~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/uapi/drm/i915_drm.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  3  * All Rights Reserved.
  4  *
  5  * Permission is hereby granted, free of charge, to any person obtaining a
  6  * copy of this software and associated documentation files (the
  7  * "Software"), to deal in the Software without restriction, including
  8  * without limitation the rights to use, copy, modify, merge, publish,
  9  * distribute, sub license, and/or sell copies of the Software, and to
 10  * permit persons to whom the Software is furnished to do so, subject to
 11  * the following conditions:
 12  *
 13  * The above copyright notice and this permission notice (including the
 14  * next paragraph) shall be included in all copies or substantial portions
 15  * of the Software.
 16  *
 17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
 21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 24  *
 25  */
 26 
 27 #ifndef _UAPI_I915_DRM_H_
 28 #define _UAPI_I915_DRM_H_
 29 
 30 #include "drm.h"
 31 
 32 #if defined(__cplusplus)
 33 extern "C" {
 34 #endif
 35 
 36 /* Please note that modifications to all structs defined here are
 37  * subject to backwards-compatibility constraints.
 38  */
 39 
 40 /**
 41  * DOC: uevents generated by i915 on its device node
 42  *
 43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
 44  *      event from the GPU L3 cache. Additional information supplied is ROW,
 45  *      BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
 46  *      track of these events, and if a specific cache-line seems to have a
 47  *      persistent error, remap it with the L3 remapping tool supplied in
 48  *      intel-gpu-tools.  The value supplied with the event is always 1.
 49  *
 50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
 51  *      hangcheck. The error detection event is a good indicator of when things
 52  *      began to go badly. The value supplied with the event is a 1 upon error
 53  *      detection, and a 0 upon reset completion, signifying no more error
 54  *      exists. NOTE: Disabling hangcheck or reset via module parameter will
 55  *      cause the related events to not be seen.
 56  *
 57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
 58  *      GPU. The value supplied with the event is always 1. NOTE: Disable
 59  *      reset via module parameter will cause this event to not be seen.
 60  */
 61 #define I915_L3_PARITY_UEVENT           "L3_PARITY_ERROR"
 62 #define I915_ERROR_UEVENT               "ERROR"
 63 #define I915_RESET_UEVENT               "RESET"
 64 
 65 /**
 66  * struct i915_user_extension - Base class for defining a chain of extensions
 67  *
 68  * Many interfaces need to grow over time. In most cases we can simply
 69  * extend the struct and have userspace pass in more data. Another option,
 70  * as demonstrated by Vulkan's approach to providing extensions for forward
 71  * and backward compatibility, is to use a list of optional structs to
 72  * provide those extra details.
 73  *
 74  * The key advantage to using an extension chain is that it allows us to
 75  * redefine the interface more easily than an ever growing struct of
 76  * increasing complexity, and for large parts of that interface to be
 77  * entirely optional. The downside is more pointer chasing; chasing across
 78  * the __user boundary with pointers encapsulated inside u64.
 79  *
 80  * Example chaining:
 81  *
 82  * .. code-block:: C
 83  *
 84  *      struct i915_user_extension ext3 {
 85  *              .next_extension = 0, // end
 86  *              .name = ...,
 87  *      };
 88  *      struct i915_user_extension ext2 {
 89  *              .next_extension = (uintptr_t)&ext3,
 90  *              .name = ...,
 91  *      };
 92  *      struct i915_user_extension ext1 {
 93  *              .next_extension = (uintptr_t)&ext2,
 94  *              .name = ...,
 95  *      };
 96  *
 97  * Typically the struct i915_user_extension would be embedded in some uAPI
 98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
 99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103         /**
104          * @next_extension:
105          *
106          * Pointer to the next struct i915_user_extension, or zero if the end.
107          */
108         __u64 next_extension;
109         /**
110          * @name: Name of the extension.
111          *
112          * Note that the name here is just some integer.
113          *
114          * Also note that the name space for this is not global for the whole
115          * driver, but rather its scope/meaning is limited to the specific piece
116          * of uAPI which has embedded the struct i915_user_extension.
117          */
118         __u32 name;
119         /**
120          * @flags: MBZ
121          *
122          * All undefined bits must be zero.
123          */
124         __u32 flags;
125         /**
126          * @rsvd: MBZ
127          *
128          * Reserved for future use; must be zero.
129          */
130         __u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138         /*
139          * Not cached anywhere, coherency between CPU and GPU accesses is
140          * guaranteed.
141          */
142         I915_MOCS_UNCACHED,
143         /*
144          * Cacheability and coherency controlled by the kernel automatically
145          * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146          * usage of the surface (used for display scanout or not).
147          */
148         I915_MOCS_PTE,
149         /*
150          * Cached in all GPU caches available on the platform.
151          * Coherency between CPU and GPU accesses to the surface is not
152          * guaranteed without extra synchronization.
153          */
154         I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167         /**
168          * @I915_ENGINE_CLASS_RENDER:
169          *
170          * Render engines support instructions used for 3D, Compute (GPGPU),
171          * and programmable media workloads.  These instructions fetch data and
172          * dispatch individual work items to threads that operate in parallel.
173          * The threads run small programs (called "kernels" or "shaders") on
174          * the GPU's execution units (EUs).
175          */
176         I915_ENGINE_CLASS_RENDER        = 0,
177 
178         /**
179          * @I915_ENGINE_CLASS_COPY:
180          *
181          * Copy engines (also referred to as "blitters") support instructions
182          * that move blocks of data from one location in memory to another,
183          * or that fill a specified location of memory with fixed data.
184          * Copy engines can perform pre-defined logical or bitwise operations
185          * on the source, destination, or pattern data.
186          */
187         I915_ENGINE_CLASS_COPY          = 1,
188 
189         /**
190          * @I915_ENGINE_CLASS_VIDEO:
191          *
192          * Video engines (also referred to as "bit stream decode" (BSD) or
193          * "vdbox") support instructions that perform fixed-function media
194          * decode and encode.
195          */
196         I915_ENGINE_CLASS_VIDEO         = 2,
197 
198         /**
199          * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200          *
201          * Video enhancement engines (also referred to as "vebox") support
202          * instructions related to image enhancement.
203          */
204         I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
205 
206         /**
207          * @I915_ENGINE_CLASS_COMPUTE:
208          *
209          * Compute engines support a subset of the instructions available
210          * on render engines:  compute engines support Compute (GPGPU) and
211          * programmable media workloads, but do not support the 3D pipeline.
212          */
213         I915_ENGINE_CLASS_COMPUTE       = 4,
214 
215         /* Values in this enum should be kept compact. */
216 
217         /**
218          * @I915_ENGINE_CLASS_INVALID:
219          *
220          * Placeholder value to represent an invalid engine class assignment.
221          */
222         I915_ENGINE_CLASS_INVALID       = -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235         /**
236          * @engine_class:
237          *
238          * Engine class from enum drm_i915_gem_engine_class
239          */
240         __u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244         /**
245          * @engine_instance:
246          *
247          * Engine instance.
248          */
249         __u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258         I915_SAMPLE_BUSY = 0,
259         I915_SAMPLE_WAIT = 1,
260         I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267         (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270         ((class) << I915_PMU_CLASS_SHIFT | \
271         (instance) << I915_PMU_SAMPLE_BITS | \
272         (sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275         __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278         __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281         __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 /*
284  * Top 4 bits of every non-engine counter are GT id.
285  */
286 #define __I915_PMU_GT_SHIFT (60)
287 
288 #define ___I915_PMU_OTHER(gt, x) \
289         (((__u64)__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) | \
290         ((__u64)(gt) << __I915_PMU_GT_SHIFT))
291 
292 #define __I915_PMU_OTHER(x) ___I915_PMU_OTHER(0, x)
293 
294 #define I915_PMU_ACTUAL_FREQUENCY       __I915_PMU_OTHER(0)
295 #define I915_PMU_REQUESTED_FREQUENCY    __I915_PMU_OTHER(1)
296 #define I915_PMU_INTERRUPTS             __I915_PMU_OTHER(2)
297 #define I915_PMU_RC6_RESIDENCY          __I915_PMU_OTHER(3)
298 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4)
299 
300 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
301 
302 #define __I915_PMU_ACTUAL_FREQUENCY(gt)         ___I915_PMU_OTHER(gt, 0)
303 #define __I915_PMU_REQUESTED_FREQUENCY(gt)      ___I915_PMU_OTHER(gt, 1)
304 #define __I915_PMU_INTERRUPTS(gt)               ___I915_PMU_OTHER(gt, 2)
305 #define __I915_PMU_RC6_RESIDENCY(gt)            ___I915_PMU_OTHER(gt, 3)
306 #define __I915_PMU_SOFTWARE_GT_AWAKE_TIME(gt)   ___I915_PMU_OTHER(gt, 4)
307 
308 /* Each region is a minimum of 16k, and there are at most 255 of them.
309  */
310 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
311                                  * of chars for next/prev indices */
312 #define I915_LOG_MIN_TEX_REGION_SIZE 14
313 
314 typedef struct _drm_i915_init {
315         enum {
316                 I915_INIT_DMA = 0x01,
317                 I915_CLEANUP_DMA = 0x02,
318                 I915_RESUME_DMA = 0x03
319         } func;
320         unsigned int mmio_offset;
321         int sarea_priv_offset;
322         unsigned int ring_start;
323         unsigned int ring_end;
324         unsigned int ring_size;
325         unsigned int front_offset;
326         unsigned int back_offset;
327         unsigned int depth_offset;
328         unsigned int w;
329         unsigned int h;
330         unsigned int pitch;
331         unsigned int pitch_bits;
332         unsigned int back_pitch;
333         unsigned int depth_pitch;
334         unsigned int cpp;
335         unsigned int chipset;
336 } drm_i915_init_t;
337 
338 typedef struct _drm_i915_sarea {
339         struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
340         int last_upload;        /* last time texture was uploaded */
341         int last_enqueue;       /* last time a buffer was enqueued */
342         int last_dispatch;      /* age of the most recently dispatched buffer */
343         int ctxOwner;           /* last context to upload state */
344         int texAge;
345         int pf_enabled;         /* is pageflipping allowed? */
346         int pf_active;
347         int pf_current_page;    /* which buffer is being displayed? */
348         int perf_boxes;         /* performance boxes to be displayed */
349         int width, height;      /* screen size in pixels */
350 
351         drm_handle_t front_handle;
352         int front_offset;
353         int front_size;
354 
355         drm_handle_t back_handle;
356         int back_offset;
357         int back_size;
358 
359         drm_handle_t depth_handle;
360         int depth_offset;
361         int depth_size;
362 
363         drm_handle_t tex_handle;
364         int tex_offset;
365         int tex_size;
366         int log_tex_granularity;
367         int pitch;
368         int rotation;           /* 0, 90, 180 or 270 */
369         int rotated_offset;
370         int rotated_size;
371         int rotated_pitch;
372         int virtualX, virtualY;
373 
374         unsigned int front_tiled;
375         unsigned int back_tiled;
376         unsigned int depth_tiled;
377         unsigned int rotated_tiled;
378         unsigned int rotated2_tiled;
379 
380         int pipeA_x;
381         int pipeA_y;
382         int pipeA_w;
383         int pipeA_h;
384         int pipeB_x;
385         int pipeB_y;
386         int pipeB_w;
387         int pipeB_h;
388 
389         /* fill out some space for old userspace triple buffer */
390         drm_handle_t unused_handle;
391         __u32 unused1, unused2, unused3;
392 
393         /* buffer object handles for static buffers. May change
394          * over the lifetime of the client.
395          */
396         __u32 front_bo_handle;
397         __u32 back_bo_handle;
398         __u32 unused_bo_handle;
399         __u32 depth_bo_handle;
400 
401 } drm_i915_sarea_t;
402 
403 /* due to userspace building against these headers we need some compat here */
404 #define planeA_x pipeA_x
405 #define planeA_y pipeA_y
406 #define planeA_w pipeA_w
407 #define planeA_h pipeA_h
408 #define planeB_x pipeB_x
409 #define planeB_y pipeB_y
410 #define planeB_w pipeB_w
411 #define planeB_h pipeB_h
412 
413 /* Flags for perf_boxes
414  */
415 #define I915_BOX_RING_EMPTY    0x1
416 #define I915_BOX_FLIP          0x2
417 #define I915_BOX_WAIT          0x4
418 #define I915_BOX_TEXTURE_LOAD  0x8
419 #define I915_BOX_LOST_CONTEXT  0x10
420 
421 /*
422  * i915 specific ioctls.
423  *
424  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
425  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
426  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
427  */
428 #define DRM_I915_INIT           0x00
429 #define DRM_I915_FLUSH          0x01
430 #define DRM_I915_FLIP           0x02
431 #define DRM_I915_BATCHBUFFER    0x03
432 #define DRM_I915_IRQ_EMIT       0x04
433 #define DRM_I915_IRQ_WAIT       0x05
434 #define DRM_I915_GETPARAM       0x06
435 #define DRM_I915_SETPARAM       0x07
436 #define DRM_I915_ALLOC          0x08
437 #define DRM_I915_FREE           0x09
438 #define DRM_I915_INIT_HEAP      0x0a
439 #define DRM_I915_CMDBUFFER      0x0b
440 #define DRM_I915_DESTROY_HEAP   0x0c
441 #define DRM_I915_SET_VBLANK_PIPE        0x0d
442 #define DRM_I915_GET_VBLANK_PIPE        0x0e
443 #define DRM_I915_VBLANK_SWAP    0x0f
444 #define DRM_I915_HWS_ADDR       0x11
445 #define DRM_I915_GEM_INIT       0x13
446 #define DRM_I915_GEM_EXECBUFFER 0x14
447 #define DRM_I915_GEM_PIN        0x15
448 #define DRM_I915_GEM_UNPIN      0x16
449 #define DRM_I915_GEM_BUSY       0x17
450 #define DRM_I915_GEM_THROTTLE   0x18
451 #define DRM_I915_GEM_ENTERVT    0x19
452 #define DRM_I915_GEM_LEAVEVT    0x1a
453 #define DRM_I915_GEM_CREATE     0x1b
454 #define DRM_I915_GEM_PREAD      0x1c
455 #define DRM_I915_GEM_PWRITE     0x1d
456 #define DRM_I915_GEM_MMAP       0x1e
457 #define DRM_I915_GEM_SET_DOMAIN 0x1f
458 #define DRM_I915_GEM_SW_FINISH  0x20
459 #define DRM_I915_GEM_SET_TILING 0x21
460 #define DRM_I915_GEM_GET_TILING 0x22
461 #define DRM_I915_GEM_GET_APERTURE 0x23
462 #define DRM_I915_GEM_MMAP_GTT   0x24
463 #define DRM_I915_GET_PIPE_FROM_CRTC_ID  0x25
464 #define DRM_I915_GEM_MADVISE    0x26
465 #define DRM_I915_OVERLAY_PUT_IMAGE      0x27
466 #define DRM_I915_OVERLAY_ATTRS  0x28
467 #define DRM_I915_GEM_EXECBUFFER2        0x29
468 #define DRM_I915_GEM_EXECBUFFER2_WR     DRM_I915_GEM_EXECBUFFER2
469 #define DRM_I915_GET_SPRITE_COLORKEY    0x2a
470 #define DRM_I915_SET_SPRITE_COLORKEY    0x2b
471 #define DRM_I915_GEM_WAIT       0x2c
472 #define DRM_I915_GEM_CONTEXT_CREATE     0x2d
473 #define DRM_I915_GEM_CONTEXT_DESTROY    0x2e
474 #define DRM_I915_GEM_SET_CACHING        0x2f
475 #define DRM_I915_GEM_GET_CACHING        0x30
476 #define DRM_I915_REG_READ               0x31
477 #define DRM_I915_GET_RESET_STATS        0x32
478 #define DRM_I915_GEM_USERPTR            0x33
479 #define DRM_I915_GEM_CONTEXT_GETPARAM   0x34
480 #define DRM_I915_GEM_CONTEXT_SETPARAM   0x35
481 #define DRM_I915_PERF_OPEN              0x36
482 #define DRM_I915_PERF_ADD_CONFIG        0x37
483 #define DRM_I915_PERF_REMOVE_CONFIG     0x38
484 #define DRM_I915_QUERY                  0x39
485 #define DRM_I915_GEM_VM_CREATE          0x3a
486 #define DRM_I915_GEM_VM_DESTROY         0x3b
487 #define DRM_I915_GEM_CREATE_EXT         0x3c
488 /* Must be kept compact -- no holes */
489 
490 #define DRM_IOCTL_I915_INIT             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
491 #define DRM_IOCTL_I915_FLUSH            DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
492 #define DRM_IOCTL_I915_FLIP             DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
493 #define DRM_IOCTL_I915_BATCHBUFFER      DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
494 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
495 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
496 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
497 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
498 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
499 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
500 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
501 #define DRM_IOCTL_I915_CMDBUFFER        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
502 #define DRM_IOCTL_I915_DESTROY_HEAP     DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
503 #define DRM_IOCTL_I915_SET_VBLANK_PIPE  DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
504 #define DRM_IOCTL_I915_GET_VBLANK_PIPE  DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
505 #define DRM_IOCTL_I915_VBLANK_SWAP      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
506 #define DRM_IOCTL_I915_HWS_ADDR         DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
507 #define DRM_IOCTL_I915_GEM_INIT         DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
508 #define DRM_IOCTL_I915_GEM_EXECBUFFER   DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
509 #define DRM_IOCTL_I915_GEM_EXECBUFFER2  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
510 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR       DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
511 #define DRM_IOCTL_I915_GEM_PIN          DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
512 #define DRM_IOCTL_I915_GEM_UNPIN        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
513 #define DRM_IOCTL_I915_GEM_BUSY         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
514 #define DRM_IOCTL_I915_GEM_SET_CACHING          DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
515 #define DRM_IOCTL_I915_GEM_GET_CACHING          DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
516 #define DRM_IOCTL_I915_GEM_THROTTLE     DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
517 #define DRM_IOCTL_I915_GEM_ENTERVT      DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
518 #define DRM_IOCTL_I915_GEM_LEAVEVT      DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
519 #define DRM_IOCTL_I915_GEM_CREATE       DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
520 #define DRM_IOCTL_I915_GEM_CREATE_EXT   DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
521 #define DRM_IOCTL_I915_GEM_PREAD        DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
522 #define DRM_IOCTL_I915_GEM_PWRITE       DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
523 #define DRM_IOCTL_I915_GEM_MMAP         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
524 #define DRM_IOCTL_I915_GEM_MMAP_GTT     DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
525 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET  DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
526 #define DRM_IOCTL_I915_GEM_SET_DOMAIN   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
527 #define DRM_IOCTL_I915_GEM_SW_FINISH    DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
528 #define DRM_IOCTL_I915_GEM_SET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
529 #define DRM_IOCTL_I915_GEM_GET_TILING   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
530 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
531 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
532 #define DRM_IOCTL_I915_GEM_MADVISE      DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
533 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
534 #define DRM_IOCTL_I915_OVERLAY_ATTRS    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
535 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
536 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
537 #define DRM_IOCTL_I915_GEM_WAIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
538 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE       DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
539 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT   DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
540 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY      DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
541 #define DRM_IOCTL_I915_REG_READ                 DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
542 #define DRM_IOCTL_I915_GET_RESET_STATS          DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
543 #define DRM_IOCTL_I915_GEM_USERPTR                      DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
544 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM     DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
545 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM     DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
546 #define DRM_IOCTL_I915_PERF_OPEN        DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
547 #define DRM_IOCTL_I915_PERF_ADD_CONFIG  DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
548 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG       DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
549 #define DRM_IOCTL_I915_QUERY                    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
550 #define DRM_IOCTL_I915_GEM_VM_CREATE    DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
551 #define DRM_IOCTL_I915_GEM_VM_DESTROY   DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
552 
553 /* Allow drivers to submit batchbuffers directly to hardware, relying
554  * on the security mechanisms provided by hardware.
