1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 238 239 /* Reserved, old SEND_W_INV = 1 << 16,*/ 240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 241 /* 242 * Devices should set IB_DEVICE_UD_IP_SUM if they support 243 * insertion of UDP and TCP checksum on outgoing UD IPoIB 244 * messages and can verify the validity of checksum for 245 * incoming messages. Setting this flag implies that the 246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 247 */ 248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 250 251 /* 252 * This device supports the IB "base memory management extension", 253 * which includes support for fast registrations (IB_WR_REG_MR, 254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 255 * also be set by any iWarp device which must support FRs to comply 256 * to the iWarp verbs spec. iWarp devices also support the 257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 258 * stag. 259 */ 260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 266 IB_DEVICE_MANAGED_FLOW_STEERING = 267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 270 /* The device supports padding incoming writes to cacheline. */ 271 IB_DEVICE_PCI_WRITE_END_PADDING = 272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 273 /* Placement type attributes */ 274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 277 }; 278 279 enum ib_kernel_cap_flags { 280 /* 281 * This device supports a per-device lkey or stag that can be 282 * used without performing a memory registration for the local 283 * memory. Note that ULPs should never check this flag, but 284 * instead of use the local_dma_lkey flag in the ib_pd structure, 285 * which will always contain a usable lkey. 286 */ 287 IBK_LOCAL_DMA_LKEY = 1 << 0, 288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 289 IBK_INTEGRITY_HANDOVER = 1 << 1, 290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 291 IBK_ON_DEMAND_PAGING = 1 << 2, 292 /* IB_MR_TYPE_SG_GAPS is supported */ 293 IBK_SG_GAPS_REG = 1 << 3, 294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 295 IBK_ALLOW_USER_UNREG = 1 << 4, 296 297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 300 IBK_UD_TSO = 1 << 6, 301 /* iopib will use the device ops: 302 * get_vf_config 303 * get_vf_guid 304 * get_vf_stats 305 * set_vf_guid 306 * set_vf_link_state 307 */ 308 IBK_VIRTUAL_FUNCTION = 1 << 7, 309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 310 IBK_RDMA_NETDEV_OPA = 1 << 8, 311 }; 312 313 enum ib_atomic_cap { 314 IB_ATOMIC_NONE, 315 IB_ATOMIC_HCA, 316 IB_ATOMIC_GLOB 317 }; 318 319 enum ib_odp_general_cap_bits { 320 IB_ODP_SUPPORT = 1 << 0, 321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 322 }; 323 324 enum ib_odp_transport_cap_bits { 325 IB_ODP_SUPPORT_SEND = 1 << 0, 326 IB_ODP_SUPPORT_RECV = 1 << 1, 327 IB_ODP_SUPPORT_WRITE = 1 << 2, 328 IB_ODP_SUPPORT_READ = 1 << 3, 329 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 331 }; 332 333 struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341 }; 342 343 struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351 }; 352 353 enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356 }; 357 358 struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369 }; 370 371 struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375 }; 376 377 enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379 }; 380 381 struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384 }; 385 386 struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390 }; 391 392 struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396 }; 397 398 struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453 }; 454 455 enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461 }; 462 463 enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466 }; 467 468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469 { 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478 } 479 480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481 { 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492 } 493 494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495 { 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504 } 505 506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507 { 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514 } 515 516 enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523 }; 524 525 enum ib_port_phys_state { 526 IB_PORT_PHYS_STATE_SLEEP = 1, 527 IB_PORT_PHYS_STATE_POLLING = 2, 528 IB_PORT_PHYS_STATE_DISABLED = 3, 529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 530 IB_PORT_PHYS_STATE_LINK_UP = 5, 531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 532 IB_PORT_PHYS_STATE_PHY_TEST = 7, 533 }; 534 535 enum ib_port_width { 536 IB_WIDTH_1X = 1, 537 IB_WIDTH_2X = 16, 538 IB_WIDTH_4X = 2, 539 IB_WIDTH_8X = 4, 540 IB_WIDTH_12X = 8 541 }; 542 543 static inline int ib_width_enum_to_int(enum ib_port_width width) 544 { 545 switch (width) { 546 case IB_WIDTH_1X: return 1; 547 case IB_WIDTH_2X: return 2; 548 case IB_WIDTH_4X: return 4; 549 case IB_WIDTH_8X: return 8; 550 case IB_WIDTH_12X: return 12; 551 default: return -1; 552 } 553 } 554 555 enum ib_port_speed { 556 IB_SPEED_SDR = 1, 557 IB_SPEED_DDR = 2, 558 IB_SPEED_QDR = 4, 559 IB_SPEED_FDR10 = 8, 560 IB_SPEED_FDR = 16, 561 IB_SPEED_EDR = 32, 562 IB_SPEED_HDR = 64, 563 IB_SPEED_NDR = 128, 564 IB_SPEED_XDR = 256, 565 }; 566 567 enum ib_stat_flag { 568 IB_STAT_FLAG_OPTIONAL = 1 << 0, 569 }; 570 571 /** 572 * struct rdma_stat_desc 573 * @name - The name of the counter 574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 575 * @priv - Driver private information; Core code should not use 576 */ 577 struct rdma_stat_desc { 578 const char *name; 579 unsigned int flags; 580 const void *priv; 581 }; 582 583 /** 584 * struct rdma_hw_stats 585 * @lock - Mutex to protect parallel write access to lifespan and values 586 * of counters, which are 64bits and not guaranteed to be written 587 * atomicaly on 32bits systems. 588 * @timestamp - Used by the core code to track when the last update was 589 * @lifespan - Used by the core code to determine how old the counters 590 * should be before being updated again. Stored in jiffies, defaults 591 * to 10 milliseconds, drivers can override the default be specifying 592 * their own value during their allocation routine. 593 * @descs - Array of pointers to static descriptors used for the counters 594 * in directory. 595 * @is_disabled - A bitmap to indicate each counter is currently disabled 596 * or not. 597 * @num_counters - How many hardware counters there are. If name is 598 * shorter than this number, a kernel oops will result. Driver authors 599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 600 * in their code to prevent this. 601 * @value - Array of u64 counters that are accessed by the sysfs code and 602 * filled in by the drivers get_stats routine 603 */ 604 struct rdma_hw_stats { 605 struct mutex lock; /* Protect lifespan and values[] */ 606 unsigned long timestamp; 607 unsigned long lifespan; 608 const struct rdma_stat_desc *descs; 609 unsigned long *is_disabled; 610 int num_counters; 611 u64 value[] __counted_by(num_counters); 612 }; 613 614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 615 616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 617 const struct rdma_stat_desc *descs, int num_counters, 618 unsigned long lifespan); 619 620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 621 622 /* Define bits for the various functionality this port needs to be supported by 623 * the core. 624 */ 625 /* Management 0x00000FFF */ 626 #define RDMA_CORE_CAP_IB_MAD 0x00000001 627 #define RDMA_CORE_CAP_IB_SMI 0x00000002 628 #define RDMA_CORE_CAP_IB_CM 0x00000004 629 #define RDMA_CORE_CAP_IW_CM 0x00000008 630 #define RDMA_CORE_CAP_IB_SA 0x00000010 631 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 632 633 /* Address format 0x000FF000 */ 634 #define RDMA_CORE_CAP_AF_IB 0x00001000 635 #define RDMA_CORE_CAP_ETH_AH 0x00002000 636 #define RDMA_CORE_CAP_OPA_AH 0x00004000 637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 638 639 /* Protocol 0xFFF00000 */ 640 #define RDMA_CORE_CAP_PROT_IB 0x00100000 641 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 642 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 644 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 645 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 646 647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 648 | RDMA_CORE_CAP_PROT_ROCE \ 649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 650 651 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 652 | RDMA_CORE_CAP_IB_MAD \ 653 | RDMA_CORE_CAP_IB_SMI \ 654 | RDMA_CORE_CAP_IB_CM \ 655 | RDMA_CORE_CAP_IB_SA \ 656 | RDMA_CORE_CAP_AF_IB) 657 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 658 | RDMA_CORE_CAP_IB_MAD \ 659 | RDMA_CORE_CAP_IB_CM \ 660 | RDMA_CORE_CAP_AF_IB \ 661 | RDMA_CORE_CAP_ETH_AH) 662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 664 | RDMA_CORE_CAP_IB_MAD \ 665 | RDMA_CORE_CAP_IB_CM \ 666 | RDMA_CORE_CAP_AF_IB \ 667 | RDMA_CORE_CAP_ETH_AH) 668 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 669 | RDMA_CORE_CAP_IW_CM) 670 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 671 | RDMA_CORE_CAP_OPA_MAD) 672 673 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 674 675 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 676 677 struct ib_port_attr { 678 u64 subnet_prefix; 679 enum ib_port_state state; 680 enum ib_mtu max_mtu; 681 enum ib_mtu active_mtu; 682 u32 phys_mtu; 683 int gid_tbl_len; 684 unsigned int ip_gids:1; 685 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 686 u32 port_cap_flags; 687 u32 max_msg_sz; 688 u32 bad_pkey_cntr; 689 u32 qkey_viol_cntr; 690 u16 pkey_tbl_len; 691 u32 sm_lid; 692 u32 lid; 693 u8 lmc; 694 u8 max_vl_num; 695 u8 sm_sl; 696 u8 subnet_timeout; 697 u8 init_type_reply; 698 u8 active_width; 699 u16 active_speed; 700 u8 phys_state; 701 u16 port_cap_flags2; 702 }; 703 704 enum ib_device_modify_flags { 705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 707 }; 708 709 #define IB_DEVICE_NODE_DESC_MAX 64 710 711 struct ib_device_modify { 712 u64 sys_image_guid; 713 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 714 }; 715 716 enum ib_port_modify_flags { 717 IB_PORT_SHUTDOWN = 1, 718 IB_PORT_INIT_TYPE = (1<<2), 719 IB_PORT_RESET_QKEY_CNTR = (1<<3), 720 IB_PORT_OPA_MASK_CHG = (1<<4) 721 }; 722 723 struct ib_port_modify { 724 u32 set_port_cap_mask; 725 u32 clr_port_cap_mask; 726 u8 init_type; 727 }; 728 729 enum ib_event_type { 730 IB_EVENT_CQ_ERR, 731 IB_EVENT_QP_FATAL, 732 IB_EVENT_QP_REQ_ERR, 733 IB_EVENT_QP_ACCESS_ERR, 734 IB_EVENT_COMM_EST, 735 IB_EVENT_SQ_DRAINED, 736 IB_EVENT_PATH_MIG, 737 IB_EVENT_PATH_MIG_ERR, 738 IB_EVENT_DEVICE_FATAL, 739 IB_EVENT_PORT_ACTIVE, 740 IB_EVENT_PORT_ERR, 741 IB_EVENT_LID_CHANGE, 742 IB_EVENT_PKEY_CHANGE, 743 IB_EVENT_SM_CHANGE, 744 IB_EVENT_SRQ_ERR, 745 IB_EVENT_SRQ_LIMIT_REACHED, 746 IB_EVENT_QP_LAST_WQE_REACHED, 747 IB_EVENT_CLIENT_REREGISTER, 748 IB_EVENT_GID_CHANGE, 749 IB_EVENT_WQ_FATAL, 750 }; 751 752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 753 754 struct ib_event { 755 struct ib_device *device; 756 union { 757 struct ib_cq *cq; 758 struct ib_qp *qp; 759 struct ib_srq *srq; 760 struct ib_wq *wq; 761 u32 port_num; 762 } element; 763 enum ib_event_type event; 764 }; 765 766 struct ib_event_handler { 767 struct ib_device *device; 768 void (*handler)(struct ib_event_handler *, struct ib_event *); 769 struct list_head list; 770 }; 771 772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 773 do { \ 774 (_ptr)->device = _device; \ 775 (_ptr)->handler = _handler; \ 776 INIT_LIST_HEAD(&(_ptr)->list); \ 777 } while (0) 778 779 struct ib_global_route { 780 const struct ib_gid_attr *sgid_attr; 781 union ib_gid dgid; 782 u32 flow_label; 783 u8 sgid_index; 784 u8 hop_limit; 785 u8 traffic_class; 786 }; 787 788 struct ib_grh { 789 __be32 version_tclass_flow; 790 __be16 paylen; 791 u8 next_hdr; 792 u8 hop_limit; 793 union ib_gid sgid; 794 union ib_gid dgid; 795 }; 796 797 union rdma_network_hdr { 798 struct ib_grh ibgrh; 799 struct { 800 /* The IB spec states that if it's IPv4, the header 801 * is located in the last 20 bytes of the header. 802 */ 803 u8 reserved[20]; 804 struct iphdr roce4grh; 805 }; 806 }; 807 808 #define IB_QPN_MASK 0xFFFFFF 809 810 enum { 811 IB_MULTICAST_QPN = 0xffffff 812 }; 813 814 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 815 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 816 817 enum ib_ah_flags { 818 IB_AH_GRH = 1 819 }; 820 821 enum ib_rate { 822 IB_RATE_PORT_CURRENT = 0, 823 IB_RATE_2_5_GBPS = 2, 824 IB_RATE_5_GBPS = 5, 825 IB_RATE_10_GBPS = 3, 826 IB_RATE_20_GBPS = 6, 827 IB_RATE_30_GBPS = 4, 828 IB_RATE_40_GBPS = 7, 829 IB_RATE_60_GBPS = 8, 830 IB_RATE_80_GBPS = 9, 831 IB_RATE_120_GBPS = 10, 832 IB_RATE_14_GBPS = 11, 833 IB_RATE_56_GBPS = 12, 834 IB_RATE_112_GBPS = 13, 835 IB_RATE_168_GBPS = 14, 836 IB_RATE_25_GBPS = 15, 837 IB_RATE_100_GBPS = 16, 838 IB_RATE_200_GBPS = 17, 839 IB_RATE_300_GBPS = 18, 840 IB_RATE_28_GBPS = 19, 841 IB_RATE_50_GBPS = 20, 842 IB_RATE_400_GBPS = 21, 843 IB_RATE_600_GBPS = 22, 844 IB_RATE_800_GBPS = 23, 845 }; 846 847 /** 848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 851 * @rate: rate to convert. 852 */ 853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 854 855 /** 856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 857 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 858 * @rate: rate to convert. 859 */ 860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 861 862 863 /** 864 * enum ib_mr_type - memory region type 865 * @IB_MR_TYPE_MEM_REG: memory region that is used for 866 * normal registration 867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 868 * register any arbitrary sg lists (without 869 * the normal mr constraints - see 870 * ib_map_mr_sg) 871 * @IB_MR_TYPE_DM: memory region that is used for device 872 * memory registration 873 * @IB_MR_TYPE_USER: memory region that is used for the user-space 874 * application 875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 876 * without address translations (VA=PA) 877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 878 * data integrity operations 879 */ 880 enum ib_mr_type { 881 IB_MR_TYPE_MEM_REG, 882 IB_MR_TYPE_SG_GAPS, 883 IB_MR_TYPE_DM, 884 IB_MR_TYPE_USER, 885 IB_MR_TYPE_DMA, 886 IB_MR_TYPE_INTEGRITY, 887 }; 888 889 enum ib_mr_status_check { 890 IB_MR_CHECK_SIG_STATUS = 1, 891 }; 892 893 /** 894 * struct ib_mr_status - Memory region status container 895 * 896 * @fail_status: Bitmask of MR checks status. For each 897 * failed check a corresponding status bit is set. 898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 899 * failure. 900 */ 901 struct ib_mr_status { 902 u32 fail_status; 903 struct ib_sig_err sig_err; 904 }; 905 906 /** 907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 908 * enum. 909 * @mult: multiple to convert. 910 */ 911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 912 913 struct rdma_ah_init_attr { 914 struct rdma_ah_attr *ah_attr; 915 u32 flags; 916 struct net_device *xmit_slave; 917 }; 918 919 enum rdma_ah_attr_type { 920 RDMA_AH_ATTR_TYPE_UNDEFINED, 921 RDMA_AH_ATTR_TYPE_IB, 922 RDMA_AH_ATTR_TYPE_ROCE, 923 RDMA_AH_ATTR_TYPE_OPA, 924 }; 925 926 struct ib_ah_attr { 927 u16 dlid; 928 u8 src_path_bits; 929 }; 930 931 struct roce_ah_attr { 932 u8 dmac[ETH_ALEN]; 933 }; 934 935 struct opa_ah_attr { 936 u32 dlid; 937 u8 src_path_bits; 938 bool make_grd; 939 }; 940 941 struct rdma_ah_attr { 942 struct ib_global_route grh; 943 u8 sl; 944 u8 static_rate; 945 u32 port_num; 946 u8 ah_flags; 947 enum rdma_ah_attr_type type; 948 union { 949 struct ib_ah_attr ib; 950 struct roce_ah_attr roce; 951 struct opa_ah_attr opa; 952 }; 953 }; 954 955 enum ib_wc_status { 956 IB_WC_SUCCESS, 957 IB_WC_LOC_LEN_ERR, 958 IB_WC_LOC_QP_OP_ERR, 959 IB_WC_LOC_EEC_OP_ERR, 960 IB_WC_LOC_PROT_ERR, 961 IB_WC_WR_FLUSH_ERR, 962 IB_WC_MW_BIND_ERR, 963 IB_WC_BAD_RESP_ERR, 964 IB_WC_LOC_ACCESS_ERR, 965 IB_WC_REM_INV_REQ_ERR, 966 IB_WC_REM_ACCESS_ERR, 967 IB_WC_REM_OP_ERR, 968 IB_WC_RETRY_EXC_ERR, 969 IB_WC_RNR_RETRY_EXC_ERR, 970 IB_WC_LOC_RDD_VIOL_ERR, 971 IB_WC_REM_INV_RD_REQ_ERR, 972 IB_WC_REM_ABORT_ERR, 973 IB_WC_INV_EECN_ERR, 974 IB_WC_INV_EEC_STATE_ERR, 975 IB_WC_FATAL_ERR, 976 IB_WC_RESP_TIMEOUT_ERR, 977 IB_WC_GENERAL_ERR 978 }; 979 980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 981 982 enum ib_wc_opcode { 983 IB_WC_SEND = IB_UVERBS_WC_SEND, 984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 990 IB_WC_LSO = IB_UVERBS_WC_TSO, 991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 992 IB_WC_REG_MR, 993 IB_WC_MASKED_COMP_SWAP, 994 IB_WC_MASKED_FETCH_ADD, 995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 996 /* 997 * Set value of IB_WC_RECV so consumers can test if a completion is a 998 * receive by testing (opcode & IB_WC_RECV). 