                   subnet_prefix;
2176         struct ib_pkey_cache  *pkey;
2177         struct ib_gid_table   *gid;
2178         u8                     lmc;
2179         enum ib_port_state     port_state;
2180 };
2181 
2182 struct ib_port_immutable {
2183         int                           pkey_tbl_len;
2184         int                           gid_tbl_len;
2185         u32                           core_cap_flags;
2186         u32                           max_mad_size;
2187 };
2188 
2189 struct ib_port_data {
2190         struct ib_device *ib_dev;
2191 
2192         struct ib_port_immutable immutable;
2193 
2194         spinlock_t pkey_list_lock;
2195 
2196         spinlock_t netdev_lock;
2197 
2198         struct list_head pkey_list;
2199 
2200         struct ib_port_cache cache;
2201 
2202         struct net_device __rcu *netdev;
2203         netdevice_tracker netdev_tracker;
2204         struct hlist_node ndev_hash_link;
2205         struct rdma_port_counter port_counter;
2206         struct ib_port *sysfs;
2207 };
2208 
2209 /* rdma netdev type - specifies protocol type */
2210 enum rdma_netdev_t {
2211         RDMA_NETDEV_OPA_VNIC,
2212         RDMA_NETDEV_IPOIB,
2213 };
2214 
2215 /**
2216  * struct rdma_netdev - rdma netdev
2217  * For cases where netstack interfacing is required.
2218  */
2219 struct rdma_netdev {
2220         void              *clnt_priv;
2221         struct ib_device  *hca;
2222         u32                port_num;
2223         int                mtu;
2224 
2225         /*
2226          * cleanup function must be specified.
2227          * FIXME: This is only used for OPA_VNIC and that usage should be
2228          * removed too.
2229          */
2230         void (*free_rdma_netdev)(struct net_device *netdev);
2231 
2232         /* control functions */
2233         void (*set_id)(struct net_device *netdev, int id);
2234         /* send packet */
2235         int (*send)(struct net_device *dev, struct sk_buff *skb,
2236                     struct ib_ah *address, u32 dqpn);
2237         /* multicast */
2238         int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239                             union ib_gid *gid, u16 mlid,
2240                             int set_qkey, u32 qkey);
2241         int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242                             union ib_gid *gid, u16 mlid);
2243         /* timeout */
2244         void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2245 };
2246 
2247 struct rdma_netdev_alloc_params {
2248         size_t sizeof_priv;
2249         unsigned int txqs;
2250         unsigned int rxqs;
2251         void *param;
2252 
2253         int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254                                       struct net_device *netdev, void *param);
2255 };
2256 
2257 struct ib_odp_counters {
2258         atomic64_t faults;
2259         atomic64_t invalidations;
2260         atomic64_t prefetch;
2261 };
2262 
2263 struct ib_counters {
2264         struct ib_device        *device;
2265         struct ib_uobject       *uobject;
2266         /* num of objects attached */
2267         atomic_t        usecnt;
2268 };
2269 
2270 struct ib_counters_read_attr {
2271         u64     *counters_buff;
2272         u32     ncounters;
2273         u32     flags; /* use enum ib_read_counters_flags */
2274 };
2275 
2276 struct uverbs_attr_bundle;
2277 struct iw_cm_id;
2278 struct iw_cm_conn_param;
2279 
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2281         .size_##ib_struct =                                                    \
2282                 (sizeof(struct drv_struct) +                                   \
2283                  BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2284                  BUILD_BUG_ON_ZERO(                                            \
2285                          !__same_type(((struct drv_struct *)NULL)->member,     \
2286                                       struct ib_struct)))
2287 
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2289         ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290                                            gfp, false))
2291 
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2293         ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294                                            GFP_KERNEL, true))
2295 
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2297         rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298 
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300 
2301 struct rdma_user_mmap_entry {
2302         struct kref ref;
2303         struct ib_ucontext *ucontext;
2304         unsigned long start_pgoff;
2305         size_t npages;
2306         bool driver_removed;
2307 };
2308 
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310 static inline u64
2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312 {
2313         return (u64)entry->start_pgoff << PAGE_SHIFT;
2314 }
2315 
2316 /**
2317  * struct ib_device_ops - InfiniBand device operations
2318  * This structure defines all the InfiniBand device operations, providers will
2319  * need to define the supported operations, otherwise they will be set to null.
2320  */
2321 struct ib_device_ops {
2322         struct module *owner;
2323         enum rdma_driver_id driver_id;
2324         u32 uverbs_abi_ver;
2325         unsigned int uverbs_no_driver_id_binding:1;
2326 
2327         /*
2328          * NOTE: New drivers should not make use of device_group; instead new
2329          * device parameter should be exposed via netlink command. This
2330          * mechanism exists only for existing drivers.
2331          */
2332         const struct attribute_group *device_group;
2333         const struct attribute_group **port_groups;
2334 
2335         int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336                          const struct ib_send_wr **bad_send_wr);
2337         int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338                          const struct ib_recv_wr **bad_recv_wr);
2339         void (*drain_rq)(struct ib_qp *qp);
2340         void (*drain_sq)(struct ib_qp *qp);
2341         int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342         int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343         int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344         int (*post_srq_recv)(struct ib_srq *srq,
2345                              const struct ib_recv_wr *recv_wr,
2346                              const struct ib_recv_wr **bad_recv_wr);
2347         int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348                            u32 port_num, const struct ib_wc *in_wc,
2349                            const struct ib_grh *in_grh,
2350                            const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351                            size_t *out_mad_size, u16 *out_mad_pkey_index);
2352         int (*query_device)(struct ib_device *device,
2353                             struct ib_device_attr *device_attr,
2354                             struct ib_udata *udata);
2355         int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356                              struct ib_device_modify *device_modify);
2357         void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358         const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359                                                      int comp_vector);
2360         int (*query_port)(struct ib_device *device, u32 port_num,
2361                           struct ib_port_attr *port_attr);
2362         int (*modify_port)(struct ib_device *device, u32 port_num,
2363                            int port_modify_mask,
2364                            struct ib_port_modify *port_modify);
2365         /**
2366          * The following mandatory functions are used only at device
2367          * registration.  Keep functions such as these at the end of this
2368          * structure to avoid cache line misses when accessing struct ib_device
2369          * in fast paths.
2370          */
2371         int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372                                   struct ib_port_immutable *immutable);
2373         enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374                                                u32 port_num);
2375         /**
2376          * When calling get_netdev, the HW vendor's driver should return the
2377          * net device of device @device at port @port_num or NULL if such
2378          * a net device doesn't exist. The vendor driver should call dev_hold
2379          * on this net device. The HW vendor's device driver must guarantee
2380          * that this function returns NULL before the net device has finished
2381          * NETDEV_UNREGISTER state.
2382          */
2383         struct net_device *(*get_netdev)(struct ib_device *device,
2384                                          u32 port_num);
2385         /**
2386          * rdma netdev operation
2387          *
2388          * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389          * must return -EOPNOTSUPP if it doesn't support the specified type.
2390          */
2391         struct net_device *(*alloc_rdma_netdev)(
2392                 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393                 const char *name, unsigned char name_assign_type,
2394                 void (*setup)(struct net_device *));
2395 
2396         int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397                                       enum rdma_netdev_t type,
2398                                       struct rdma_netdev_alloc_params *params);
2399         /**
2400          * query_gid should be return GID value for @device, when @port_num
2401          * link layer is either IB or iWarp. It is no-op if @port_num port
2402          * is RoCE link layer.
2403          */
2404         int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405                          union ib_gid *gid);
2406         /**
2407          * When calling add_gid, the HW vendor's driver should add the gid
2408          * of device of port at gid index available at @attr. Meta-info of
2409          * that gid (for example, the network device related to this gid) is
2410          * available at @attr. @context allows the HW vendor driver to store
2411          * extra information together with a GID entry. The HW vendor driver may
2412          * allocate memory to contain this information and store it in @context
2413          * when a new GID entry is written to. Params are consistent until the
2414          * next call of add_gid or delete_gid. The function should return 0 on
2415          * success or error otherwise. The function could be called
2416          * concurrently for different ports. This function is only called when
2417          * roce_gid_table is used.
2418          */
2419         int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420         /**
2421          * When calling del_gid, the HW vendor's driver should delete the
2422          * gid of device @device at gid index gid_index of port port_num
2423          * available in @attr.
2424          * Upon the deletion of a GID entry, the HW vendor must free any
2425          * allocated memory. The caller will clear @context afterwards.
2426          * This function is only called when roce_gid_table is used.
2427          */
2428         int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429         int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430                           u16 *pkey);
2431         int (*alloc_ucontext)(struct ib_ucontext *context,
2432                               struct ib_udata *udata);
2433         void (*dealloc_ucontext)(struct ib_ucontext *context);
2434         int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435         /**
2436          * This will be called once refcount of an entry in mmap_xa reaches
2437          * zero. The type of the memory that was mapped may differ between
2438          * entries and is opaque to the rdma_user_mmap interface.
2439          * Therefore needs to be implemented by the driver in mmap_free.
2440          */
2441         void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442         void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443         int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444         int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445         int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446                          struct ib_udata *udata);
2447         int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448                               struct ib_udata *udata);
2449         int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450         int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451         int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452         int (*create_srq)(struct ib_srq *srq,
2453                           struct ib_srq_init_attr *srq_init_attr,
2454                           struct ib_udata *udata);
2455         int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456                           enum ib_srq_attr_mask srq_attr_mask,
2457                           struct ib_udata *udata);
2458         int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459         int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460         int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461                          struct ib_udata *udata);
2462         int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463                          int qp_attr_mask, struct ib_udata *udata);
2464         int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465                         int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466         int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467         int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468                          struct uverbs_attr_bundle *attrs);
2469         int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470         int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471         int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472         struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473         struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474                                      u64 virt_addr, int mr_access_flags,
2475                                      struct ib_udata *udata);
2476         struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477                                             u64 length, u64 virt_addr, int fd,
2478                                             int mr_access_flags,
2479                                             struct ib_udata *udata);
2480         struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481                                        u64 length, u64 virt_addr,
2482                                        int mr_access_flags, struct ib_pd *pd,
2483                                        struct ib_udata *udata);
2484         int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485         struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486                                   u32 max_num_sg);
2487         struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488                                             u32 max_num_data_sg,
2489                                             u32 max_num_meta_sg);
2490         int (*advise_mr)(struct ib_pd *pd,
2491                          enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492                          struct ib_sge *sg_list, u32 num_sge,
2493                          struct uverbs_attr_bundle *attrs);
2494 
2495         /*
2496          * Kernel users should universally support relaxed ordering (RO), as
2497          * they are designed to read data only after observing the CQE and use
2498          * the DMA API correctly.