555  */
556 typedef struct drm_i915_batchbuffer {
557         int start;              /* agp offset */
558         int used;               /* nr bytes in use */
559         int DR1;                /* hw flags for GFX_OP_DRAWRECT_INFO */
560         int DR4;                /* window origin for GFX_OP_DRAWRECT_INFO */
561         int num_cliprects;      /* mulitpass with multiple cliprects? */
562         struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
563 } drm_i915_batchbuffer_t;
564 
565 /* As above, but pass a pointer to userspace buffer which can be
566  * validated by the kernel prior to sending to hardware.
567  */
568 typedef struct _drm_i915_cmdbuffer {
569         char __user *buf;       /* pointer to userspace command buffer */
570         int sz;                 /* nr bytes in buf */
571         int DR1;                /* hw flags for GFX_OP_DRAWRECT_INFO */
572         int DR4;                /* window origin for GFX_OP_DRAWRECT_INFO */
573         int num_cliprects;      /* mulitpass with multiple cliprects? */
574         struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
575 } drm_i915_cmdbuffer_t;
576 
577 /* Userspace can request & wait on irq's:
578  */
579 typedef struct drm_i915_irq_emit {
580         int __user *irq_seq;
581 } drm_i915_irq_emit_t;
582 
583 typedef struct drm_i915_irq_wait {
584         int irq_seq;
585 } drm_i915_irq_wait_t;
586 
587 /*
588  * Different modes of per-process Graphics Translation Table,
589  * see I915_PARAM_HAS_ALIASING_PPGTT
590  */
591 #define I915_GEM_PPGTT_NONE     0
592 #define I915_GEM_PPGTT_ALIASING 1
593 #define I915_GEM_PPGTT_FULL     2
594 
595 /* Ioctl to query kernel params:
596  */
597 #define I915_PARAM_IRQ_ACTIVE            1
598 #define I915_PARAM_ALLOW_BATCHBUFFER     2
599 #define I915_PARAM_LAST_DISPATCH         3
600 #define I915_PARAM_CHIPSET_ID            4
601 #define I915_PARAM_HAS_GEM               5
602 #define I915_PARAM_NUM_FENCES_AVAIL      6
603 #define I915_PARAM_HAS_OVERLAY           7
604 #define I915_PARAM_HAS_PAGEFLIPPING      8
605 #define I915_PARAM_HAS_EXECBUF2          9
606 #define I915_PARAM_HAS_BSD               10
607 #define I915_PARAM_HAS_BLT               11
608 #define I915_PARAM_HAS_RELAXED_FENCING   12
609 #define I915_PARAM_HAS_COHERENT_RINGS    13
610 #define I915_PARAM_HAS_EXEC_CONSTANTS    14
611 #define I915_PARAM_HAS_RELAXED_DELTA     15
612 #define I915_PARAM_HAS_GEN7_SOL_RESET    16
613 #define I915_PARAM_HAS_LLC               17
614 #define I915_PARAM_HAS_ALIASING_PPGTT    18
615 #define I915_PARAM_HAS_WAIT_TIMEOUT      19
616 #define I915_PARAM_HAS_SEMAPHORES        20
617 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH  21
618 #define I915_PARAM_HAS_VEBOX             22
619 #define I915_PARAM_HAS_SECURE_BATCHES    23
620 #define I915_PARAM_HAS_PINNED_BATCHES    24
621 #define I915_PARAM_HAS_EXEC_NO_RELOC     25
622 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
623 #define I915_PARAM_HAS_WT                27
624 #define I915_PARAM_CMD_PARSER_VERSION    28
625 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
626 #define I915_PARAM_MMAP_VERSION          30
627 #define I915_PARAM_HAS_BSD2              31
628 #define I915_PARAM_REVISION              32
629 #define I915_PARAM_SUBSLICE_TOTAL        33
630 #define I915_PARAM_EU_TOTAL              34
631 #define I915_PARAM_HAS_GPU_RESET         35
632 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
633 #define I915_PARAM_HAS_EXEC_SOFTPIN      37
634 #define I915_PARAM_HAS_POOLED_EU         38
635 #define I915_PARAM_MIN_EU_IN_POOL        39
636 #define I915_PARAM_MMAP_GTT_VERSION      40
637 
638 /*
639  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
640  * priorities and the driver will attempt to execute batches in priority order.
641  * The param returns a capability bitmask, nonzero implies that the scheduler
642  * is enabled, with different features present according to the mask.
643  *
644  * The initial priority for each batch is supplied by the context and is
645  * controlled via I915_CONTEXT_PARAM_PRIORITY.
646  */
647 #define I915_PARAM_HAS_SCHEDULER         41
648 #define   I915_SCHEDULER_CAP_ENABLED    (1ul << 0)
649 #define   I915_SCHEDULER_CAP_PRIORITY   (1ul << 1)
650 #define   I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
651 #define   I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3)
652 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS  (1ul << 4)
653 /*
654  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
655  * follows:
656  *
657  * -1k to -1    Low priority
658  * 0            Normal priority
659  * 1 to 1k      Highest priority
660  */
661 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP        (1ul << 5)
662 
663 /*
664  * Query the status of HuC load.
665  *
666  * The query can fail in the following scenarios with the listed error codes:
667  *  -ENODEV if HuC is not present on this platform,
668  *  -EOPNOTSUPP if HuC firmware usage is disabled,
669  *  -ENOPKG if HuC firmware fetch failed,
670  *  -ENOEXEC if HuC firmware is invalid or mismatched,
671  *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
672  *  -EIO if the FW transfer or the FW authentication failed.
673  *
674  * If the IOCTL is successful, the returned parameter will be set to one of the
675  * following values:
676  *  * 0 if HuC firmware load is not complete,
677  *  * 1 if HuC firmware is loaded and fully authenticated,
678  *  * 2 if HuC firmware is loaded and authenticated for clear media only
679  */
680 #define I915_PARAM_HUC_STATUS            42
681 
682 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
683  * synchronisation with implicit fencing on individual objects.
684  * See EXEC_OBJECT_ASYNC.
685  */
686 #define I915_PARAM_HAS_EXEC_ASYNC        43
687 
688 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
689  * both being able to pass in a sync_file fd to wait upon before executing,
690  * and being able to return a new sync_file fd that is signaled when the
691  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
692  */
693 #define I915_PARAM_HAS_EXEC_FENCE        44
694 
695 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
696  * user-specified buffers for post-mortem debugging of GPU hangs. See
697  * EXEC_OBJECT_CAPTURE.
698  */
699 #define I915_PARAM_HAS_EXEC_CAPTURE      45
700 
701 #define I915_PARAM_SLICE_MASK            46
702 
703 /* Assuming it's uniform for each slice, this queries the mask of subslices
704  * per-slice for this system.
705  */
706 #define I915_PARAM_SUBSLICE_MASK         47
707 
708 /*
709  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
710  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
711  */
712 #define I915_PARAM_HAS_EXEC_BATCH_FIRST  48
713 
714 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
715  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
716  */
717 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
718 
719 /*
720  * Query whether every context (both per-file default and user created) is
721  * isolated (insofar as HW supports). If this parameter is not true, then
722  * freshly created contexts may inherit values from an existing context,
723  * rather than default HW values. If true, it also ensures (insofar as HW
724  * supports) that all state set by this context will not leak to any other
725  * context.
726  *
727  * As not every engine across every gen support contexts, the returned
728  * value reports the support of context isolation for individual engines by
729  * returning a bitmask of each engine class set to true if that class supports
730  * isolation.
731  */
732 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
733 
734 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
735  * registers. This used to be fixed per platform but from CNL onwards, this
736  * might vary depending on the parts.
737  */
738 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
739 
740 /*
741  * Once upon a time we supposed that writes through the GGTT would be
742  * immediately in physical memory (once flushed out of the CPU path). However,
743  * on a few different processors and chipsets, this is not necessarily the case
744  * as the writes appear to be buffered internally. Thus a read of the backing
745  * storage (physical memory) via a different path (with different physical tags
746  * to the indirect write via the GGTT) will see stale values from before
747  * the GGTT write. Inside the kernel, we can for the most part keep track of
748  * the different read/write domains in use (e.g. set-domain), but the assumption
749  * of coherency is baked into the ABI, hence reporting its true state in this
750  * parameter.
751  *
752  * Reports true when writes via mmap_gtt are immediately visible following an
753  * lfence to flush the WCB.
754  *
755  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
756  * internal buffer and are _not_ immediately visible to third parties accessing
757  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
758  * communications channel when reporting false is strongly disadvised.
759  */
760 #define I915_PARAM_MMAP_GTT_COHERENT    52
761 
762 /*
763  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
764  * execution through use of explicit fence support.
765  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
766  */
767 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
768 
769 /*
770  * Revision of the i915-perf uAPI. The value returned helps determine what
771  * i915-perf features are available. See drm_i915_perf_property_id.
772  */
773 #define I915_PARAM_PERF_REVISION        54
774 
775 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
776  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
777  * I915_EXEC_USE_EXTENSIONS.
778  */
779 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
780 
781 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
782 #define I915_PARAM_HAS_USERPTR_PROBE 56
783 
784 /*
785  * Frequency of the timestamps in OA reports. This used to be the same as the CS
786  * timestamp frequency, but differs on some platforms.
787  */
788 #define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
789 
790 /*
791  * Query the status of PXP support in i915.
792  *
793  * The query can fail in the following scenarios with the listed error codes:
794  *     -ENODEV = PXP support is not available on the GPU device or in the
795  *               kernel due to missing component drivers or kernel configs.
796  *
797  * If the IOCTL is successful, the returned parameter will be set to one of
798  * the following values:
799  *     1 = PXP feature is supported and is ready for use.
800  *     2 = PXP feature is supported but should be ready soon (pending
801  *         initialization of non-i915 system dependencies).
802  *
803  * NOTE: When param is supported (positive return values), user space should
804  *       still refer to the GEM PXP context-creation UAPI header specs to be
805  *       aware of possible failure due to system state machine at the time.
806  */
807 #define I915_PARAM_PXP_STATUS            58
808 
809 /*
810  * Query if kernel allows marking a context to send a Freq hint to SLPC. This
811  * will enable use of the strategies allowed by the SLPC algorithm.
812  */
813 #define I915_PARAM_HAS_CONTEXT_FREQ_HINT        59
814 
815 /* Must be kept compact -- no holes and well documented */
816 
817 /**
818  * struct drm_i915_getparam - Driver parameter query structure.
819  */
820 struct drm_i915_getparam {
821         /** @param: Driver parameter to query. */
822         __s32 param;
823 
824         /**
825          * @value: Address of memory where queried value should be put.
826          *
827          * WARNING: Using pointers instead of fixed-size u64 means we need to write
828          * compat32 code. Don't repeat this mistake.
829          */
830         int __user *value;
831 };
832 
833 /**
834  * typedef drm_i915_getparam_t - Driver parameter query structure.
835  * See struct drm_i915_getparam.
836  */
837 typedef struct drm_i915_getparam drm_i915_getparam_t;
838 
839 /* Ioctl to set kernel params:
840  */
841 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
842 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
843 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
844 #define I915_SETPARAM_NUM_USED_FENCES                     4
845 /* Must be kept compact -- no holes */
846 
847 typedef struct drm_i915_setparam {
848         int param;
849         int value;
850 } drm_i915_setparam_t;
851 
852 /* A memory manager for regions of shared memory:
853  */
854 #define I915_MEM_REGION_AGP 1
855 
856 typedef struct drm_i915_mem_alloc {
857         int region;
858         int alignment;
859         int size;
860         int __user *region_offset;      /* offset from start of fb or agp */
861 } drm_i915_mem_alloc_t;
862 
863 typedef struct drm_i915_mem_free {
864         int region;
865         int region_offset;
866 } drm_i915_mem_free_t;
867 
868 typedef struct drm_i915_mem_init_heap {
869         int region;
870         int size;
871         int start;
872 } drm_i915_mem_init_heap_t;
873 
874 /* Allow memory manager to be torn down and re-initialized (eg on
875  * rotate):
876  */
877 typedef struct drm_i915_mem_destroy_heap {
878         int region;
879 } drm_i915_mem_destroy_heap_t;
880 
881 /* Allow X server to configure which pipes to monitor for vblank signals
882  */
883 #define DRM_I915_VBLANK_PIPE_A  1
884 #define DRM_I915_VBLANK_PIPE_B  2
885 
886 typedef struct drm_i915_vblank_pipe {
887         int pipe;
888 } drm_i915_vblank_pipe_t;
889 
890 /* Schedule buffer swap at given vertical blank:
891  */
892 typedef struct drm_i915_vblank_swap {
893         drm_drawable_t drawable;
894         enum drm_vblank_seq_type seqtype;
895         unsigned int sequence;
896 } drm_i915_vblank_swap_t;
897 
898 typedef struct drm_i915_hws_addr {
899         __u64 addr;
900 } drm_i915_hws_addr_t;
901 
902 struct drm_i915_gem_init {
903         /**
904          * Beginning offset in the GTT to be managed by the DRM memory
905          * manager.
906          */
907         __u64 gtt_start;
908         /**
909          * Ending offset in the GTT to be managed by the DRM memory
910          * manager.
911          */
912         __u64 gtt_end;
913 };
914 
915 struct drm_i915_gem_create {
916         /**
917          * Requested size for the object.
918          *
919          * The (page-aligned) allocated size for the object will be returned.
920          */
921         __u64 size;
922         /**
923          * Returned handle for the object.
924          *
925          * Object handles are nonzero.
926          */
927         __u32 handle;
928         __u32 pad;
929 };
930 
931 struct drm_i915_gem_pread {
932         /** Handle for the object being read. */
933         __u32 handle;
934         __u32 pad;
935         /** Offset into the object to read from */
936         __u64 offset;
937         /** Length of data to read */
938         __u64 size;
939         /**
940          * Pointer to write the data into.