999 */ 1000 IB_WC_RECV = 1 << 7, 1001 IB_WC_RECV_RDMA_WITH_IMM 1002 }; 1003 1004 enum ib_wc_flags { 1005 IB_WC_GRH = 1, 1006 IB_WC_WITH_IMM = (1<<1), 1007 IB_WC_WITH_INVALIDATE = (1<<2), 1008 IB_WC_IP_CSUM_OK = (1<<3), 1009 IB_WC_WITH_SMAC = (1<<4), 1010 IB_WC_WITH_VLAN = (1<<5), 1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1012 }; 1013 1014 struct ib_wc { 1015 union { 1016 u64 wr_id; 1017 struct ib_cqe *wr_cqe; 1018 }; 1019 enum ib_wc_status status; 1020 enum ib_wc_opcode opcode; 1021 u32 vendor_err; 1022 u32 byte_len; 1023 struct ib_qp *qp; 1024 union { 1025 __be32 imm_data; 1026 u32 invalidate_rkey; 1027 } ex; 1028 u32 src_qp; 1029 u32 slid; 1030 int wc_flags; 1031 u16 pkey_index; 1032 u8 sl; 1033 u8 dlid_path_bits; 1034 u32 port_num; /* valid only for DR SMPs on switches */ 1035 u8 smac[ETH_ALEN]; 1036 u16 vlan_id; 1037 u8 network_hdr_type; 1038 }; 1039 1040 enum ib_cq_notify_flags { 1041 IB_CQ_SOLICITED = 1 << 0, 1042 IB_CQ_NEXT_COMP = 1 << 1, 1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1045 }; 1046 1047 enum ib_srq_type { 1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1051 }; 1052 1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1054 { 1055 return srq_type == IB_SRQT_XRC || 1056 srq_type == IB_SRQT_TM; 1057 } 1058 1059 enum ib_srq_attr_mask { 1060 IB_SRQ_MAX_WR = 1 << 0, 1061 IB_SRQ_LIMIT = 1 << 1, 1062 }; 1063 1064 struct ib_srq_attr { 1065 u32 max_wr; 1066 u32 max_sge; 1067 u32 srq_limit; 1068 }; 1069 1070 struct ib_srq_init_attr { 1071 void (*event_handler)(struct ib_event *, void *); 1072 void *srq_context; 1073 struct ib_srq_attr attr; 1074 enum ib_srq_type srq_type; 1075 1076 struct { 1077 struct ib_cq *cq; 1078 union { 1079 struct { 1080 struct ib_xrcd *xrcd; 1081 } xrc; 1082 1083 struct { 1084 u32 max_num_tags; 1085 } tag_matching; 1086 }; 1087 } ext; 1088 }; 1089 1090 struct ib_qp_cap { 1091 u32 max_send_wr; 1092 u32 max_recv_wr; 1093 u32 max_send_sge; 1094 u32 max_recv_sge; 1095 u32 max_inline_data; 1096 1097 /* 1098 * Maximum number of rdma_rw_ctx structures in flight at a time. 1099 * ib_create_qp() will calculate the right amount of needed WRs 1100 * and MRs based on this. 1101 */ 1102 u32 max_rdma_ctxs; 1103 }; 1104 1105 enum ib_sig_type { 1106 IB_SIGNAL_ALL_WR, 1107 IB_SIGNAL_REQ_WR 1108 }; 1109 1110 enum ib_qp_type { 1111 /* 1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1113 * here (and in that order) since the MAD layer uses them as 1114 * indices into a 2-entry table. 1115 */ 1116 IB_QPT_SMI, 1117 IB_QPT_GSI, 1118 1119 IB_QPT_RC = IB_UVERBS_QPT_RC, 1120 IB_QPT_UC = IB_UVERBS_QPT_UC, 1121 IB_QPT_UD = IB_UVERBS_QPT_UD, 1122 IB_QPT_RAW_IPV6, 1123 IB_QPT_RAW_ETHERTYPE, 1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1127 IB_QPT_MAX, 1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1129 /* Reserve a range for qp types internal to the low level driver. 1130 * These qp types will not be visible at the IB core layer, so the 1131 * IB_QPT_MAX usages should not be affected in the core layer 1132 */ 1133 IB_QPT_RESERVED1 = 0x1000, 1134 IB_QPT_RESERVED2, 1135 IB_QPT_RESERVED3, 1136 IB_QPT_RESERVED4, 1137 IB_QPT_RESERVED5, 1138 IB_QPT_RESERVED6, 1139 IB_QPT_RESERVED7, 1140 IB_QPT_RESERVED8, 1141 IB_QPT_RESERVED9, 1142 IB_QPT_RESERVED10, 1143 }; 1144 1145 enum ib_qp_create_flags { 1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1152 IB_QP_CREATE_NETIF_QP = 1 << 5, 1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1154 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1155 IB_QP_CREATE_SCATTER_FCS = 1156 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1157 IB_QP_CREATE_CVLAN_STRIPPING = 1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1160 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1162 /* reserve bits 26-31 for low level drivers' internal use */ 1163 IB_QP_CREATE_RESERVED_START = 1 << 26, 1164 IB_QP_CREATE_RESERVED_END = 1 << 31, 1165 }; 1166 1167 /* 1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1169 * callback to destroy the passed in QP. 1170 */ 1171 1172 struct ib_qp_init_attr { 1173 /* This callback occurs in workqueue context */ 1174 void (*event_handler)(struct ib_event *, void *); 1175 1176 void *qp_context; 1177 struct ib_cq *send_cq; 1178 struct ib_cq *recv_cq; 1179 struct ib_srq *srq; 1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1181 struct ib_qp_cap cap; 1182 enum ib_sig_type sq_sig_type; 1183 enum ib_qp_type qp_type; 1184 u32 create_flags; 1185 1186 /* 1187 * Only needed for special QP types, or when using the RW API. 1188 */ 1189 u32 port_num; 1190 struct ib_rwq_ind_table *rwq_ind_tbl; 1191 u32 source_qpn; 1192 }; 1193 1194 struct ib_qp_open_attr { 1195 void (*event_handler)(struct ib_event *, void *); 1196 void *qp_context; 1197 u32 qp_num; 1198 enum ib_qp_type qp_type; 1199 }; 1200 1201 enum ib_rnr_timeout { 1202 IB_RNR_TIMER_655_36 = 0, 1203 IB_RNR_TIMER_000_01 = 1, 1204 IB_RNR_TIMER_000_02 = 2, 1205 IB_RNR_TIMER_000_03 = 3, 1206 IB_RNR_TIMER_000_04 = 4, 1207 IB_RNR_TIMER_000_06 = 5, 1208 IB_RNR_TIMER_000_08 = 6, 1209 IB_RNR_TIMER_000_12 = 7, 1210 IB_RNR_TIMER_000_16 = 8, 1211 IB_RNR_TIMER_000_24 = 9, 1212 IB_RNR_TIMER_000_32 = 10, 1213 IB_RNR_TIMER_000_48 = 11, 1214 IB_RNR_TIMER_000_64 = 12, 1215 IB_RNR_TIMER_000_96 = 13, 1216 IB_RNR_TIMER_001_28 = 14, 1217 IB_RNR_TIMER_001_92 = 15, 1218 IB_RNR_TIMER_002_56 = 16, 1219 IB_RNR_TIMER_003_84 = 17, 1220 IB_RNR_TIMER_005_12 = 18, 1221 IB_RNR_TIMER_007_68 = 19, 1222 IB_RNR_TIMER_010_24 = 20, 1223 IB_RNR_TIMER_015_36 = 21, 1224 IB_RNR_TIMER_020_48 = 22, 1225 IB_RNR_TIMER_030_72 = 23, 1226 IB_RNR_TIMER_040_96 = 24, 1227 IB_RNR_TIMER_061_44 = 25, 1228 IB_RNR_TIMER_081_92 = 26, 1229 IB_RNR_TIMER_122_88 = 27, 1230 IB_RNR_TIMER_163_84 = 28, 1231 IB_RNR_TIMER_245_76 = 29, 1232 IB_RNR_TIMER_327_68 = 30, 1233 IB_RNR_TIMER_491_52 = 31 1234 }; 1235 1236 enum ib_qp_attr_mask { 1237 IB_QP_STATE = 1, 1238 IB_QP_CUR_STATE = (1<<1), 1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1240 IB_QP_ACCESS_FLAGS = (1<<3), 1241 IB_QP_PKEY_INDEX = (1<<4), 1242 IB_QP_PORT = (1<<5), 1243 IB_QP_QKEY = (1<<6), 1244 IB_QP_AV = (1<<7), 1245 IB_QP_PATH_MTU = (1<<8), 1246 IB_QP_TIMEOUT = (1<<9), 1247 IB_QP_RETRY_CNT = (1<<10), 1248 IB_QP_RNR_RETRY = (1<<11), 1249 IB_QP_RQ_PSN = (1<<12), 1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1251 IB_QP_ALT_PATH = (1<<14), 1252 IB_QP_MIN_RNR_TIMER = (1<<15), 1253 IB_QP_SQ_PSN = (1<<16), 1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1255 IB_QP_PATH_MIG_STATE = (1<<18), 1256 IB_QP_CAP = (1<<19), 1257 IB_QP_DEST_QPN = (1<<20), 1258 IB_QP_RESERVED1 = (1<<21), 1259 IB_QP_RESERVED2 = (1<<22), 1260 IB_QP_RESERVED3 = (1<<23), 1261 IB_QP_RESERVED4 = (1<<24), 1262 IB_QP_RATE_LIMIT = (1<<25), 1263 1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1265 }; 1266 1267 enum ib_qp_state { 1268 IB_QPS_RESET, 1269 IB_QPS_INIT, 1270 IB_QPS_RTR, 1271 IB_QPS_RTS, 1272 IB_QPS_SQD, 1273 IB_QPS_SQE, 1274 IB_QPS_ERR 1275 }; 1276 1277 enum ib_mig_state { 1278 IB_MIG_MIGRATED, 1279 IB_MIG_REARM, 1280 IB_MIG_ARMED 1281 }; 1282 1283 enum ib_mw_type { 1284 IB_MW_TYPE_1 = 1, 1285 IB_MW_TYPE_2 = 2 1286 }; 1287 1288 struct ib_qp_attr { 1289 enum ib_qp_state qp_state; 1290 enum ib_qp_state cur_qp_state; 1291 enum ib_mtu path_mtu; 1292 enum ib_mig_state path_mig_state; 1293 u32 qkey; 1294 u32 rq_psn; 1295 u32 sq_psn; 1296 u32 dest_qp_num; 1297 int qp_access_flags; 1298 struct ib_qp_cap cap; 1299 struct rdma_ah_attr ah_attr; 1300 struct rdma_ah_attr alt_ah_attr; 1301 u16 pkey_index; 1302 u16 alt_pkey_index; 1303 u8 en_sqd_async_notify; 1304 u8 sq_draining; 1305 u8 max_rd_atomic; 1306 u8 max_dest_rd_atomic; 1307 u8 min_rnr_timer; 1308 u32 port_num; 1309 u8 timeout; 1310 u8 retry_cnt; 1311 u8 rnr_retry; 1312 u32 alt_port_num; 1313 u8 alt_timeout; 1314 u32 rate_limit; 1315 struct net_device *xmit_slave; 1316 }; 1317 1318 enum ib_wr_opcode { 1319 /* These are shared with userspace */ 1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1322 IB_WR_SEND = IB_UVERBS_WR_SEND, 1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1328 IB_WR_LSO = IB_UVERBS_WR_TSO, 1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1338 1339 /* These are kernel only and can not be issued by userspace */ 1340 IB_WR_REG_MR = 0x20, 1341 IB_WR_REG_MR_INTEGRITY, 1342 1343 /* reserve values for low level drivers' internal use. 1344 * These values will not be used at all in the ib core layer. 1345 */ 1346 IB_WR_RESERVED1 = 0xf0, 1347 IB_WR_RESERVED2, 1348 IB_WR_RESERVED3, 1349 IB_WR_RESERVED4, 1350 IB_WR_RESERVED5, 1351 IB_WR_RESERVED6, 1352 IB_WR_RESERVED7, 1353 IB_WR_RESERVED8, 1354 IB_WR_RESERVED9, 1355 IB_WR_RESERVED10, 1356 }; 1357 1358 enum ib_send_flags { 1359 IB_SEND_FENCE = 1, 1360 IB_SEND_SIGNALED = (1<<1), 1361 IB_SEND_SOLICITED = (1<<2), 1362 IB_SEND_INLINE = (1<<3), 1363 IB_SEND_IP_CSUM = (1<<4), 1364 1365 /* reserve bits 26-31 for low level drivers' internal use */ 1366 IB_SEND_RESERVED_START = (1 << 26), 1367 IB_SEND_RESERVED_END = (1 << 31), 1368 }; 1369 1370 struct ib_sge { 1371 u64 addr; 1372 u32 length; 1373 u32 lkey; 1374 }; 1375 1376 struct ib_cqe { 1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1378 }; 1379 1380 struct ib_send_wr { 1381 struct ib_send_wr *next; 1382 union { 1383 u64 wr_id; 1384 struct ib_cqe *wr_cqe; 1385 }; 1386 struct ib_sge *sg_list; 1387 int num_sge; 1388 enum ib_wr_opcode opcode; 1389 int send_flags; 1390 union { 1391 __be32 imm_data; 1392 u32 invalidate_rkey; 1393 } ex; 1394 }; 1395 1396 struct ib_rdma_wr { 1397 struct ib_send_wr wr; 1398 u64 remote_addr; 1399 u32 rkey; 1400 }; 1401 1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1403 { 1404 return container_of(wr, struct ib_rdma_wr, wr); 1405 } 1406 1407 struct ib_atomic_wr { 1408 struct ib_send_wr wr; 1409 u64 remote_addr; 1410 u64 compare_add; 1411 u64 swap; 1412 u64 compare_add_mask; 1413 u64 swap_mask; 1414 u32 rkey; 1415 }; 1416 1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1418 { 1419 return container_of(wr, struct ib_atomic_wr, wr); 1420 } 1421 1422 struct ib_ud_wr { 1423 struct ib_send_wr wr; 1424 struct ib_ah *ah; 1425 void *header; 1426 int hlen; 1427 int mss; 1428 u32 remote_qpn; 1429 u32 remote_qkey; 1430 u16 pkey_index; /* valid for GSI only */ 1431 u32 port_num; /* valid for DR SMPs on switch only */ 1432 }; 1433 1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1435 { 1436 return container_of(wr, struct ib_ud_wr, wr); 1437 } 1438 1439 struct ib_reg_wr { 1440 struct ib_send_wr wr; 1441 struct ib_mr *mr; 1442 u32 key; 1443 int access; 1444 }; 1445 1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1447 { 1448 return container_of(wr, struct ib_reg_wr, wr); 1449 } 1450 1451 struct ib_recv_wr { 1452 struct ib_recv_wr *next; 1453 union { 1454 u64 wr_id; 1455 struct ib_cqe *wr_cqe; 1456 }; 1457 struct ib_sge *sg_list; 1458 int num_sge; 1459 }; 1460 1461 enum ib_access_flags { 1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1473 1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1475 IB_ACCESS_SUPPORTED = 1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1477 }; 1478 1479 /* 1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1481 * are hidden here instead of a uapi header! 1482 */ 1483 enum ib_mr_rereg_flags { 1484 IB_MR_REREG_TRANS = 1, 1485 IB_MR_REREG_PD = (1<<1), 1486 IB_MR_REREG_ACCESS = (1<<2), 1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1488 }; 1489 1490 struct ib_umem; 1491 1492 enum rdma_remove_reason { 1493 /* 1494 * Userspace requested uobject deletion or initial try 1495 * to remove uobject via cleanup. Call could fail 1496 */ 1497 RDMA_REMOVE_DESTROY, 1498 /* Context deletion. This call should delete the actual object itself */ 1499 RDMA_REMOVE_CLOSE, 1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1501 RDMA_REMOVE_DRIVER_REMOVE, 1502 /* uobj is being cleaned-up before being committed */ 1503 RDMA_REMOVE_ABORT, 1504 /* The driver failed to destroy the uobject and is being disconnected */ 1505 RDMA_REMOVE_DRIVER_FAILURE, 1506 }; 1507 1508 struct ib_rdmacg_object { 1509 #ifdef CONFIG_CGROUP_RDMA 1510 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1511 #endif 1512 }; 1513 1514 struct ib_ucontext { 1515 struct ib_device *device; 1516 struct ib_uverbs_file *ufile; 1517 1518 struct ib_rdmacg_object cg_obj; 1519 /* 1520 * Implementation details of the RDMA core, don't use in drivers: 1521 */ 1522 struct rdma_restrack_entry res; 1523 struct xarray mmap_xa; 1524 }; 1525 1526 struct ib_uobject { 1527 u64 user_handle; /* handle given to us by userspace */ 1528 /* ufile & ucontext owning this object */ 1529 struct ib_uverbs_file *ufile; 1530 /* FIXME, save memory: ufile->context == context */ 1531 struct ib_ucontext *context; /* associated user context */ 1532 void *object; /* containing object */ 1533 struct list_head list; /* link to context's list */ 1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1535 int id; /* index into kernel idr */ 1536 struct kref ref; 1537 atomic_t usecnt; /* protects exclusive access */ 1538 struct rcu_head rcu; /* kfree_rcu() overhead */ 1539 1540 const struct uverbs_api_object *uapi_object; 1541 }; 1542 1543 struct ib_udata { 1544 const void __user *inbuf; 1545 void __user *outbuf; 1546 size_t inlen; 1547 size_t outlen; 1548 }; 1549 1550 struct ib_pd { 1551 u32 local_dma_lkey; 1552 u32 flags; 1553 struct ib_device *device; 1554 struct ib_uobject *uobject; 1555 atomic_t usecnt; /* count all resources */ 1556 1557 u32 unsafe_global_rkey; 1558 1559 /* 1560 * Implementation details of the RDMA core, don't use in drivers: 1561 */ 1562 struct ib_mr *__internal_mr; 1563 struct rdma_restrack_entry res; 1564 }; 1565 1566 struct ib_xrcd { 1567 struct ib_device *device; 1568 atomic_t usecnt; /* count all exposed resources */ 1569 struct inode *inode; 1570 struct rw_semaphore tgt_qps_rwsem; 1571 struct xarray tgt_qps; 1572 }; 1573 1574 struct ib_ah { 1575 struct ib_device *device; 1576 struct ib_pd *pd; 1577 struct ib_uobject *uobject; 1578 const struct ib_gid_attr *sgid_attr; 1579 enum rdma_ah_attr_type type; 1580 }; 1581 1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1583 1584 enum ib_poll_context { 1585 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1586 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1589 1590 IB_POLL_DIRECT, /* caller context, no hw completions */ 1591 }; 1592 1593 struct ib_cq { 1594 struct ib_device *device; 1595 struct ib_ucq_object *uobject; 1596 ib_comp_handler comp_handler; 1597 void (*event_handler)(struct ib_event *, void *); 1598 void *cq_context; 1599 int cqe; 1600 unsigned int cqe_used; 1601 atomic_t usecnt; /* count number of work queues */ 1602 enum ib_poll_context poll_ctx; 1603 struct ib_wc *wc; 1604 struct list_head pool_entry; 1605 union { 1606 struct irq_poll iop; 1607 struct work_struct work; 1608 }; 1609 struct workqueue_struct *comp_wq; 1610 struct dim *dim; 1611 1612 /* updated only by trace points */ 1613 ktime_t timestamp; 1614 u8 interrupt:1; 1615 u8 shared:1; 1616 unsigned int comp_vector; 1617 1618 /* 1619 * Implementation details of the RDMA core, don't use in drivers: 1620 */ 1621 struct rdma_restrack_entry res; 1622 }; 1623 1624 struct ib_srq { 1625 struct ib_device *device; 1626 struct ib_pd *pd; 1627 struct ib_usrq_object *uobject; 1628 void (*event_handler)(struct ib_event *, void *); 1629 void *srq_context; 1630 enum ib_srq_type srq_type; 1631 atomic_t usecnt; 1632 1633 struct { 1634 struct ib_cq *cq; 1635 union { 1636 struct { 1637 struct ib_xrcd *xrcd; 1638 u32 srq_num; 1639 } xrc; 1640 }; 1641 } ext; 1642 1643 /* 1644 * Implementation details of the RDMA core, don't use in drivers: 1645 */ 1646 struct rdma_restrack_entry res; 1647 }; 1648 1649 enum ib_raw_packet_caps { 1650 /* 1651 * Strip cvlan from incoming packet and report it in the matching work 1652 * completion is supported. 1653 */ 1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1656 /* 1657 * Scatter FCS field of an incoming packet to host memory is supported. 1658 */ 1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1660 /* Checksum offloads are supported (for both send and receive). */ 1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1662 /* 1663 * When a packet is received for an RQ with no receive WQEs, the 1664 * packet processing is delayed. 