2499          *
2500          * Some drivers implicitly enable RO if platform supports it.
2501          */
2502         int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503                          unsigned int *sg_offset);
2504         int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505                                struct ib_mr_status *mr_status);
2506         int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507         int (*dealloc_mw)(struct ib_mw *mw);
2508         int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509         int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510         int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511         int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512         struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513                                        struct ib_flow_attr *flow_attr,
2514                                        struct ib_udata *udata);
2515         int (*destroy_flow)(struct ib_flow *flow_id);
2516         int (*destroy_flow_action)(struct ib_flow_action *action);
2517         int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518                                  int state);
2519         int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520                              struct ifla_vf_info *ivf);
2521         int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522                             struct ifla_vf_stats *stats);
2523         int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524                             struct ifla_vf_guid *node_guid,
2525                             struct ifla_vf_guid *port_guid);
2526         int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527                            int type);
2528         struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529                                    struct ib_wq_init_attr *init_attr,
2530                                    struct ib_udata *udata);
2531         int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532         int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533                          u32 wq_attr_mask, struct ib_udata *udata);
2534         int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535                                     struct ib_rwq_ind_table_init_attr *init_attr,
2536                                     struct ib_udata *udata);
2537         int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538         struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539                                   struct ib_ucontext *context,
2540                                   struct ib_dm_alloc_attr *attr,
2541                                   struct uverbs_attr_bundle *attrs);
2542         int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543         struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544                                    struct ib_dm_mr_attr *attr,
2545                                    struct uverbs_attr_bundle *attrs);
2546         int (*create_counters)(struct ib_counters *counters,
2547                                struct uverbs_attr_bundle *attrs);
2548         int (*destroy_counters)(struct ib_counters *counters);
2549         int (*read_counters)(struct ib_counters *counters,
2550                              struct ib_counters_read_attr *counters_read_attr,
2551                              struct uverbs_attr_bundle *attrs);
2552         int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553                             int data_sg_nents, unsigned int *data_sg_offset,
2554                             struct scatterlist *meta_sg, int meta_sg_nents,
2555                             unsigned int *meta_sg_offset);
2556 
2557         /**
2558          * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559          *   fill in the driver initialized data.  The struct is kfree()'ed by
2560          *   the sysfs core when the device is removed.  A lifespan of -1 in the
2561          *   return struct tells the core to set a default lifespan.
2562          */
2563         struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564         struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565                                                      u32 port_num);
2566         /**
2567          * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568          * @index - The index in the value array we wish to have updated, or
2569          *   num_counters if we want all stats updated
2570          * Return codes -
2571          *   < 0 - Error, no counters updated
2572          *   index - Updated the single counter pointed to by index
2573          *   num_counters - Updated all counters (will reset the timestamp
2574          *     and prevent further calls for lifespan milliseconds)
2575          * Drivers are allowed to update all counters in leiu of just the
2576          *   one given in index at their option
2577          */
2578         int (*get_hw_stats)(struct ib_device *device,
2579                             struct rdma_hw_stats *stats, u32 port, int index);
2580 
2581         /**
2582          * modify_hw_stat - Modify the counter configuration
2583          * @enable: true/false when enable/disable a counter
2584          * Return codes - 0 on success or error code otherwise.
2585          */
2586         int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587                               unsigned int counter_index, bool enable);
2588         /**
2589          * Allows rdma drivers to add their own restrack attributes.
2590          */
2591         int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592         int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593         int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594         int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595         int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596         int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597         int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598         int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599         int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600 
2601         /* Device lifecycle callbacks */
2602         /*
2603          * Called after the device becomes registered, before clients are
2604          * attached
2605          */
2606         int (*enable_driver)(struct ib_device *dev);
2607         /*
2608          * This is called as part of ib_dealloc_device().
2609          */
2610         void (*dealloc_driver)(struct ib_device *dev);
2611 
2612         /* iWarp CM callbacks */
2613         void (*iw_add_ref)(struct ib_qp *qp);
2614         void (*iw_rem_ref)(struct ib_qp *qp);
2615         struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616         int (*iw_connect)(struct iw_cm_id *cm_id,
2617                           struct iw_cm_conn_param *conn_param);
2618         int (*iw_accept)(struct iw_cm_id *cm_id,
2619                          struct iw_cm_conn_param *conn_param);
2620         int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621                          u8 pdata_len);
2622         int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623         int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624         /**
2625          * counter_bind_qp - Bind a QP to a counter.
2626          * @counter - The counter to be bound. If counter->id is zero then
2627          *   the driver needs to allocate a new counter and set counter->id
2628          */
2629         int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630         /**
2631          * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632          *   counter and bind it onto the default one
2633          */
2634         int (*counter_unbind_qp)(struct ib_qp *qp);
2635         /**
2636          * counter_dealloc -De-allocate the hw counter
2637          */
2638         int (*counter_dealloc)(struct rdma_counter *counter);
2639         /**
2640          * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641          * the driver initialized data.
2642          */
2643         struct rdma_hw_stats *(*counter_alloc_stats)(
2644                 struct rdma_counter *counter);
2645         /**
2646          * counter_update_stats - Query the stats value of this counter
2647          */
2648         int (*counter_update_stats)(struct rdma_counter *counter);
2649 
2650         /**
2651          * Allows rdma drivers to add their own restrack attributes
2652          * dumped via 'rdma stat' iproute2 command.
2653          */
2654         int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655 
2656         /* query driver for its ucontext properties */
2657         int (*query_ucontext)(struct ib_ucontext *context,
2658                               struct uverbs_attr_bundle *attrs);
2659 
2660         /*
2661          * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662          * Everyone else relies on Linux memory management model.
2663          */
2664         int (*get_numa_node)(struct ib_device *dev);
2665 
2666         /**
2667          * add_sub_dev - Add a sub IB device
2668          */
2669         struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670                                          enum rdma_nl_dev_type type,
2671                                          const char *name);
2672 
2673         /**
2674          * del_sub_dev - Delete a sub IB device
2675          */
2676         void (*del_sub_dev)(struct ib_device *sub_dev);
2677 
2678         DECLARE_RDMA_OBJ_SIZE(ib_ah);
2679         DECLARE_RDMA_OBJ_SIZE(ib_counters);
2680         DECLARE_RDMA_OBJ_SIZE(ib_cq);
2681         DECLARE_RDMA_OBJ_SIZE(ib_mw);
2682         DECLARE_RDMA_OBJ_SIZE(ib_pd);
2683         DECLARE_RDMA_OBJ_SIZE(ib_qp);
2684         DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2685         DECLARE_RDMA_OBJ_SIZE(ib_srq);
2686         DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2687         DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2688 };
2689 
2690 struct ib_core_device {
2691         /* device must be the first element in structure until,
2692          * union of ib_core_device and device exists in ib_device.
2693          */
2694         struct device dev;
2695         possible_net_t rdma_net;
2696         struct kobject *ports_kobj;
2697         struct list_head port_list;
2698         struct ib_device *owner; /* reach back to owner ib_device */
2699 };
2700 
2701 struct rdma_restrack_root;
2702 struct ib_device {
2703         /* Do not access @dma_device directly from ULP nor from HW drivers. */
2704         struct device                *dma_device;
2705         struct ib_device_ops         ops;
2706         char                          name[IB_DEVICE_NAME_MAX];
2707         struct rcu_head rcu_head;
2708 
2709         struct list_head              event_handler_list;
2710         /* Protects event_handler_list */
2711         struct rw_semaphore event_handler_rwsem;
2712 
2713         /* Protects QP's event_handler calls and open_qp list */
2714         spinlock_t qp_open_list_lock;
2715 
2716         struct rw_semaphore           client_data_rwsem;
2717         struct xarray                 client_data;
2718         struct mutex                  unregistration_lock;
2719 
2720         /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2721         rwlock_t cache_lock;
2722         /**
2723          * port_data is indexed by port number
2724          */
2725         struct ib_port_data *port_data;
2726 
2727         int                           num_comp_vectors;
2728 
2729         union {
2730                 struct device           dev;
2731                 struct ib_core_device   coredev;
2732         };
2733 
2734         /* First group is for device attributes,
2735          * Second group is for driver provided attributes (optional).
2736          * Third group is for the hw_stats
2737          * It is a NULL terminated array.
2738          */
2739         const struct attribute_group    *groups[4];
2740 
2741         u64                          uverbs_cmd_mask;
2742 
2743         char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2744         __be64                       node_guid;
2745         u32                          local_dma_lkey;
2746         u16                          is_switch:1;
2747         /* Indicates kernel verbs support, should not be used in drivers */
2748         u16                          kverbs_provider:1;
2749         /* CQ adaptive moderation (RDMA DIM) */
2750         u16                          use_cq_dim:1;
2751         u8                           node_type;
2752         u32                          phys_port_cnt;
2753         struct ib_device_attr        attrs;
2754         struct hw_stats_device_data *hw_stats_data;
2755 
2756 #ifdef CONFIG_CGROUP_RDMA
2757         struct rdmacg_device         cg_device;
2758 #endif
2759 
2760         u32                          index;
2761 
2762         spinlock_t                   cq_pools_lock;
2763         struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2764 
2765         struct rdma_restrack_root *res;
2766 
2767         const struct uapi_definition   *driver_def;
2768 
2769         /*
2770          * Positive refcount indicates that the device is currently
2771          * registered and cannot be unregistered.
2772          */
2773         refcount_t refcount;
2774         struct completion unreg_completion;
2775         struct work_struct unregistration_work;
2776 
2777         const struct rdma_link_ops *link_ops;
2778 
2779         /* Protects compat_devs xarray modifications */
2780         struct mutex compat_devs_mutex;
2781         /* Maintains compat devices for each net namespace */
2782         struct xarray compat_devs;
2783 
2784         /* Used by iWarp CM */
2785         char iw_ifname[IFNAMSIZ];
2786         u32 iw_driver_flags;
2787         u32 lag_flags;
2788 
2789         /* A parent device has a list of sub-devices */
2790         struct mutex subdev_lock;
2791         struct list_head subdev_list_head;
2792 
2793         /* A sub device has a type and a parent */
2794         enum rdma_nl_dev_type type;
2795         struct ib_device *parent;
2796         struct list_head subdev_list;
2797 
2798         enum rdma_nl_name_assign_type name_assign_type;
2799 };
2800 
2801 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2802                                     gfp_t gfp, bool is_numa_aware)
2803 {
2804         if (is_numa_aware && dev->ops.get_numa_node)
2805                 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2806 
2807         return kzalloc(size, gfp);
2808 }
2809 
2810 struct ib_client_nl_info;
2811 struct ib_client {
2812         const char *name;
2813         int (*add)(struct ib_device *ibdev);
2814         void (*remove)(struct ib_device *, void *client_data);
2815         void (*rename)(struct ib_device *dev, void *client_data);
2816         int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2817                            struct ib_client_nl_info *res);
2818         int (*get_global_nl_info)(struct ib_client_nl_info *res);
2819 
2820         /* Returns the net_dev belonging to this ib_client and matching the
2821          * given parameters.