941          *
942          * This is a fixed-size type for 32/64 compatibility.
943          */
944         __u64 data_ptr;
945 };
946 
947 struct drm_i915_gem_pwrite {
948         /** Handle for the object being written to. */
949         __u32 handle;
950         __u32 pad;
951         /** Offset into the object to write to */
952         __u64 offset;
953         /** Length of data to write */
954         __u64 size;
955         /**
956          * Pointer to read the data from.
957          *
958          * This is a fixed-size type for 32/64 compatibility.
959          */
960         __u64 data_ptr;
961 };
962 
963 struct drm_i915_gem_mmap {
964         /** Handle for the object being mapped. */
965         __u32 handle;
966         __u32 pad;
967         /** Offset in the object to map. */
968         __u64 offset;
969         /**
970          * Length of data to map.
971          *
972          * The value will be page-aligned.
973          */
974         __u64 size;
975         /**
976          * Returned pointer the data was mapped at.
977          *
978          * This is a fixed-size type for 32/64 compatibility.
979          */
980         __u64 addr_ptr;
981 
982         /**
983          * Flags for extended behaviour.
984          *
985          * Added in version 2.
986          */
987         __u64 flags;
988 #define I915_MMAP_WC 0x1
989 };
990 
991 struct drm_i915_gem_mmap_gtt {
992         /** Handle for the object being mapped. */
993         __u32 handle;
994         __u32 pad;
995         /**
996          * Fake offset to use for subsequent mmap call
997          *
998          * This is a fixed-size type for 32/64 compatibility.
999          */
1000         __u64 offset;
1001 };
1002 
1003 /**
1004  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
1005  *
1006  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
1007  * and is used to retrieve the fake offset to mmap an object specified by &handle.
1008  *
1009  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
1010  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
1011  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
1012  */
1013 struct drm_i915_gem_mmap_offset {
1014         /** @handle: Handle for the object being mapped. */
1015         __u32 handle;
1016         /** @pad: Must be zero */
1017         __u32 pad;
1018         /**
1019          * @offset: The fake offset to use for subsequent mmap call
1020          *
1021          * This is a fixed-size type for 32/64 compatibility.
1022          */
1023         __u64 offset;
1024 
1025         /**
1026          * @flags: Flags for extended behaviour.
1027          *
1028          * It is mandatory that one of the `MMAP_OFFSET` types
1029          * should be included:
1030          *
1031          * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
1032          * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
1033          * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
1034          * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
1035          *
1036          * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
1037          * type. On devices without local memory, this caching mode is invalid.
1038          *
1039          * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
1040          * be used, depending on the object placement on creation. WB will be used
1041          * when the object can only exist in system memory, WC otherwise.
1042          */
1043         __u64 flags;
1044 
1045 #define I915_MMAP_OFFSET_GTT    0
1046 #define I915_MMAP_OFFSET_WC     1
1047 #define I915_MMAP_OFFSET_WB     2
1048 #define I915_MMAP_OFFSET_UC     3
1049 #define I915_MMAP_OFFSET_FIXED  4
1050 
1051         /**
1052          * @extensions: Zero-terminated chain of extensions.
1053          *
1054          * No current extensions defined; mbz.
1055          */
1056         __u64 extensions;
1057 };
1058 
1059 /**
1060  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1061  * preparation for accessing the pages via some CPU domain.
1062  *
1063  * Specifying a new write or read domain will flush the object out of the
1064  * previous domain(if required), before then updating the objects domain
1065  * tracking with the new domain.
1066  *
1067  * Note this might involve waiting for the object first if it is still active on
1068  * the GPU.
1069  *
1070  * Supported values for @read_domains and @write_domain:
1071  *
1072  *      - I915_GEM_DOMAIN_WC: Uncached write-combined domain
1073  *      - I915_GEM_DOMAIN_CPU: CPU cache domain
1074  *      - I915_GEM_DOMAIN_GTT: Mappable aperture domain
1075  *
1076  * All other domains are rejected.
1077  *
1078  * Note that for discrete, starting from DG1, this is no longer supported, and
1079  * is instead rejected. On such platforms the CPU domain is effectively static,
1080  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1081  * which can't be set explicitly and instead depends on the object placements,
1082  * as per the below.
1083  *
1084  * Implicit caching rules, starting from DG1:
1085  *
1086  *      - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1087  *        contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1088  *        mapped as write-combined only.
1089  *
1090  *      - Everything else is always allocated and mapped as write-back, with the
1091  *        guarantee that everything is also coherent with the GPU.
1092  *
1093  * Note that this is likely to change in the future again, where we might need
1094  * more flexibility on future devices, so making this all explicit as part of a
1095  * new &drm_i915_gem_create_ext extension is probable.
1096  */
1097 struct drm_i915_gem_set_domain {
1098         /** @handle: Handle for the object. */
1099         __u32 handle;
1100 
1101         /** @read_domains: New read domains. */
1102         __u32 read_domains;
1103 
1104         /**
1105          * @write_domain: New write domain.
1106          *
1107          * Note that having something in the write domain implies it's in the
1108          * read domain, and only that read domain.
1109          */
1110         __u32 write_domain;
1111 };
1112 
1113 struct drm_i915_gem_sw_finish {
1114         /** Handle for the object */
1115         __u32 handle;
1116 };
1117 
1118 struct drm_i915_gem_relocation_entry {
1119         /**
1120          * Handle of the buffer being pointed to by this relocation entry.
1121          *
1122          * It's appealing to make this be an index into the mm_validate_entry
1123          * list to refer to the buffer, but this allows the driver to create
1124          * a relocation list for state buffers and not re-write it per
1125          * exec using the buffer.
1126          */
1127         __u32 target_handle;
1128 
1129         /**
1130          * Value to be added to the offset of the target buffer to make up
1131          * the relocation entry.
1132          */
1133         __u32 delta;
1134 
1135         /** Offset in the buffer the relocation entry will be written into */
1136         __u64 offset;
1137 
1138         /**
1139          * Offset value of the target buffer that the relocation entry was last
1140          * written as.
1141          *
1142          * If the buffer has the same offset as last time, we can skip syncing
1143          * and writing the relocation.  This value is written back out by
1144          * the execbuffer ioctl when the relocation is written.
1145          */
1146         __u64 presumed_offset;
1147 
1148         /**
1149          * Target memory domains read by this operation.
1150          */
1151         __u32 read_domains;
1152 
1153         /**
1154          * Target memory domains written by this operation.
1155          *
1156          * Note that only one domain may be written by the whole
1157          * execbuffer operation, so that where there are conflicts,
1158          * the application will get -EINVAL back.
1159          */
1160         __u32 write_domain;
1161 };
1162 
1163 /** @{
1164  * Intel memory domains
1165  *
1166  * Most of these just align with the various caches in
1167  * the system and are used to flush and invalidate as
1168  * objects end up cached in different domains.
1169  */
1170 /** CPU cache */
1171 #define I915_GEM_DOMAIN_CPU             0x00000001
1172 /** Render cache, used by 2D and 3D drawing */
1173 #define I915_GEM_DOMAIN_RENDER          0x00000002
1174 /** Sampler cache, used by texture engine */
1175 #define I915_GEM_DOMAIN_SAMPLER         0x00000004
1176 /** Command queue, used to load batch buffers */
1177 #define I915_GEM_DOMAIN_COMMAND         0x00000008
1178 /** Instruction cache, used by shader programs */
1179 #define I915_GEM_DOMAIN_INSTRUCTION     0x00000010
1180 /** Vertex address cache */
1181 #define I915_GEM_DOMAIN_VERTEX          0x00000020
1182 /** GTT domain - aperture and scanout */
1183 #define I915_GEM_DOMAIN_GTT             0x00000040
1184 /** WC domain - uncached access */
1185 #define I915_GEM_DOMAIN_WC              0x00000080
1186 /** @} */
1187 
1188 struct drm_i915_gem_exec_object {
1189         /**
1190          * User's handle for a buffer to be bound into the GTT for this
1191          * operation.
1192          */
1193         __u32 handle;
1194 
1195         /** Number of relocations to be performed on this buffer */
1196         __u32 relocation_count;
1197         /**
1198          * Pointer to array of struct drm_i915_gem_relocation_entry containing
1199          * the relocations to be performed in this buffer.
1200          */
1201         __u64 relocs_ptr;
1202 
1203         /** Required alignment in graphics aperture */
1204         __u64 alignment;
1205 
1206         /**
1207          * Returned value of the updated offset of the object, for future
1208          * presumed_offset writes.
1209          */
1210         __u64 offset;
1211 };
1212 
1213 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1214 struct drm_i915_gem_execbuffer {
1215         /**
1216          * List of buffers to be validated with their relocations to be
1217          * performend on them.
1218          *
1219          * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1220          *
1221          * These buffers must be listed in an order such that all relocations
1222          * a buffer is performing refer to buffers that have already appeared
1223          * in the validate list.
1224          */
1225         __u64 buffers_ptr;
1226         __u32 buffer_count;
1227 
1228         /** Offset in the batchbuffer to start execution from. */
1229         __u32 batch_start_offset;
1230         /** Bytes used in batchbuffer from batch_start_offset */
1231         __u32 batch_len;
1232         __u32 DR1;
1233         __u32 DR4;
1234         __u32 num_cliprects;
1235         /** This is a struct drm_clip_rect *cliprects */
1236         __u64 cliprects_ptr;
1237 };
1238 
1239 struct drm_i915_gem_exec_object2 {
1240         /**
1241          * User's handle for a buffer to be bound into the GTT for this
1242          * operation.
1243          */
1244         __u32 handle;
1245 
1246         /** Number of relocations to be performed on this buffer */
1247         __u32 relocation_count;
1248         /**
1249          * Pointer to array of struct drm_i915_gem_relocation_entry containing
1250          * the relocations to be performed in this buffer.
1251          */
1252         __u64 relocs_ptr;
1253 
1254         /** Required alignment in graphics aperture */
1255         __u64 alignment;
1256 
1257         /**
1258          * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1259          * the user with the GTT offset at which this object will be pinned.
1260          *
1261          * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1262          * presumed_offset of the object.
1263          *
1264          * During execbuffer2 the kernel populates it with the value of the
1265          * current GTT offset of the object, for future presumed_offset writes.
1266          *
1267          * See struct drm_i915_gem_create_ext for the rules when dealing with
1268          * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1269          * minimum page sizes, like DG2.
1270          */
1271         __u64 offset;
1272 
1273 #define EXEC_OBJECT_NEEDS_FENCE          (1<<0)
1274 #define EXEC_OBJECT_NEEDS_GTT            (1<<1)
1275 #define EXEC_OBJECT_WRITE                (1<<2)
1276 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1277 #define EXEC_OBJECT_PINNED               (1<<4)
1278 #define EXEC_OBJECT_PAD_TO_SIZE          (1<<5)
1279 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1280  * synchronises operations with outstanding rendering. This includes
1281  * rendering on other devices if exported via dma-buf. However, sometimes
1282  * this tracking is too coarse and the user knows better. For example,
1283  * if the object is split into non-overlapping ranges shared between different
1284  * clients or engines (i.e. suballocating objects), the implicit tracking
1285  * by kernel assumes that each operation affects the whole object rather
1286  * than an individual range, causing needless synchronisation between clients.
1287  * The kernel will also forgo any CPU cache flushes prior to rendering from
1288  * the object as the client is expected to be also handling such domain
1289  * tracking.
1290  *
1291  * The kernel maintains the implicit tracking in order to manage resources
1292  * used by the GPU - this flag only disables the synchronisation prior to
1293  * rendering with this object in this execbuf.
1294  *
1295  * Opting out of implicit synhronisation requires the user to do its own
1296  * explicit tracking to avoid rendering corruption. See, for example,
1297  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1298  */
1299 #define EXEC_OBJECT_ASYNC               (1<<6)
1300 /* Request that the contents of this execobject be copied into the error
1301  * state upon a GPU hang involving this batch for post-mortem debugging.
1302  * These buffers are recorded in no particular order as "user" in
1303  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1304  * if the kernel supports this flag.
1305  */
1306 #define EXEC_OBJECT_CAPTURE             (1<<7)
1307 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1308 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1309         __u64 flags;
1310 
1311         union {
1312                 __u64 rsvd1;
1313                 __u64 pad_to_size;
1314         };
1315         __u64 rsvd2;
1316 };
1317 
1318 /**
1319  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1320  * ioctl.
1321  *
1322  * The request will wait for input fence to signal before submission.
1323  *
1324  * The returned output fence will be signaled after the completion of the
1325  * request.
1326  */
1327 struct drm_i915_gem_exec_fence {
1328         /** @handle: User's handle for a drm_syncobj to wait on or signal. */
1329         __u32 handle;
1330 
1331         /**
1332          * @flags: Supported flags are:
1333          *
1334          * I915_EXEC_FENCE_WAIT:
1335          * Wait for the input fence before request submission.
1336          *
1337          * I915_EXEC_FENCE_SIGNAL:
1338          * Return request completion fence as output
1339          */
1340         __u32 flags;
1341 #define I915_EXEC_FENCE_WAIT            (1<<0)
1342 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1343 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1344 };
1345 
1346 /**
1347  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1348  * for execbuf ioctl.
1349  *
1350  * This structure describes an array of drm_syncobj and associated points for
1351  * timeline variants of drm_syncobj. It is invalid to append this structure to
1352  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1353  */
1354 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1355 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1356         /** @base: Extension link. See struct i915_user_extension. */
1357         struct i915_user_extension base;
1358 
1359         /**
1360          * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1361          * arrays.
1362          */
1363         __u64 fence_count;
1364 
1365         /**
1366          * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1367          * of length @fence_count.
1368          */
1369         __u64 handles_ptr;
1370 
1371         /**
1372          * @values_ptr: Pointer to an array of u64 values of length
1373          * @fence_count.
1374          * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1375          * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1376          * binary one.
1377          */
1378         __u64 values_ptr;
1379 };
1380 
1381 /**
1382  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1383  * ioctl.
1384  */
1385 struct drm_i915_gem_execbuffer2 {
1386         /** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1387         __u64 buffers_ptr;
1388 
1389         /** @buffer_count: Number of elements in @buffers_ptr array */
1390         __u32 buffer_count;
1391 
1392         /**
1393          * @batch_start_offset: Offset in the batchbuffer to start execution
1394          * from.
1395          */
1396         __u32 batch_start_offset;
1397 
1398         /**
1399          * @batch_len: Length in bytes of the batch buffer, starting from the
1400          * @batch_start_offset. If 0, length is assumed to be the batch buffer
1401          * object size.
1402          */
1403         __u32 batch_len;
1404 
1405         /** @DR1: deprecated */
1406         __u32 DR1;
1407 
1408         /** @DR4: deprecated */
1409         __u32 DR4;
1410 
1411         /** @num_cliprects: See @cliprects_ptr */
1412         __u32 num_cliprects;
1413 
1414         /**
1415          * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1416          *
1417          * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1418          * I915_EXEC_USE_EXTENSIONS flags are not set.
1419          *
1420          * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1421          * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1422          * array.
1423          *
1424          * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1425          * single &i915_user_extension and num_cliprects is 0.
1426          */
1427         __u64 cliprects_ptr;
1428 
1429         /** @flags: Execbuf flags */
1430         __u64 flags;
1431 #define I915_EXEC_RING_MASK              (0x3f)
1432 #define I915_EXEC_DEFAULT                (0<<0)
1433 #define I915_EXEC_RENDER                 (1<<0)
1434 #define I915_EXEC_BSD                    (2<<0)
1435 #define I915_EXEC_BLT                    (3<<0)
1436 #define I915_EXEC_VEBOX                  (4<<0)
1437 
1438 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1439  * Gen6+ only supports relative addressing to dynamic state (default) and
1440  * absolute addressing.
1441  *
1442  * These flags are ignored for the BSD and BLT rings.
1443  */
1444 #define I915_EXEC_CONSTANTS_MASK        (3<<6)
1445 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1446 #define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
1447 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1448 
1449 /** Resets the SO write offset registers for transform feedback on gen7. */
1450 #define I915_EXEC_GEN7_SOL_RESET        (1<<8)
1451 
1452 /** Request a privileged ("secure") batch buffer. Note only available for
1453  * DRM_ROOT_ONLY | DRM_MASTER processes.
1454  */
1455 #define I915_EXEC_SECURE                (1<<9)
1456 
1457 /** Inform the kernel that the batch is and will always be pinned. This
1458  * negates the requirement for a workaround to be performed to avoid
1459  * an incoherent CS (such as can be found on 830/845). If this flag is
1460  * not passed, the kernel will endeavour to make sure the batch is
1461  * coherent with the CS before execution. If this flag is passed,
1462  * userspace assumes the responsibility for ensuring the same.