1665 */ 1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1667 }; 1668 1669 enum ib_wq_type { 1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1671 }; 1672 1673 enum ib_wq_state { 1674 IB_WQS_RESET, 1675 IB_WQS_RDY, 1676 IB_WQS_ERR 1677 }; 1678 1679 struct ib_wq { 1680 struct ib_device *device; 1681 struct ib_uwq_object *uobject; 1682 void *wq_context; 1683 void (*event_handler)(struct ib_event *, void *); 1684 struct ib_pd *pd; 1685 struct ib_cq *cq; 1686 u32 wq_num; 1687 enum ib_wq_state state; 1688 enum ib_wq_type wq_type; 1689 atomic_t usecnt; 1690 }; 1691 1692 enum ib_wq_flags { 1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1698 }; 1699 1700 struct ib_wq_init_attr { 1701 void *wq_context; 1702 enum ib_wq_type wq_type; 1703 u32 max_wr; 1704 u32 max_sge; 1705 struct ib_cq *cq; 1706 void (*event_handler)(struct ib_event *, void *); 1707 u32 create_flags; /* Use enum ib_wq_flags */ 1708 }; 1709 1710 enum ib_wq_attr_mask { 1711 IB_WQ_STATE = 1 << 0, 1712 IB_WQ_CUR_STATE = 1 << 1, 1713 IB_WQ_FLAGS = 1 << 2, 1714 }; 1715 1716 struct ib_wq_attr { 1717 enum ib_wq_state wq_state; 1718 enum ib_wq_state curr_wq_state; 1719 u32 flags; /* Use enum ib_wq_flags */ 1720 u32 flags_mask; /* Use enum ib_wq_flags */ 1721 }; 1722 1723 struct ib_rwq_ind_table { 1724 struct ib_device *device; 1725 struct ib_uobject *uobject; 1726 atomic_t usecnt; 1727 u32 ind_tbl_num; 1728 u32 log_ind_tbl_size; 1729 struct ib_wq **ind_tbl; 1730 }; 1731 1732 struct ib_rwq_ind_table_init_attr { 1733 u32 log_ind_tbl_size; 1734 /* Each entry is a pointer to Receive Work Queue */ 1735 struct ib_wq **ind_tbl; 1736 }; 1737 1738 enum port_pkey_state { 1739 IB_PORT_PKEY_NOT_VALID = 0, 1740 IB_PORT_PKEY_VALID = 1, 1741 IB_PORT_PKEY_LISTED = 2, 1742 }; 1743 1744 struct ib_qp_security; 1745 1746 struct ib_port_pkey { 1747 enum port_pkey_state state; 1748 u16 pkey_index; 1749 u32 port_num; 1750 struct list_head qp_list; 1751 struct list_head to_error_list; 1752 struct ib_qp_security *sec; 1753 }; 1754 1755 struct ib_ports_pkeys { 1756 struct ib_port_pkey main; 1757 struct ib_port_pkey alt; 1758 }; 1759 1760 struct ib_qp_security { 1761 struct ib_qp *qp; 1762 struct ib_device *dev; 1763 /* Hold this mutex when changing port and pkey settings. */ 1764 struct mutex mutex; 1765 struct ib_ports_pkeys *ports_pkeys; 1766 /* A list of all open shared QP handles. Required to enforce security 1767 * properly for all users of a shared QP. 1768 */ 1769 struct list_head shared_qp_list; 1770 void *security; 1771 bool destroying; 1772 atomic_t error_list_count; 1773 struct completion error_complete; 1774 int error_comps_pending; 1775 }; 1776 1777 /* 1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1779 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1780 */ 1781 struct ib_qp { 1782 struct ib_device *device; 1783 struct ib_pd *pd; 1784 struct ib_cq *send_cq; 1785 struct ib_cq *recv_cq; 1786 spinlock_t mr_lock; 1787 int mrs_used; 1788 struct list_head rdma_mrs; 1789 struct list_head sig_mrs; 1790 struct ib_srq *srq; 1791 struct completion srq_completion; 1792 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1793 struct list_head xrcd_list; 1794 1795 /* count times opened, mcast attaches, flow attaches */ 1796 atomic_t usecnt; 1797 struct list_head open_list; 1798 struct ib_qp *real_qp; 1799 struct ib_uqp_object *uobject; 1800 void (*event_handler)(struct ib_event *, void *); 1801 void (*registered_event_handler)(struct ib_event *, void *); 1802 void *qp_context; 1803 /* sgid_attrs associated with the AV's */ 1804 const struct ib_gid_attr *av_sgid_attr; 1805 const struct ib_gid_attr *alt_path_sgid_attr; 1806 u32 qp_num; 1807 u32 max_write_sge; 1808 u32 max_read_sge; 1809 enum ib_qp_type qp_type; 1810 struct ib_rwq_ind_table *rwq_ind_tbl; 1811 struct ib_qp_security *qp_sec; 1812 u32 port; 1813 1814 bool integrity_en; 1815 /* 1816 * Implementation details of the RDMA core, don't use in drivers: 1817 */ 1818 struct rdma_restrack_entry res; 1819 1820 /* The counter the qp is bind to */ 1821 struct rdma_counter *counter; 1822 }; 1823 1824 struct ib_dm { 1825 struct ib_device *device; 1826 u32 length; 1827 u32 flags; 1828 struct ib_uobject *uobject; 1829 atomic_t usecnt; 1830 }; 1831 1832 struct ib_mr { 1833 struct ib_device *device; 1834 struct ib_pd *pd; 1835 u32 lkey; 1836 u32 rkey; 1837 u64 iova; 1838 u64 length; 1839 unsigned int page_size; 1840 enum ib_mr_type type; 1841 bool need_inval; 1842 union { 1843 struct ib_uobject *uobject; /* user */ 1844 struct list_head qp_entry; /* FR */ 1845 }; 1846 1847 struct ib_dm *dm; 1848 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1849 /* 1850 * Implementation details of the RDMA core, don't use in drivers: 1851 */ 1852 struct rdma_restrack_entry res; 1853 }; 1854 1855 struct ib_mw { 1856 struct ib_device *device; 1857 struct ib_pd *pd; 1858 struct ib_uobject *uobject; 1859 u32 rkey; 1860 enum ib_mw_type type; 1861 }; 1862 1863 /* Supported steering options */ 1864 enum ib_flow_attr_type { 1865 /* steering according to rule specifications */ 1866 IB_FLOW_ATTR_NORMAL = 0x0, 1867 /* default unicast and multicast rule - 1868 * receive all Eth traffic which isn't steered to any QP 1869 */ 1870 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1871 /* default multicast rule - 1872 * receive all Eth multicast traffic which isn't steered to any QP 1873 */ 1874 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1875 /* sniffer rule - receive all port traffic */ 1876 IB_FLOW_ATTR_SNIFFER = 0x3 1877 }; 1878 1879 /* Supported steering header types */ 1880 enum ib_flow_spec_type { 1881 /* L2 headers*/ 1882 IB_FLOW_SPEC_ETH = 0x20, 1883 IB_FLOW_SPEC_IB = 0x22, 1884 /* L3 header*/ 1885 IB_FLOW_SPEC_IPV4 = 0x30, 1886 IB_FLOW_SPEC_IPV6 = 0x31, 1887 IB_FLOW_SPEC_ESP = 0x34, 1888 /* L4 headers*/ 1889 IB_FLOW_SPEC_TCP = 0x40, 1890 IB_FLOW_SPEC_UDP = 0x41, 1891 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1892 IB_FLOW_SPEC_GRE = 0x51, 1893 IB_FLOW_SPEC_MPLS = 0x60, 1894 IB_FLOW_SPEC_INNER = 0x100, 1895 /* Actions */ 1896 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1897 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1898 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1899 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1900 }; 1901 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1903 1904 enum ib_flow_flags { 1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1908 }; 1909 1910 struct ib_flow_eth_filter { 1911 u8 dst_mac[6]; 1912 u8 src_mac[6]; 1913 __be16 ether_type; 1914 __be16 vlan_tag; 1915 }; 1916 1917 struct ib_flow_spec_eth { 1918 u32 type; 1919 u16 size; 1920 struct ib_flow_eth_filter val; 1921 struct ib_flow_eth_filter mask; 1922 }; 1923 1924 struct ib_flow_ib_filter { 1925 __be16 dlid; 1926 __u8 sl; 1927 }; 1928 1929 struct ib_flow_spec_ib { 1930 u32 type; 1931 u16 size; 1932 struct ib_flow_ib_filter val; 1933 struct ib_flow_ib_filter mask; 1934 }; 1935 1936 /* IPv4 header flags */ 1937 enum ib_ipv4_flags { 1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1940 last have this flag set */ 1941 }; 1942 1943 struct ib_flow_ipv4_filter { 1944 __be32 src_ip; 1945 __be32 dst_ip; 1946 u8 proto; 1947 u8 tos; 1948 u8 ttl; 1949 u8 flags; 1950 }; 1951 1952 struct ib_flow_spec_ipv4 { 1953 u32 type; 1954 u16 size; 1955 struct ib_flow_ipv4_filter val; 1956 struct ib_flow_ipv4_filter mask; 1957 }; 1958 1959 struct ib_flow_ipv6_filter { 1960 u8 src_ip[16]; 1961 u8 dst_ip[16]; 1962 __be32 flow_label; 1963 u8 next_hdr; 1964 u8 traffic_class; 1965 u8 hop_limit; 1966 } __packed; 1967 1968 struct ib_flow_spec_ipv6 { 1969 u32 type; 1970 u16 size; 1971 struct ib_flow_ipv6_filter val; 1972 struct ib_flow_ipv6_filter mask; 1973 }; 1974 1975 struct ib_flow_tcp_udp_filter { 1976 __be16 dst_port; 1977 __be16 src_port; 1978 }; 1979 1980 struct ib_flow_spec_tcp_udp { 1981 u32 type; 1982 u16 size; 1983 struct ib_flow_tcp_udp_filter val; 1984 struct ib_flow_tcp_udp_filter mask; 1985 }; 1986 1987 struct ib_flow_tunnel_filter { 1988 __be32 tunnel_id; 1989 }; 1990 1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1992 * the tunnel_id from val has the vni value 1993 */ 1994 struct ib_flow_spec_tunnel { 1995 u32 type; 1996 u16 size; 1997 struct ib_flow_tunnel_filter val; 1998 struct ib_flow_tunnel_filter mask; 1999 }; 2000 2001 struct ib_flow_esp_filter { 2002 __be32 spi; 2003 __be32 seq; 2004 }; 2005 2006 struct ib_flow_spec_esp { 2007 u32 type; 2008 u16 size; 2009 struct ib_flow_esp_filter val; 2010 struct ib_flow_esp_filter mask; 2011 }; 2012 2013 struct ib_flow_gre_filter { 2014 __be16 c_ks_res0_ver; 2015 __be16 protocol; 2016 __be32 key; 2017 }; 2018 2019 struct ib_flow_spec_gre { 2020 u32 type; 2021 u16 size; 2022 struct ib_flow_gre_filter val; 2023 struct ib_flow_gre_filter mask; 2024 }; 2025 2026 struct ib_flow_mpls_filter { 2027 __be32 tag; 2028 }; 2029 2030 struct ib_flow_spec_mpls { 2031 u32 type; 2032 u16 size; 2033 struct ib_flow_mpls_filter val; 2034 struct ib_flow_mpls_filter mask; 2035 }; 2036 2037 struct ib_flow_spec_action_tag { 2038 enum ib_flow_spec_type type; 2039 u16 size; 2040 u32 tag_id; 2041 }; 2042 2043 struct ib_flow_spec_action_drop { 2044 enum ib_flow_spec_type type; 2045 u16 size; 2046 }; 2047 2048 struct ib_flow_spec_action_handle { 2049 enum ib_flow_spec_type type; 2050 u16 size; 2051 struct ib_flow_action *act; 2052 }; 2053 2054 enum ib_counters_description { 2055 IB_COUNTER_PACKETS, 2056 IB_COUNTER_BYTES, 2057 }; 2058 2059 struct ib_flow_spec_action_count { 2060 enum ib_flow_spec_type type; 2061 u16 size; 2062 struct ib_counters *counters; 2063 }; 2064 2065 union ib_flow_spec { 2066 struct { 2067 u32 type; 2068 u16 size; 2069 }; 2070 struct ib_flow_spec_eth eth; 2071 struct ib_flow_spec_ib ib; 2072 struct ib_flow_spec_ipv4 ipv4; 2073 struct ib_flow_spec_tcp_udp tcp_udp; 2074 struct ib_flow_spec_ipv6 ipv6; 2075 struct ib_flow_spec_tunnel tunnel; 2076 struct ib_flow_spec_esp esp; 2077 struct ib_flow_spec_gre gre; 2078 struct ib_flow_spec_mpls mpls; 2079 struct ib_flow_spec_action_tag flow_tag; 2080 struct ib_flow_spec_action_drop drop; 2081 struct ib_flow_spec_action_handle action; 2082 struct ib_flow_spec_action_count flow_count; 2083 }; 2084 2085 struct ib_flow_attr { 2086 enum ib_flow_attr_type type; 2087 u16 size; 2088 u16 priority; 2089 u32 flags; 2090 u8 num_of_specs; 2091 u32 port; 2092 union ib_flow_spec flows[]; 2093 }; 2094 2095 struct ib_flow { 2096 struct ib_qp *qp; 2097 struct ib_device *device; 2098 struct ib_uobject *uobject; 2099 }; 2100 2101 enum ib_flow_action_type { 2102 IB_FLOW_ACTION_UNSPECIFIED, 2103 IB_FLOW_ACTION_ESP = 1, 2104 }; 2105 2106 struct ib_flow_action_attrs_esp_keymats { 2107 enum ib_uverbs_flow_action_esp_keymat protocol; 2108 union { 2109 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2110 } keymat; 2111 }; 2112 2113 struct ib_flow_action_attrs_esp_replays { 2114 enum ib_uverbs_flow_action_esp_replay protocol; 2115 union { 2116 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2117 } replay; 2118 }; 2119 2120 enum ib_flow_action_attrs_esp_flags { 2121 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2122 * This is done in order to share the same flags between user-space and 2123 * kernel and spare an unnecessary translation. 2124 */ 2125 2126 /* Kernel flags */ 2127 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2128 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2129 }; 2130 2131 struct ib_flow_spec_list { 2132 struct ib_flow_spec_list *next; 2133 union ib_flow_spec spec; 2134 }; 2135 2136 struct ib_flow_action_attrs_esp { 2137 struct ib_flow_action_attrs_esp_keymats *keymat; 2138 struct ib_flow_action_attrs_esp_replays *replay; 2139 struct ib_flow_spec_list *encap; 2140 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2141 * Value of 0 is a valid value. 2142 */ 2143 u32 esn; 2144 u32 spi; 2145 u32 seq; 2146 u32 tfc_pad; 2147 /* Use enum ib_flow_action_attrs_esp_flags */ 2148 u64 flags; 2149 u64 hard_limit_pkts; 2150 }; 2151 2152 struct ib_flow_action { 2153 struct ib_device *device; 2154 struct ib_uobject *uobject; 2155 enum ib_flow_action_type type; 2156 atomic_t usecnt; 2157 }; 2158 2159 struct ib_mad; 2160 2161 enum ib_process_mad_flags { 2162 IB_MAD_IGNORE_MKEY = 1, 2163 IB_MAD_IGNORE_BKEY = 2, 2164 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2165 }; 2166 2167 enum ib_mad_result { 2168 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2169 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2170 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2171 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2172 }; 2173 2174 struct ib_port_cache { 2175 u64 subnet_prefix; 2176 struct ib_pkey_cache *pkey; 2177 struct ib_gid_table *gid; 2178 u8 lmc; 2179 enum ib_port_state port_state; 2180 }; 2181 2182 struct ib_port_immutable { 2183 int pkey_tbl_len; 2184 int gid_tbl_len; 2185 u32 core_cap_flags; 2186 u32 max_mad_size; 2187 }; 2188 2189 struct ib_port_data { 2190 struct ib_device *ib_dev; 2191 2192 struct ib_port_immutable immutable; 2193 2194 spinlock_t pkey_list_lock; 2195 2196 spinlock_t netdev_lock; 2197 2198 struct list_head pkey_list; 2199 2200 struct ib_port_cache cache; 2201 2202 struct net_device __rcu *netdev; 2203 netdevice_tracker netdev_tracker; 2204 struct hlist_node ndev_hash_link; 2205 struct rdma_port_counter port_counter; 2206 struct ib_port *sysfs; 2207 }; 2208 2209 /* rdma netdev type - specifies protocol type */ 2210 enum rdma_netdev_t { 2211 RDMA_NETDEV_OPA_VNIC, 2212 RDMA_NETDEV_IPOIB, 2213 }; 2214 2215 /** 2216 * struct rdma_netdev - rdma netdev 2217 * For cases where netstack interfacing is required. 2218 */ 2219 struct rdma_netdev { 2220 void *clnt_priv; 2221 struct ib_device *hca; 2222 u32 port_num; 2223 int mtu; 2224 2225 /* 2226 * cleanup function must be specified. 2227 * FIXME: This is only used for OPA_VNIC and that usage should be 2228 * removed too. 2229 */ 2230 void (*free_rdma_netdev)(struct net_device *netdev); 2231 2232 /* control functions */ 2233 void (*set_id)(struct net_device *netdev, int id); 2234 /* send packet */ 2235 int (*send)(struct net_device *dev, struct sk_buff *skb, 2236 struct ib_ah *address, u32 dqpn); 2237 /* multicast */ 2238 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2239 union ib_gid *gid, u16 mlid, 2240 int set_qkey, u32 qkey); 2241 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2242 union ib_gid *gid, u16 mlid); 2243 /* timeout */ 2244 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2245 }; 2246 2247 struct rdma_netdev_alloc_params { 2248 size_t sizeof_priv; 2249 unsigned int txqs; 2250 unsigned int rxqs; 2251 void *param; 2252 2253 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2254 struct net_device *netdev, void *param); 2255 }; 2256 2257 struct ib_odp_counters { 2258 atomic64_t faults; 2259 atomic64_t invalidations; 2260 atomic64_t prefetch; 2261 }; 2262 2263 struct ib_counters { 2264 struct ib_device *device; 2265 struct ib_uobject *uobject; 2266 /* num of objects attached */ 2267 atomic_t usecnt; 2268 }; 2269 2270 struct ib_counters_read_attr { 2271 u64 *counters_buff; 2272 u32 ncounters; 2273 u32 flags; /* use enum ib_read_counters_flags */ 2274 }; 2275 2276 struct uverbs_attr_bundle; 2277 struct iw_cm_id; 2278 struct iw_cm_conn_param; 2279 2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2281 .size_##ib_struct = \ 2282 (sizeof(struct drv_struct) + \ 2283 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2284 BUILD_BUG_ON_ZERO( \ 2285 !__same_type(((struct drv_struct *)NULL)->member, \ 2286 struct ib_struct))) 2287 2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2289 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2290 gfp, false)) 2291 2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2293 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2294 GFP_KERNEL, true)) 2295 2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2297 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2298 2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2300 2301 struct rdma_user_mmap_entry { 2302 struct kref ref; 2303 struct ib_ucontext *ucontext; 2304 unsigned long start_pgoff; 2305 size_t npages; 2306 bool driver_removed; 2307 }; 2308 2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2310 static inline u64 2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2312 { 2313 return (u64)entry->start_pgoff << PAGE_SHIFT; 2314 } 2315 2316 /** 2317 * struct ib_device_ops - InfiniBand device operations 2318 * This structure defines all the InfiniBand device operations, providers will 2319 * need to define the supported operations, otherwise they will be set to null. 2320 */ 2321 struct ib_device_ops { 2322 struct module *owner; 2323 enum rdma_driver_id driver_id; 2324 u32 uverbs_abi_ver; 2325 unsigned int uverbs_no_driver_id_binding:1; 2326 2327 /* 2328 * NOTE: New drivers should not make use of device_group; instead new 2329 * device parameter should be exposed via netlink command. This 2330 * mechanism exists only for existing drivers. 2331 */ 2332 const struct attribute_group *device_group; 2333 const struct attribute_group **port_groups; 2334 2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2336 const struct ib_send_wr **bad_send_wr); 2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2338 const struct ib_recv_wr **bad_recv_wr); 2339 void (*drain_rq)(struct ib_qp *qp); 2340 void (*drain_sq)(struct ib_qp *qp); 2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2344 int (*post_srq_recv)(struct ib_srq *srq, 2345 const struct ib_recv_wr *recv_wr, 2346 const struct ib_recv_wr **bad_recv_wr); 2347 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2348 u32 port_num, const struct ib_wc *in_wc, 2349 const struct ib_grh *in_grh, 2350 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2351 size_t *out_mad_size, u16 *out_mad_pkey_index); 2352 int (*query_device)(struct ib_device *device, 2353 struct ib_device_attr *device_attr, 2354 struct ib_udata *udata); 2355 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2356 struct ib_device_modify *device_modify); 2357 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2359 int comp_vector); 2360 int (*query_port)(struct ib_device *device, u32 port_num, 2361 struct ib_port_attr *port_attr); 2362 int (*modify_port)(struct ib_device *device, u32 port_num, 2363 int port_modify_mask, 2364 struct ib_port_modify *port_modify); 2365 /** 2366 * The following mandatory functions are used only at device 2367 * registration. Keep functions such as these at the end of this 2368 * structure to avoid cache line misses when accessing struct ib_device 2369 * in fast paths. 2370 */ 2371 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2372 struct ib_port_immutable *immutable); 2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2374 u32 port_num); 2375 /** 2376 * When calling get_netdev, the HW vendor's driver should return the 2377 * net device of device @device at port @port_num or NULL if such 2378 * a net device doesn't exist. The vendor driver should call dev_hold 2379 * on this net device. The HW vendor's device driver must guarantee 2380 * that this function returns NULL before the net device has finished 2381 * NETDEV_UNREGISTER state. 