2822          * @dev:         An RDMA device that the net_dev use for communication.
2823          * @port:        A physical port number on the RDMA device.
2824          * @pkey:        P_Key that the net_dev uses if applicable.
2825          * @gid:         A GID that the net_dev uses to communicate.
2826          * @addr:        An IP address the net_dev is configured with.
2827          * @client_data: The device's client data set by ib_set_client_data().
2828          *
2829          * An ib_client that implements a net_dev on top of RDMA devices
2830          * (such as IP over IB) should implement this callback, allowing the
2831          * rdma_cm module to find the right net_dev for a given request.
2832          *
2833          * The caller is responsible for calling dev_put on the returned
2834          * netdev. */
2835         struct net_device *(*get_net_dev_by_params)(
2836                         struct ib_device *dev,
2837                         u32 port,
2838                         u16 pkey,
2839                         const union ib_gid *gid,
2840                         const struct sockaddr *addr,
2841                         void *client_data);
2842 
2843         refcount_t uses;
2844         struct completion uses_zero;
2845         u32 client_id;
2846 
2847         /* kverbs are not required by the client */
2848         u8 no_kverbs_req:1;
2849 };
2850 
2851 /*
2852  * IB block DMA iterator
2853  *
2854  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2855  * to a HW supported page size.
2856  */
2857 struct ib_block_iter {
2858         /* internal states */
2859         struct scatterlist *__sg;       /* sg holding the current aligned block */
2860         dma_addr_t __dma_addr;          /* unaligned DMA address of this block */
2861         size_t __sg_numblocks;          /* ib_umem_num_dma_blocks() */
2862         unsigned int __sg_nents;        /* number of SG entries */
2863         unsigned int __sg_advance;      /* number of bytes to advance in sg in next step */
2864         unsigned int __pg_bit;          /* alignment of current block */
2865 };
2866 
2867 struct ib_device *_ib_alloc_device(size_t size);
2868 #define ib_alloc_device(drv_struct, member)                                    \
2869         container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2870                                       BUILD_BUG_ON_ZERO(offsetof(              \
2871                                               struct drv_struct, member))),    \
2872                      struct drv_struct, member)
2873 
2874 void ib_dealloc_device(struct ib_device *device);
2875 
2876 void ib_get_device_fw_str(struct ib_device *device, char *str);
2877 
2878 int ib_register_device(struct ib_device *device, const char *name,
2879                        struct device *dma_device);
2880 void ib_unregister_device(struct ib_device *device);
2881 void ib_unregister_driver(enum rdma_driver_id driver_id);
2882 void ib_unregister_device_and_put(struct ib_device *device);
2883 void ib_unregister_device_queued(struct ib_device *ib_dev);
2884 
2885 int ib_register_client   (struct ib_client *client);
2886 void ib_unregister_client(struct ib_client *client);
2887 
2888 void __rdma_block_iter_start(struct ib_block_iter *biter,
2889                              struct scatterlist *sglist,
2890                              unsigned int nents,
2891                              unsigned long pgsz);
2892 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2893 
2894 /**
2895  * rdma_block_iter_dma_address - get the aligned dma address of the current
2896  * block held by the block iterator.
2897  * @biter: block iterator holding the memory block
2898  */
2899 static inline dma_addr_t
2900 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2901 {
2902         return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2903 }
2904 
2905 /**
2906  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2907  * @sglist: sglist to iterate over
2908  * @biter: block iterator holding the memory block
2909  * @nents: maximum number of sg entries to iterate over
2910  * @pgsz: best HW supported page size to use
2911  *
2912  * Callers may use rdma_block_iter_dma_address() to get each
2913  * blocks aligned DMA address.
2914  */
2915 #define rdma_for_each_block(sglist, biter, nents, pgsz)         \
2916         for (__rdma_block_iter_start(biter, sglist, nents,      \
2917                                      pgsz);                     \
2918              __rdma_block_iter_next(biter);)
2919 
2920 /**
2921  * ib_get_client_data - Get IB client context
2922  * @device:Device to get context for
2923  * @client:Client to get context for
2924  *
2925  * ib_get_client_data() returns the client context data set with
2926  * ib_set_client_data(). This can only be called while the client is
2927  * registered to the device, once the ib_client remove() callback returns this
2928  * cannot be called.
2929  */
2930 static inline void *ib_get_client_data(struct ib_device *device,
2931                                        struct ib_client *client)
2932 {
2933         return xa_load(&device->client_data, client->client_id);
2934 }
2935 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2936                          void *data);
2937 void ib_set_device_ops(struct ib_device *device,
2938                        const struct ib_device_ops *ops);
2939 
2940 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2941                       unsigned long pfn, unsigned long size, pgprot_t prot,
2942                       struct rdma_user_mmap_entry *entry);
2943 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2944                                 struct rdma_user_mmap_entry *entry,
2945                                 size_t length);
2946 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2947                                       struct rdma_user_mmap_entry *entry,
2948                                       size_t length, u32 min_pgoff,
2949                                       u32 max_pgoff);
2950 
2951 static inline int
2952 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2953                                   struct rdma_user_mmap_entry *entry,
2954                                   size_t length, u32 pgoff)
2955 {
2956         return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2957                                                  pgoff);
2958 }
2959 
2960 struct rdma_user_mmap_entry *
2961 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2962                                unsigned long pgoff);
2963 struct rdma_user_mmap_entry *
2964 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2965                          struct vm_area_struct *vma);
2966 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2967 
2968 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2969 
2970 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2971 {
2972         return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2973 }
2974 
2975 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2976 {
2977         return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2978 }
2979 
2980 static inline bool ib_is_buffer_cleared(const void __user *p,
2981                                         size_t len)
2982 {
2983         bool ret;
2984         u8 *buf;
2985 
2986         if (len > USHRT_MAX)
2987                 return false;
2988 
2989         buf = memdup_user(p, len);
2990         if (IS_ERR(buf))
2991                 return false;
2992 
2993         ret = !memchr_inv(buf, 0, len);
2994         kfree(buf);
2995         return ret;
2996 }
2997 
2998 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2999                                        size_t offset,
3000                                        size_t len)
3001 {
3002         return ib_is_buffer_cleared(udata->inbuf + offset, len);
3003 }
3004 
3005 /**
3006  * ib_modify_qp_is_ok - Check that the supplied attribute mask
3007  * contains all required attributes and no attributes not allowed for
3008  * the given QP state transition.
3009  * @cur_state: Current QP state
3010  * @next_state: Next QP state
3011  * @type: QP type
3012  * @mask: Mask of supplied QP attributes
3013  *
3014  * This function is a helper function that a low-level driver's
3015  * modify_qp method can use to validate the consumer's input.  It
3016  * checks that cur_state and next_state are valid QP states, that a
3017  * transition from cur_state to next_state is allowed by the IB spec,
3018  * and that the attribute mask supplied is allowed for the transition.
3019  */
3020 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3021                         enum ib_qp_type type, enum ib_qp_attr_mask mask);
3022 
3023 void ib_register_event_handler(struct ib_event_handler *event_handler);
3024 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3025 void ib_dispatch_event(const struct ib_event *event);
3026 
3027 int ib_query_port(struct ib_device *device,
3028                   u32 port_num, struct ib_port_attr *port_attr);
3029 
3030 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3031                                                u32 port_num);
3032 
3033 /**
3034  * rdma_cap_ib_switch - Check if the device is IB switch
3035  * @device: Device to check
3036  *
3037  * Device driver is responsible for setting is_switch bit on
3038  * in ib_device structure at init time.
3039  *
3040  * Return: true if the device is IB switch.
3041  */
3042 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3043 {
3044         return device->is_switch;
3045 }
3046 
3047 /**
3048  * rdma_start_port - Return the first valid port number for the device
3049  * specified
3050  *
3051  * @device: Device to be checked
3052  *
3053  * Return start port number
3054  */
3055 static inline u32 rdma_start_port(const struct ib_device *device)
3056 {
3057         return rdma_cap_ib_switch(device) ? 0 : 1;
3058 }
3059 
3060 /**
3061  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3062  * @device - The struct ib_device * to iterate over
3063  * @iter - The unsigned int to store the port number
3064  */
3065 #define rdma_for_each_port(device, iter)                                       \
3066         for (iter = rdma_start_port(device +                                   \
3067                                     BUILD_BUG_ON_ZERO(!__same_type(u32,        \
3068                                                                    iter)));    \
3069              iter <= rdma_end_port(device); iter++)
3070 
3071 /**
3072  * rdma_end_port - Return the last valid port number for the device
3073  * specified
3074  *
3075  * @device: Device to be checked
3076  *
3077  * Return last port number
3078  */
3079 static inline u32 rdma_end_port(const struct ib_device *device)
3080 {
3081         return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3082 }
3083 
3084 static inline int rdma_is_port_valid(const struct ib_device *device,
3085                                      unsigned int port)
3086 {
3087         return (port >= rdma_start_port(device) &&
3088                 port <= rdma_end_port(device));
3089 }
3090 
3091 static inline bool rdma_is_grh_required(const struct ib_device *device,
3092                                         u32 port_num)
3093 {
3094         return device->port_data[port_num].immutable.core_cap_flags &
3095                RDMA_CORE_PORT_IB_GRH_REQUIRED;
3096 }
3097 
3098 static inline bool rdma_protocol_ib(const struct ib_device *device,
3099                                     u32 port_num)
3100 {
3101         return device->port_data[port_num].immutable.core_cap_flags &
3102                RDMA_CORE_CAP_PROT_IB;
3103 }
3104 
3105 static inline bool rdma_protocol_roce(const struct ib_device *device,
3106                                       u32 port_num)
3107 {
3108         return device->port_data[port_num].immutable.core_cap_flags &
3109                (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3110 }
3111 
3112 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3113                                                 u32 port_num)
3114 {
3115         return device->port_data[port_num].immutable.core_cap_flags &
3116                RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3117 }
3118 
3119 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3120                                                 u32 port_num)
3121 {
3122         return device->port_data[port_num].immutable.core_cap_flags &
3123                RDMA_CORE_CAP_PROT_ROCE;
3124 }
3125 
3126 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3127                                        u32 port_num)
3128 {
3129         return device->port_data[port_num].immutable.core_cap_flags &
3130                RDMA_CORE_CAP_PROT_IWARP;
3131 }
3132 
3133 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3134                                    u32 port_num)
3135 {
3136         return rdma_protocol_ib(device, port_num) ||
3137                 rdma_protocol_roce(device, port_num);
3138 }
3139 
3140 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3141                                             u32 port_num)
3142 {
3143         return device->port_data[port_num].immutable.core_cap_flags &
3144                RDMA_CORE_CAP_PROT_RAW_PACKET;
3145 }
3146 
3147 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3148                                        u32 port_num)
3149 {
3150         return device->port_data[port_num].immutable.core_cap_flags &
3151                RDMA_CORE_CAP_PROT_USNIC;
3152 }
3153 
3154 /**
3155  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3156  * Management Datagrams.