1463  */
1464 #define I915_EXEC_IS_PINNED             (1<<10)
1465 
1466 /** Provide a hint to the kernel that the command stream and auxiliary
1467  * state buffers already holds the correct presumed addresses and so the
1468  * relocation process may be skipped if no buffers need to be moved in
1469  * preparation for the execbuffer.
1470  */
1471 #define I915_EXEC_NO_RELOC              (1<<11)
1472 
1473 /** Use the reloc.handle as an index into the exec object array rather
1474  * than as the per-file handle.
1475  */
1476 #define I915_EXEC_HANDLE_LUT            (1<<12)
1477 
1478 /** Used for switching BSD rings on the platforms with two BSD rings */
1479 #define I915_EXEC_BSD_SHIFT      (13)
1480 #define I915_EXEC_BSD_MASK       (3 << I915_EXEC_BSD_SHIFT)
1481 /* default ping-pong mode */
1482 #define I915_EXEC_BSD_DEFAULT    (0 << I915_EXEC_BSD_SHIFT)
1483 #define I915_EXEC_BSD_RING1      (1 << I915_EXEC_BSD_SHIFT)
1484 #define I915_EXEC_BSD_RING2      (2 << I915_EXEC_BSD_SHIFT)
1485 
1486 /** Tell the kernel that the batchbuffer is processed by
1487  *  the resource streamer.
1488  */
1489 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1490 
1491 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1492  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1493  * the batch.
1494  *
1495  * Returns -EINVAL if the sync_file fd cannot be found.
1496  */
1497 #define I915_EXEC_FENCE_IN              (1<<16)
1498 
1499 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1500  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1501  * to the caller, and it should be close() after use. (The fd is a regular
1502  * file descriptor and will be cleaned up on process termination. It holds
1503  * a reference to the request, but nothing else.)
1504  *
1505  * The sync_file fd can be combined with other sync_file and passed either
1506  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1507  * will only occur after this request completes), or to other devices.
1508  *
1509  * Using I915_EXEC_FENCE_OUT requires use of
1510  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1511  * back to userspace. Failure to do so will cause the out-fence to always
1512  * be reported as zero, and the real fence fd to be leaked.
1513  */
1514 #define I915_EXEC_FENCE_OUT             (1<<17)
1515 
1516 /*
1517  * Traditionally the execbuf ioctl has only considered the final element in
1518  * the execobject[] to be the executable batch. Often though, the client
1519  * will known the batch object prior to construction and being able to place
1520  * it into the execobject[] array first can simplify the relocation tracking.
1521  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1522  * execobject[] as the * batch instead (the default is to use the last
1523  * element).
1524  */
1525 #define I915_EXEC_BATCH_FIRST           (1<<18)
1526 
1527 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1528  * define an array of i915_gem_exec_fence structures which specify a set of
1529  * dma fences to wait upon or signal.
1530  */
1531 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1532 
1533 /*
1534  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1535  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1536  * the batch.
1537  *
1538  * Returns -EINVAL if the sync_file fd cannot be found.
1539  */
1540 #define I915_EXEC_FENCE_SUBMIT          (1 << 20)
1541 
1542 /*
1543  * Setting I915_EXEC_USE_EXTENSIONS implies that
1544  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1545  * list of i915_user_extension. Each i915_user_extension node is the base of a
1546  * larger structure. The list of supported structures are listed in the
1547  * drm_i915_gem_execbuffer_ext enum.
1548  */
1549 #define I915_EXEC_USE_EXTENSIONS        (1 << 21)
1550 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1551 
1552         /** @rsvd1: Context id */
1553         __u64 rsvd1;
1554 
1555         /**
1556          * @rsvd2: in and out sync_file file descriptors.
1557          *
1558          * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1559          * lower 32 bits of this field will have the in sync_file fd (input).
1560          *
1561          * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1562          * field will have the out sync_file fd (output).
1563          */
1564         __u64 rsvd2;
1565 };
1566 
1567 #define I915_EXEC_CONTEXT_ID_MASK       (0xffffffff)
1568 #define i915_execbuffer2_set_context_id(eb2, context) \
1569         (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1570 #define i915_execbuffer2_get_context_id(eb2) \
1571         ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1572 
1573 struct drm_i915_gem_pin {
1574         /** Handle of the buffer to be pinned. */
1575         __u32 handle;
1576         __u32 pad;
1577 
1578         /** alignment required within the aperture */
1579         __u64 alignment;
1580 
1581         /** Returned GTT offset of the buffer. */
1582         __u64 offset;
1583 };
1584 
1585 struct drm_i915_gem_unpin {
1586         /** Handle of the buffer to be unpinned. */
1587         __u32 handle;
1588         __u32 pad;
1589 };
1590 
1591 struct drm_i915_gem_busy {
1592         /** Handle of the buffer to check for busy */
1593         __u32 handle;
1594 
1595         /** Return busy status
1596          *
1597          * A return of 0 implies that the object is idle (after
1598          * having flushed any pending activity), and a non-zero return that
1599          * the object is still in-flight on the GPU. (The GPU has not yet
1600          * signaled completion for all pending requests that reference the
1601          * object.) An object is guaranteed to become idle eventually (so
1602          * long as no new GPU commands are executed upon it). Due to the
1603          * asynchronous nature of the hardware, an object reported
1604          * as busy may become idle before the ioctl is completed.
1605          *
1606          * Furthermore, if the object is busy, which engine is busy is only
1607          * provided as a guide and only indirectly by reporting its class
1608          * (there may be more than one engine in each class). There are race
1609          * conditions which prevent the report of which engines are busy from
1610          * being always accurate.  However, the converse is not true. If the
1611          * object is idle, the result of the ioctl, that all engines are idle,
1612          * is accurate.
1613          *
1614          * The returned dword is split into two fields to indicate both
1615          * the engine classes on which the object is being read, and the
1616          * engine class on which it is currently being written (if any).
1617          *
1618          * The low word (bits 0:15) indicate if the object is being written
1619          * to by any engine (there can only be one, as the GEM implicit
1620          * synchronisation rules force writes to be serialised). Only the
1621          * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1622          * 1 not 0 etc) for the last write is reported.
1623          *
1624          * The high word (bits 16:31) are a bitmask of which engines classes
1625          * are currently reading from the object. Multiple engines may be
1626          * reading from the object simultaneously.
1627          *
1628          * The value of each engine class is the same as specified in the
1629          * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1630          * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1631          * Some hardware may have parallel execution engines, e.g. multiple
1632          * media engines, which are mapped to the same class identifier and so
1633          * are not separately reported for busyness.
1634          *
1635          * Caveat emptor:
1636          * Only the boolean result of this query is reliable; that is whether
1637          * the object is idle or busy. The report of which engines are busy
1638          * should be only used as a heuristic.
1639          */
1640         __u32 busy;
1641 };
1642 
1643 /**
1644  * struct drm_i915_gem_caching - Set or get the caching for given object
1645  * handle.
1646  *
1647  * Allow userspace to control the GTT caching bits for a given object when the
1648  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1649  * ppGTT support, or if the object is used for scanout). Note that this might
1650  * require unbinding the object from the GTT first, if its current caching value
1651  * doesn't match.
1652  *
1653  * Note that this all changes on discrete platforms, starting from DG1, the
1654  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1655  * caching attributes(WB vs WC) will become an immutable creation time property
1656  * for the object, along with the GTT caching level. For now we don't expose any
1657  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1658  * shouldn't matter since DG1 is coherent by default(without any way of
1659  * controlling it).
1660  *
1661  * Implicit caching rules, starting from DG1:
1662  *
1663  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1664  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1665  *       mapped as write-combined only.
1666  *
1667  *     - Everything else is always allocated and mapped as write-back, with the
1668  *       guarantee that everything is also coherent with the GPU.
1669  *
1670  * Note that this is likely to change in the future again, where we might need
1671  * more flexibility on future devices, so making this all explicit as part of a
1672  * new &drm_i915_gem_create_ext extension is probable.
1673  *
1674  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1675  * caching attributes for the pages might be required(and is expensive) if we
1676  * need to then CPU map the pages later with different caching attributes. This
1677  * inconsistent caching behaviour, while supported on x86, is not universally
1678  * supported on other architectures. So for simplicity we opt for setting
1679  * everything at creation time, whilst also making it immutable, on discrete
1680  * platforms.
1681  */
1682 struct drm_i915_gem_caching {
1683         /**
1684          * @handle: Handle of the buffer to set/get the caching level.
1685          */
1686         __u32 handle;
1687 
1688         /**
1689          * @caching: The GTT caching level to apply or possible return value.
1690          *
1691          * The supported @caching values:
1692          *
1693          * I915_CACHING_NONE:
1694          *
1695          * GPU access is not coherent with CPU caches.  Default for machines
1696          * without an LLC. This means manual flushing might be needed, if we
1697          * want GPU access to be coherent.
1698          *
1699          * I915_CACHING_CACHED:
1700          *
1701          * GPU access is coherent with CPU caches and furthermore the data is
1702          * cached in last-level caches shared between CPU cores and the GPU GT.
1703          *
1704          * I915_CACHING_DISPLAY:
1705          *
1706          * Special GPU caching mode which is coherent with the scanout engines.
1707          * Transparently falls back to I915_CACHING_NONE on platforms where no
1708          * special cache mode (like write-through or gfdt flushing) is
1709          * available. The kernel automatically sets this mode when using a
1710          * buffer as a scanout target.  Userspace can manually set this mode to
1711          * avoid a costly stall and clflush in the hotpath of drawing the first
1712          * frame.
1713          */
1714 #define I915_CACHING_NONE               0
1715 #define I915_CACHING_CACHED             1
1716 #define I915_CACHING_DISPLAY            2
1717         __u32 caching;
1718 };
1719 
1720 #define I915_TILING_NONE        0
1721 #define I915_TILING_X           1
1722 #define I915_TILING_Y           2
1723 /*
1724  * Do not add new tiling types here.  The I915_TILING_* values are for
1725  * de-tiling fence registers that no longer exist on modern platforms.  Although
1726  * the hardware may support new types of tiling in general (e.g., Tile4), we
1727  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1728  */
1729 #define I915_TILING_LAST        I915_TILING_Y
1730 
1731 #define I915_BIT_6_SWIZZLE_NONE         0
1732 #define I915_BIT_6_SWIZZLE_9            1
1733 #define I915_BIT_6_SWIZZLE_9_10         2
1734 #define I915_BIT_6_SWIZZLE_9_11         3
1735 #define I915_BIT_6_SWIZZLE_9_10_11      4
1736 /* Not seen by userland */
1737 #define I915_BIT_6_SWIZZLE_UNKNOWN      5
1738 /* Seen by userland. */
1739 #define I915_BIT_6_SWIZZLE_9_17         6
1740 #define I915_BIT_6_SWIZZLE_9_10_17      7
1741 
1742 struct drm_i915_gem_set_tiling {
1743         /** Handle of the buffer to have its tiling state updated */
1744         __u32 handle;
1745 
1746         /**
1747          * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1748          * I915_TILING_Y).
1749          *
1750          * This value is to be set on request, and will be updated by the
1751          * kernel on successful return with the actual chosen tiling layout.
1752          *
1753          * The tiling mode may be demoted to I915_TILING_NONE when the system
1754          * has bit 6 swizzling that can't be managed correctly by GEM.
1755          *
1756          * Buffer contents become undefined when changing tiling_mode.
1757          */
1758         __u32 tiling_mode;
1759 
1760         /**
1761          * Stride in bytes for the object when in I915_TILING_X or
1762          * I915_TILING_Y.
1763          */
1764         __u32 stride;
1765 
1766         /**
1767          * Returned address bit 6 swizzling required for CPU access through
1768          * mmap mapping.
1769          */
1770         __u32 swizzle_mode;
1771 };
1772 
1773 struct drm_i915_gem_get_tiling {
1774         /** Handle of the buffer to get tiling state for. */
1775         __u32 handle;
1776 
1777         /**
1778          * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1779          * I915_TILING_Y).
1780          */
1781         __u32 tiling_mode;
1782 
1783         /**
1784          * Returned address bit 6 swizzling required for CPU access through
1785          * mmap mapping.
1786          */
1787         __u32 swizzle_mode;
1788 
1789         /**
1790          * Returned address bit 6 swizzling required for CPU access through
1791          * mmap mapping whilst bound.
1792          */
1793         __u32 phys_swizzle_mode;
1794 };
1795 
1796 struct drm_i915_gem_get_aperture {
1797         /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1798         __u64 aper_size;
1799 
1800         /**
1801          * Available space in the aperture used by i915_gem_execbuffer, in
1802          * bytes
1803          */
1804         __u64 aper_available_size;
1805 };
1806 
1807 struct drm_i915_get_pipe_from_crtc_id {
1808         /** ID of CRTC being requested **/
1809         __u32 crtc_id;
1810 
1811         /** pipe of requested CRTC **/
1812         __u32 pipe;
1813 };
1814 
1815 #define I915_MADV_WILLNEED 0
1816 #define I915_MADV_DONTNEED 1
1817 #define __I915_MADV_PURGED 2 /* internal state */
1818 
1819 struct drm_i915_gem_madvise {
1820         /** Handle of the buffer to change the backing store advice */
1821         __u32 handle;
1822 
1823         /* Advice: either the buffer will be needed again in the near future,
1824          *         or won't be and could be discarded under memory pressure.
1825          */
1826         __u32 madv;
1827 
1828         /** Whether the backing store still exists. */
1829         __u32 retained;
1830 };
1831 
1832 /* flags */
1833 #define I915_OVERLAY_TYPE_MASK          0xff
1834 #define I915_OVERLAY_YUV_PLANAR         0x01
1835 #define I915_OVERLAY_YUV_PACKED         0x02
1836 #define I915_OVERLAY_RGB                0x03
1837 
1838 #define I915_OVERLAY_DEPTH_MASK         0xff00
1839 #define I915_OVERLAY_RGB24              0x1000
1840 #define I915_OVERLAY_RGB16              0x2000
1841 #define I915_OVERLAY_RGB15              0x3000
1842 #define I915_OVERLAY_YUV422             0x0100
1843 #define I915_OVERLAY_YUV411             0x0200
1844 #define I915_OVERLAY_YUV420             0x0300
1845 #define I915_OVERLAY_YUV410             0x0400
1846 
1847 #define I915_OVERLAY_SWAP_MASK          0xff0000
1848 #define I915_OVERLAY_NO_SWAP            0x000000
1849 #define I915_OVERLAY_UV_SWAP            0x010000
1850 #define I915_OVERLAY_Y_SWAP             0x020000
1851 #define I915_OVERLAY_Y_AND_UV_SWAP      0x030000
1852 
1853 #define I915_OVERLAY_FLAGS_MASK         0xff000000
1854 #define I915_OVERLAY_ENABLE             0x01000000
1855 
1856 struct drm_intel_overlay_put_image {
1857         /* various flags and src format description */
1858         __u32 flags;
1859         /* source picture description */
1860         __u32 bo_handle;
1861         /* stride values and offsets are in bytes, buffer relative */
1862         __u16 stride_Y; /* stride for packed formats */
1863         __u16 stride_UV;
1864         __u32 offset_Y; /* offset for packet formats */
1865         __u32 offset_U;
1866         __u32 offset_V;
1867         /* in pixels */
1868         __u16 src_width;
1869         __u16 src_height;
1870         /* to compensate the scaling factors for partially covered surfaces */
1871         __u16 src_scan_width;
1872         __u16 src_scan_height;
1873         /* output crtc description */
1874         __u32 crtc_id;
1875         __u16 dst_x;
1876         __u16 dst_y;
1877         __u16 dst_width;
1878         __u16 dst_height;
1879 };
1880 
1881 /* flags */
1882 #define I915_OVERLAY_UPDATE_ATTRS       (1<<0)
1883 #define I915_OVERLAY_UPDATE_GAMMA       (1<<1)
1884 #define I915_OVERLAY_DISABLE_DEST_COLORKEY      (1<<2)
1885 struct drm_intel_overlay_attrs {
1886         __u32 flags;
1887         __u32 color_key;
1888         __s32 brightness;
1889         __u32 contrast;
1890         __u32 saturation;
1891         __u32 gamma0;
1892         __u32 gamma1;
1893         __u32 gamma2;
1894         __u32 gamma3;
1895         __u32 gamma4;
1896         __u32 gamma5;
1897 };
1898 
1899 /*
1900  * Intel sprite handling
1901  *
1902  * Color keying works with a min/mask/max tuple.  Both source and destination
1903  * color keying is allowed.
1904  *
1905  * Source keying:
1906  * Sprite pixels within the min & max values, masked against the color channels
1907  * specified in the mask field, will be transparent.  All other pixels will
1908  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1909  * and mask fields will be used; ranged compares are not allowed.