2382 */ 2383 struct net_device *(*get_netdev)(struct ib_device *device, 2384 u32 port_num); 2385 /** 2386 * rdma netdev operation 2387 * 2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2389 * must return -EOPNOTSUPP if it doesn't support the specified type. 2390 */ 2391 struct net_device *(*alloc_rdma_netdev)( 2392 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2393 const char *name, unsigned char name_assign_type, 2394 void (*setup)(struct net_device *)); 2395 2396 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2397 enum rdma_netdev_t type, 2398 struct rdma_netdev_alloc_params *params); 2399 /** 2400 * query_gid should be return GID value for @device, when @port_num 2401 * link layer is either IB or iWarp. It is no-op if @port_num port 2402 * is RoCE link layer. 2403 */ 2404 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2405 union ib_gid *gid); 2406 /** 2407 * When calling add_gid, the HW vendor's driver should add the gid 2408 * of device of port at gid index available at @attr. Meta-info of 2409 * that gid (for example, the network device related to this gid) is 2410 * available at @attr. @context allows the HW vendor driver to store 2411 * extra information together with a GID entry. The HW vendor driver may 2412 * allocate memory to contain this information and store it in @context 2413 * when a new GID entry is written to. Params are consistent until the 2414 * next call of add_gid or delete_gid. The function should return 0 on 2415 * success or error otherwise. The function could be called 2416 * concurrently for different ports. This function is only called when 2417 * roce_gid_table is used. 2418 */ 2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2420 /** 2421 * When calling del_gid, the HW vendor's driver should delete the 2422 * gid of device @device at gid index gid_index of port port_num 2423 * available in @attr. 2424 * Upon the deletion of a GID entry, the HW vendor must free any 2425 * allocated memory. The caller will clear @context afterwards. 2426 * This function is only called when roce_gid_table is used. 2427 */ 2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2429 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2430 u16 *pkey); 2431 int (*alloc_ucontext)(struct ib_ucontext *context, 2432 struct ib_udata *udata); 2433 void (*dealloc_ucontext)(struct ib_ucontext *context); 2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2435 /** 2436 * This will be called once refcount of an entry in mmap_xa reaches 2437 * zero. The type of the memory that was mapped may differ between 2438 * entries and is opaque to the rdma_user_mmap interface. 2439 * Therefore needs to be implemented by the driver in mmap_free. 2440 */ 2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2444 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2446 struct ib_udata *udata); 2447 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2448 struct ib_udata *udata); 2449 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2450 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2451 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2452 int (*create_srq)(struct ib_srq *srq, 2453 struct ib_srq_init_attr *srq_init_attr, 2454 struct ib_udata *udata); 2455 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2456 enum ib_srq_attr_mask srq_attr_mask, 2457 struct ib_udata *udata); 2458 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2459 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2460 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2461 struct ib_udata *udata); 2462 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2463 int qp_attr_mask, struct ib_udata *udata); 2464 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2465 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2466 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2467 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2468 struct uverbs_attr_bundle *attrs); 2469 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2470 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2471 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2472 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2473 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2474 u64 virt_addr, int mr_access_flags, 2475 struct ib_udata *udata); 2476 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2477 u64 length, u64 virt_addr, int fd, 2478 int mr_access_flags, 2479 struct ib_udata *udata); 2480 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2481 u64 length, u64 virt_addr, 2482 int mr_access_flags, struct ib_pd *pd, 2483 struct ib_udata *udata); 2484 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2485 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2486 u32 max_num_sg); 2487 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2488 u32 max_num_data_sg, 2489 u32 max_num_meta_sg); 2490 int (*advise_mr)(struct ib_pd *pd, 2491 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2492 struct ib_sge *sg_list, u32 num_sge, 2493 struct uverbs_attr_bundle *attrs); 2494 2495 /* 2496 * Kernel users should universally support relaxed ordering (RO), as 2497 * they are designed to read data only after observing the CQE and use 2498 * the DMA API correctly. 2499 * 2500 * Some drivers implicitly enable RO if platform supports it. 2501 */ 2502 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2503 unsigned int *sg_offset); 2504 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2505 struct ib_mr_status *mr_status); 2506 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2507 int (*dealloc_mw)(struct ib_mw *mw); 2508 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2509 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2510 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2511 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2512 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2513 struct ib_flow_attr *flow_attr, 2514 struct ib_udata *udata); 2515 int (*destroy_flow)(struct ib_flow *flow_id); 2516 int (*destroy_flow_action)(struct ib_flow_action *action); 2517 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2518 int state); 2519 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2520 struct ifla_vf_info *ivf); 2521 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2522 struct ifla_vf_stats *stats); 2523 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2524 struct ifla_vf_guid *node_guid, 2525 struct ifla_vf_guid *port_guid); 2526 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2527 int type); 2528 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2529 struct ib_wq_init_attr *init_attr, 2530 struct ib_udata *udata); 2531 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2532 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2533 u32 wq_attr_mask, struct ib_udata *udata); 2534 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2535 struct ib_rwq_ind_table_init_attr *init_attr, 2536 struct ib_udata *udata); 2537 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2538 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2539 struct ib_ucontext *context, 2540 struct ib_dm_alloc_attr *attr, 2541 struct uverbs_attr_bundle *attrs); 2542 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2543 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2544 struct ib_dm_mr_attr *attr, 2545 struct uverbs_attr_bundle *attrs); 2546 int (*create_counters)(struct ib_counters *counters, 2547 struct uverbs_attr_bundle *attrs); 2548 int (*destroy_counters)(struct ib_counters *counters); 2549 int (*read_counters)(struct ib_counters *counters, 2550 struct ib_counters_read_attr *counters_read_attr, 2551 struct uverbs_attr_bundle *attrs); 2552 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2553 int data_sg_nents, unsigned int *data_sg_offset, 2554 struct scatterlist *meta_sg, int meta_sg_nents, 2555 unsigned int *meta_sg_offset); 2556 2557 /** 2558 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2559 * fill in the driver initialized data. The struct is kfree()'ed by 2560 * the sysfs core when the device is removed. A lifespan of -1 in the 2561 * return struct tells the core to set a default lifespan. 2562 */ 2563 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2564 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2565 u32 port_num); 2566 /** 2567 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2568 * @index - The index in the value array we wish to have updated, or 2569 * num_counters if we want all stats updated 2570 * Return codes - 2571 * < 0 - Error, no counters updated 2572 * index - Updated the single counter pointed to by index 2573 * num_counters - Updated all counters (will reset the timestamp 2574 * and prevent further calls for lifespan milliseconds) 2575 * Drivers are allowed to update all counters in leiu of just the 2576 * one given in index at their option 2577 */ 2578 int (*get_hw_stats)(struct ib_device *device, 2579 struct rdma_hw_stats *stats, u32 port, int index); 2580 2581 /** 2582 * modify_hw_stat - Modify the counter configuration 2583 * @enable: true/false when enable/disable a counter 2584 * Return codes - 0 on success or error code otherwise. 2585 */ 2586 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2587 unsigned int counter_index, bool enable); 2588 /** 2589 * Allows rdma drivers to add their own restrack attributes. 2590 */ 2591 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2592 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2593 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2594 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2595 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2596 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2597 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2598 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2599 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2600 2601 /* Device lifecycle callbacks */ 2602 /* 2603 * Called after the device becomes registered, before clients are 2604 * attached 2605 */ 2606 int (*enable_driver)(struct ib_device *dev); 2607 /* 2608 * This is called as part of ib_dealloc_device(). 2609 */ 2610 void (*dealloc_driver)(struct ib_device *dev); 2611 2612 /* iWarp CM callbacks */ 2613 void (*iw_add_ref)(struct ib_qp *qp); 2614 void (*iw_rem_ref)(struct ib_qp *qp); 2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2616 int (*iw_connect)(struct iw_cm_id *cm_id, 2617 struct iw_cm_conn_param *conn_param); 2618 int (*iw_accept)(struct iw_cm_id *cm_id, 2619 struct iw_cm_conn_param *conn_param); 2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2621 u8 pdata_len); 2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2624 /** 2625 * counter_bind_qp - Bind a QP to a counter. 2626 * @counter - The counter to be bound. If counter->id is zero then 2627 * the driver needs to allocate a new counter and set counter->id 2628 */ 2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2630 /** 2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2632 * counter and bind it onto the default one 2633 */ 2634 int (*counter_unbind_qp)(struct ib_qp *qp); 2635 /** 2636 * counter_dealloc -De-allocate the hw counter 2637 */ 2638 int (*counter_dealloc)(struct rdma_counter *counter); 2639 /** 2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2641 * the driver initialized data. 2642 */ 2643 struct rdma_hw_stats *(*counter_alloc_stats)( 2644 struct rdma_counter *counter); 2645 /** 2646 * counter_update_stats - Query the stats value of this counter 2647 */ 2648 int (*counter_update_stats)(struct rdma_counter *counter); 2649 2650 /** 2651 * Allows rdma drivers to add their own restrack attributes 2652 * dumped via 'rdma stat' iproute2 command. 2653 */ 2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2655 2656 /* query driver for its ucontext properties */ 2657 int (*query_ucontext)(struct ib_ucontext *context, 2658 struct uverbs_attr_bundle *attrs); 2659 2660 /* 2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2662 * Everyone else relies on Linux memory management model. 2663 */ 2664 int (*get_numa_node)(struct ib_device *dev); 2665 2666 /** 2667 * add_sub_dev - Add a sub IB device 2668 */ 2669 struct ib_device *(*add_sub_dev)(struct ib_device *parent, 2670 enum rdma_nl_dev_type type, 2671 const char *name); 2672 2673 /** 2674 * del_sub_dev - Delete a sub IB device 2675 */ 2676 void (*del_sub_dev)(struct ib_device *sub_dev); 2677 2678 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2679 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2680 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2681 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2682 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2683 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2684 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2685 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2686 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2687 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2688 }; 2689 2690 struct ib_core_device { 2691 /* device must be the first element in structure until, 2692 * union of ib_core_device and device exists in ib_device. 2693 */ 2694 struct device dev; 2695 possible_net_t rdma_net; 2696 struct kobject *ports_kobj; 2697 struct list_head port_list; 2698 struct ib_device *owner; /* reach back to owner ib_device */ 2699 }; 2700 2701 struct rdma_restrack_root; 2702 struct ib_device { 2703 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2704 struct device *dma_device; 2705 struct ib_device_ops ops; 2706 char name[IB_DEVICE_NAME_MAX]; 2707 struct rcu_head rcu_head; 2708 2709 struct list_head event_handler_list; 2710 /* Protects event_handler_list */ 2711 struct rw_semaphore event_handler_rwsem; 2712 2713 /* Protects QP's event_handler calls and open_qp list */ 2714 spinlock_t qp_open_list_lock; 2715 2716 struct rw_semaphore client_data_rwsem; 2717 struct xarray client_data; 2718 struct mutex unregistration_lock; 2719 2720 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2721 rwlock_t cache_lock; 2722 /** 2723 * port_data is indexed by port number 2724 */ 2725 struct ib_port_data *port_data; 2726 2727 int num_comp_vectors; 2728 2729 union { 2730 struct device dev; 2731 struct ib_core_device coredev; 2732 }; 2733 2734 /* First group is for device attributes, 2735 * Second group is for driver provided attributes (optional). 2736 * Third group is for the hw_stats 2737 * It is a NULL terminated array. 2738 */ 2739 const struct attribute_group *groups[4]; 2740 2741 u64 uverbs_cmd_mask; 2742 2743 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2744 __be64 node_guid; 2745 u32 local_dma_lkey; 2746 u16 is_switch:1; 2747 /* Indicates kernel verbs support, should not be used in drivers */ 2748 u16 kverbs_provider:1; 2749 /* CQ adaptive moderation (RDMA DIM) */ 2750 u16 use_cq_dim:1; 2751 u8 node_type; 2752 u32 phys_port_cnt; 2753 struct ib_device_attr attrs; 2754 struct hw_stats_device_data *hw_stats_data; 2755 2756 #ifdef CONFIG_CGROUP_RDMA 2757 struct rdmacg_device cg_device; 2758 #endif 2759 2760 u32 index; 2761 2762 spinlock_t cq_pools_lock; 2763 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2764 2765 struct rdma_restrack_root *res; 2766 2767 const struct uapi_definition *driver_def; 2768 2769 /* 2770 * Positive refcount indicates that the device is currently 2771 * registered and cannot be unregistered. 2772 */ 2773 refcount_t refcount; 2774 struct completion unreg_completion; 2775 struct work_struct unregistration_work; 2776 2777 const struct rdma_link_ops *link_ops; 2778 2779 /* Protects compat_devs xarray modifications */ 2780 struct mutex compat_devs_mutex; 2781 /* Maintains compat devices for each net namespace */ 2782 struct xarray compat_devs; 2783 2784 /* Used by iWarp CM */ 2785 char iw_ifname[IFNAMSIZ]; 2786 u32 iw_driver_flags; 2787 u32 lag_flags; 2788 2789 /* A parent device has a list of sub-devices */ 2790 struct mutex subdev_lock; 2791 struct list_head subdev_list_head; 2792 2793 /* A sub device has a type and a parent */ 2794 enum rdma_nl_dev_type type; 2795 struct ib_device *parent; 2796 struct list_head subdev_list; 2797 2798 enum rdma_nl_name_assign_type name_assign_type; 2799 }; 2800 2801 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2802 gfp_t gfp, bool is_numa_aware) 2803 { 2804 if (is_numa_aware && dev->ops.get_numa_node) 2805 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2806 2807 return kzalloc(size, gfp); 2808 } 2809 2810 struct ib_client_nl_info; 2811 struct ib_client { 2812 const char *name; 2813 int (*add)(struct ib_device *ibdev); 2814 void (*remove)(struct ib_device *, void *client_data); 2815 void (*rename)(struct ib_device *dev, void *client_data); 2816 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2817 struct ib_client_nl_info *res); 2818 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2819 2820 /* Returns the net_dev belonging to this ib_client and matching the 2821 * given parameters. 2822 * @dev: An RDMA device that the net_dev use for communication. 2823 * @port: A physical port number on the RDMA device. 2824 * @pkey: P_Key that the net_dev uses if applicable. 2825 * @gid: A GID that the net_dev uses to communicate. 