3157  * @device: Device to check
3158  * @port_num: Port number to check
3159  *
3160  * Management Datagrams (MAD) are a required part of the InfiniBand
3161  * specification and are supported on all InfiniBand devices.  A slightly
3162  * extended version are also supported on OPA interfaces.
3163  *
3164  * Return: true if the port supports sending/receiving of MAD packets.
3165  */
3166 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3167 {
3168         return device->port_data[port_num].immutable.core_cap_flags &
3169                RDMA_CORE_CAP_IB_MAD;
3170 }
3171 
3172 /**
3173  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3174  * Management Datagrams.
3175  * @device: Device to check
3176  * @port_num: Port number to check
3177  *
3178  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3179  * datagrams with their own versions.  These OPA MADs share many but not all of
3180  * the characteristics of InfiniBand MADs.
3181  *
3182  * OPA MADs differ in the following ways:
3183  *
3184  *    1) MADs are variable size up to 2K
3185  *       IBTA defined MADs remain fixed at 256 bytes
3186  *    2) OPA SMPs must carry valid PKeys
3187  *    3) OPA SMP packets are a different format
3188  *
3189  * Return: true if the port supports OPA MAD packet formats.
3190  */
3191 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3192 {
3193         return device->port_data[port_num].immutable.core_cap_flags &
3194                 RDMA_CORE_CAP_OPA_MAD;
3195 }
3196 
3197 /**
3198  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3199  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3200  * @device: Device to check
3201  * @port_num: Port number to check
3202  *
3203  * Each InfiniBand node is required to provide a Subnet Management Agent
3204  * that the subnet manager can access.  Prior to the fabric being fully
3205  * configured by the subnet manager, the SMA is accessed via a well known
3206  * interface called the Subnet Management Interface (SMI).  This interface
3207  * uses directed route packets to communicate with the SM to get around the
3208  * chicken and egg problem of the SM needing to know what's on the fabric
3209  * in order to configure the fabric, and needing to configure the fabric in
3210  * order to send packets to the devices on the fabric.  These directed
3211  * route packets do not need the fabric fully configured in order to reach
3212  * their destination.  The SMI is the only method allowed to send
3213  * directed route packets on an InfiniBand fabric.
3214  *
3215  * Return: true if the port provides an SMI.
3216  */
3217 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3218 {
3219         return device->port_data[port_num].immutable.core_cap_flags &
3220                RDMA_CORE_CAP_IB_SMI;
3221 }
3222 
3223 /**
3224  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3225  * Communication Manager.
3226  * @device: Device to check
3227  * @port_num: Port number to check
3228  *
3229  * The InfiniBand Communication Manager is one of many pre-defined General
3230  * Service Agents (GSA) that are accessed via the General Service
3231  * Interface (GSI).  It's role is to facilitate establishment of connections
3232  * between nodes as well as other management related tasks for established
3233  * connections.
3234  *
3235  * Return: true if the port supports an IB CM (this does not guarantee that
3236  * a CM is actually running however).
3237  */
3238 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3239 {
3240         return device->port_data[port_num].immutable.core_cap_flags &
3241                RDMA_CORE_CAP_IB_CM;
3242 }
3243 
3244 /**
3245  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3246  * Communication Manager.
3247  * @device: Device to check
3248  * @port_num: Port number to check
3249  *
3250  * Similar to above, but specific to iWARP connections which have a different
3251  * managment protocol than InfiniBand.
3252  *
3253  * Return: true if the port supports an iWARP CM (this does not guarantee that
3254  * a CM is actually running however).
3255  */
3256 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3257 {
3258         return device->port_data[port_num].immutable.core_cap_flags &
3259                RDMA_CORE_CAP_IW_CM;
3260 }
3261 
3262 /**
3263  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3264  * Subnet Administration.
3265  * @device: Device to check
3266  * @port_num: Port number to check
3267  *
3268  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3269  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3270  * fabrics, devices should resolve routes to other hosts by contacting the
3271  * SA to query the proper route.
3272  *
3273  * Return: true if the port should act as a client to the fabric Subnet
3274  * Administration interface.  This does not imply that the SA service is
3275  * running locally.
3276  */
3277 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3278 {
3279         return device->port_data[port_num].immutable.core_cap_flags &
3280                RDMA_CORE_CAP_IB_SA;
3281 }
3282 
3283 /**
3284  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3285  * Multicast.
3286  * @device: Device to check
3287  * @port_num: Port number to check
3288  *
3289  * InfiniBand multicast registration is more complex than normal IPv4 or
3290  * IPv6 multicast registration.  Each Host Channel Adapter must register
3291  * with the Subnet Manager when it wishes to join a multicast group.  It
3292  * should do so only once regardless of how many queue pairs it subscribes
3293  * to this group.  And it should leave the group only after all queue pairs
3294  * attached to the group have been detached.
3295  *
3296  * Return: true if the port must undertake the additional adminstrative
3297  * overhead of registering/unregistering with the SM and tracking of the
3298  * total number of queue pairs attached to the multicast group.
3299  */
3300 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3301                                      u32 port_num)
3302 {
3303         return rdma_cap_ib_sa(device, port_num);
3304 }
3305 
3306 /**
3307  * rdma_cap_af_ib - Check if the port of device has the capability
3308  * Native Infiniband Address.
3309  * @device: Device to check
3310  * @port_num: Port number to check
3311  *
3312  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3313  * GID.  RoCE uses a different mechanism, but still generates a GID via
3314  * a prescribed mechanism and port specific data.
3315  *
3316  * Return: true if the port uses a GID address to identify devices on the
3317  * network.
3318  */
3319 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3320 {
3321         return device->port_data[port_num].immutable.core_cap_flags &
3322                RDMA_CORE_CAP_AF_IB;
3323 }
3324 
3325 /**
3326  * rdma_cap_eth_ah - Check if the port of device has the capability
3327  * Ethernet Address Handle.
3328  * @device: Device to check
3329  * @port_num: Port number to check
3330  *
3331  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3332  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3333  * port.  Normally, packet headers are generated by the sending host
3334  * adapter, but when sending connectionless datagrams, we must manually
3335  * inject the proper headers for the fabric we are communicating over.
3336  *
3337  * Return: true if we are running as a RoCE port and must force the
3338  * addition of a Global Route Header built from our Ethernet Address
3339  * Handle into our header list for connectionless packets.
3340  */
3341 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3342 {
3343         return device->port_data[port_num].immutable.core_cap_flags &
3344                RDMA_CORE_CAP_ETH_AH;
3345 }
3346 
3347 /**
3348  * rdma_cap_opa_ah - Check if the port of device supports
3349  * OPA Address handles
3350  * @device: Device to check
3351  * @port_num: Port number to check
3352  *
3353  * Return: true if we are running on an OPA device which supports
3354  * the extended OPA addressing.
3355  */
3356 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3357 {
3358         return (device->port_data[port_num].immutable.core_cap_flags &
3359                 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3360 }
3361 
3362 /**
3363  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3364  *
3365  * @device: Device
3366  * @port_num: Port number
3367  *
3368  * This MAD size includes the MAD headers and MAD payload.  No other headers
3369  * are included.
3370  *
3371  * Return the max MAD size required by the Port.  Will return 0 if the port
3372  * does not support MADs
3373  */
3374 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3375                                        u32 port_num)
3376 {
3377         return device->port_data[port_num].immutable.max_mad_size;
3378 }
3379 
3380 /**
3381  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3382  * @device: Device to check
3383  * @port_num: Port number to check
3384  *
3385  * RoCE GID table mechanism manages the various GIDs for a device.
3386  *
3387  * NOTE: if allocating the port's GID table has failed, this call will still
3388  * return true, but any RoCE GID table API will fail.
3389  *
3390  * Return: true if the port uses RoCE GID table mechanism in order to manage
3391  * its GIDs.
3392  */
3393 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3394                                            u32 port_num)
3395 {
3396         return rdma_protocol_roce(device, port_num) &&
3397                 device->ops.add_gid && device->ops.del_gid;
3398 }
3399 
3400 /*
3401  * Check if the device supports READ W/ INVALIDATE.
3402  */
3403 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3404 {
3405         /*
3406          * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3407          * has support for it yet.
3408          */
3409         return rdma_protocol_iwarp(dev, port_num);
3410 }
3411 
3412 /**
3413  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3414  * @device: Device
3415  * @port_num: 1 based Port number
3416  *
3417  * Return true if port is an Intel OPA port , false if not
3418  */
3419 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3420                                           u32 port_num)
3421 {
3422         return (device->port_data[port_num].immutable.core_cap_flags &
3423                 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3424 }
3425 
3426 /**
3427  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3428  * @device: Device
3429  * @port_num: Port number
3430  * @mtu: enum value of MTU
3431  *
3432  * Return the MTU size supported by the port as an integer value. Will return
3433  * -1 if enum value of mtu is not supported.
3434  */
3435 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3436                                        int mtu)
3437 {
3438         if (rdma_core_cap_opa_port(device, port))
3439                 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3440         else
3441                 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3442 }
3443 
3444 /**
3445  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3446  * @device: Device
3447  * @port_num: Port number
3448  * @attr: port attribute
3449  *
3450  * Return the MTU size supported by the port as an integer value.