1910  *
1911  * Destination keying:
1912  * Primary plane pixels that match the min value, masked against the color
1913  * channels specified in the mask field, will be replaced by corresponding
1914  * pixels from the sprite plane.
1915  *
1916  * Note that source & destination keying are exclusive; only one can be
1917  * active on a given plane.
1918  */
1919 
1920 #define I915_SET_COLORKEY_NONE          (1<<0) /* Deprecated. Instead set
1921                                                 * flags==0 to disable colorkeying.
1922                                                 */
1923 #define I915_SET_COLORKEY_DESTINATION   (1<<1)
1924 #define I915_SET_COLORKEY_SOURCE        (1<<2)
1925 struct drm_intel_sprite_colorkey {
1926         __u32 plane_id;
1927         __u32 min_value;
1928         __u32 channel_mask;
1929         __u32 max_value;
1930         __u32 flags;
1931 };
1932 
1933 struct drm_i915_gem_wait {
1934         /** Handle of BO we shall wait on */
1935         __u32 bo_handle;
1936         __u32 flags;
1937         /** Number of nanoseconds to wait, Returns time remaining. */
1938         __s64 timeout_ns;
1939 };
1940 
1941 struct drm_i915_gem_context_create {
1942         __u32 ctx_id; /* output: id of new context*/
1943         __u32 pad;
1944 };
1945 
1946 /**
1947  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1948  */
1949 struct drm_i915_gem_context_create_ext {
1950         /** @ctx_id: Id of the created context (output) */
1951         __u32 ctx_id;
1952 
1953         /**
1954          * @flags: Supported flags are:
1955          *
1956          * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1957          *
1958          * Extensions may be appended to this structure and driver must check
1959          * for those. See @extensions.
1960          *
1961          * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1962          *
1963          * Created context will have single timeline.
1964          */
1965         __u32 flags;
1966 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS        (1u << 0)
1967 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE       (1u << 1)
1968 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1969         (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1970 
1971         /**
1972          * @extensions: Zero-terminated chain of extensions.
1973          *
1974          * I915_CONTEXT_CREATE_EXT_SETPARAM:
1975          * Context parameter to set or query during context creation.
1976          * See struct drm_i915_gem_context_create_ext_setparam.
1977          *
1978          * I915_CONTEXT_CREATE_EXT_CLONE:
1979          * This extension has been removed. On the off chance someone somewhere
1980          * has attempted to use it, never re-use this extension number.
1981          */
1982         __u64 extensions;
1983 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1984 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1985 };
1986 
1987 /**
1988  * struct drm_i915_gem_context_param - Context parameter to set or query.
1989  */
1990 struct drm_i915_gem_context_param {
1991         /** @ctx_id: Context id */
1992         __u32 ctx_id;
1993 
1994         /** @size: Size of the parameter @value */
1995         __u32 size;
1996 
1997         /** @param: Parameter to set or query */
1998         __u64 param;
1999 #define I915_CONTEXT_PARAM_BAN_PERIOD   0x1
2000 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
2001  * someone somewhere has attempted to use it, never re-use this context
2002  * param number.
2003  */
2004 #define I915_CONTEXT_PARAM_NO_ZEROMAP   0x2
2005 #define I915_CONTEXT_PARAM_GTT_SIZE     0x3
2006 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE     0x4
2007 #define I915_CONTEXT_PARAM_BANNABLE     0x5
2008 #define I915_CONTEXT_PARAM_PRIORITY     0x6
2009 #define   I915_CONTEXT_MAX_USER_PRIORITY        1023 /* inclusive */
2010 #define   I915_CONTEXT_DEFAULT_PRIORITY         0
2011 #define   I915_CONTEXT_MIN_USER_PRIORITY        -1023 /* inclusive */
2012         /*
2013          * When using the following param, value should be a pointer to
2014          * drm_i915_gem_context_param_sseu.
2015          */
2016 #define I915_CONTEXT_PARAM_SSEU         0x7
2017 
2018 /*
2019  * Not all clients may want to attempt automatic recover of a context after
2020  * a hang (for example, some clients may only submit very small incremental
2021  * batches relying on known logical state of previous batches which will never
2022  * recover correctly and each attempt will hang), and so would prefer that
2023  * the context is forever banned instead.
2024  *
2025  * If set to false (0), after a reset, subsequent (and in flight) rendering
2026  * from this context is discarded, and the client will need to create a new
2027  * context to use instead.
2028  *
2029  * If set to true (1), the kernel will automatically attempt to recover the
2030  * context by skipping the hanging batch and executing the next batch starting
2031  * from the default context state (discarding the incomplete logical context
2032  * state lost due to the reset).
2033  *
2034  * On creation, all new contexts are marked as recoverable.
2035  */
2036 #define I915_CONTEXT_PARAM_RECOVERABLE  0x8
2037 
2038         /*
2039          * The id of the associated virtual memory address space (ppGTT) of
2040          * this context. Can be retrieved and passed to another context
2041          * (on the same fd) for both to use the same ppGTT and so share
2042          * address layouts, and avoid reloading the page tables on context
2043          * switches between themselves.
2044          *
2045          * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2046          */
2047 #define I915_CONTEXT_PARAM_VM           0x9
2048 
2049 /*
2050  * I915_CONTEXT_PARAM_ENGINES:
2051  *
2052  * Bind this context to operate on this subset of available engines. Henceforth,
2053  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2054  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2055  * and upwards. Slots 0...N are filled in using the specified (class, instance).
2056  * Use
2057  *      engine_class: I915_ENGINE_CLASS_INVALID,
2058  *      engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2059  * to specify a gap in the array that can be filled in later, e.g. by a
2060  * virtual engine used for load balancing.
2061  *
2062  * Setting the number of engines bound to the context to 0, by passing a zero
2063  * sized argument, will revert back to default settings.
2064  *
2065  * See struct i915_context_param_engines.
2066  *
2067  * Extensions:
2068  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2069  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2070  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2071  */
2072 #define I915_CONTEXT_PARAM_ENGINES      0xa
2073 
2074 /*
2075  * I915_CONTEXT_PARAM_PERSISTENCE:
2076  *
2077  * Allow the context and active rendering to survive the process until
2078  * completion. Persistence allows fire-and-forget clients to queue up a
2079  * bunch of work, hand the output over to a display server and then quit.
2080  * If the context is marked as not persistent, upon closing (either via
2081  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2082  * or process termination), the context and any outstanding requests will be
2083  * cancelled (and exported fences for cancelled requests marked as -EIO).
2084  *
2085  * By default, new contexts allow persistence.
2086  */
2087 #define I915_CONTEXT_PARAM_PERSISTENCE  0xb
2088 
2089 /* This API has been removed.  On the off chance someone somewhere has
2090  * attempted to use it, never re-use this context param number.
2091  */
2092 #define I915_CONTEXT_PARAM_RINGSIZE     0xc
2093 
2094 /*
2095  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2096  *
2097  * Mark that the context makes use of protected content, which will result
2098  * in the context being invalidated when the protected content session is.
2099  * Given that the protected content session is killed on suspend, the device
2100  * is kept awake for the lifetime of a protected context, so the user should
2101  * make sure to dispose of them once done.
2102  * This flag can only be set at context creation time and, when set to true,
2103  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2104  * to false. This flag can't be set to true in conjunction with setting the
2105  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2106  *
2107  * .. code-block:: C
2108  *
2109  *      struct drm_i915_gem_context_create_ext_setparam p_protected = {
2110  *              .base = {
2111  *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2112  *              },
2113  *              .param = {
2114  *                      .param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2115  *                      .value = 1,
2116  *              }
2117  *      };
2118  *      struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2119  *              .base = {
2120  *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2121  *                      .next_extension = to_user_pointer(&p_protected),
2122  *              },
2123  *              .param = {
2124  *                      .param = I915_CONTEXT_PARAM_RECOVERABLE,
2125  *                      .value = 0,
2126  *              }
2127  *      };
2128  *      struct drm_i915_gem_context_create_ext create = {
2129  *              .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2130  *              .extensions = to_user_pointer(&p_norecover);
2131  *      };
2132  *
2133  *      ctx_id = gem_context_create_ext(drm_fd, &create);
2134  *
2135  * In addition to the normal failure cases, setting this flag during context
2136  * creation can result in the following errors:
2137  *
2138  * -ENODEV: feature not available
2139  * -EPERM: trying to mark a recoverable or not bannable context as protected
2140  * -ENXIO: A dependency such as a component driver or firmware is not yet
2141  *         loaded so user space may need to attempt again. Depending on the
2142  *         device, this error may be reported if protected context creation is
2143  *         attempted very early after kernel start because the internal timeout
2144  *         waiting for such dependencies is not guaranteed to be larger than
2145  *         required (numbers differ depending on system and kernel config):
2146  *            - ADL/RPL: dependencies may take up to 3 seconds from kernel start
2147  *                       while context creation internal timeout is 250 milisecs
2148  *            - MTL: dependencies may take up to 8 seconds from kernel start
2149  *                   while context creation internal timeout is 250 milisecs
2150  *         NOTE: such dependencies happen once, so a subsequent call to create a
2151  *         protected context after a prior successful call will not experience
2152  *         such timeouts and will not return -ENXIO (unless the driver is reloaded,
2153  *         or, depending on the device, resumes from a suspended state).
2154  * -EIO: The firmware did not succeed in creating the protected context.
2155  */
2156 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2157 
2158 /*
2159  * I915_CONTEXT_PARAM_LOW_LATENCY:
2160  *
2161  * Mark this context as a low latency workload which requires aggressive GT
2162  * frequency scaling. Use I915_PARAM_HAS_CONTEXT_FREQ_HINT to check if the kernel
2163  * supports this per context flag.
2164  */
2165 #define I915_CONTEXT_PARAM_LOW_LATENCY          0xe
2166 
2167 /*
2168  * I915_CONTEXT_PARAM_CONTEXT_IMAGE:
2169  *
2170  * Allows userspace to provide own context images.
2171  *
2172  * Note that this is a debug API not available on production kernel builds.
2173  */
2174 #define I915_CONTEXT_PARAM_CONTEXT_IMAGE        0xf
2175 /* Must be kept compact -- no holes and well documented */
2176 
2177         /** @value: Context parameter value to be set or queried */
2178         __u64 value;
2179 };
2180 
2181 /*
2182  * Context SSEU programming
2183  *
2184  * It may be necessary for either functional or performance reason to configure
2185  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2186  * Sub-slice/EU).
2187  *
2188  * This is done by configuring SSEU configuration using the below
2189  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2190  * userspace intends to use.
2191  *
2192  * Not all GPUs or engines support this functionality in which case an error
2193  * code -ENODEV will be returned.
2194  *
2195  * Also, flexibility of possible SSEU configuration permutations varies between
2196  * GPU generations and software imposed limitations. Requesting such a
2197  * combination will return an error code of -EINVAL.
2198  *
2199  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2200  * favour of a single global setting.
2201  */
2202 struct drm_i915_gem_context_param_sseu {
2203         /*
2204          * Engine class & instance to be configured or queried.
2205          */
2206         struct i915_engine_class_instance engine;
2207 
2208         /*
2209          * Unknown flags must be cleared to zero.
2210          */
2211         __u32 flags;
2212 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2213 
2214         /*
2215          * Mask of slices to enable for the context. Valid values are a subset
2216          * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2217          */
2218         __u64 slice_mask;
2219 
2220         /*
2221          * Mask of subslices to enable for the context. Valid values are a
2222          * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2223          */
2224         __u64 subslice_mask;
2225 
2226         /*
2227          * Minimum/Maximum number of EUs to enable per subslice for the
2228          * context. min_eus_per_subslice must be inferior or equal to
2229          * max_eus_per_subslice.
2230          */
2231         __u16 min_eus_per_subslice;
2232         __u16 max_eus_per_subslice;
2233 
2234         /*
2235          * Unused for now. Must be cleared to zero.
2236          */
2237         __u32 rsvd;
2238 };
2239 
2240 /**
2241  * DOC: Virtual Engine uAPI
2242  *
2243  * Virtual engine is a concept where userspace is able to configure a set of
2244  * physical engines, submit a batch buffer, and let the driver execute it on any
2245  * engine from the set as it sees fit.
2246  *
2247  * This is primarily useful on parts which have multiple instances of a same
2248  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2249  *
2250  * For instance userspace can enumerate all engines of a certain class using the
2251  * previously described `Engine Discovery uAPI`_. After that userspace can
2252  * create a GEM context with a placeholder slot for the virtual engine (using
2253  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2254  * and instance respectively) and finally using the
2255  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2256  * the same reserved slot.
2257  *
2258  * Example of creating a virtual engine and submitting a batch buffer to it:
2259  *
2260  * .. code-block:: C
2261  *
2262  *      I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2263  *              .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2264  *              .engine_index = 0, // Place this virtual engine into engine map slot 0
2265  *              .num_siblings = 2,
2266  *              .engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2267  *                           { I915_ENGINE_CLASS_VIDEO, 1 }, },
2268  *      };
2269  *      I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2270  *              .engines = { { I915_ENGINE_CLASS_INVALID,
2271  *                             I915_ENGINE_CLASS_INVALID_NONE } },
2272  *              .extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2273  *      };
2274  *      struct drm_i915_gem_context_create_ext_setparam p_engines = {
2275  *              .base = {
2276  *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2277  *              },
2278  *              .param = {
2279  *                      .param = I915_CONTEXT_PARAM_ENGINES,
2280  *                      .value = to_user_pointer(&engines),
2281  *                      .size = sizeof(engines),
2282  *              },
2283  *      };
2284  *      struct drm_i915_gem_context_create_ext create = {
2285  *              .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2286  *              .extensions = to_user_pointer(&p_engines);
2287  *      };
2288  *
2289  *      ctx_id = gem_context_create_ext(drm_fd, &create);
2290  *
2291  *      // Now we have created a GEM context with its engine map containing a
2292  *      // single virtual engine. Submissions to this slot can go either to
2293  *      // vcs0 or vcs1, depending on the load balancing algorithm used inside
2294  *      // the driver. The load balancing is dynamic from one batch buffer to
2295  *      // another and transparent to userspace.
2296  *
2297  *      ...
2298  *      execbuf.rsvd1 = ctx_id;
2299  *      execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2300  *      gem_execbuf(drm_fd, &execbuf);
2301  */
2302 
2303 /*
2304  * i915_context_engines_load_balance:
2305  *
2306  * Enable load balancing across this set of engines.
2307  *
2308  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2309  * used will proxy the execbuffer request onto one of the set of engines
2310  * in such a way as to distribute the load evenly across the set.
2311  *
2312  * The set of engines must be compatible (e.g. the same HW class) as they
2313  * will share the same logical GPU context and ring.
2314  *
2315  * To intermix rendering with the virtual engine and direct rendering onto
2316  * the backing engines (bypassing the load balancing proxy), the context must
2317  * be defined to use a single timeline for all engines.
2318  */
2319 struct i915_context_engines_load_balance {
2320         struct i915_user_extension base;
2321 
2322         __u16 engine_index;
2323         __u16 num_siblings;
2324         __u32 flags; /* all undefined flags must be zero */
2325 
2326         __u64 mbz64; /* reserved for future use; must be zero */
2327 
2328         struct i915_engine_class_instance engines[];
2329 } __attribute__((packed));
2330 
2331 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2332         struct i915_user_extension base; \
2333         __u16 engine_index; \
2334         __u16 num_siblings; \
2335         __u32 flags; \
2336         __u64 mbz64; \
2337         struct i915_engine_class_instance engines[N__]; \
2338 } __attribute__((packed)) name__
2339 
2340 /*
2341  * i915_context_engines_bond:
2342  *
2343  * Constructed bonded pairs for execution within a virtual engine.
2344  *
2345  * All engines are equal, but some are more equal than others. Given
2346  * the distribution of resources in the HW, it may be preferable to run
2347  * a request on a given subset of engines in parallel to a request on a
2348  * specific engine. We enable this selection of engines within a virtual
2349  * engine by specifying bonding pairs, for any given master engine we will
2350  * only execute on one of the corresponding siblings within the virtual engine.
2351  *
2352  * To execute a request in parallel on the master engine and a sibling requires
2353  * coordination with a I915_EXEC_FENCE_SUBMIT.
2354  */
2355 struct i915_context_engines_bond {
2356         struct i915_user_extension base;
2357 
2358         struct i915_engine_class_instance master;
2359 
2360         __u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2361         __u16 num_bonds;
2362 
2363         __u64 flags; /* all undefined flags must be zero */
2364         __u64 mbz64[4]; /* reserved for future use; must be zero */
2365 
2366         struct i915_engine_class_instance engines[];
2367 } __attribute__((packed));
2368 
2369 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2370         struct i915_user_extension base; \
2371         struct i915_engine_class_instance master; \
2372         __u16 virtual_index; \
2373         __u16 num_bonds; \
2374         __u64 flags; \
2375         __u64 mbz64[4]; \
2376         struct i915_engine_class_instance engines[N__]; \
2377 } __attribute__((packed)) name__
2378 
2379 /**
2380  * struct i915_context_engines_parallel_submit - Configure engine for
2381  * parallel submission.