2826 * @addr: An IP address the net_dev is configured with. 2827 * @client_data: The device's client data set by ib_set_client_data(). 2828 * 2829 * An ib_client that implements a net_dev on top of RDMA devices 2830 * (such as IP over IB) should implement this callback, allowing the 2831 * rdma_cm module to find the right net_dev for a given request. 2832 * 2833 * The caller is responsible for calling dev_put on the returned 2834 * netdev. */ 2835 struct net_device *(*get_net_dev_by_params)( 2836 struct ib_device *dev, 2837 u32 port, 2838 u16 pkey, 2839 const union ib_gid *gid, 2840 const struct sockaddr *addr, 2841 void *client_data); 2842 2843 refcount_t uses; 2844 struct completion uses_zero; 2845 u32 client_id; 2846 2847 /* kverbs are not required by the client */ 2848 u8 no_kverbs_req:1; 2849 }; 2850 2851 /* 2852 * IB block DMA iterator 2853 * 2854 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2855 * to a HW supported page size. 2856 */ 2857 struct ib_block_iter { 2858 /* internal states */ 2859 struct scatterlist *__sg; /* sg holding the current aligned block */ 2860 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2861 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2862 unsigned int __sg_nents; /* number of SG entries */ 2863 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2864 unsigned int __pg_bit; /* alignment of current block */ 2865 }; 2866 2867 struct ib_device *_ib_alloc_device(size_t size); 2868 #define ib_alloc_device(drv_struct, member) \ 2869 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2870 BUILD_BUG_ON_ZERO(offsetof( \ 2871 struct drv_struct, member))), \ 2872 struct drv_struct, member) 2873 2874 void ib_dealloc_device(struct ib_device *device); 2875 2876 void ib_get_device_fw_str(struct ib_device *device, char *str); 2877 2878 int ib_register_device(struct ib_device *device, const char *name, 2879 struct device *dma_device); 2880 void ib_unregister_device(struct ib_device *device); 2881 void ib_unregister_driver(enum rdma_driver_id driver_id); 2882 void ib_unregister_device_and_put(struct ib_device *device); 2883 void ib_unregister_device_queued(struct ib_device *ib_dev); 2884 2885 int ib_register_client (struct ib_client *client); 2886 void ib_unregister_client(struct ib_client *client); 2887 2888 void __rdma_block_iter_start(struct ib_block_iter *biter, 2889 struct scatterlist *sglist, 2890 unsigned int nents, 2891 unsigned long pgsz); 2892 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2893 2894 /** 2895 * rdma_block_iter_dma_address - get the aligned dma address of the current 2896 * block held by the block iterator. 2897 * @biter: block iterator holding the memory block 2898 */ 2899 static inline dma_addr_t 2900 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2901 { 2902 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2903 } 2904 2905 /** 2906 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2907 * @sglist: sglist to iterate over 2908 * @biter: block iterator holding the memory block 2909 * @nents: maximum number of sg entries to iterate over 2910 * @pgsz: best HW supported page size to use 2911 * 2912 * Callers may use rdma_block_iter_dma_address() to get each 2913 * blocks aligned DMA address. 2914 */ 2915 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2916 for (__rdma_block_iter_start(biter, sglist, nents, \ 2917 pgsz); \ 2918 __rdma_block_iter_next(biter);) 2919 2920 /** 2921 * ib_get_client_data - Get IB client context 2922 * @device:Device to get context for 2923 * @client:Client to get context for 2924 * 2925 * ib_get_client_data() returns the client context data set with 2926 * ib_set_client_data(). This can only be called while the client is 2927 * registered to the device, once the ib_client remove() callback returns this 2928 * cannot be called. 2929 */ 2930 static inline void *ib_get_client_data(struct ib_device *device, 2931 struct ib_client *client) 2932 { 2933 return xa_load(&device->client_data, client->client_id); 2934 } 2935 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2936 void *data); 2937 void ib_set_device_ops(struct ib_device *device, 2938 const struct ib_device_ops *ops); 2939 2940 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2941 unsigned long pfn, unsigned long size, pgprot_t prot, 2942 struct rdma_user_mmap_entry *entry); 2943 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2944 struct rdma_user_mmap_entry *entry, 2945 size_t length); 2946 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2947 struct rdma_user_mmap_entry *entry, 2948 size_t length, u32 min_pgoff, 2949 u32 max_pgoff); 2950 2951 static inline int 2952 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2953 struct rdma_user_mmap_entry *entry, 2954 size_t length, u32 pgoff) 2955 { 2956 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2957 pgoff); 2958 } 2959 2960 struct rdma_user_mmap_entry * 2961 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2962 unsigned long pgoff); 2963 struct rdma_user_mmap_entry * 2964 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2965 struct vm_area_struct *vma); 2966 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2967 2968 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2969 2970 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2971 { 2972 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2973 } 2974 2975 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2976 { 2977 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2978 } 2979 2980 static inline bool ib_is_buffer_cleared(const void __user *p, 2981 size_t len) 2982 { 2983 bool ret; 2984 u8 *buf; 2985 2986 if (len > USHRT_MAX) 2987 return false; 2988 2989 buf = memdup_user(p, len); 2990 if (IS_ERR(buf)) 2991 return false; 2992 2993 ret = !memchr_inv(buf, 0, len); 2994 kfree(buf); 2995 return ret; 2996 } 2997 2998 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2999 size_t offset, 3000 size_t len) 3001 { 3002 return ib_is_buffer_cleared(udata->inbuf + offset, len); 3003 } 3004 3005 /** 3006 * ib_modify_qp_is_ok - Check that the supplied attribute mask 3007 * contains all required attributes and no attributes not allowed for 3008 * the given QP state transition. 3009 * @cur_state: Current QP state 3010 * @next_state: Next QP state 3011 * @type: QP type 3012 * @mask: Mask of supplied QP attributes 3013 * 3014 * This function is a helper function that a low-level driver's 3015 * modify_qp method can use to validate the consumer's input. It 3016 * checks that cur_state and next_state are valid QP states, that a 3017 * transition from cur_state to next_state is allowed by the IB spec, 3018 * and that the attribute mask supplied is allowed for the transition. 3019 */ 3020 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3021 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3022 3023 void ib_register_event_handler(struct ib_event_handler *event_handler); 3024 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3025 void ib_dispatch_event(const struct ib_event *event); 3026 3027 int ib_query_port(struct ib_device *device, 3028 u32 port_num, struct ib_port_attr *port_attr); 3029 3030 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3031 u32 port_num); 3032 3033 /** 3034 * rdma_cap_ib_switch - Check if the device is IB switch 3035 * @device: Device to check 3036 * 3037 * Device driver is responsible for setting is_switch bit on 3038 * in ib_device structure at init time. 3039 * 3040 * Return: true if the device is IB switch. 3041 */ 3042 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3043 { 3044 return device->is_switch; 3045 } 3046 3047 /** 3048 * rdma_start_port - Return the first valid port number for the device 3049 * specified 3050 * 3051 * @device: Device to be checked 3052 * 3053 * Return start port number 3054 */ 3055 static inline u32 rdma_start_port(const struct ib_device *device) 3056 { 3057 return rdma_cap_ib_switch(device) ? 0 : 1; 3058 } 3059 3060 /** 3061 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3062 * @device - The struct ib_device * to iterate over 3063 * @iter - The unsigned int to store the port number 3064 */ 3065 #define rdma_for_each_port(device, iter) \ 3066 for (iter = rdma_start_port(device + \ 3067 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3068 iter))); \ 3069 iter <= rdma_end_port(device); iter++) 3070 3071 /** 3072 * rdma_end_port - Return the last valid port number for the device 3073 * specified 3074 * 3075 * @device: Device to be checked 3076 * 3077 * Return last port number 3078 */ 3079 static inline u32 rdma_end_port(const struct ib_device *device) 3080 { 3081 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3082 } 3083 3084 static inline int rdma_is_port_valid(const struct ib_device *device, 3085 unsigned int port) 3086 { 3087 return (port >= rdma_start_port(device) && 3088 port <= rdma_end_port(device)); 3089 } 3090 3091 static inline bool rdma_is_grh_required(const struct ib_device *device, 3092 u32 port_num) 3093 { 3094 return device->port_data[port_num].immutable.core_cap_flags & 3095 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3096 } 3097 3098 static inline bool rdma_protocol_ib(const struct ib_device *device, 3099 u32 port_num) 3100 { 3101 return device->port_data[port_num].immutable.core_cap_flags & 3102 RDMA_CORE_CAP_PROT_IB; 3103 } 3104 3105 static inline bool rdma_protocol_roce(const struct ib_device *device, 3106 u32 port_num) 3107 { 3108 return device->port_data[port_num].immutable.core_cap_flags & 3109 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3110 } 3111 3112 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3113 u32 port_num) 3114 { 3115 return device->port_data[port_num].immutable.core_cap_flags & 3116 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3117 } 3118 3119 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3120 u32 port_num) 3121 { 3122 return device->port_data[port_num].immutable.core_cap_flags & 3123 RDMA_CORE_CAP_PROT_ROCE; 3124 } 3125 3126 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3127 u32 port_num) 3128 { 3129 return device->port_data[port_num].immutable.core_cap_flags & 3130 RDMA_CORE_CAP_PROT_IWARP; 3131 } 3132 3133 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3134 u32 port_num) 3135 { 3136 return rdma_protocol_ib(device, port_num) || 3137 rdma_protocol_roce(device, port_num); 3138 } 3139 3140 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3141 u32 port_num) 3142 { 3143 return device->port_data[port_num].immutable.core_cap_flags & 3144 RDMA_CORE_CAP_PROT_RAW_PACKET; 3145 } 3146 3147 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3148 u32 port_num) 3149 { 3150 return device->port_data[port_num].immutable.core_cap_flags & 3151 RDMA_CORE_CAP_PROT_USNIC; 3152 } 3153 3154 /** 3155 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3156 * Management Datagrams. 3157 * @device: Device to check 3158 * @port_num: Port number to check 3159 * 3160 * Management Datagrams (MAD) are a required part of the InfiniBand 3161 * specification and are supported on all InfiniBand devices. A slightly 3162 * extended version are also supported on OPA interfaces. 3163 * 3164 * Return: true if the port supports sending/receiving of MAD packets. 3165 */ 3166 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3167 { 3168 return device->port_data[port_num].immutable.core_cap_flags & 3169 RDMA_CORE_CAP_IB_MAD; 3170 } 3171 3172 /** 3173 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3174 * Management Datagrams. 3175 * @device: Device to check 3176 * @port_num: Port number to check 3177 * 3178 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3179 * datagrams with their own versions. These OPA MADs share many but not all of 3180 * the characteristics of InfiniBand MADs. 3181 * 3182 * OPA MADs differ in the following ways: 3183 * 3184 * 1) MADs are variable size up to 2K 3185 * IBTA defined MADs remain fixed at 256 bytes 3186 * 2) OPA SMPs must carry valid PKeys 3187 * 3) OPA SMP packets are a different format 3188 * 3189 * Return: true if the port supports OPA MAD packet formats. 3190 */ 3191 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3192 { 3193 return device->port_data[port_num].immutable.core_cap_flags & 3194 RDMA_CORE_CAP_OPA_MAD; 3195 } 3196 3197 /** 3198 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3199 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3200 * @device: Device to check 3201 * @port_num: Port number to check 3202 * 3203 * Each InfiniBand node is required to provide a Subnet Management Agent 3204 * that the subnet manager can access. Prior to the fabric being fully 3205 * configured by the subnet manager, the SMA is accessed via a well known 3206 * interface called the Subnet Management Interface (SMI). This interface 3207 * uses directed route packets to communicate with the SM to get around the 3208 * chicken and egg problem of the SM needing to know what's on the fabric 3209 * in order to configure the fabric, and needing to configure the fabric in 3210 * order to send packets to the devices on the fabric. These directed 3211 * route packets do not need the fabric fully configured in order to reach 3212 * their destination. The SMI is the only method allowed to send 3213 * directed route packets on an InfiniBand fabric. 3214 * 3215 * Return: true if the port provides an SMI. 3216 */ 3217 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3218 { 3219 return device->port_data[port_num].immutable.core_cap_flags & 3220 RDMA_CORE_CAP_IB_SMI; 3221 } 3222 3223 /** 3224 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3225 * Communication Manager. 3226 * @device: Device to check 3227 * @port_num: Port number to check 3228 * 3229 * The InfiniBand Communication Manager is one of many pre-defined General 3230 * Service Agents (GSA) that are accessed via the General Service 3231 * Interface (GSI). It's role is to facilitate establishment of connections 3232 * between nodes as well as other management related tasks for established 3233 * connections. 3234 * 3235 * Return: true if the port supports an IB CM (this does not guarantee that 3236 * a CM is actually running however). 3237 */ 3238 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3239 { 3240 return device->port_data[port_num].immutable.core_cap_flags & 3241 RDMA_CORE_CAP_IB_CM; 3242 } 3243 3244 /** 3245 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3246 * Communication Manager. 3247 * @device: Device to check 3248 * @port_num: Port number to check 3249 * 3250 * Similar to above, but specific to iWARP connections which have a different 3251 * managment protocol than InfiniBand. 3252 * 3253 * Return: true if the port supports an iWARP CM (this does not guarantee that 3254 * a CM is actually running however). 3255 */ 3256 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3257 { 3258 return device->port_data[port_num].immutable.core_cap_flags & 3259 RDMA_CORE_CAP_IW_CM; 3260 } 3261 3262 /** 3263 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3264 * Subnet Administration. 3265 * @device: Device to check 3266 * @port_num: Port number to check 3267 * 3268 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3269 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3270 * fabrics, devices should resolve routes to other hosts by contacting the 3271 * SA to query the proper route. 3272 * 3273 * Return: true if the port should act as a client to the fabric Subnet 3274 * Administration interface. This does not imply that the SA service is 3275 * running locally. 3276 */ 3277 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3278 { 3279 return device->port_data[port_num].immutable.core_cap_flags & 3280 RDMA_CORE_CAP_IB_SA; 3281 } 3282 3283 /** 3284 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3285 * Multicast. 3286 * @device: Device to check 3287 * @port_num: Port number to check 3288 * 3289 * InfiniBand multicast registration is more complex than normal IPv4 or 3290 * IPv6 multicast registration. Each Host Channel Adapter must register 3291 * with the Subnet Manager when it wishes to join a multicast group. It 3292 * should do so only once regardless of how many queue pairs it subscribes 3293 * to this group. And it should leave the group only after all queue pairs 3294 * attached to the group have been detached. 3295 * 3296 * Return: true if the port must undertake the additional adminstrative 3297 * overhead of registering/unregistering with the SM and tracking of the 3298 * total number of queue pairs attached to the multicast group. 3299 */ 3300 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3301 u32 port_num) 3302 { 3303 return rdma_cap_ib_sa(device, port_num); 3304 } 3305 3306 /** 3307 * rdma_cap_af_ib - Check if the port of device has the capability 3308 * Native Infiniband Address. 3309 * @device: Device to check 3310 * @port_num: Port number to check 3311 * 3312 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3313 * GID. RoCE uses a different mechanism, but still generates a GID via 3314 * a prescribed mechanism and port specific data. 3315 * 3316 * Return: true if the port uses a GID address to identify devices on the 3317 * network. 3318 */ 3319 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3320 { 3321 return device->port_data[port_num].immutable.core_cap_flags & 3322 RDMA_CORE_CAP_AF_IB; 3323 } 3324 3325 /** 3326 * rdma_cap_eth_ah - Check if the port of device has the capability 3327 * Ethernet Address Handle. 