3451  */
3452 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3453                                      struct ib_port_attr *attr)
3454 {
3455         if (rdma_core_cap_opa_port(device, port))
3456                 return attr->phys_mtu;
3457         else
3458                 return ib_mtu_enum_to_int(attr->max_mtu);
3459 }
3460 
3461 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3462                          int state);
3463 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3464                      struct ifla_vf_info *info);
3465 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3466                     struct ifla_vf_stats *stats);
3467 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3468                     struct ifla_vf_guid *node_guid,
3469                     struct ifla_vf_guid *port_guid);
3470 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3471                    int type);
3472 
3473 int ib_query_pkey(struct ib_device *device,
3474                   u32 port_num, u16 index, u16 *pkey);
3475 
3476 int ib_modify_device(struct ib_device *device,
3477                      int device_modify_mask,
3478                      struct ib_device_modify *device_modify);
3479 
3480 int ib_modify_port(struct ib_device *device,
3481                    u32 port_num, int port_modify_mask,
3482                    struct ib_port_modify *port_modify);
3483 
3484 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3485                 u32 *port_num, u16 *index);
3486 
3487 int ib_find_pkey(struct ib_device *device,
3488                  u32 port_num, u16 pkey, u16 *index);
3489 
3490 enum ib_pd_flags {
3491         /*
3492          * Create a memory registration for all memory in the system and place
3493          * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3494          * ULPs to avoid the overhead of dynamic MRs.
3495          *
3496          * This flag is generally considered unsafe and must only be used in
3497          * extremly trusted environments.  Every use of it will log a warning
3498          * in the kernel log.
3499          */
3500         IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3501 };
3502 
3503 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3504                 const char *caller);
3505 
3506 /**
3507  * ib_alloc_pd - Allocates an unused protection domain.
3508  * @device: The device on which to allocate the protection domain.
3509  * @flags: protection domain flags
3510  *
3511  * A protection domain object provides an association between QPs, shared
3512  * receive queues, address handles, memory regions, and memory windows.
3513  *
3514  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3515  * memory operations.
3516  */
3517 #define ib_alloc_pd(device, flags) \
3518         __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3519 
3520 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3521 
3522 /**
3523  * ib_dealloc_pd - Deallocate kernel PD
3524  * @pd: The protection domain
3525  *
3526  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3527  */
3528 static inline void ib_dealloc_pd(struct ib_pd *pd)
3529 {
3530         int ret = ib_dealloc_pd_user(pd, NULL);
3531 
3532         WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3533 }
3534 
3535 enum rdma_create_ah_flags {
3536         /* In a sleepable context */
3537         RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3538 };
3539 
3540 /**
3541  * rdma_create_ah - Creates an address handle for the given address vector.
3542  * @pd: The protection domain associated with the address handle.
3543  * @ah_attr: The attributes of the address vector.
3544  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3545  *
3546  * The address handle is used to reference a local or global destination
3547  * in all UD QP post sends.
3548  */
3549 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3550                              u32 flags);
3551 
3552 /**
3553  * rdma_create_user_ah - Creates an address handle for the given address vector.
3554  * It resolves destination mac address for ah attribute of RoCE type.
3555  * @pd: The protection domain associated with the address handle.
3556  * @ah_attr: The attributes of the address vector.
3557  * @udata: pointer to user's input output buffer information need by
3558  *         provider driver.
3559  *
3560  * It returns 0 on success and returns appropriate error code on error.
3561  * The address handle is used to reference a local or global destination
3562  * in all UD QP post sends.
3563  */
3564 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3565                                   struct rdma_ah_attr *ah_attr,
3566                                   struct ib_udata *udata);
3567 /**
3568  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3569  *   work completion.
3570  * @hdr: the L3 header to parse
3571  * @net_type: type of header to parse
3572  * @sgid: place to store source gid
3573  * @dgid: place to store destination gid
3574  */
3575 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3576                               enum rdma_network_type net_type,
3577                               union ib_gid *sgid, union ib_gid *dgid);
3578 
3579 /**
3580  * ib_get_rdma_header_version - Get the header version
3581  * @hdr: the L3 header to parse
3582  */
3583 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3584 
3585 /**
3586  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3587  *   work completion.
3588  * @device: Device on which the received message arrived.
3589  * @port_num: Port on which the received message arrived.
3590  * @wc: Work completion associated with the received message.
3591  * @grh: References the received global route header.  This parameter is
3592  *   ignored unless the work completion indicates that the GRH is valid.
3593  * @ah_attr: Returned attributes that can be used when creating an address
3594  *   handle for replying to the message.
3595  * When ib_init_ah_attr_from_wc() returns success,
3596  * (a) for IB link layer it optionally contains a reference to SGID attribute
3597  * when GRH is present for IB link layer.
3598  * (b) for RoCE link layer it contains a reference to SGID attribute.
3599  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3600  * attributes which are initialized using ib_init_ah_attr_from_wc().
3601  *
3602  */
3603 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3604                             const struct ib_wc *wc, const struct ib_grh *grh,
3605                             struct rdma_ah_attr *ah_attr);
3606 
3607 /**
3608  * ib_create_ah_from_wc - Creates an address handle associated with the
3609  *   sender of the specified work completion.
3610  * @pd: The protection domain associated with the address handle.
3611  * @wc: Work completion information associated with a received message.
3612  * @grh: References the received global route header.  This parameter is
3613  *   ignored unless the work completion indicates that the GRH is valid.
3614  * @port_num: The outbound port number to associate with the address.
3615  *
3616  * The address handle is used to reference a local or global destination
3617  * in all UD QP post sends.
3618  */
3619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3620                                    const struct ib_grh *grh, u32 port_num);
3621 
3622 /**
3623  * rdma_modify_ah - Modifies the address vector associated with an address
3624  *   handle.
3625  * @ah: The address handle to modify.
3626  * @ah_attr: The new address vector attributes to associate with the
3627  *   address handle.
3628  */
3629 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3630 
3631 /**
3632  * rdma_query_ah - Queries the address vector associated with an address
3633  *   handle.
3634  * @ah: The address handle to query.
3635  * @ah_attr: The address vector attributes associated with the address
3636  *   handle.
3637  */
3638 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3639 
3640 enum rdma_destroy_ah_flags {
3641         /* In a sleepable context */
3642         RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3643 };
3644 
3645 /**
3646  * rdma_destroy_ah_user - Destroys an address handle.
3647  * @ah: The address handle to destroy.
3648  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3649  * @udata: Valid user data or NULL for kernel objects
3650  */
3651 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3652 
3653 /**
3654  * rdma_destroy_ah - Destroys an kernel address handle.
3655  * @ah: The address handle to destroy.
3656  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3657  *
3658  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3659  */
3660 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3661 {
3662         int ret = rdma_destroy_ah_user(ah, flags, NULL);
3663 
3664         WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3665 }
3666 
3667 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3668                                   struct ib_srq_init_attr *srq_init_attr,
3669                                   struct ib_usrq_object *uobject,
3670                                   struct ib_udata *udata);
3671 static inline struct ib_srq *
3672 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3673 {
3674         if (!pd->device->ops.create_srq)
3675                 return ERR_PTR(-EOPNOTSUPP);
3676 
3677         return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3678 }
3679 
3680 /**
3681  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3682  * @srq: The SRQ to modify.
3683  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3684  *   the current values of selected SRQ attributes are returned.
3685  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3686  *   are being modified.
3687  *
3688  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3689  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3690  * the number of receives queued drops below the limit.
3691  */
3692 int ib_modify_srq(struct ib_srq *srq,
3693                   struct ib_srq_attr *srq_attr,
3694                   enum ib_srq_attr_mask srq_attr_mask);
3695 
3696 /**
3697  * ib_query_srq - Returns the attribute list and current values for the
3698  *   specified SRQ.
3699  * @srq: The SRQ to query.
3700  * @srq_attr: The attributes of the specified SRQ.
3701  */
3702 int ib_query_srq(struct ib_srq *srq,
3703                  struct ib_srq_attr *srq_attr);
3704 
3705 /**
3706  * ib_destroy_srq_user - Destroys the specified SRQ.
3707  * @srq: The SRQ to destroy.
3708  * @udata: Valid user data or NULL for kernel objects
3709  */
3710 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3711 
3712 /**
3713  * ib_destroy_srq - Destroys the specified kernel SRQ.
3714  * @srq: The SRQ to destroy.
3715  *
3716  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3717  */
3718 static inline void ib_destroy_srq(struct ib_srq *srq)
3719 {
3720         int ret = ib_destroy_srq_user(srq, NULL);
3721 
3722         WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3723 }
3724 
3725 /**
3726  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3727  * @srq: The SRQ to post the work request on.
3728  * @recv_wr: A list of work requests to post on the receive queue.
3729  * @bad_recv_wr: On an immediate failure, this parameter will reference
3730  *   the work request that failed to be posted on the QP.
3731  */
3732 static inline int ib_post_srq_recv(struct ib_srq *srq,
3733                                    const struct ib_recv_wr *recv_wr,
3734                                    const struct ib_recv_wr **bad_recv_wr)
3735 {
3736         const struct ib_recv_wr *dummy;
3737 
3738         return srq->device->ops.post_srq_recv(srq, recv_wr,
3739                                               bad_recv_wr ? : &dummy);
3740 }
3741 
3742 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3743                                   struct ib_qp_init_attr *qp_init_attr,
3744                                   const char *caller);
3745 /**
3746  * ib_create_qp - Creates a kernel QP associated with the specific protection
3747  * domain.
3748  * @pd: The protection domain associated with the QP.
3749  * @init_attr: A list of initial attributes required to create the
3750  *   QP.  If QP creation succeeds, then the attributes are updated to
3751  *   the actual capabilities of the created QP.
3752  */
3753 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3754                                          struct ib_qp_init_attr *init_attr)
3755 {
3756         return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3757 }
3758 
3759 /**
3760  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3761  * @qp: The QP to modify.
3762  * @attr: On input, specifies the QP attributes to modify.  On output,
3763  *   the current values of selected QP attributes are returned.
3764  * @attr_mask: A bit-mask used to specify which attributes of the QP
3765  *   are being modified.
3766  * @udata: pointer to user's input output buffer information
3767  *   are being modified.
3768  * It returns 0 on success and returns appropriate error code on error.
3769  */
3770 int ib_modify_qp_with_udata(struct ib_qp *qp,
3771                             struct ib_qp_attr *attr,
3772                             int attr_mask,
3773                             struct ib_udata *udata);
3774 
3775 /**
3776  * ib_modify_qp - Modifies the attributes for the specified QP and then
3777  *   transitions the QP to the given state.
3778  * @qp: The QP to modify.
3779  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3780  *   the current values of selected QP attributes are returned.
3781  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3782  *   are being modified.
3783  */
3784 int ib_modify_qp(struct ib_qp *qp,
3785                  struct ib_qp_attr *qp_attr,
3786                  int qp_attr_mask);
3787 
3788 /**
3789  * ib_query_qp - Returns the attribute list and current values for the
3790  *   specified QP.