2382  *
2383  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2384  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2385  * in parallel. Multiple hardware contexts are created internally in the i915 to
2386  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2387  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2388  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2389  * many BBs there are based on the slot's configuration. The N BBs are the last
2390  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2391  *
2392  * The default placement behavior is to create implicit bonds between each
2393  * context if each context maps to more than 1 physical engine (e.g. context is
2394  * a virtual engine). Also we only allow contexts of same engine class and these
2395  * contexts must be in logically contiguous order. Examples of the placement
2396  * behavior are described below. Lastly, the default is to not allow BBs to be
2397  * preempted mid-batch. Rather insert coordinated preemption points on all
2398  * hardware contexts between each set of BBs. Flags could be added in the future
2399  * to change both of these default behaviors.
2400  *
2401  * Returns -EINVAL if hardware context placement configuration is invalid or if
2402  * the placement configuration isn't supported on the platform / submission
2403  * interface.
2404  * Returns -ENODEV if extension isn't supported on the platform / submission
2405  * interface.
2406  *
2407  * .. code-block:: none
2408  *
2409  *      Examples syntax:
2410  *      CS[X] = generic engine of same class, logical instance X
2411  *      INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2412  *
2413  *      Example 1 pseudo code:
2414  *      set_engines(INVALID)
2415  *      set_parallel(engine_index=0, width=2, num_siblings=1,
2416  *                   engines=CS[0],CS[1])
2417  *
2418  *      Results in the following valid placement:
2419  *      CS[0], CS[1]
2420  *
2421  *      Example 2 pseudo code:
2422  *      set_engines(INVALID)
2423  *      set_parallel(engine_index=0, width=2, num_siblings=2,
2424  *                   engines=CS[0],CS[2],CS[1],CS[3])
2425  *
2426  *      Results in the following valid placements:
2427  *      CS[0], CS[1]
2428  *      CS[2], CS[3]
2429  *
2430  *      This can be thought of as two virtual engines, each containing two
2431  *      engines thereby making a 2D array. However, there are bonds tying the
2432  *      entries together and placing restrictions on how they can be scheduled.
2433  *      Specifically, the scheduler can choose only vertical columns from the 2D
2434  *      array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2435  *      scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2436  *      versa. Same for CS[2] requires also using CS[3].
2437  *      VE[0] = CS[0], CS[2]
2438  *      VE[1] = CS[1], CS[3]
2439  *
2440  *      Example 3 pseudo code:
2441  *      set_engines(INVALID)
2442  *      set_parallel(engine_index=0, width=2, num_siblings=2,
2443  *                   engines=CS[0],CS[1],CS[1],CS[3])
2444  *
2445  *      Results in the following valid and invalid placements:
2446  *      CS[0], CS[1]
2447  *      CS[1], CS[3] - Not logically contiguous, return -EINVAL
2448  */
2449 struct i915_context_engines_parallel_submit {
2450         /**
2451          * @base: base user extension.
2452          */
2453         struct i915_user_extension base;
2454 
2455         /**
2456          * @engine_index: slot for parallel engine
2457          */
2458         __u16 engine_index;
2459 
2460         /**
2461          * @width: number of contexts per parallel engine or in other words the
2462          * number of batches in each submission
2463          */
2464         __u16 width;
2465 
2466         /**
2467          * @num_siblings: number of siblings per context or in other words the
2468          * number of possible placements for each submission
2469          */
2470         __u16 num_siblings;
2471 
2472         /**
2473          * @mbz16: reserved for future use; must be zero
2474          */
2475         __u16 mbz16;
2476 
2477         /**
2478          * @flags: all undefined flags must be zero, currently not defined flags
2479          */
2480         __u64 flags;
2481 
2482         /**
2483          * @mbz64: reserved for future use; must be zero
2484          */
2485         __u64 mbz64[3];
2486 
2487         /**
2488          * @engines: 2-d array of engine instances to configure parallel engine
2489          *
2490          * length = width (i) * num_siblings (j)
2491          * index = j + i * num_siblings
2492          */
2493         struct i915_engine_class_instance engines[];
2494 
2495 } __packed;
2496 
2497 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2498         struct i915_user_extension base; \
2499         __u16 engine_index; \
2500         __u16 width; \
2501         __u16 num_siblings; \
2502         __u16 mbz16; \
2503         __u64 flags; \
2504         __u64 mbz64[3]; \
2505         struct i915_engine_class_instance engines[N__]; \
2506 } __attribute__((packed)) name__
2507 
2508 /**
2509  * DOC: Context Engine Map uAPI
2510  *
2511  * Context engine map is a new way of addressing engines when submitting batch-
2512  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2513  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2514  *
2515  * To use it created GEM contexts need to be configured with a list of engines
2516  * the user is intending to submit to. This is accomplished using the
2517  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2518  * i915_context_param_engines`.
2519  *
2520  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2521  * configured map.
2522  *
2523  * Example of creating such context and submitting against it:
2524  *
2525  * .. code-block:: C
2526  *
2527  *      I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2528  *              .engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2529  *                           { I915_ENGINE_CLASS_COPY, 0 } }
2530  *      };
2531  *      struct drm_i915_gem_context_create_ext_setparam p_engines = {
2532  *              .base = {
2533  *                      .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2534  *              },
2535  *              .param = {
2536  *                      .param = I915_CONTEXT_PARAM_ENGINES,
2537  *                      .value = to_user_pointer(&engines),
2538  *                      .size = sizeof(engines),
2539  *              },
2540  *      };
2541  *      struct drm_i915_gem_context_create_ext create = {
2542  *              .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2543  *              .extensions = to_user_pointer(&p_engines);
2544  *      };
2545  *
2546  *      ctx_id = gem_context_create_ext(drm_fd, &create);
2547  *
2548  *      // We have now created a GEM context with two engines in the map:
2549  *      // Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2550  *      // will not be accessible from this context.
2551  *
2552  *      ...
2553  *      execbuf.rsvd1 = ctx_id;
2554  *      execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2555  *      gem_execbuf(drm_fd, &execbuf);
2556  *
2557  *      ...
2558  *      execbuf.rsvd1 = ctx_id;
2559  *      execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2560  *      gem_execbuf(drm_fd, &execbuf);
2561  */
2562 
2563 struct i915_context_param_engines {
2564         __u64 extensions; /* linked chain of extension blocks, 0 terminates */
2565 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2566 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2567 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2568         struct i915_engine_class_instance engines[];
2569 } __attribute__((packed));
2570 
2571 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2572         __u64 extensions; \
2573         struct i915_engine_class_instance engines[N__]; \
2574 } __attribute__((packed)) name__
2575 
2576 struct i915_gem_context_param_context_image {
2577         /** @engine: Engine class & instance to be configured. */
2578         struct i915_engine_class_instance engine;
2579 
2580         /** @flags: One of the supported flags or zero. */
2581         __u32 flags;
2582 #define I915_CONTEXT_IMAGE_FLAG_ENGINE_INDEX (1u << 0)
2583 
2584         /** @size: Size of the image blob pointed to by @image. */
2585         __u32 size;
2586 
2587         /** @mbz: Must be zero. */
2588         __u32 mbz;
2589 
2590         /** @image: Userspace memory containing the context image. */
2591         __u64 image;
2592 } __attribute__((packed));
2593 
2594 /**
2595  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2596  * to set or query during context creation.
2597  */
2598 struct drm_i915_gem_context_create_ext_setparam {
2599         /** @base: Extension link. See struct i915_user_extension. */
2600         struct i915_user_extension base;
2601 
2602         /**
2603          * @param: Context parameter to set or query.
2604          * See struct drm_i915_gem_context_param.
2605          */
2606         struct drm_i915_gem_context_param param;
2607 };
2608 
2609 struct drm_i915_gem_context_destroy {
2610         __u32 ctx_id;
2611         __u32 pad;
2612 };
2613 
2614 /**
2615  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2616  *
2617  * DRM_I915_GEM_VM_CREATE -
2618  *
2619  * Create a new virtual memory address space (ppGTT) for use within a context
2620  * on the same file. Extensions can be provided to configure exactly how the
2621  * address space is setup upon creation.
2622  *
2623  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2624  * returned in the outparam @id.
2625  *
2626  * An extension chain maybe provided, starting with @extensions, and terminated
2627  * by the @next_extension being 0. Currently, no extensions are defined.
2628  *
2629  * DRM_I915_GEM_VM_DESTROY -
2630  *
2631  * Destroys a previously created VM id, specified in @vm_id.
2632  *
2633  * No extensions or flags are allowed currently, and so must be zero.
2634  */
2635 struct drm_i915_gem_vm_control {
2636         /** @extensions: Zero-terminated chain of extensions. */
2637         __u64 extensions;
2638 
2639         /** @flags: reserved for future usage, currently MBZ */
2640         __u32 flags;
2641 
2642         /** @vm_id: Id of the VM created or to be destroyed */
2643         __u32 vm_id;
2644 };
2645 
2646 struct drm_i915_reg_read {
2647         /*
2648          * Register offset.
2649          * For 64bit wide registers where the upper 32bits don't immediately
2650          * follow the lower 32bits, the offset of the lower 32bits must
2651          * be specified
2652          */
2653         __u64 offset;
2654 #define I915_REG_READ_8B_WA (1ul << 0)
2655 
2656         __u64 val; /* Return value */
2657 };
2658 
2659 /* Known registers:
2660  *
2661  * Render engine timestamp - 0x2358 + 64bit - gen7+
2662  * - Note this register returns an invalid value if using the default
2663  *   single instruction 8byte read, in order to workaround that pass
2664  *   flag I915_REG_READ_8B_WA in offset field.
2665  *
2666  */
2667 
2668 /*
2669  * struct drm_i915_reset_stats - Return global reset and other context stats
2670  *
2671  * Driver keeps few stats for each contexts and also global reset count.
2672  * This struct can be used to query those stats.
2673  */
2674 struct drm_i915_reset_stats {
2675         /** @ctx_id: ID of the requested context */
2676         __u32 ctx_id;
2677 
2678         /** @flags: MBZ */
2679         __u32 flags;
2680 
2681         /** @reset_count: All resets since boot/module reload, for all contexts */
2682         __u32 reset_count;
2683 
2684         /** @batch_active: Number of batches lost when active in GPU, for this context */
2685         __u32 batch_active;
2686 
2687         /** @batch_pending: Number of batches lost pending for execution, for this context */
2688         __u32 batch_pending;
2689 
2690         /** @pad: MBZ */
2691         __u32 pad;
2692 };
2693 
2694 /**
2695  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2696  *
2697  * Userptr objects have several restrictions on what ioctls can be used with the
2698  * object handle.
2699  */
2700 struct drm_i915_gem_userptr {
2701         /**
2702          * @user_ptr: The pointer to the allocated memory.
2703          *
2704          * Needs to be aligned to PAGE_SIZE.
2705          */
2706         __u64 user_ptr;
2707 
2708         /**
2709          * @user_size:
2710          *
2711          * The size in bytes for the allocated memory. This will also become the
2712          * object size.
2713          *
2714          * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2715          * or larger.
2716          */
2717         __u64 user_size;
2718 
2719         /**
2720          * @flags:
2721          *
2722          * Supported flags:
2723          *
2724          * I915_USERPTR_READ_ONLY:
2725          *
2726          * Mark the object as readonly, this also means GPU access can only be
2727          * readonly. This is only supported on HW which supports readonly access
2728          * through the GTT. If the HW can't support readonly access, an error is
2729          * returned.
2730          *
2731          * I915_USERPTR_PROBE:
2732          *
2733          * Probe the provided @user_ptr range and validate that the @user_ptr is
2734          * indeed pointing to normal memory and that the range is also valid.
2735          * For example if some garbage address is given to the kernel, then this
2736          * should complain.
2737          *
2738          * Returns -EFAULT if the probe failed.
2739          *
2740          * Note that this doesn't populate the backing pages, and also doesn't
2741          * guarantee that the object will remain valid when the object is
2742          * eventually used.
2743          *
2744          * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2745          * returns a non-zero value.
2746          *
2747          * I915_USERPTR_UNSYNCHRONIZED:
2748          *
2749          * NOT USED. Setting this flag will result in an error.
2750          */
2751         __u32 flags;
2752 #define I915_USERPTR_READ_ONLY 0x1
2753 #define I915_USERPTR_PROBE 0x2
2754 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2755         /**
2756          * @handle: Returned handle for the object.
2757          *
2758          * Object handles are nonzero.
2759          */
2760         __u32 handle;
2761 };
2762 
2763 enum drm_i915_oa_format {
2764         I915_OA_FORMAT_A13 = 1,     /* HSW only */
2765         I915_OA_FORMAT_A29,         /* HSW only */
2766         I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2767         I915_OA_FORMAT_B4_C8,       /* HSW only */
2768         I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2769         I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2770         I915_OA_FORMAT_C4_B8,       /* HSW+ */
2771 
2772         /* Gen8+ */
2773         I915_OA_FORMAT_A12,
2774         I915_OA_FORMAT_A12_B8_C8,
2775         I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2776 
2777         /* DG2 */
2778         I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2779         I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2780 
2781         /* MTL OAM */
2782         I915_OAM_FORMAT_MPEC8u64_B8_C8,
2783         I915_OAM_FORMAT_MPEC8u32_B8_C8,
2784 
2785         I915_OA_FORMAT_MAX          /* non-ABI */
2786 };
2787 
2788 enum drm_i915_perf_property_id {
2789         /**
2790          * Open the stream for a specific context handle (as used with
2791          * execbuffer2). A stream opened for a specific context this way
2792          * won't typically require root privileges.
2793          *
2794          * This property is available in perf revision 1.
2795          */
2796         DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2797 
2798         /**
2799          * A value of 1 requests the inclusion of raw OA unit reports as
2800          * part of stream samples.
2801          *
2802          * This property is available in perf revision 1.
2803          */
2804         DRM_I915_PERF_PROP_SAMPLE_OA,
2805 
2806         /**
2807          * The value specifies which set of OA unit metrics should be
2808          * configured, defining the contents of any OA unit reports.
2809          *
2810          * This property is available in perf revision 1.
2811          */
2812         DRM_I915_PERF_PROP_OA_METRICS_SET,
2813 
2814         /**
2815          * The value specifies the size and layout of OA unit reports.
2816          *
2817          * This property is available in perf revision 1.
2818          */
2819         DRM_I915_PERF_PROP_OA_FORMAT,
2820 
2821         /**
2822          * Specifying this property implicitly requests periodic OA unit
2823          * sampling and (at least on Haswell) the sampling frequency is derived
2824          * from this exponent as follows:
2825          *
2826          *   80ns * 2^(period_exponent + 1)
2827          *
2828          * This property is available in perf revision 1.
2829          */
2830         DRM_I915_PERF_PROP_OA_EXPONENT,
2831 
2832         /**
2833          * Specifying this property is only valid when specify a context to
2834          * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2835          * will hold preemption of the particular context we want to gather
2836          * performance data about. The execbuf2 submissions must include a
2837          * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2838          *
2839          * This property is available in perf revision 3.
2840          */
2841         DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2842 
2843         /**
2844          * Specifying this pins all contexts to the specified SSEU power
2845          * configuration for the duration of the recording.
2846          *
2847          * This parameter's value is a pointer to a struct
2848          * drm_i915_gem_context_param_sseu.
2849          *
2850          * This property is available in perf revision 4.
2851          */
2852         DRM_I915_PERF_PROP_GLOBAL_SSEU,
2853 
2854         /**
2855          * This optional parameter specifies the timer interval in nanoseconds
2856          * at which the i915 driver will check the OA buffer for available data.
2857          * Minimum allowed value is 100 microseconds. A default value is used by
2858          * the driver if this parameter is not specified. Note that larger timer
2859          * values will reduce cpu consumption during OA perf captures. However,
2860          * excessively large values would potentially result in OA buffer
2861          * overwrites as captures reach end of the OA buffer.
2862          *
2863          * This property is available in perf revision 5.
2864          */
2865         DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2866 
2867         /**
2868          * Multiple engines may be mapped to the same OA unit. The OA unit is
2869          * identified by class:instance of any engine mapped to it.
2870          *
2871          * This parameter specifies the engine class and must be passed along
2872          * with DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE.
2873          *
2874          * This property is available in perf revision 6.
2875          */
2876         DRM_I915_PERF_PROP_OA_ENGINE_CLASS,
2877 
2878         /**
2879          * This parameter specifies the engine instance and must be passed along
2880          * with DRM_I915_PERF_PROP_OA_ENGINE_CLASS.
2881          *
2882          * This property is available in perf revision 6.