3328 * @device: Device to check 3329 * @port_num: Port number to check 3330 * 3331 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3332 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3333 * port. Normally, packet headers are generated by the sending host 3334 * adapter, but when sending connectionless datagrams, we must manually 3335 * inject the proper headers for the fabric we are communicating over. 3336 * 3337 * Return: true if we are running as a RoCE port and must force the 3338 * addition of a Global Route Header built from our Ethernet Address 3339 * Handle into our header list for connectionless packets. 3340 */ 3341 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3342 { 3343 return device->port_data[port_num].immutable.core_cap_flags & 3344 RDMA_CORE_CAP_ETH_AH; 3345 } 3346 3347 /** 3348 * rdma_cap_opa_ah - Check if the port of device supports 3349 * OPA Address handles 3350 * @device: Device to check 3351 * @port_num: Port number to check 3352 * 3353 * Return: true if we are running on an OPA device which supports 3354 * the extended OPA addressing. 3355 */ 3356 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3357 { 3358 return (device->port_data[port_num].immutable.core_cap_flags & 3359 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3360 } 3361 3362 /** 3363 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3364 * 3365 * @device: Device 3366 * @port_num: Port number 3367 * 3368 * This MAD size includes the MAD headers and MAD payload. No other headers 3369 * are included. 3370 * 3371 * Return the max MAD size required by the Port. Will return 0 if the port 3372 * does not support MADs 3373 */ 3374 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3375 u32 port_num) 3376 { 3377 return device->port_data[port_num].immutable.max_mad_size; 3378 } 3379 3380 /** 3381 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3382 * @device: Device to check 3383 * @port_num: Port number to check 3384 * 3385 * RoCE GID table mechanism manages the various GIDs for a device. 3386 * 3387 * NOTE: if allocating the port's GID table has failed, this call will still 3388 * return true, but any RoCE GID table API will fail. 3389 * 3390 * Return: true if the port uses RoCE GID table mechanism in order to manage 3391 * its GIDs. 3392 */ 3393 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3394 u32 port_num) 3395 { 3396 return rdma_protocol_roce(device, port_num) && 3397 device->ops.add_gid && device->ops.del_gid; 3398 } 3399 3400 /* 3401 * Check if the device supports READ W/ INVALIDATE. 3402 */ 3403 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3404 { 3405 /* 3406 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3407 * has support for it yet. 3408 */ 3409 return rdma_protocol_iwarp(dev, port_num); 3410 } 3411 3412 /** 3413 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3414 * @device: Device 3415 * @port_num: 1 based Port number 3416 * 3417 * Return true if port is an Intel OPA port , false if not 3418 */ 3419 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3420 u32 port_num) 3421 { 3422 return (device->port_data[port_num].immutable.core_cap_flags & 3423 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3424 } 3425 3426 /** 3427 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3428 * @device: Device 3429 * @port_num: Port number 3430 * @mtu: enum value of MTU 3431 * 3432 * Return the MTU size supported by the port as an integer value. Will return 3433 * -1 if enum value of mtu is not supported. 3434 */ 3435 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3436 int mtu) 3437 { 3438 if (rdma_core_cap_opa_port(device, port)) 3439 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3440 else 3441 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3442 } 3443 3444 /** 3445 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3446 * @device: Device 3447 * @port_num: Port number 3448 * @attr: port attribute 3449 * 3450 * Return the MTU size supported by the port as an integer value. 3451 */ 3452 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3453 struct ib_port_attr *attr) 3454 { 3455 if (rdma_core_cap_opa_port(device, port)) 3456 return attr->phys_mtu; 3457 else 3458 return ib_mtu_enum_to_int(attr->max_mtu); 3459 } 3460 3461 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3462 int state); 3463 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3464 struct ifla_vf_info *info); 3465 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3466 struct ifla_vf_stats *stats); 3467 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3468 struct ifla_vf_guid *node_guid, 3469 struct ifla_vf_guid *port_guid); 3470 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3471 int type); 3472 3473 int ib_query_pkey(struct ib_device *device, 3474 u32 port_num, u16 index, u16 *pkey); 3475 3476 int ib_modify_device(struct ib_device *device, 3477 int device_modify_mask, 3478 struct ib_device_modify *device_modify); 3479 3480 int ib_modify_port(struct ib_device *device, 3481 u32 port_num, int port_modify_mask, 3482 struct ib_port_modify *port_modify); 3483 3484 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3485 u32 *port_num, u16 *index); 3486 3487 int ib_find_pkey(struct ib_device *device, 3488 u32 port_num, u16 pkey, u16 *index); 3489 3490 enum ib_pd_flags { 3491 /* 3492 * Create a memory registration for all memory in the system and place 3493 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3494 * ULPs to avoid the overhead of dynamic MRs. 3495 * 3496 * This flag is generally considered unsafe and must only be used in 3497 * extremly trusted environments. Every use of it will log a warning 3498 * in the kernel log. 3499 */ 3500 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3501 }; 3502 3503 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3504 const char *caller); 3505 3506 /** 3507 * ib_alloc_pd - Allocates an unused protection domain. 3508 * @device: The device on which to allocate the protection domain. 3509 * @flags: protection domain flags 3510 * 3511 * A protection domain object provides an association between QPs, shared 3512 * receive queues, address handles, memory regions, and memory windows. 3513 * 3514 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3515 * memory operations. 3516 */ 3517 #define ib_alloc_pd(device, flags) \ 3518 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3519 3520 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3521 3522 /** 3523 * ib_dealloc_pd - Deallocate kernel PD 3524 * @pd: The protection domain 3525 * 3526 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3527 */ 3528 static inline void ib_dealloc_pd(struct ib_pd *pd) 3529 { 3530 int ret = ib_dealloc_pd_user(pd, NULL); 3531 3532 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3533 } 3534 3535 enum rdma_create_ah_flags { 3536 /* In a sleepable context */ 3537 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3538 }; 3539 3540 /** 3541 * rdma_create_ah - Creates an address handle for the given address vector. 3542 * @pd: The protection domain associated with the address handle. 3543 * @ah_attr: The attributes of the address vector. 3544 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3545 * 3546 * The address handle is used to reference a local or global destination 3547 * in all UD QP post sends. 3548 */ 3549 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3550 u32 flags); 3551 3552 /** 3553 * rdma_create_user_ah - Creates an address handle for the given address vector. 3554 * It resolves destination mac address for ah attribute of RoCE type. 3555 * @pd: The protection domain associated with the address handle. 3556 * @ah_attr: The attributes of the address vector. 3557 * @udata: pointer to user's input output buffer information need by 3558 * provider driver. 3559 * 3560 * It returns 0 on success and returns appropriate error code on error. 3561 * The address handle is used to reference a local or global destination 3562 * in all UD QP post sends. 3563 */ 3564 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3565 struct rdma_ah_attr *ah_attr, 3566 struct ib_udata *udata); 3567 /** 3568 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3569 * work completion. 3570 * @hdr: the L3 header to parse 3571 * @net_type: type of header to parse 3572 * @sgid: place to store source gid 3573 * @dgid: place to store destination gid 3574 */ 3575 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3576 enum rdma_network_type net_type, 3577 union ib_gid *sgid, union ib_gid *dgid); 3578 3579 /** 3580 * ib_get_rdma_header_version - Get the header version 3581 * @hdr: the L3 header to parse 3582 */ 3583 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3584 3585 /** 3586 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3587 * work completion. 3588 * @device: Device on which the received message arrived. 3589 * @port_num: Port on which the received message arrived. 3590 * @wc: Work completion associated with the received message. 3591 * @grh: References the received global route header. This parameter is 3592 * ignored unless the work completion indicates that the GRH is valid. 3593 * @ah_attr: Returned attributes that can be used when creating an address 3594 * handle for replying to the message. 3595 * When ib_init_ah_attr_from_wc() returns success, 3596 * (a) for IB link layer it optionally contains a reference to SGID attribute 3597 * when GRH is present for IB link layer. 3598 * (b) for RoCE link layer it contains a reference to SGID attribute. 3599 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3600 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3601 * 3602 */ 3603 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3604 const struct ib_wc *wc, const struct ib_grh *grh, 3605 struct rdma_ah_attr *ah_attr); 3606 3607 /** 3608 * ib_create_ah_from_wc - Creates an address handle associated with the 3609 * sender of the specified work completion. 3610 * @pd: The protection domain associated with the address handle. 3611 * @wc: Work completion information associated with a received message. 3612 * @grh: References the received global route header. This parameter is 3613 * ignored unless the work completion indicates that the GRH is valid. 3614 * @port_num: The outbound port number to associate with the address. 3615 * 3616 * The address handle is used to reference a local or global destination 3617 * in all UD QP post sends. 3618 */ 3619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3620 const struct ib_grh *grh, u32 port_num); 3621 3622 /** 3623 * rdma_modify_ah - Modifies the address vector associated with an address 3624 * handle. 3625 * @ah: The address handle to modify. 3626 * @ah_attr: The new address vector attributes to associate with the 3627 * address handle. 3628 */ 3629 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3630 3631 /** 3632 * rdma_query_ah - Queries the address vector associated with an address 3633 * handle. 3634 * @ah: The address handle to query. 3635 * @ah_attr: The address vector attributes associated with the address 3636 * handle. 3637 */ 3638 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3639 3640 enum rdma_destroy_ah_flags { 3641 /* In a sleepable context */ 3642 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3643 }; 3644 3645 /** 3646 * rdma_destroy_ah_user - Destroys an address handle. 3647 * @ah: The address handle to destroy. 3648 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3649 * @udata: Valid user data or NULL for kernel objects 3650 */ 3651 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3652 3653 /** 3654 * rdma_destroy_ah - Destroys an kernel address handle. 3655 * @ah: The address handle to destroy. 3656 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3657 * 3658 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3659 */ 3660 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3661 { 3662 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3663 3664 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3665 } 3666 3667 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3668 struct ib_srq_init_attr *srq_init_attr, 3669 struct ib_usrq_object *uobject, 3670 struct ib_udata *udata); 3671 static inline struct ib_srq * 3672 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3673 { 3674 if (!pd->device->ops.create_srq) 3675 return ERR_PTR(-EOPNOTSUPP); 3676 3677 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3678 } 3679 3680 /** 3681 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3682 * @srq: The SRQ to modify. 3683 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3684 * the current values of selected SRQ attributes are returned. 3685 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3686 * are being modified. 3687 * 3688 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3689 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3690 * the number of receives queued drops below the limit. 3691 */ 3692 int ib_modify_srq(struct ib_srq *srq, 3693 struct ib_srq_attr *srq_attr, 3694 enum ib_srq_attr_mask srq_attr_mask); 3695 3696 /** 3697 * ib_query_srq - Returns the attribute list and current values for the 3698 * specified SRQ. 3699 * @srq: The SRQ to query. 3700 * @srq_attr: The attributes of the specified SRQ. 3701 */ 3702 int ib_query_srq(struct ib_srq *srq, 3703 struct ib_srq_attr *srq_attr); 3704 3705 /** 3706 * ib_destroy_srq_user - Destroys the specified SRQ. 3707 * @srq: The SRQ to destroy. 3708 * @udata: Valid user data or NULL for kernel objects 3709 */ 3710 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3711 3712 /** 3713 * ib_destroy_srq - Destroys the specified kernel SRQ. 3714 * @srq: The SRQ to destroy. 3715 * 3716 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3717 */ 3718 static inline void ib_destroy_srq(struct ib_srq *srq) 3719 { 3720 int ret = ib_destroy_srq_user(srq, NULL); 3721 3722 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3723 } 3724 3725 /** 3726 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3727 * @srq: The SRQ to post the work request on. 3728 * @recv_wr: A list of work requests to post on the receive queue. 3729 * @bad_recv_wr: On an immediate failure, this parameter will reference 3730 * the work request that failed to be posted on the QP. 3731 */ 3732 static inline int ib_post_srq_recv(struct ib_srq *srq, 3733 const struct ib_recv_wr *recv_wr, 3734 const struct ib_recv_wr **bad_recv_wr) 3735 { 3736 const struct ib_recv_wr *dummy; 3737 3738 return srq->device->ops.post_srq_recv(srq, recv_wr, 3739 bad_recv_wr ? : &dummy); 3740 } 3741 3742 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3743 struct ib_qp_init_attr *qp_init_attr, 3744 const char *caller); 3745 /** 3746 * ib_create_qp - Creates a kernel QP associated with the specific protection 3747 * domain. 3748 * @pd: The protection domain associated with the QP. 3749 * @init_attr: A list of initial attributes required to create the 3750 * QP. If QP creation succeeds, then the attributes are updated to 3751 * the actual capabilities of the created QP. 3752 */ 3753 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3754 struct ib_qp_init_attr *init_attr) 3755 { 3756 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3757 } 3758 3759 /** 3760 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3761 * @qp: The QP to modify. 3762 * @attr: On input, specifies the QP attributes to modify. On output, 3763 * the current values of selected QP attributes are returned. 3764 * @attr_mask: A bit-mask used to specify which attributes of the QP 3765 * are being modified. 3766 * @udata: pointer to user's input output buffer information 3767 * are being modified. 3768 * It returns 0 on success and returns appropriate error code on error. 3769 */ 3770 int ib_modify_qp_with_udata(struct ib_qp *qp, 3771 struct ib_qp_attr *attr, 3772 int attr_mask, 3773 struct ib_udata *udata); 3774 3775 /** 3776 * ib_modify_qp - Modifies the attributes for the specified QP and then 3777 * transitions the QP to the given state. 3778 * @qp: The QP to modify. 3779 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3780 * the current values of selected QP attributes are returned. 3781 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3782 * are being modified. 3783 */ 3784 int ib_modify_qp(struct ib_qp *qp, 3785 struct ib_qp_attr *qp_attr, 3786 int qp_attr_mask); 3787 3788 /** 3789 * ib_query_qp - Returns the attribute list and current values for the 3790 * specified QP. 3791 * @qp: The QP to query. 3792 * @qp_attr: The attributes of the specified QP. 3793 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3794 * @qp_init_attr: Additional attributes of the selected QP. 3795 * 3796 * The qp_attr_mask may be used to limit the query to gathering only the 3797 * selected attributes. 3798 */ 3799 int ib_query_qp(struct ib_qp *qp, 3800 struct ib_qp_attr *qp_attr, 3801 int qp_attr_mask, 3802 struct ib_qp_init_attr *qp_init_attr); 3803 3804 /** 3805 * ib_destroy_qp - Destroys the specified QP. 3806 * @qp: The QP to destroy. 3807 * @udata: Valid udata or NULL for kernel objects 3808 */ 3809 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3810 3811 /** 3812 * ib_destroy_qp - Destroys the specified kernel QP. 3813 * @qp: The QP to destroy. 