3791  * @qp: The QP to query.
3792  * @qp_attr: The attributes of the specified QP.
3793  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3794  * @qp_init_attr: Additional attributes of the selected QP.
3795  *
3796  * The qp_attr_mask may be used to limit the query to gathering only the
3797  * selected attributes.
3798  */
3799 int ib_query_qp(struct ib_qp *qp,
3800                 struct ib_qp_attr *qp_attr,
3801                 int qp_attr_mask,
3802                 struct ib_qp_init_attr *qp_init_attr);
3803 
3804 /**
3805  * ib_destroy_qp - Destroys the specified QP.
3806  * @qp: The QP to destroy.
3807  * @udata: Valid udata or NULL for kernel objects
3808  */
3809 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3810 
3811 /**
3812  * ib_destroy_qp - Destroys the specified kernel QP.
3813  * @qp: The QP to destroy.
3814  *
3815  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3816  */
3817 static inline int ib_destroy_qp(struct ib_qp *qp)
3818 {
3819         return ib_destroy_qp_user(qp, NULL);
3820 }
3821 
3822 /**
3823  * ib_open_qp - Obtain a reference to an existing sharable QP.
3824  * @xrcd - XRC domain
3825  * @qp_open_attr: Attributes identifying the QP to open.
3826  *
3827  * Returns a reference to a sharable QP.
3828  */
3829 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3830                          struct ib_qp_open_attr *qp_open_attr);
3831 
3832 /**
3833  * ib_close_qp - Release an external reference to a QP.
3834  * @qp: The QP handle to release
3835  *
3836  * The opened QP handle is released by the caller.  The underlying
3837  * shared QP is not destroyed until all internal references are released.
3838  */
3839 int ib_close_qp(struct ib_qp *qp);
3840 
3841 /**
3842  * ib_post_send - Posts a list of work requests to the send queue of
3843  *   the specified QP.
3844  * @qp: The QP to post the work request on.
3845  * @send_wr: A list of work requests to post on the send queue.
3846  * @bad_send_wr: On an immediate failure, this parameter will reference
3847  *   the work request that failed to be posted on the QP.
3848  *
3849  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3850  * error is returned, the QP state shall not be affected,
3851  * ib_post_send() will return an immediate error after queueing any
3852  * earlier work requests in the list.
3853  */
3854 static inline int ib_post_send(struct ib_qp *qp,
3855                                const struct ib_send_wr *send_wr,
3856                                const struct ib_send_wr **bad_send_wr)
3857 {
3858         const struct ib_send_wr *dummy;
3859 
3860         return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3861 }
3862 
3863 /**
3864  * ib_post_recv - Posts a list of work requests to the receive queue of
3865  *   the specified QP.
3866  * @qp: The QP to post the work request on.
3867  * @recv_wr: A list of work requests to post on the receive queue.
3868  * @bad_recv_wr: On an immediate failure, this parameter will reference
3869  *   the work request that failed to be posted on the QP.
3870  */
3871 static inline int ib_post_recv(struct ib_qp *qp,
3872                                const struct ib_recv_wr *recv_wr,
3873                                const struct ib_recv_wr **bad_recv_wr)
3874 {
3875         const struct ib_recv_wr *dummy;
3876 
3877         return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3878 }
3879 
3880 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3881                             int comp_vector, enum ib_poll_context poll_ctx,
3882                             const char *caller);
3883 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3884                                         int nr_cqe, int comp_vector,
3885                                         enum ib_poll_context poll_ctx)
3886 {
3887         return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3888                              KBUILD_MODNAME);
3889 }
3890 
3891 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3892                                 int nr_cqe, enum ib_poll_context poll_ctx,
3893                                 const char *caller);
3894 
3895 /**
3896  * ib_alloc_cq_any: Allocate kernel CQ
3897  * @dev: The IB device
3898  * @private: Private data attached to the CQE
3899  * @nr_cqe: Number of CQEs in the CQ
3900  * @poll_ctx: Context used for polling the CQ
3901  */
3902 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3903                                             void *private, int nr_cqe,
3904                                             enum ib_poll_context poll_ctx)
3905 {
3906         return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3907                                  KBUILD_MODNAME);
3908 }
3909 
3910 void ib_free_cq(struct ib_cq *cq);
3911 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3912 
3913 /**
3914  * ib_create_cq - Creates a CQ on the specified device.
3915  * @device: The device on which to create the CQ.
3916  * @comp_handler: A user-specified callback that is invoked when a
3917  *   completion event occurs on the CQ.
3918  * @event_handler: A user-specified callback that is invoked when an
3919  *   asynchronous event not associated with a completion occurs on the CQ.
3920  * @cq_context: Context associated with the CQ returned to the user via
3921  *   the associated completion and event handlers.
3922  * @cq_attr: The attributes the CQ should be created upon.
3923  *
3924  * Users can examine the cq structure to determine the actual CQ size.
3925  */
3926 struct ib_cq *__ib_create_cq(struct ib_device *device,
3927                              ib_comp_handler comp_handler,
3928                              void (*event_handler)(struct ib_event *, void *),
3929                              void *cq_context,
3930                              const struct ib_cq_init_attr *cq_attr,
3931                              const char *caller);
3932 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3933         __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3934 
3935 /**
3936  * ib_resize_cq - Modifies the capacity of the CQ.
3937  * @cq: The CQ to resize.
3938  * @cqe: The minimum size of the CQ.
3939  *
3940  * Users can examine the cq structure to determine the actual CQ size.
3941  */
3942 int ib_resize_cq(struct ib_cq *cq, int cqe);
3943 
3944 /**
3945  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3946  * @cq: The CQ to modify.
3947  * @cq_count: number of CQEs that will trigger an event
3948  * @cq_period: max period of time in usec before triggering an event
3949  *
3950  */
3951 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3952 
3953 /**
3954  * ib_destroy_cq_user - Destroys the specified CQ.
3955  * @cq: The CQ to destroy.
3956  * @udata: Valid user data or NULL for kernel objects
3957  */
3958 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3959 
3960 /**
3961  * ib_destroy_cq - Destroys the specified kernel CQ.
3962  * @cq: The CQ to destroy.
3963  *
3964  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3965  */
3966 static inline void ib_destroy_cq(struct ib_cq *cq)
3967 {
3968         int ret = ib_destroy_cq_user(cq, NULL);
3969 
3970         WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3971 }
3972 
3973 /**
3974  * ib_poll_cq - poll a CQ for completion(s)
3975  * @cq:the CQ being polled
3976  * @num_entries:maximum number of completions to return
3977  * @wc:array of at least @num_entries &struct ib_wc where completions
3978  *   will be returned
3979  *
3980  * Poll a CQ for (possibly multiple) completions.  If the return value
3981  * is < 0, an error occurred.  If the return value is >= 0, it is the
3982  * number of completions returned.  If the return value is
3983  * non-negative and < num_entries, then the CQ was emptied.
3984  */
3985 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3986                              struct ib_wc *wc)
3987 {
3988         return cq->device->ops.poll_cq(cq, num_entries, wc);
3989 }
3990 
3991 /**
3992  * ib_req_notify_cq - Request completion notification on a CQ.
3993  * @cq: The CQ to generate an event for.
3994  * @flags:
3995  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3996  *   to request an event on the next solicited event or next work
3997  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3998  *   may also be |ed in to request a hint about missed events, as
3999  *   described below.
4000  *
4001  * Return Value:
4002  *    < 0 means an error occurred while requesting notification
4003  *   == 0 means notification was requested successfully, and if
4004  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4005  *        were missed and it is safe to wait for another event.  In
4006  *        this case is it guaranteed that any work completions added
4007  *        to the CQ since the last CQ poll will trigger a completion
4008  *        notification event.
4009  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4010  *        in.  It means that the consumer must poll the CQ again to
4011  *        make sure it is empty to avoid missing an event because of a
4012  *        race between requesting notification and an entry being
4013  *        added to the CQ.  This return value means it is possible
4014  *        (but not guaranteed) that a work completion has been added
4015  *        to the CQ since the last poll without triggering a
4016  *        completion notification event.
4017  */
4018 static inline int ib_req_notify_cq(struct ib_cq *cq,
4019                                    enum ib_cq_notify_flags flags)
4020 {
4021         return cq->device->ops.req_notify_cq(cq, flags);
4022 }
4023 
4024 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4025                              int comp_vector_hint,
4026                              enum ib_poll_context poll_ctx);
4027 
4028 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4029 
4030 /*
4031  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4032  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4033  * address into the dma address.
4034  */
4035 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4036 {
4037         return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4038 }
4039 
4040 /*
4041  * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4042  */
4043 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4044 {
4045         if (ib_uses_virt_dma(dev))
4046                 return false;
4047 
4048         return dma_pci_p2pdma_supported(dev->dma_device);
4049 }
4050 
4051 /**
4052  * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4053  * @dma_addr: The DMA address
4054  *
4055  * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4056  * going through the dma_addr marshalling.
4057  */
4058 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4059 {
4060         /* virt_dma mode maps the kvs's directly into the dma addr */
4061         return (void *)(uintptr_t)dma_addr;
4062 }
4063 
4064 /**
4065  * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4066  * @dma_addr: The DMA address
4067  *
4068  * Used by ib_uses_virt_dma() device to get back to the struct page after going
4069  * through the dma_addr marshalling.