2883          */
2884         DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE,
2885 
2886         DRM_I915_PERF_PROP_MAX /* non-ABI */
2887 };
2888 
2889 struct drm_i915_perf_open_param {
2890         __u32 flags;
2891 #define I915_PERF_FLAG_FD_CLOEXEC       (1<<0)
2892 #define I915_PERF_FLAG_FD_NONBLOCK      (1<<1)
2893 #define I915_PERF_FLAG_DISABLED         (1<<2)
2894 
2895         /** The number of u64 (id, value) pairs */
2896         __u32 num_properties;
2897 
2898         /**
2899          * Pointer to array of u64 (id, value) pairs configuring the stream
2900          * to open.
2901          */
2902         __u64 properties_ptr;
2903 };
2904 
2905 /*
2906  * Enable data capture for a stream that was either opened in a disabled state
2907  * via I915_PERF_FLAG_DISABLED or was later disabled via
2908  * I915_PERF_IOCTL_DISABLE.
2909  *
2910  * It is intended to be cheaper to disable and enable a stream than it may be
2911  * to close and re-open a stream with the same configuration.
2912  *
2913  * It's undefined whether any pending data for the stream will be lost.
2914  *
2915  * This ioctl is available in perf revision 1.
2916  */
2917 #define I915_PERF_IOCTL_ENABLE  _IO('i', 0x0)
2918 
2919 /*
2920  * Disable data capture for a stream.
2921  *
2922  * It is an error to try and read a stream that is disabled.
2923  *
2924  * This ioctl is available in perf revision 1.
2925  */
2926 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
2927 
2928 /*
2929  * Change metrics_set captured by a stream.
2930  *
2931  * If the stream is bound to a specific context, the configuration change
2932  * will performed inline with that context such that it takes effect before
2933  * the next execbuf submission.
2934  *
2935  * Returns the previously bound metrics set id, or a negative error code.
2936  *
2937  * This ioctl is available in perf revision 2.
2938  */
2939 #define I915_PERF_IOCTL_CONFIG  _IO('i', 0x2)
2940 
2941 /*
2942  * Common to all i915 perf records
2943  */
2944 struct drm_i915_perf_record_header {
2945         __u32 type;
2946         __u16 pad;
2947         __u16 size;
2948 };
2949 
2950 enum drm_i915_perf_record_type {
2951 
2952         /**
2953          * Samples are the work horse record type whose contents are extensible
2954          * and defined when opening an i915 perf stream based on the given
2955          * properties.
2956          *
2957          * Boolean properties following the naming convention
2958          * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2959          * every sample.
2960          *
2961          * The order of these sample properties given by userspace has no
2962          * affect on the ordering of data within a sample. The order is
2963          * documented here.
2964          *
2965          * struct {
2966          *     struct drm_i915_perf_record_header header;
2967          *
2968          *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2969          * };
2970          */
2971         DRM_I915_PERF_RECORD_SAMPLE = 1,
2972 
2973         /*
2974          * Indicates that one or more OA reports were not written by the
2975          * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2976          * command collides with periodic sampling - which would be more likely
2977          * at higher sampling frequencies.
2978          */
2979         DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2980 
2981         /**
2982          * An error occurred that resulted in all pending OA reports being lost.
2983          */
2984         DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2985 
2986         DRM_I915_PERF_RECORD_MAX /* non-ABI */
2987 };
2988 
2989 /**
2990  * struct drm_i915_perf_oa_config
2991  *
2992  * Structure to upload perf dynamic configuration into the kernel.
2993  */
2994 struct drm_i915_perf_oa_config {
2995         /**
2996          * @uuid:
2997          *
2998          * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2999          */
3000         char uuid[36];
3001 
3002         /**
3003          * @n_mux_regs:
3004          *
3005          * Number of mux regs in &mux_regs_ptr.
3006          */
3007         __u32 n_mux_regs;
3008 
3009         /**
3010          * @n_boolean_regs:
3011          *
3012          * Number of boolean regs in &boolean_regs_ptr.
3013          */
3014         __u32 n_boolean_regs;
3015 
3016         /**
3017          * @n_flex_regs:
3018          *
3019          * Number of flex regs in &flex_regs_ptr.
3020          */
3021         __u32 n_flex_regs;
3022 
3023         /**
3024          * @mux_regs_ptr:
3025          *
3026          * Pointer to tuples of u32 values (register address, value) for mux
3027          * registers.  Expected length of buffer is (2 * sizeof(u32) *
3028          * &n_mux_regs).
3029          */
3030         __u64 mux_regs_ptr;
3031 
3032         /**
3033          * @boolean_regs_ptr:
3034          *
3035          * Pointer to tuples of u32 values (register address, value) for mux
3036          * registers.  Expected length of buffer is (2 * sizeof(u32) *
3037          * &n_boolean_regs).
3038          */
3039         __u64 boolean_regs_ptr;
3040 
3041         /**
3042          * @flex_regs_ptr:
3043          *
3044          * Pointer to tuples of u32 values (register address, value) for mux
3045          * registers.  Expected length of buffer is (2 * sizeof(u32) *
3046          * &n_flex_regs).
3047          */
3048         __u64 flex_regs_ptr;
3049 };
3050 
3051 /**
3052  * struct drm_i915_query_item - An individual query for the kernel to process.
3053  *
3054  * The behaviour is determined by the @query_id. Note that exactly what
3055  * @data_ptr is also depends on the specific @query_id.
3056  */
3057 struct drm_i915_query_item {
3058         /**
3059          * @query_id:
3060          *
3061          * The id for this query.  Currently accepted query IDs are:
3062          *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
3063          *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
3064          *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
3065          *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
3066          *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
3067          *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
3068          *  - %DRM_I915_QUERY_GUC_SUBMISSION_VERSION (see struct drm_i915_query_guc_submission_version)
3069          */
3070         __u64 query_id;
3071 #define DRM_I915_QUERY_TOPOLOGY_INFO            1
3072 #define DRM_I915_QUERY_ENGINE_INFO              2
3073 #define DRM_I915_QUERY_PERF_CONFIG              3
3074 #define DRM_I915_QUERY_MEMORY_REGIONS           4
3075 #define DRM_I915_QUERY_HWCONFIG_BLOB            5
3076 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES       6
3077 #define DRM_I915_QUERY_GUC_SUBMISSION_VERSION   7
3078 /* Must be kept compact -- no holes and well documented */
3079 
3080         /**
3081          * @length:
3082          *
3083          * When set to zero by userspace, this is filled with the size of the
3084          * data to be written at the @data_ptr pointer. The kernel sets this
3085          * value to a negative value to signal an error on a particular query
3086          * item.
3087          */
3088         __s32 length;
3089 
3090         /**
3091          * @flags:
3092          *
3093          * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
3094          *
3095          * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
3096          * following:
3097          *
3098          *      - %DRM_I915_QUERY_PERF_CONFIG_LIST
3099          *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
3100          *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
3101          *
3102          * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
3103          * a struct i915_engine_class_instance that references a render engine.
3104          */
3105         __u32 flags;
3106 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
3107 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
3108 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
3109 
3110         /**
3111          * @data_ptr:
3112          *
3113          * Data will be written at the location pointed by @data_ptr when the
3114          * value of @length matches the length of the data to be written by the
3115          * kernel.
3116          */
3117         __u64 data_ptr;
3118 };
3119 
3120 /**
3121  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
3122  * kernel to fill out.
3123  *
3124  * Note that this is generally a two step process for each struct
3125  * drm_i915_query_item in the array:
3126  *
3127  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3128  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3129  *    kernel will then fill in the size, in bytes, which tells userspace how
3130  *    memory it needs to allocate for the blob(say for an array of properties).
3131  *
3132  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3133  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3134  *    the &drm_i915_query_item.length should still be the same as what the
3135  *    kernel previously set. At this point the kernel can fill in the blob.
3136  *
3137  * Note that for some query items it can make sense for userspace to just pass
3138  * in a buffer/blob equal to or larger than the required size. In this case only
3139  * a single ioctl call is needed. For some smaller query items this can work
3140  * quite well.
3141  *
3142  */
3143 struct drm_i915_query {
3144         /** @num_items: The number of elements in the @items_ptr array */
3145         __u32 num_items;
3146 
3147         /**
3148          * @flags: Unused for now. Must be cleared to zero.
3149          */
3150         __u32 flags;
3151 
3152         /**
3153          * @items_ptr:
3154          *
3155          * Pointer to an array of struct drm_i915_query_item. The number of
3156          * array elements is @num_items.
3157          */
3158         __u64 items_ptr;
3159 };
3160 
3161 /**
3162  * struct drm_i915_query_topology_info
3163  *
3164  * Describes slice/subslice/EU information queried by
3165  * %DRM_I915_QUERY_TOPOLOGY_INFO
3166  */
3167 struct drm_i915_query_topology_info {
3168         /**
3169          * @flags:
3170          *
3171          * Unused for now. Must be cleared to zero.
3172          */
3173         __u16 flags;
3174 
3175         /**
3176          * @max_slices:
3177          *
3178          * The number of bits used to express the slice mask.
3179          */
3180         __u16 max_slices;
3181 
3182         /**
3183          * @max_subslices:
3184          *
3185          * The number of bits used to express the subslice mask.
3186          */
3187         __u16 max_subslices;
3188 
3189         /**
3190          * @max_eus_per_subslice:
3191          *
3192          * The number of bits in the EU mask that correspond to a single
3193          * subslice's EUs.
3194          */
3195         __u16 max_eus_per_subslice;
3196 
3197         /**
3198          * @subslice_offset:
3199          *
3200          * Offset in data[] at which the subslice masks are stored.
3201          */
3202         __u16 subslice_offset;
3203 
3204         /**
3205          * @subslice_stride:
3206          *
3207          * Stride at which each of the subslice masks for each slice are
3208          * stored.
3209          */
3210         __u16 subslice_stride;
3211 
3212         /**
3213          * @eu_offset:
3214          *
3215          * Offset in data[] at which the EU masks are stored.
3216          */
3217         __u16 eu_offset;
3218 
3219         /**
3220          * @eu_stride:
3221          *
3222          * Stride at which each of the EU masks for each subslice are stored.
3223          */
3224         __u16 eu_stride;
3225 
3226         /**
3227          * @data:
3228          *
3229          * Contains 3 pieces of information :
3230          *
3231          * - The slice mask with one bit per slice telling whether a slice is
3232          *   available. The availability of slice X can be queried with the
3233          *   following formula :
3234          *
3235          *   .. code:: c
3236          *
3237          *      (data[X / 8] >> (X % 8)) & 1
3238          *
3239          *   Starting with Xe_HP platforms, Intel hardware no longer has
3240          *   traditional slices so i915 will always report a single slice
3241          *   (hardcoded slicemask = 0x1) which contains all of the platform's
3242          *   subslices.  I.e., the mask here does not reflect any of the newer
3243          *   hardware concepts such as "gslices" or "cslices" since userspace
3244          *   is capable of inferring those from the subslice mask.
3245          *
3246          * - The subslice mask for each slice with one bit per subslice telling
3247          *   whether a subslice is available.  Starting with Gen12 we use the
3248          *   term "subslice" to refer to what the hardware documentation
3249          *   describes as a "dual-subslices."  The availability of subslice Y
3250          *   in slice X can be queried with the following formula :
3251          *
3252          *   .. code:: c
3253          *
3254          *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3255          *
3256          * - The EU mask for each subslice in each slice, with one bit per EU
3257          *   telling whether an EU is available. The availability of EU Z in
3258          *   subslice Y in slice X can be queried with the following formula :
3259          *
3260          *   .. code:: c
3261          *
3262          *      (data[eu_offset +
3263          *            (X * max_subslices + Y) * eu_stride +
3264          *            Z / 8
3265          *       ] >> (Z % 8)) & 1
3266          */
3267         __u8 data[];
3268 };
3269 
3270 /**
3271  * DOC: Engine Discovery uAPI
3272  *
3273  * Engine discovery uAPI is a way of enumerating physical engines present in a
3274  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3275  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3276  * `I915_PARAM_HAS_BLT`.
3277  *
3278  * The need for this interface came starting with Icelake and newer GPUs, which
3279  * started to establish a pattern of having multiple engines of a same class,
3280  * where not all instances were always completely functionally equivalent.
3281  *
3282  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3283  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3284  *
3285  * Example for getting the list of engines:
3286  *
3287  * .. code-block:: C
3288  *
3289  *      struct drm_i915_query_engine_info *info;
3290  *      struct drm_i915_query_item item = {
3291  *              .query_id = DRM_I915_QUERY_ENGINE_INFO;
3292  *      };
3293  *      struct drm_i915_query query = {
3294  *              .num_items = 1,
3295  *              .items_ptr = (uintptr_t)&item,
3296  *      };
3297  *      int err, i;
3298  *
3299  *      // First query the size of the blob we need, this needs to be large
3300  *      // enough to hold our array of engines. The kernel will fill out the
3301  *      // item.length for us, which is the number of bytes we need.
3302  *      //
3303  *      // Alternatively a large buffer can be allocated straightaway enabling
3304  *      // querying in one pass, in which case item.length should contain the
3305  *      // length of the provided buffer.
3306  *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3307  *      if (err) ...
3308  *
3309  *      info = calloc(1, item.length);
3310  *      // Now that we allocated the required number of bytes, we call the ioctl
3311  *      // again, this time with the data_ptr pointing to our newly allocated
3312  *      // blob, which the kernel can then populate with info on all engines.
3313  *      item.data_ptr = (uintptr_t)&info;
3314  *
3315  *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3316  *      if (err) ...
3317  *
3318  *      // We can now access each engine in the array
3319  *      for (i = 0; i < info->num_engines; i++) {
3320  *              struct drm_i915_engine_info einfo = info->engines[i];
3321  *              u16 class = einfo.engine.class;
3322  *              u16 instance = einfo.engine.instance;
3323  *              ....
3324  *      }
3325  *
3326  *      free(info);
3327  *
3328  * Each of the enumerated engines, apart from being defined by its class and
3329  * instance (see `struct i915_engine_class_instance`), also can have flags and
3330  * capabilities defined as documented in i915_drm.h.
3331  *
3332  * For instance video engines which support HEVC encoding will have the
3333  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3334  *
3335  * Engine discovery only fully comes to its own when combined with the new way
3336  * of addressing engines when submitting batch buffers using contexts with
3337  * engine maps configured.
3338  */
3339 
3340 /**
3341  * struct drm_i915_engine_info
3342  *
3343  * Describes one engine and its capabilities as known to the driver.
3344  */
3345 struct drm_i915_engine_info {
3346         /** @engine: Engine class and instance. */
3347         struct i915_engine_class_instance engine;
3348 
3349         /** @rsvd0: Reserved field. */
3350         __u32 rsvd0;
3351 
3352         /** @flags: Engine flags. */
3353         __u64 flags;
3354 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE           (1 << 0)
3355 
3356         /** @capabilities: Capabilities of this engine. */
3357         __u64 capabilities;
3358 #define I915_VIDEO_CLASS_CAPABILITY_HEVC                (1 << 0)
3359 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC     (1 << 1)
3360 
3361         /** @logical_instance: Logical instance of engine */
3362         __u16 logical_instance;
3363 
3364         /** @rsvd1: Reserved fields. */
3365         __u16 rsvd1[3];
3366         /** @rsvd2: Reserved fields. */
3367         __u64 rsvd2[3];
3368 };
3369 
3370 /**
3371  * struct drm_i915_query_engine_info
3372  *
3373  * Engine info query enumerates all engines known to the driver by filling in
3374  * an array of struct drm_i915_engine_info structures.
3375  */
3376 struct drm_i915_query_engine_info {
3377         /** @num_engines: Number of struct drm_i915_engine_info structs following. */
3378         __u32 num_engines;
3379 
3380         /** @rsvd: MBZ */
3381         __u32 rsvd[3];
3382 
3383         /** @engines: Marker for drm_i915_engine_info structures. */
3384         struct drm_i915_engine_info engines[];
3385 };
3386 
3387 /**
3388  * struct drm_i915_query_perf_config
3389  *
3390  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3391  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3392  */
3393 struct drm_i915_query_perf_config {
3394         union {
3395                 /**
3396                  * @n_configs:
3397                  *
3398                  * When &drm_i915_query_item.flags ==
3399                  * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3400                  * the number of configurations available.
3401                  */
3402                 __u64 n_configs;
3403 
3404                 /**
3405                  * @config:
3406                  *
3407                  * When &drm_i915_query_item.flags ==
3408                  * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3409                  * value in this field as configuration identifier to decide
3410                  * what data to write into config_ptr.
3411                  */
3412                 __u64 config;
3413 
3414                 /**
3415                  * @uuid:
3416                  *
3417                  * When &drm_i915_query_item.flags ==
3418                  * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3419                  * value in this field as configuration identifier to decide
3420                  * what data to write into config_ptr.