3814 * 3815 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3816 */ 3817 static inline int ib_destroy_qp(struct ib_qp *qp) 3818 { 3819 return ib_destroy_qp_user(qp, NULL); 3820 } 3821 3822 /** 3823 * ib_open_qp - Obtain a reference to an existing sharable QP. 3824 * @xrcd - XRC domain 3825 * @qp_open_attr: Attributes identifying the QP to open. 3826 * 3827 * Returns a reference to a sharable QP. 3828 */ 3829 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3830 struct ib_qp_open_attr *qp_open_attr); 3831 3832 /** 3833 * ib_close_qp - Release an external reference to a QP. 3834 * @qp: The QP handle to release 3835 * 3836 * The opened QP handle is released by the caller. The underlying 3837 * shared QP is not destroyed until all internal references are released. 3838 */ 3839 int ib_close_qp(struct ib_qp *qp); 3840 3841 /** 3842 * ib_post_send - Posts a list of work requests to the send queue of 3843 * the specified QP. 3844 * @qp: The QP to post the work request on. 3845 * @send_wr: A list of work requests to post on the send queue. 3846 * @bad_send_wr: On an immediate failure, this parameter will reference 3847 * the work request that failed to be posted on the QP. 3848 * 3849 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3850 * error is returned, the QP state shall not be affected, 3851 * ib_post_send() will return an immediate error after queueing any 3852 * earlier work requests in the list. 3853 */ 3854 static inline int ib_post_send(struct ib_qp *qp, 3855 const struct ib_send_wr *send_wr, 3856 const struct ib_send_wr **bad_send_wr) 3857 { 3858 const struct ib_send_wr *dummy; 3859 3860 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3861 } 3862 3863 /** 3864 * ib_post_recv - Posts a list of work requests to the receive queue of 3865 * the specified QP. 3866 * @qp: The QP to post the work request on. 3867 * @recv_wr: A list of work requests to post on the receive queue. 3868 * @bad_recv_wr: On an immediate failure, this parameter will reference 3869 * the work request that failed to be posted on the QP. 3870 */ 3871 static inline int ib_post_recv(struct ib_qp *qp, 3872 const struct ib_recv_wr *recv_wr, 3873 const struct ib_recv_wr **bad_recv_wr) 3874 { 3875 const struct ib_recv_wr *dummy; 3876 3877 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3878 } 3879 3880 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3881 int comp_vector, enum ib_poll_context poll_ctx, 3882 const char *caller); 3883 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3884 int nr_cqe, int comp_vector, 3885 enum ib_poll_context poll_ctx) 3886 { 3887 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3888 KBUILD_MODNAME); 3889 } 3890 3891 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3892 int nr_cqe, enum ib_poll_context poll_ctx, 3893 const char *caller); 3894 3895 /** 3896 * ib_alloc_cq_any: Allocate kernel CQ 3897 * @dev: The IB device 3898 * @private: Private data attached to the CQE 3899 * @nr_cqe: Number of CQEs in the CQ 3900 * @poll_ctx: Context used for polling the CQ 3901 */ 3902 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3903 void *private, int nr_cqe, 3904 enum ib_poll_context poll_ctx) 3905 { 3906 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3907 KBUILD_MODNAME); 3908 } 3909 3910 void ib_free_cq(struct ib_cq *cq); 3911 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3912 3913 /** 3914 * ib_create_cq - Creates a CQ on the specified device. 3915 * @device: The device on which to create the CQ. 3916 * @comp_handler: A user-specified callback that is invoked when a 3917 * completion event occurs on the CQ. 3918 * @event_handler: A user-specified callback that is invoked when an 3919 * asynchronous event not associated with a completion occurs on the CQ. 3920 * @cq_context: Context associated with the CQ returned to the user via 3921 * the associated completion and event handlers. 3922 * @cq_attr: The attributes the CQ should be created upon. 3923 * 3924 * Users can examine the cq structure to determine the actual CQ size. 3925 */ 3926 struct ib_cq *__ib_create_cq(struct ib_device *device, 3927 ib_comp_handler comp_handler, 3928 void (*event_handler)(struct ib_event *, void *), 3929 void *cq_context, 3930 const struct ib_cq_init_attr *cq_attr, 3931 const char *caller); 3932 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3933 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3934 3935 /** 3936 * ib_resize_cq - Modifies the capacity of the CQ. 3937 * @cq: The CQ to resize. 3938 * @cqe: The minimum size of the CQ. 3939 * 3940 * Users can examine the cq structure to determine the actual CQ size. 3941 */ 3942 int ib_resize_cq(struct ib_cq *cq, int cqe); 3943 3944 /** 3945 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3946 * @cq: The CQ to modify. 3947 * @cq_count: number of CQEs that will trigger an event 3948 * @cq_period: max period of time in usec before triggering an event 3949 * 3950 */ 3951 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3952 3953 /** 3954 * ib_destroy_cq_user - Destroys the specified CQ. 3955 * @cq: The CQ to destroy. 3956 * @udata: Valid user data or NULL for kernel objects 3957 */ 3958 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3959 3960 /** 3961 * ib_destroy_cq - Destroys the specified kernel CQ. 3962 * @cq: The CQ to destroy. 3963 * 3964 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3965 */ 3966 static inline void ib_destroy_cq(struct ib_cq *cq) 3967 { 3968 int ret = ib_destroy_cq_user(cq, NULL); 3969 3970 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3971 } 3972 3973 /** 3974 * ib_poll_cq - poll a CQ for completion(s) 3975 * @cq:the CQ being polled 3976 * @num_entries:maximum number of completions to return 3977 * @wc:array of at least @num_entries &struct ib_wc where completions 3978 * will be returned 3979 * 3980 * Poll a CQ for (possibly multiple) completions. If the return value 3981 * is < 0, an error occurred. If the return value is >= 0, it is the 3982 * number of completions returned. If the return value is 3983 * non-negative and < num_entries, then the CQ was emptied. 3984 */ 3985 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3986 struct ib_wc *wc) 3987 { 3988 return cq->device->ops.poll_cq(cq, num_entries, wc); 3989 } 3990 3991 /** 3992 * ib_req_notify_cq - Request completion notification on a CQ. 3993 * @cq: The CQ to generate an event for. 3994 * @flags: 3995 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3996 * to request an event on the next solicited event or next work 3997 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3998 * may also be |ed in to request a hint about missed events, as 3999 * described below. 4000 * 4001 * Return Value: 4002 * < 0 means an error occurred while requesting notification 4003 * == 0 means notification was requested successfully, and if 4004 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4005 * were missed and it is safe to wait for another event. In 4006 * this case is it guaranteed that any work completions added 4007 * to the CQ since the last CQ poll will trigger a completion 4008 * notification event. 4009 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4010 * in. It means that the consumer must poll the CQ again to 4011 * make sure it is empty to avoid missing an event because of a 4012 * race between requesting notification and an entry being 4013 * added to the CQ. This return value means it is possible 4014 * (but not guaranteed) that a work completion has been added 4015 * to the CQ since the last poll without triggering a 4016 * completion notification event. 4017 */ 4018 static inline int ib_req_notify_cq(struct ib_cq *cq, 4019 enum ib_cq_notify_flags flags) 4020 { 4021 return cq->device->ops.req_notify_cq(cq, flags); 4022 } 4023 4024 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4025 int comp_vector_hint, 4026 enum ib_poll_context poll_ctx); 4027 4028 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4029 4030 /* 4031 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4032 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4033 * address into the dma address. 4034 */ 4035 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4036 { 4037 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4038 } 4039 4040 /* 4041 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4042 */ 4043 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4044 { 4045 if (ib_uses_virt_dma(dev)) 4046 return false; 4047 4048 return dma_pci_p2pdma_supported(dev->dma_device); 4049 } 4050 4051 /** 4052 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4053 * @dma_addr: The DMA address 4054 * 4055 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4056 * going through the dma_addr marshalling. 4057 */ 4058 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4059 { 4060 /* virt_dma mode maps the kvs's directly into the dma addr */ 4061 return (void *)(uintptr_t)dma_addr; 4062 } 4063 4064 /** 4065 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4066 * @dma_addr: The DMA address 4067 * 4068 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4069 * through the dma_addr marshalling. 4070 */ 4071 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4072 { 4073 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4074 } 4075 4076 /** 4077 * ib_dma_mapping_error - check a DMA addr for error 4078 * @dev: The device for which the dma_addr was created 4079 * @dma_addr: The DMA address to check 4080 */ 4081 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4082 { 4083 if (ib_uses_virt_dma(dev)) 4084 return 0; 4085 return dma_mapping_error(dev->dma_device, dma_addr); 4086 } 4087 4088 /** 4089 * ib_dma_map_single - Map a kernel virtual address to DMA address 4090 * @dev: The device for which the dma_addr is to be created 4091 * @cpu_addr: The kernel virtual address 4092 * @size: The size of the region in bytes 4093 * @direction: The direction of the DMA 4094 */ 4095 static inline u64 ib_dma_map_single(struct ib_device *dev, 4096 void *cpu_addr, size_t size, 4097 enum dma_data_direction direction) 4098 { 4099 if (ib_uses_virt_dma(dev)) 4100 return (uintptr_t)cpu_addr; 4101 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4102 } 4103 4104 /** 4105 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4106 * @dev: The device for which the DMA address was created 4107 * @addr: The DMA address 4108 * @size: The size of the region in bytes 4109 * @direction: The direction of the DMA 4110 */ 4111 static inline void ib_dma_unmap_single(struct ib_device *dev, 4112 u64 addr, size_t size, 4113 enum dma_data_direction direction) 4114 { 4115 if (!ib_uses_virt_dma(dev)) 4116 dma_unmap_single(dev->dma_device, addr, size, direction); 4117 } 4118 4119 /** 4120 * ib_dma_map_page - Map a physical page to DMA address 4121 * @dev: The device for which the dma_addr is to be created 4122 * @page: The page to be mapped 4123 * @offset: The offset within the page 4124 * @size: The size of the region in bytes 4125 * @direction: The direction of the DMA 4126 */ 4127 static inline u64 ib_dma_map_page(struct ib_device *dev, 4128 struct page *page, 4129 unsigned long offset, 4130 size_t size, 4131 enum dma_data_direction direction) 4132 { 4133 if (ib_uses_virt_dma(dev)) 4134 return (uintptr_t)(page_address(page) + offset); 4135 return dma_map_page(dev->dma_device, page, offset, size, direction); 4136 } 4137 4138 /** 4139 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4140 * @dev: The device for which the DMA address was created 4141 * @addr: The DMA address 4142 * @size: The size of the region in bytes 4143 * @direction: The direction of the DMA 4144 */ 4145 static inline void ib_dma_unmap_page(struct ib_device *dev, 4146 u64 addr, size_t size, 4147 enum dma_data_direction direction) 4148 { 4149 if (!ib_uses_virt_dma(dev)) 4150 dma_unmap_page(dev->dma_device, addr, size, direction); 4151 } 4152 4153 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4154 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4155 struct scatterlist *sg, int nents, 4156 enum dma_data_direction direction, 4157 unsigned long dma_attrs) 4158 { 4159 if (ib_uses_virt_dma(dev)) 4160 return ib_dma_virt_map_sg(dev, sg, nents); 4161 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4162 dma_attrs); 4163 } 4164 4165 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4166 struct scatterlist *sg, int nents, 4167 enum dma_data_direction direction, 4168 unsigned long dma_attrs) 4169 { 4170 if (!ib_uses_virt_dma(dev)) 4171 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4172 dma_attrs); 4173 } 4174 4175 /** 4176 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4177 * @dev: The device for which the DMA addresses are to be created 4178 * @sg: The sg_table object describing the buffer 4179 * @direction: The direction of the DMA 4180 * @attrs: Optional DMA attributes for the map operation 4181 */ 4182 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4183 struct sg_table *sgt, 4184 enum dma_data_direction direction, 4185 unsigned long dma_attrs) 4186 { 4187 int nents; 4188 4189 if (ib_uses_virt_dma(dev)) { 4190 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4191 if (!nents) 4192 return -EIO; 4193 sgt->nents = nents; 4194 return 0; 4195 } 4196 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4197 } 4198 4199 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4200 struct sg_table *sgt, 4201 enum dma_data_direction direction, 4202 unsigned long dma_attrs) 4203 { 4204 if (!ib_uses_virt_dma(dev)) 4205 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4206 } 4207 4208 /** 4209 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4210 * @dev: The device for which the DMA addresses are to be created 4211 * @sg: The array of scatter/gather entries 4212 * @nents: The number of scatter/gather entries 4213 * @direction: The direction of the DMA 4214 */ 4215 static inline int ib_dma_map_sg(struct ib_device *dev, 4216 struct scatterlist *sg, int nents, 4217 enum dma_data_direction direction) 4218 { 4219 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4220 } 4221 4222 /** 4223 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4224 * @dev: The device for which the DMA addresses were created 4225 * @sg: The array of scatter/gather entries 4226 * @nents: The number of scatter/gather entries 4227 * @direction: The direction of the DMA 4228 */ 4229 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4230 struct scatterlist *sg, int nents, 4231 enum dma_data_direction direction) 4232 { 4233 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4234 } 4235 4236 /** 4237 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4238 * @dev: The device to query 4239 * 4240 * The returned value represents a size in bytes. 4241 */ 4242 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4243 { 4244 if (ib_uses_virt_dma(dev)) 4245 return UINT_MAX; 4246 return dma_get_max_seg_size(dev->dma_device); 4247 } 4248 4249 /** 4250 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4251 * @dev: The device for which the DMA address was created 4252 * @addr: The DMA address 4253 * @size: The size of the region in bytes 4254 * @dir: The direction of the DMA 4255 */ 4256 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4257 u64 addr, 4258 size_t size, 4259 enum dma_data_direction dir) 4260 { 4261 if (!ib_uses_virt_dma(dev)) 4262 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4263 } 4264 4265 /** 4266 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4267 * @dev: The device for which the DMA address was created 4268 * @addr: The DMA address 4269 * @size: The size of the region in bytes 4270 * @dir: The direction of the DMA 4271 */ 4272 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4273 u64 addr, 4274 size_t size, 4275 enum dma_data_direction dir) 4276 { 4277 if (!ib_uses_virt_dma(dev)) 4278 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4279 } 4280 4281 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4282 * space. This function should be called when 'current' is the owning MM. 4283 */ 4284 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4285 u64 virt_addr, int mr_access_flags); 4286 4287 /* ib_advise_mr - give an advice about an address range in a memory region */ 4288 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4289 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4290 /** 4291 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4292 * HCA translation table. 4293 * @mr: The memory region to deregister. 4294 * @udata: Valid user data or NULL for kernel object 4295 * 4296 * This function can fail, if the memory region has memory windows bound to it. 4297 */ 4298 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4299 4300 /** 4301 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4302 * HCA translation table. 4303 * @mr: The memory region to deregister. 4304 * 4305 * This function can fail, if the memory region has memory windows bound to it. 4306 * 4307 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4308 */ 4309 static inline int ib_dereg_mr(struct ib_mr *mr) 4310 { 4311 return ib_dereg_mr_user(mr, NULL); 4312 } 4313 4314 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4315 u32 max_num_sg); 4316 4317 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4318 u32 max_num_data_sg, 4319 u32 max_num_meta_sg); 4320 4321 /** 4322 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4323 * R_Key and L_Key. 4324 * @mr - struct ib_mr pointer to be updated. 