4070  */
4071 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4072 {
4073         return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4074 }
4075 
4076 /**
4077  * ib_dma_mapping_error - check a DMA addr for error
4078  * @dev: The device for which the dma_addr was created
4079  * @dma_addr: The DMA address to check
4080  */
4081 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4082 {
4083         if (ib_uses_virt_dma(dev))
4084                 return 0;
4085         return dma_mapping_error(dev->dma_device, dma_addr);
4086 }
4087 
4088 /**
4089  * ib_dma_map_single - Map a kernel virtual address to DMA address
4090  * @dev: The device for which the dma_addr is to be created
4091  * @cpu_addr: The kernel virtual address
4092  * @size: The size of the region in bytes
4093  * @direction: The direction of the DMA
4094  */
4095 static inline u64 ib_dma_map_single(struct ib_device *dev,
4096                                     void *cpu_addr, size_t size,
4097                                     enum dma_data_direction direction)
4098 {
4099         if (ib_uses_virt_dma(dev))
4100                 return (uintptr_t)cpu_addr;
4101         return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4102 }
4103 
4104 /**
4105  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4106  * @dev: The device for which the DMA address was created
4107  * @addr: The DMA address
4108  * @size: The size of the region in bytes
4109  * @direction: The direction of the DMA
4110  */
4111 static inline void ib_dma_unmap_single(struct ib_device *dev,
4112                                        u64 addr, size_t size,
4113                                        enum dma_data_direction direction)
4114 {
4115         if (!ib_uses_virt_dma(dev))
4116                 dma_unmap_single(dev->dma_device, addr, size, direction);
4117 }
4118 
4119 /**
4120  * ib_dma_map_page - Map a physical page to DMA address
4121  * @dev: The device for which the dma_addr is to be created
4122  * @page: The page to be mapped
4123  * @offset: The offset within the page
4124  * @size: The size of the region in bytes
4125  * @direction: The direction of the DMA
4126  */
4127 static inline u64 ib_dma_map_page(struct ib_device *dev,
4128                                   struct page *page,
4129                                   unsigned long offset,
4130                                   size_t size,
4131                                          enum dma_data_direction direction)
4132 {
4133         if (ib_uses_virt_dma(dev))
4134                 return (uintptr_t)(page_address(page) + offset);
4135         return dma_map_page(dev->dma_device, page, offset, size, direction);
4136 }
4137 
4138 /**
4139  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4140  * @dev: The device for which the DMA address was created
4141  * @addr: The DMA address
4142  * @size: The size of the region in bytes
4143  * @direction: The direction of the DMA
4144  */
4145 static inline void ib_dma_unmap_page(struct ib_device *dev,
4146                                      u64 addr, size_t size,
4147                                      enum dma_data_direction direction)
4148 {
4149         if (!ib_uses_virt_dma(dev))
4150                 dma_unmap_page(dev->dma_device, addr, size, direction);
4151 }
4152 
4153 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4154 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4155                                       struct scatterlist *sg, int nents,
4156                                       enum dma_data_direction direction,
4157                                       unsigned long dma_attrs)
4158 {
4159         if (ib_uses_virt_dma(dev))
4160                 return ib_dma_virt_map_sg(dev, sg, nents);
4161         return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4162                                 dma_attrs);
4163 }
4164 
4165 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4166                                          struct scatterlist *sg, int nents,
4167                                          enum dma_data_direction direction,
4168                                          unsigned long dma_attrs)
4169 {
4170         if (!ib_uses_virt_dma(dev))
4171                 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4172                                    dma_attrs);
4173 }
4174 
4175 /**
4176  * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4177  * @dev: The device for which the DMA addresses are to be created
4178  * @sg: The sg_table object describing the buffer
4179  * @direction: The direction of the DMA
4180  * @attrs: Optional DMA attributes for the map operation
4181  */
4182 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4183                                            struct sg_table *sgt,
4184                                            enum dma_data_direction direction,
4185                                            unsigned long dma_attrs)
4186 {
4187         int nents;
4188 
4189         if (ib_uses_virt_dma(dev)) {
4190                 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4191                 if (!nents)
4192                         return -EIO;
4193                 sgt->nents = nents;
4194                 return 0;
4195         }
4196         return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4197 }
4198 
4199 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4200                                               struct sg_table *sgt,
4201                                               enum dma_data_direction direction,
4202                                               unsigned long dma_attrs)
4203 {
4204         if (!ib_uses_virt_dma(dev))
4205                 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4206 }
4207 
4208 /**
4209  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4210  * @dev: The device for which the DMA addresses are to be created
4211  * @sg: The array of scatter/gather entries
4212  * @nents: The number of scatter/gather entries
4213  * @direction: The direction of the DMA
4214  */
4215 static inline int ib_dma_map_sg(struct ib_device *dev,
4216                                 struct scatterlist *sg, int nents,
4217                                 enum dma_data_direction direction)
4218 {
4219         return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4220 }
4221 
4222 /**
4223  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4224  * @dev: The device for which the DMA addresses were created
4225  * @sg: The array of scatter/gather entries
4226  * @nents: The number of scatter/gather entries
4227  * @direction: The direction of the DMA
4228  */
4229 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4230                                    struct scatterlist *sg, int nents,
4231                                    enum dma_data_direction direction)
4232 {
4233         ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4234 }
4235 
4236 /**
4237  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4238  * @dev: The device to query
4239  *
4240  * The returned value represents a size in bytes.
4241  */
4242 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4243 {
4244         if (ib_uses_virt_dma(dev))
4245                 return UINT_MAX;
4246         return dma_get_max_seg_size(dev->dma_device);
4247 }
4248 
4249 /**
4250  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4251  * @dev: The device for which the DMA address was created
4252  * @addr: The DMA address
4253  * @size: The size of the region in bytes
4254  * @dir: The direction of the DMA
4255  */
4256 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4257                                               u64 addr,
4258                                               size_t size,
4259                                               enum dma_data_direction dir)
4260 {
4261         if (!ib_uses_virt_dma(dev))
4262                 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4263 }
4264 
4265 /**
4266  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4267  * @dev: The device for which the DMA address was created
4268  * @addr: The DMA address
4269  * @size: The size of the region in bytes
4270  * @dir: The direction of the DMA
4271  */
4272 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4273                                                  u64 addr,
4274                                                  size_t size,
4275                                                  enum dma_data_direction dir)
4276 {
4277         if (!ib_uses_virt_dma(dev))
4278                 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4279 }
4280 
4281 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4282  * space. This function should be called when 'current' is the owning MM.
4283  */
4284 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4285                              u64 virt_addr, int mr_access_flags);
4286 
4287 /* ib_advise_mr -  give an advice about an address range in a memory region */
4288 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4289                  u32 flags, struct ib_sge *sg_list, u32 num_sge);
4290 /**
4291  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4292  *   HCA translation table.
4293  * @mr: The memory region to deregister.
4294  * @udata: Valid user data or NULL for kernel object
4295  *
4296  * This function can fail, if the memory region has memory windows bound to it.
4297  */
4298 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4299 
4300 /**
4301  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4302  *   HCA translation table.
4303  * @mr: The memory region to deregister.
4304  *
4305  * This function can fail, if the memory region has memory windows bound to it.
4306  *
4307  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4308  */
4309 static inline int ib_dereg_mr(struct ib_mr *mr)
4310 {
4311         return ib_dereg_mr_user(mr, NULL);
4312 }
4313 
4314 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4315                           u32 max_num_sg);
4316 
4317 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4318                                     u32 max_num_data_sg,
4319                                     u32 max_num_meta_sg);
4320 
4321 /**
4322  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4323  *   R_Key and L_Key.
4324  * @mr - struct ib_mr pointer to be updated.
4325  * @newkey - new key to be used.
4326  */
4327 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4328 {
4329         mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4330         mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4331 }
4332 
4333 /**
4334  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4335  * for calculating a new rkey for type 2 memory windows.
4336  * @rkey - the rkey to increment.
4337  */
4338 static inline u32 ib_inc_rkey(u32 rkey)
4339 {
4340         const u32 mask = 0x000000ff;
4341         return ((rkey + 1) & mask) | (rkey & ~mask);
4342 }
4343 
4344 /**
4345  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4346  * @qp: QP to attach to the multicast group.  The QP must be type
4347  *   IB_QPT_UD.
4348  * @gid: Multicast group GID.
4349  * @lid: Multicast group LID in host byte order.
4350  *
4351  * In order to send and receive multicast packets, subnet
4352  * administration must have created the multicast group and configured
4353  * the fabric appropriately.  The port associated with the specified
4354  * QP must also be a member of the multicast group.
4355  */
4356 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4357 
4358 /**
4359  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4360  * @qp: QP to detach from the multicast group.
4361  * @gid: Multicast group GID.
4362  * @lid: Multicast group LID in host byte order.
4363  */
4364 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4365 
4366 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4367                                    struct inode *inode, struct ib_udata *udata);
4368 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4369 
4370 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4371                                      unsigned int flags)
4372 {
4373         u64 device_cap = ib_dev->attrs.device_cap_flags;
4374 
4375         /*
4376          * Local write permission is required if remote write or
4377          * remote atomic permission is also requested.
4378          */
4379         if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4380             !(flags & IB_ACCESS_LOCAL_WRITE))
4381                 return -EINVAL;
4382 
4383         if (flags & ~IB_ACCESS_SUPPORTED)
4384                 return -EINVAL;
4385 
4386         if (flags & IB_ACCESS_ON_DEMAND &&
4387             !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4388                 return -EOPNOTSUPP;
4389 
4390         if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4391             !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4392             (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4393             !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4394                 return -EOPNOTSUPP;
4395 
4396         return 0;
4397 }
4398 
4399 static inline bool ib_access_writable(int access_flags)
4400 {
4401         /*
4402          * We have writable memory backing the MR if any of the following
4403          * access flags are set.  "Local write" and "remote write" obviously
4404          * require write access.  "Remote atomic" can do things like fetch and
4405          * add, which will modify memory, and "MW bind" can change permissions
4406          * by binding a window.
4407          */
4408         return access_flags &
4409                 (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4410                  IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4411 }
4412 
4413 /**
4414  * ib_check_mr_status: lightweight check of MR status.
4415  *     This routine may provide status checks on a selected
4416  *     ib_mr. first use is for signature status check.
4417  *
4418  * @mr: A memory region.
4419  * @check_mask: Bitmask of which checks to perform from
4420  *     ib_mr_status_check enumeration.
4421  * @mr_status: The container of relevant status checks.
4422  *     failed checks will be indicated in the status bitmask
4423  *     and the relevant info shall be in the error item.
4424  */
4425 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4426                        struct ib_mr_status *mr_status);
4427 
4428 /**
4429  * ib_device_try_get: Hold a registration lock
4430  * device: The device to lock
4431  *
4432  * A device under an active registration lock cannot become unregistered. It
4433  * is only possible to obtain a registration lock on a device that is fully
4434  * registered, otherwise this function returns false.
4435  *
4436  * The registration lock is only necessary for actions which require the
4437  * device to still be registered. Uses that only require the device pointer to
4438  * be valid should use get_device(&ibdev->dev) to hold the memory.