3421                  *
3422                  * String formatted like "%08x-%04x-%04x-%04x-%012x"
3423                  */
3424                 char uuid[36];
3425         };
3426 
3427         /**
3428          * @flags:
3429          *
3430          * Unused for now. Must be cleared to zero.
3431          */
3432         __u32 flags;
3433 
3434         /**
3435          * @data:
3436          *
3437          * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3438          * i915 will write an array of __u64 of configuration identifiers.
3439          *
3440          * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3441          * i915 will write a struct drm_i915_perf_oa_config. If the following
3442          * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3443          * write into the associated pointers the values of submitted when the
3444          * configuration was created :
3445          *
3446          *  - &drm_i915_perf_oa_config.n_mux_regs
3447          *  - &drm_i915_perf_oa_config.n_boolean_regs
3448          *  - &drm_i915_perf_oa_config.n_flex_regs
3449          */
3450         __u8 data[];
3451 };
3452 
3453 /**
3454  * enum drm_i915_gem_memory_class - Supported memory classes
3455  */
3456 enum drm_i915_gem_memory_class {
3457         /** @I915_MEMORY_CLASS_SYSTEM: System memory */
3458         I915_MEMORY_CLASS_SYSTEM = 0,
3459         /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3460         I915_MEMORY_CLASS_DEVICE,
3461 };
3462 
3463 /**
3464  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3465  */
3466 struct drm_i915_gem_memory_class_instance {
3467         /** @memory_class: See enum drm_i915_gem_memory_class */
3468         __u16 memory_class;
3469 
3470         /** @memory_instance: Which instance */
3471         __u16 memory_instance;
3472 };
3473 
3474 /**
3475  * struct drm_i915_memory_region_info - Describes one region as known to the
3476  * driver.
3477  *
3478  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3479  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3480  * at &drm_i915_query_item.query_id.
3481  */
3482 struct drm_i915_memory_region_info {
3483         /** @region: The class:instance pair encoding */
3484         struct drm_i915_gem_memory_class_instance region;
3485 
3486         /** @rsvd0: MBZ */
3487         __u32 rsvd0;
3488 
3489         /**
3490          * @probed_size: Memory probed by the driver
3491          *
3492          * Note that it should not be possible to ever encounter a zero value
3493          * here, also note that no current region type will ever return -1 here.
3494          * Although for future region types, this might be a possibility. The
3495          * same applies to the other size fields.
3496          */
3497         __u64 probed_size;
3498 
3499         /**
3500          * @unallocated_size: Estimate of memory remaining
3501          *
3502          * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3503          * Without this (or if this is an older kernel) the value here will
3504          * always equal the @probed_size. Note this is only currently tracked
3505          * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3506          * will always equal the @probed_size).
3507          */
3508         __u64 unallocated_size;
3509 
3510         union {
3511                 /** @rsvd1: MBZ */
3512                 __u64 rsvd1[8];
3513                 struct {
3514                         /**
3515                          * @probed_cpu_visible_size: Memory probed by the driver
3516                          * that is CPU accessible.
3517                          *
3518                          * This will be always be <= @probed_size, and the
3519                          * remainder (if there is any) will not be CPU
3520                          * accessible.
3521                          *
3522                          * On systems without small BAR, the @probed_size will
3523                          * always equal the @probed_cpu_visible_size, since all
3524                          * of it will be CPU accessible.
3525                          *
3526                          * Note this is only tracked for
3527                          * I915_MEMORY_CLASS_DEVICE regions (for other types the
3528                          * value here will always equal the @probed_size).
3529                          *
3530                          * Note that if the value returned here is zero, then
3531                          * this must be an old kernel which lacks the relevant
3532                          * small-bar uAPI support (including
3533                          * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3534                          * such systems we should never actually end up with a
3535                          * small BAR configuration, assuming we are able to load
3536                          * the kernel module. Hence it should be safe to treat
3537                          * this the same as when @probed_cpu_visible_size ==
3538                          * @probed_size.
3539                          */
3540                         __u64 probed_cpu_visible_size;
3541 
3542                         /**
3543                          * @unallocated_cpu_visible_size: Estimate of CPU
3544                          * visible memory remaining.
3545                          *
3546                          * Note this is only tracked for
3547                          * I915_MEMORY_CLASS_DEVICE regions (for other types the
3548                          * value here will always equal the
3549                          * @probed_cpu_visible_size).
3550                          *
3551                          * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3552                          * accounting.  Without this the value here will always
3553                          * equal the @probed_cpu_visible_size. Note this is only
3554                          * currently tracked for I915_MEMORY_CLASS_DEVICE
3555                          * regions (for other types the value here will also
3556                          * always equal the @probed_cpu_visible_size).
3557                          *
3558                          * If this is an older kernel the value here will be
3559                          * zero, see also @probed_cpu_visible_size.
3560                          */
3561                         __u64 unallocated_cpu_visible_size;
3562                 };
3563         };
3564 };
3565 
3566 /**
3567  * struct drm_i915_query_memory_regions
3568  *
3569  * The region info query enumerates all regions known to the driver by filling
3570  * in an array of struct drm_i915_memory_region_info structures.
3571  *
3572  * Example for getting the list of supported regions:
3573  *
3574  * .. code-block:: C
3575  *
3576  *      struct drm_i915_query_memory_regions *info;
3577  *      struct drm_i915_query_item item = {
3578  *              .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3579  *      };
3580  *      struct drm_i915_query query = {
3581  *              .num_items = 1,
3582  *              .items_ptr = (uintptr_t)&item,
3583  *      };
3584  *      int err, i;
3585  *
3586  *      // First query the size of the blob we need, this needs to be large
3587  *      // enough to hold our array of regions. The kernel will fill out the
3588  *      // item.length for us, which is the number of bytes we need.
3589  *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3590  *      if (err) ...
3591  *
3592  *      info = calloc(1, item.length);
3593  *      // Now that we allocated the required number of bytes, we call the ioctl
3594  *      // again, this time with the data_ptr pointing to our newly allocated
3595  *      // blob, which the kernel can then populate with the all the region info.
3596  *      item.data_ptr = (uintptr_t)&info,
3597  *
3598  *      err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3599  *      if (err) ...
3600  *
3601  *      // We can now access each region in the array
3602  *      for (i = 0; i < info->num_regions; i++) {
3603  *              struct drm_i915_memory_region_info mr = info->regions[i];
3604  *              u16 class = mr.region.class;
3605  *              u16 instance = mr.region.instance;
3606  *
3607  *              ....
3608  *      }
3609  *
3610  *      free(info);
3611  */
3612 struct drm_i915_query_memory_regions {
3613         /** @num_regions: Number of supported regions */
3614         __u32 num_regions;
3615 
3616         /** @rsvd: MBZ */
3617         __u32 rsvd[3];
3618 
3619         /** @regions: Info about each supported region */
3620         struct drm_i915_memory_region_info regions[];
3621 };
3622 
3623 /**
3624  * struct drm_i915_query_guc_submission_version - query GuC submission interface version
3625  */
3626 struct drm_i915_query_guc_submission_version {
3627         /** @branch: Firmware branch version. */
3628         __u32 branch;
3629         /** @major: Firmware major version. */
3630         __u32 major;
3631         /** @minor: Firmware minor version. */
3632         __u32 minor;
3633         /** @patch: Firmware patch version. */
3634         __u32 patch;
3635 };
3636 
3637 /**
3638  * DOC: GuC HWCONFIG blob uAPI
3639  *
3640  * The GuC produces a blob with information about the current device.
3641  * i915 reads this blob from GuC and makes it available via this uAPI.
3642  *
3643  * The format and meaning of the blob content are documented in the
3644  * Programmer's Reference Manual.
3645  */
3646 
3647 /**
3648  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3649  * extension support using struct i915_user_extension.
3650  *
3651  * Note that new buffer flags should be added here, at least for the stuff that
3652  * is immutable. Previously we would have two ioctls, one to create the object
3653  * with gem_create, and another to apply various parameters, however this
3654  * creates some ambiguity for the params which are considered immutable. Also in
3655  * general we're phasing out the various SET/GET ioctls.
3656  */
3657 struct drm_i915_gem_create_ext {
3658         /**
3659          * @size: Requested size for the object.
3660          *
3661          * The (page-aligned) allocated size for the object will be returned.
3662          *
3663          * On platforms like DG2/ATS the kernel will always use 64K or larger
3664          * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3665          * minimum of 64K GTT alignment for such objects.
3666          *
3667          * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3668          * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3669          * where we had the following complications:
3670          *
3671          *   1) The entire PDE (which covers a 2MB virtual address range), must
3672          *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3673          *   PDE is forbidden by the hardware.
3674          *
3675          *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3676          *   objects.
3677          *
3678          * However on actual production HW this was completely changed to now
3679          * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3680          * more flexible than the above. With this the 2M restriction was
3681          * dropped where we now only require 64K.
3682          */
3683         __u64 size;
3684 
3685         /**
3686          * @handle: Returned handle for the object.
3687          *
3688          * Object handles are nonzero.
3689          */
3690         __u32 handle;
3691 
3692         /**
3693          * @flags: Optional flags.
3694          *
3695          * Supported values:
3696          *
3697          * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3698          * the object will need to be accessed via the CPU.
3699          *
3700          * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3701          * strictly required on configurations where some subset of the device
3702          * memory is directly visible/mappable through the CPU (which we also
3703          * call small BAR), like on some DG2+ systems. Note that this is quite
3704          * undesirable, but due to various factors like the client CPU, BIOS etc
3705          * it's something we can expect to see in the wild. See
3706          * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3707          * determine if this system applies.
3708          *
3709          * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3710          * ensure the kernel can always spill the allocation to system memory,
3711          * if the object can't be allocated in the mappable part of
3712          * I915_MEMORY_CLASS_DEVICE.
3713          *
3714          * Also note that since the kernel only supports flat-CCS on objects
3715          * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3716          * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3717          * flat-CCS.
3718          *
3719          * Without this hint, the kernel will assume that non-mappable
3720          * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3721          * kernel can still migrate the object to the mappable part, as a last
3722          * resort, if userspace ever CPU faults this object, but this might be
3723          * expensive, and so ideally should be avoided.
3724          *
3725          * On older kernels which lack the relevant small-bar uAPI support (see
3726          * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3727          * usage of the flag will result in an error, but it should NEVER be
3728          * possible to end up with a small BAR configuration, assuming we can
3729          * also successfully load the i915 kernel module. In such cases the
3730          * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3731          * such there are zero restrictions on where the object can be placed.
3732          */
3733 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3734         __u32 flags;
3735 
3736         /**
3737          * @extensions: The chain of extensions to apply to this object.
3738          *
3739          * This will be useful in the future when we need to support several
3740          * different extensions, and we need to apply more than one when
3741          * creating the object. See struct i915_user_extension.
3742          *
3743          * If we don't supply any extensions then we get the same old gem_create
3744          * behaviour.
3745          *
3746          * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3747          * struct drm_i915_gem_create_ext_memory_regions.
3748          *
3749          * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3750          * struct drm_i915_gem_create_ext_protected_content.
3751          *
3752          * For I915_GEM_CREATE_EXT_SET_PAT usage see
3753          * struct drm_i915_gem_create_ext_set_pat.
3754          */
3755 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3756 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3757 #define I915_GEM_CREATE_EXT_SET_PAT 2
3758         __u64 extensions;
3759 };
3760 
3761 /**
3762  * struct drm_i915_gem_create_ext_memory_regions - The
3763  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3764  *
3765  * Set the object with the desired set of placements/regions in priority
3766  * order. Each entry must be unique and supported by the device.
3767  *
3768  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3769  * an equivalent layout of class:instance pair encodings. See struct
3770  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3771  * query the supported regions for a device.
3772  *
3773  * As an example, on discrete devices, if we wish to set the placement as
3774  * device local-memory we can do something like:
3775  *
3776  * .. code-block:: C
3777  *
3778  *      struct drm_i915_gem_memory_class_instance region_lmem = {
3779  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3780  *              .memory_instance = 0,
3781  *      };
3782  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3783  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3784  *              .regions = (uintptr_t)&region_lmem,
3785  *              .num_regions = 1,
3786  *      };
3787  *      struct drm_i915_gem_create_ext create_ext = {
3788  *              .size = 16 * PAGE_SIZE,
3789  *              .extensions = (uintptr_t)&regions,
3790  *      };
3791  *
3792  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3793  *      if (err) ...
3794  *
3795  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3796  * along with the final object size in &drm_i915_gem_create_ext.size, which
3797  * should account for any rounding up, if required.
3798  *
3799  * Note that userspace has no means of knowing the current backing region
3800  * for objects where @num_regions is larger than one. The kernel will only
3801  * ensure that the priority order of the @regions array is honoured, either
3802  * when initially placing the object, or when moving memory around due to
3803  * memory pressure
3804  *
3805  * On Flat-CCS capable HW, compression is supported for the objects residing
3806  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3807  * memory class in @regions and migrated (by i915, due to memory
3808  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3809  * decompress the content. But i915 doesn't have the required information to
3810  * decompress the userspace compressed objects.
3811  *
3812  * So i915 supports Flat-CCS, on the objects which can reside only on
3813  * I915_MEMORY_CLASS_DEVICE regions.
3814  */
3815 struct drm_i915_gem_create_ext_memory_regions {
3816         /** @base: Extension link. See struct i915_user_extension. */
3817         struct i915_user_extension base;
3818 
3819         /** @pad: MBZ */
3820         __u32 pad;
3821         /** @num_regions: Number of elements in the @regions array. */
3822         __u32 num_regions;
3823         /**
3824          * @regions: The regions/placements array.
3825          *
3826          * An array of struct drm_i915_gem_memory_class_instance.
3827          */
3828         __u64 regions;
3829 };
3830 
3831 /**
3832  * struct drm_i915_gem_create_ext_protected_content - The
3833  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3834  *
3835  * If this extension is provided, buffer contents are expected to be protected
3836  * by PXP encryption and require decryption for scan out and processing. This
3837  * is only possible on platforms that have PXP enabled, on all other scenarios
3838  * using this extension will cause the ioctl to fail and return -ENODEV. The
3839  * flags parameter is reserved for future expansion and must currently be set
3840  * to zero.
3841  *
3842  * The buffer contents are considered invalid after a PXP session teardown.
3843  *
3844  * The encryption is guaranteed to be processed correctly only if the object
3845  * is submitted with a context created using the
3846  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3847  * at submission time on the validity of the objects involved.
3848  *
3849  * Below is an example on how to create a protected object:
3850  *
3851  * .. code-block:: C
3852  *
3853  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3854  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3855  *              .flags = 0,
3856  *      };
3857  *      struct drm_i915_gem_create_ext create_ext = {
3858  *              .size = PAGE_SIZE,
3859  *              .extensions = (uintptr_t)&protected_ext,
3860  *      };
3861  *
3862  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3863  *      if (err) ...
3864  */
3865 struct drm_i915_gem_create_ext_protected_content {
3866         /** @base: Extension link. See struct i915_user_extension. */
3867         struct i915_user_extension base;
3868         /** @flags: reserved for future usage, currently MBZ */
3869         __u32 flags;
3870 };
3871 
3872 /**
3873  * struct drm_i915_gem_create_ext_set_pat - The
3874  * I915_GEM_CREATE_EXT_SET_PAT extension.
3875  *
3876  * If this extension is provided, the specified caching policy (PAT index) is
3877  * applied to the buffer object.
3878  *
3879  * Below is an example on how to create an object with specific caching policy:
3880  *
3881  * .. code-block:: C
3882  *
3883  *      struct drm_i915_gem_create_ext_set_pat set_pat_ext = {
3884  *              .base = { .name = I915_GEM_CREATE_EXT_SET_PAT },
3885  *              .pat_index = 0,
3886  *      };
3887  *      struct drm_i915_gem_create_ext create_ext = {
3888  *              .size = PAGE_SIZE,
3889  *              .extensions = (uintptr_t)&set_pat_ext,
3890  *      };
3891  *
3892  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3893  *      if (err) ...
3894  */
3895 struct drm_i915_gem_create_ext_set_pat {
3896         /** @base: Extension link. See struct i915_user_extension. */
3897         struct i915_user_extension base;
3898         /**
3899          * @pat_index: PAT index to be set
3900          * PAT index is a bit field in Page Table Entry to control caching
3901          * behaviors for GPU accesses. The definition of PAT index is
3902          * platform dependent and can be found in hardware specifications,
3903          */
3904         __u32 pat_index;
3905         /** @rsvd: reserved for future use */
3906         __u32 rsvd;
3907 };
3908 
3909 /* ID of the protected content session managed by i915 when PXP is active */
3910 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3911 
3912 #if defined(__cplusplus)
3913 }
3914 #endif
3915 
3916 #endif /* _UAPI_I915_DRM_H_ */
3917 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php