4325 * @newkey - new key to be used. 4326 */ 4327 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4328 { 4329 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4330 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4331 } 4332 4333 /** 4334 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4335 * for calculating a new rkey for type 2 memory windows. 4336 * @rkey - the rkey to increment. 4337 */ 4338 static inline u32 ib_inc_rkey(u32 rkey) 4339 { 4340 const u32 mask = 0x000000ff; 4341 return ((rkey + 1) & mask) | (rkey & ~mask); 4342 } 4343 4344 /** 4345 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4346 * @qp: QP to attach to the multicast group. The QP must be type 4347 * IB_QPT_UD. 4348 * @gid: Multicast group GID. 4349 * @lid: Multicast group LID in host byte order. 4350 * 4351 * In order to send and receive multicast packets, subnet 4352 * administration must have created the multicast group and configured 4353 * the fabric appropriately. The port associated with the specified 4354 * QP must also be a member of the multicast group. 4355 */ 4356 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4357 4358 /** 4359 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4360 * @qp: QP to detach from the multicast group. 4361 * @gid: Multicast group GID. 4362 * @lid: Multicast group LID in host byte order. 4363 */ 4364 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4365 4366 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4367 struct inode *inode, struct ib_udata *udata); 4368 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4369 4370 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4371 unsigned int flags) 4372 { 4373 u64 device_cap = ib_dev->attrs.device_cap_flags; 4374 4375 /* 4376 * Local write permission is required if remote write or 4377 * remote atomic permission is also requested. 4378 */ 4379 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4380 !(flags & IB_ACCESS_LOCAL_WRITE)) 4381 return -EINVAL; 4382 4383 if (flags & ~IB_ACCESS_SUPPORTED) 4384 return -EINVAL; 4385 4386 if (flags & IB_ACCESS_ON_DEMAND && 4387 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4388 return -EOPNOTSUPP; 4389 4390 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4391 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4392 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4393 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4394 return -EOPNOTSUPP; 4395 4396 return 0; 4397 } 4398 4399 static inline bool ib_access_writable(int access_flags) 4400 { 4401 /* 4402 * We have writable memory backing the MR if any of the following 4403 * access flags are set. "Local write" and "remote write" obviously 4404 * require write access. "Remote atomic" can do things like fetch and 4405 * add, which will modify memory, and "MW bind" can change permissions 4406 * by binding a window. 4407 */ 4408 return access_flags & 4409 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4410 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4411 } 4412 4413 /** 4414 * ib_check_mr_status: lightweight check of MR status. 4415 * This routine may provide status checks on a selected 4416 * ib_mr. first use is for signature status check. 4417 * 4418 * @mr: A memory region. 4419 * @check_mask: Bitmask of which checks to perform from 4420 * ib_mr_status_check enumeration. 4421 * @mr_status: The container of relevant status checks. 4422 * failed checks will be indicated in the status bitmask 4423 * and the relevant info shall be in the error item. 4424 */ 4425 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4426 struct ib_mr_status *mr_status); 4427 4428 /** 4429 * ib_device_try_get: Hold a registration lock 4430 * device: The device to lock 4431 * 4432 * A device under an active registration lock cannot become unregistered. It 4433 * is only possible to obtain a registration lock on a device that is fully 4434 * registered, otherwise this function returns false. 4435 * 4436 * The registration lock is only necessary for actions which require the 4437 * device to still be registered. Uses that only require the device pointer to 4438 * be valid should use get_device(&ibdev->dev) to hold the memory. 4439 * 4440 */ 4441 static inline bool ib_device_try_get(struct ib_device *dev) 4442 { 4443 return refcount_inc_not_zero(&dev->refcount); 4444 } 4445 4446 void ib_device_put(struct ib_device *device); 4447 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4448 enum rdma_driver_id driver_id); 4449 struct ib_device *ib_device_get_by_name(const char *name, 4450 enum rdma_driver_id driver_id); 4451 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4452 u16 pkey, const union ib_gid *gid, 4453 const struct sockaddr *addr); 4454 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4455 unsigned int port); 4456 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4457 struct ib_wq_init_attr *init_attr); 4458 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4459 4460 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4461 unsigned int *sg_offset, unsigned int page_size); 4462 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4463 int data_sg_nents, unsigned int *data_sg_offset, 4464 struct scatterlist *meta_sg, int meta_sg_nents, 4465 unsigned int *meta_sg_offset, unsigned int page_size); 4466 4467 static inline int 4468 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4469 unsigned int *sg_offset, unsigned int page_size) 4470 { 4471 int n; 4472 4473 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4474 mr->iova = 0; 4475 4476 return n; 4477 } 4478 4479 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4480 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4481 4482 void ib_drain_rq(struct ib_qp *qp); 4483 void ib_drain_sq(struct ib_qp *qp); 4484 void ib_drain_qp(struct ib_qp *qp); 4485 4486 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4487 u8 *width); 4488 4489 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4490 { 4491 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4492 return attr->roce.dmac; 4493 return NULL; 4494 } 4495 4496 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4497 { 4498 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4499 attr->ib.dlid = (u16)dlid; 4500 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4501 attr->opa.dlid = dlid; 4502 } 4503 4504 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4505 { 4506 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4507 return attr->ib.dlid; 4508 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4509 return attr->opa.dlid; 4510 return 0; 4511 } 4512 4513 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4514 { 4515 attr->sl = sl; 4516 } 4517 4518 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4519 { 4520 return attr->sl; 4521 } 4522 4523 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4524 u8 src_path_bits) 4525 { 4526 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4527 attr->ib.src_path_bits = src_path_bits; 4528 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4529 attr->opa.src_path_bits = src_path_bits; 4530 } 4531 4532 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4533 { 4534 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4535 return attr->ib.src_path_bits; 4536 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4537 return attr->opa.src_path_bits; 4538 return 0; 4539 } 4540 4541 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4542 bool make_grd) 4543 { 4544 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4545 attr->opa.make_grd = make_grd; 4546 } 4547 4548 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4549 { 4550 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4551 return attr->opa.make_grd; 4552 return false; 4553 } 4554 4555 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4556 { 4557 attr->port_num = port_num; 4558 } 4559 4560 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4561 { 4562 return attr->port_num; 4563 } 4564 4565 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4566 u8 static_rate) 4567 { 4568 attr->static_rate = static_rate; 4569 } 4570 4571 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4572 { 4573 return attr->static_rate; 4574 } 4575 4576 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4577 enum ib_ah_flags flag) 4578 { 4579 attr->ah_flags = flag; 4580 } 4581 4582 static inline enum ib_ah_flags 4583 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4584 { 4585 return attr->ah_flags; 4586 } 4587 4588 static inline const struct ib_global_route 4589 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4590 { 4591 return &attr->grh; 4592 } 4593 4594 /*To retrieve and modify the grh */ 4595 static inline struct ib_global_route 4596 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4597 { 4598 return &attr->grh; 4599 } 4600 4601 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4602 { 4603 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4604 4605 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4606 } 4607 4608 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4609 __be64 prefix) 4610 { 4611 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4612 4613 grh->dgid.global.subnet_prefix = prefix; 4614 } 4615 4616 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4617 __be64 if_id) 4618 { 4619 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4620 4621 grh->dgid.global.interface_id = if_id; 4622 } 4623 4624 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4625 union ib_gid *dgid, u32 flow_label, 4626 u8 sgid_index, u8 hop_limit, 4627 u8 traffic_class) 4628 { 4629 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4630 4631 attr->ah_flags = IB_AH_GRH; 4632 if (dgid) 4633 grh->dgid = *dgid; 4634 grh->flow_label = flow_label; 4635 grh->sgid_index = sgid_index; 4636 grh->hop_limit = hop_limit; 4637 grh->traffic_class = traffic_class; 4638 grh->sgid_attr = NULL; 4639 } 4640 4641 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4642 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4643 u32 flow_label, u8 hop_limit, u8 traffic_class, 4644 const struct ib_gid_attr *sgid_attr); 4645 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4646 const struct rdma_ah_attr *src); 4647 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4648 const struct rdma_ah_attr *new); 4649 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4650 4651 /** 4652 * rdma_ah_find_type - Return address handle type. 4653 * 4654 * @dev: Device to be checked 4655 * @port_num: Port number 4656 */ 4657 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4658 u32 port_num) 4659 { 4660 if (rdma_protocol_roce(dev, port_num)) 4661 return RDMA_AH_ATTR_TYPE_ROCE; 4662 if (rdma_protocol_ib(dev, port_num)) { 4663 if (rdma_cap_opa_ah(dev, port_num)) 4664 return RDMA_AH_ATTR_TYPE_OPA; 4665 return RDMA_AH_ATTR_TYPE_IB; 4666 } 4667 if (dev->type == RDMA_DEVICE_TYPE_SMI) 4668 return RDMA_AH_ATTR_TYPE_IB; 4669 4670 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4671 } 4672 4673 /** 4674 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4675 * In the current implementation the only way to 4676 * get the 32bit lid is from other sources for OPA. 4677 * For IB, lids will always be 16bits so cast the 4678 * value accordingly. 4679 * 4680 * @lid: A 32bit LID 4681 */ 4682 static inline u16 ib_lid_cpu16(u32 lid) 4683 { 4684 WARN_ON_ONCE(lid & 0xFFFF0000); 4685 return (u16)lid; 4686 } 4687 4688 /** 4689 * ib_lid_be16 - Return lid in 16bit BE encoding. 4690 * 4691 * @lid: A 32bit LID 4692 */ 4693 static inline __be16 ib_lid_be16(u32 lid) 4694 { 4695 WARN_ON_ONCE(lid & 0xFFFF0000); 4696 return cpu_to_be16((u16)lid); 4697 } 4698 4699 /** 4700 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4701 * vector 4702 * @device: the rdma device 4703 * @comp_vector: index of completion vector 4704 * 4705 * Returns NULL on failure, otherwise a corresponding cpu map of the 4706 * completion vector (returns all-cpus map if the device driver doesn't 4707 * implement get_vector_affinity). 4708 */ 4709 static inline const struct cpumask * 4710 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4711 { 4712 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4713 !device->ops.get_vector_affinity) 4714 return NULL; 4715 4716 return device->ops.get_vector_affinity(device, comp_vector); 4717 4718 } 4719 4720 /** 4721 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4722 * and add their gids, as needed, to the relevant RoCE devices. 4723 * 4724 * @device: the rdma device 4725 */ 4726 void rdma_roce_rescan_device(struct ib_device *ibdev); 4727 4728 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4729 4730 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4731 4732 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4733 enum rdma_netdev_t type, const char *name, 4734 unsigned char name_assign_type, 4735 void (*setup)(struct net_device *)); 4736 4737 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4738 enum rdma_netdev_t type, const char *name, 4739 unsigned char name_assign_type, 4740 void (*setup)(struct net_device *), 4741 struct net_device *netdev); 4742 4743 /** 4744 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4745 * 4746 * @device: device pointer for which ib_device pointer to retrieve 4747 * 4748 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4749 * 4750 */ 4751 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4752 { 4753 struct ib_core_device *coredev = 4754 container_of(device, struct ib_core_device, dev); 4755 4756 return coredev->owner; 4757 } 4758 4759 /** 4760 * ibdev_to_node - return the NUMA node for a given ib_device 4761 * @dev: device to get the NUMA node for. 4762 */ 4763 static inline int ibdev_to_node(struct ib_device *ibdev) 4764 { 4765 struct device *parent = ibdev->dev.parent; 4766 4767 if (!parent) 4768 return NUMA_NO_NODE; 4769 return dev_to_node(parent); 4770 } 4771 4772 /** 4773 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4774 * ib_device holder structure from device pointer. 4775 * 4776 * NOTE: New drivers should not make use of this API; This API is only for 4777 * existing drivers who have exposed sysfs entries using 4778 * ops->device_group. 4779 */ 4780 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4781 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4782 4783 bool rdma_dev_access_netns(const struct ib_device *device, 4784 const struct net *net); 4785 4786 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4787 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4788 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4789 4790 /** 4791 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4792 * on the flow_label 4793 * 4794 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4795 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4796 * convention. 4797 */ 4798 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4799 { 4800 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4801 4802 fl_low ^= fl_high >> 14; 4803 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4804 } 4805 4806 /** 4807 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4808 * local and remote qpn values 4809 * 4810 * This function folded the multiplication results of two qpns, 24 bit each, 4811 * fields, and converts it to a 20 bit results. 4812 * 4813 * This function will create symmetric flow_label value based on the local 4814 * and remote qpn values. this will allow both the requester and responder 4815 * to calculate the same flow_label for a given connection. 4816 * 4817 * This helper function should be used by driver in case the upper layer 4818 * provide a zero flow_label value. This is to improve entropy of RDMA 4819 * traffic in the network. 4820 */ 4821 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4822 { 4823 u64 v = (u64)lqpn * rqpn; 4824 4825 v ^= v >> 20; 4826 v ^= v >> 40; 4827 4828 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4829 } 4830 4831 /** 4832 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4833 * label. If flow label is not defined in GRH then 4834 * calculate it based on lqpn/rqpn. 4835 * 4836 * @fl: flow label from GRH 4837 * @lqpn: local qp number 4838 * @rqpn: remote qp number 4839 */ 4840 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4841 { 4842 if (!fl) 4843 fl = rdma_calc_flow_label(lqpn, rqpn); 4844 4845 return rdma_flow_label_to_udp_sport(fl); 4846 } 4847 4848 const struct ib_port_immutable* 4849 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4850 4851 /** ib_add_sub_device - Add a sub IB device on an existing one 4852 * 4853 * @parent: The IB device that needs to add a sub device 4854 * @type: The type of the new sub device 4855 * @name: The name of the new sub device 4856 * 4857 * 4858 * Return 0 on success, an error code otherwise 4859 */ 4860 int ib_add_sub_device(struct ib_device *parent, 4861 enum rdma_nl_dev_type type, 4862 const char *name); 4863 4864 4865 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get' 4866 * 4867 * @sub: The sub device that is going to be deleted 4868 * 4869 * Return 0 on success, an error code otherwise 4870 */ 4871 int ib_del_sub_device_and_put(struct ib_device *sub); 4872 4873 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev) 4874 { 4875 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER; 4876 } 4877 4878 #endif /* IB_VERBS_H */ 4879
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.