4439  *
4440  */
4441 static inline bool ib_device_try_get(struct ib_device *dev)
4442 {
4443         return refcount_inc_not_zero(&dev->refcount);
4444 }
4445 
4446 void ib_device_put(struct ib_device *device);
4447 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4448                                           enum rdma_driver_id driver_id);
4449 struct ib_device *ib_device_get_by_name(const char *name,
4450                                         enum rdma_driver_id driver_id);
4451 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4452                                             u16 pkey, const union ib_gid *gid,
4453                                             const struct sockaddr *addr);
4454 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4455                          unsigned int port);
4456 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4457                            struct ib_wq_init_attr *init_attr);
4458 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4459 
4460 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4461                  unsigned int *sg_offset, unsigned int page_size);
4462 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4463                     int data_sg_nents, unsigned int *data_sg_offset,
4464                     struct scatterlist *meta_sg, int meta_sg_nents,
4465                     unsigned int *meta_sg_offset, unsigned int page_size);
4466 
4467 static inline int
4468 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4469                   unsigned int *sg_offset, unsigned int page_size)
4470 {
4471         int n;
4472 
4473         n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4474         mr->iova = 0;
4475 
4476         return n;
4477 }
4478 
4479 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4480                 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4481 
4482 void ib_drain_rq(struct ib_qp *qp);
4483 void ib_drain_sq(struct ib_qp *qp);
4484 void ib_drain_qp(struct ib_qp *qp);
4485 
4486 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4487                      u8 *width);
4488 
4489 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4490 {
4491         if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4492                 return attr->roce.dmac;
4493         return NULL;
4494 }
4495 
4496 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4497 {
4498         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499                 attr->ib.dlid = (u16)dlid;
4500         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501                 attr->opa.dlid = dlid;
4502 }
4503 
4504 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4505 {
4506         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4507                 return attr->ib.dlid;
4508         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4509                 return attr->opa.dlid;
4510         return 0;
4511 }
4512 
4513 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4514 {
4515         attr->sl = sl;
4516 }
4517 
4518 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4519 {
4520         return attr->sl;
4521 }
4522 
4523 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4524                                          u8 src_path_bits)
4525 {
4526         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4527                 attr->ib.src_path_bits = src_path_bits;
4528         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4529                 attr->opa.src_path_bits = src_path_bits;
4530 }
4531 
4532 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4533 {
4534         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4535                 return attr->ib.src_path_bits;
4536         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4537                 return attr->opa.src_path_bits;
4538         return 0;
4539 }
4540 
4541 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4542                                         bool make_grd)
4543 {
4544         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4545                 attr->opa.make_grd = make_grd;
4546 }
4547 
4548 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4549 {
4550         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4551                 return attr->opa.make_grd;
4552         return false;
4553 }
4554 
4555 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4556 {
4557         attr->port_num = port_num;
4558 }
4559 
4560 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4561 {
4562         return attr->port_num;
4563 }
4564 
4565 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4566                                            u8 static_rate)
4567 {
4568         attr->static_rate = static_rate;
4569 }
4570 
4571 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4572 {
4573         return attr->static_rate;
4574 }
4575 
4576 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4577                                         enum ib_ah_flags flag)
4578 {
4579         attr->ah_flags = flag;
4580 }
4581 
4582 static inline enum ib_ah_flags
4583                 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4584 {
4585         return attr->ah_flags;
4586 }
4587 
4588 static inline const struct ib_global_route
4589                 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4590 {
4591         return &attr->grh;
4592 }
4593 
4594 /*To retrieve and modify the grh */
4595 static inline struct ib_global_route
4596                 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4597 {
4598         return &attr->grh;
4599 }
4600 
4601 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4602 {
4603         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4604 
4605         memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4606 }
4607 
4608 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4609                                              __be64 prefix)
4610 {
4611         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4612 
4613         grh->dgid.global.subnet_prefix = prefix;
4614 }
4615 
4616 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4617                                             __be64 if_id)
4618 {
4619         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4620 
4621         grh->dgid.global.interface_id = if_id;
4622 }
4623 
4624 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4625                                    union ib_gid *dgid, u32 flow_label,
4626                                    u8 sgid_index, u8 hop_limit,
4627                                    u8 traffic_class)
4628 {
4629         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4630 
4631         attr->ah_flags = IB_AH_GRH;
4632         if (dgid)
4633                 grh->dgid = *dgid;
4634         grh->flow_label = flow_label;
4635         grh->sgid_index = sgid_index;
4636         grh->hop_limit = hop_limit;
4637         grh->traffic_class = traffic_class;
4638         grh->sgid_attr = NULL;
4639 }
4640 
4641 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4642 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4643                              u32 flow_label, u8 hop_limit, u8 traffic_class,
4644                              const struct ib_gid_attr *sgid_attr);
4645 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4646                        const struct rdma_ah_attr *src);
4647 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4648                           const struct rdma_ah_attr *new);
4649 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4650 
4651 /**
4652  * rdma_ah_find_type - Return address handle type.
4653  *
4654  * @dev: Device to be checked
4655  * @port_num: Port number
4656  */
4657 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4658                                                        u32 port_num)
4659 {
4660         if (rdma_protocol_roce(dev, port_num))
4661                 return RDMA_AH_ATTR_TYPE_ROCE;
4662         if (rdma_protocol_ib(dev, port_num)) {
4663                 if (rdma_cap_opa_ah(dev, port_num))
4664                         return RDMA_AH_ATTR_TYPE_OPA;
4665                 return RDMA_AH_ATTR_TYPE_IB;
4666         }
4667         if (dev->type == RDMA_DEVICE_TYPE_SMI)
4668                 return RDMA_AH_ATTR_TYPE_IB;
4669 
4670         return RDMA_AH_ATTR_TYPE_UNDEFINED;
4671 }
4672 
4673 /**
4674  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4675  *     In the current implementation the only way to
4676  *     get the 32bit lid is from other sources for OPA.
4677  *     For IB, lids will always be 16bits so cast the
4678  *     value accordingly.
4679  *
4680  * @lid: A 32bit LID
4681  */
4682 static inline u16 ib_lid_cpu16(u32 lid)
4683 {
4684         WARN_ON_ONCE(lid & 0xFFFF0000);
4685         return (u16)lid;
4686 }
4687 
4688 /**
4689  * ib_lid_be16 - Return lid in 16bit BE encoding.
4690  *
4691  * @lid: A 32bit LID
4692  */
4693 static inline __be16 ib_lid_be16(u32 lid)
4694 {
4695         WARN_ON_ONCE(lid & 0xFFFF0000);
4696         return cpu_to_be16((u16)lid);
4697 }
4698 
4699 /**
4700  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4701  *   vector
4702  * @device:         the rdma device
4703  * @comp_vector:    index of completion vector
4704  *
4705  * Returns NULL on failure, otherwise a corresponding cpu map of the
4706  * completion vector (returns all-cpus map if the device driver doesn't
4707  * implement get_vector_affinity).
4708  */
4709 static inline const struct cpumask *
4710 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4711 {
4712         if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4713             !device->ops.get_vector_affinity)
4714                 return NULL;
4715 
4716         return device->ops.get_vector_affinity(device, comp_vector);
4717 
4718 }
4719 
4720 /**
4721  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4722  * and add their gids, as needed, to the relevant RoCE devices.
4723  *
4724  * @device:         the rdma device
4725  */
4726 void rdma_roce_rescan_device(struct ib_device *ibdev);
4727 
4728 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4729 
4730 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4731 
4732 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4733                                      enum rdma_netdev_t type, const char *name,
4734                                      unsigned char name_assign_type,
4735                                      void (*setup)(struct net_device *));
4736 
4737 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4738                      enum rdma_netdev_t type, const char *name,
4739                      unsigned char name_assign_type,
4740                      void (*setup)(struct net_device *),
4741                      struct net_device *netdev);
4742 
4743 /**
4744  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4745  *
4746  * @device:     device pointer for which ib_device pointer to retrieve
4747  *
4748  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4749  *
4750  */
4751 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4752 {
4753         struct ib_core_device *coredev =
4754                 container_of(device, struct ib_core_device, dev);
4755 
4756         return coredev->owner;
4757 }
4758 
4759 /**
4760  * ibdev_to_node - return the NUMA node for a given ib_device
4761  * @dev:        device to get the NUMA node for.
4762  */
4763 static inline int ibdev_to_node(struct ib_device *ibdev)
4764 {
4765         struct device *parent = ibdev->dev.parent;
4766 
4767         if (!parent)
4768                 return NUMA_NO_NODE;
4769         return dev_to_node(parent);
4770 }
4771 
4772 /**
4773  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4774  *                             ib_device holder structure from device pointer.
4775  *
4776  * NOTE: New drivers should not make use of this API; This API is only for
4777  * existing drivers who have exposed sysfs entries using
4778  * ops->device_group.
4779  */
4780 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4781         container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4782 
4783 bool rdma_dev_access_netns(const struct ib_device *device,
4784                            const struct net *net);
4785 
4786 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4787 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4788 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4789 
4790 /**
4791  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4792  *                               on the flow_label
4793  *
4794  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4795  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4796  * convention.
4797  */
4798 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4799 {
4800         u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4801 
4802         fl_low ^= fl_high >> 14;
4803         return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4804 }
4805 
4806 /**
4807  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4808  *                        local and remote qpn values
4809  *
4810  * This function folded the multiplication results of two qpns, 24 bit each,
4811  * fields, and converts it to a 20 bit results.
4812  *
4813  * This function will create symmetric flow_label value based on the local
4814  * and remote qpn values. this will allow both the requester and responder
4815  * to calculate the same flow_label for a given connection.
4816  *
4817  * This helper function should be used by driver in case the upper layer
4818  * provide a zero flow_label value. This is to improve entropy of RDMA
4819  * traffic in the network.
4820  */
4821 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4822 {
4823         u64 v = (u64)lqpn * rqpn;
4824 
4825         v ^= v >> 20;
4826         v ^= v >> 40;
4827 
4828         return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4829 }
4830 
4831 /**
4832  * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4833  *                      label. If flow label is not defined in GRH then
4834  *                      calculate it based on lqpn/rqpn.
4835  *
4836  * @fl:                 flow label from GRH
4837  * @lqpn:               local qp number
4838  * @rqpn:               remote qp number
4839  */
4840 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4841 {
4842         if (!fl)
4843                 fl = rdma_calc_flow_label(lqpn, rqpn);
4844 
4845         return rdma_flow_label_to_udp_sport(fl);
4846 }
4847 
4848 const struct ib_port_immutable*
4849 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4850 
4851 /** ib_add_sub_device - Add a sub IB device on an existing one
4852  *
4853  * @parent: The IB device that needs to add a sub device
4854  * @type: The type of the new sub device
4855  * @name: The name of the new sub device
4856  *
4857  *
4858  * Return 0 on success, an error code otherwise
4859  */
4860 int ib_add_sub_device(struct ib_device *parent,
4861                       enum rdma_nl_dev_type type,
4862                       const char *name);
4863 
4864 
4865 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4866  *
4867  * @sub: The sub device that is going to be deleted
4868  *
4869  * Return 0 on success, an error code otherwise
4870  */
4871 int ib_del_sub_device_and_put(struct ib_device *sub);
4872 
4873 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4874 {
4875         ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4876 }
4877 
4878 #endif /* IB_VERBS_H */
4879 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php