~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/uapi/drm/xe_drm.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: MIT */
  2 /*
  3  * Copyright © 2023 Intel Corporation
  4  */
  5 
  6 #ifndef _UAPI_XE_DRM_H_
  7 #define _UAPI_XE_DRM_H_
  8 
  9 #include "drm.h"
 10 
 11 #if defined(__cplusplus)
 12 extern "C" {
 13 #endif
 14 
 15 /*
 16  * Please note that modifications to all structs defined here are
 17  * subject to backwards-compatibility constraints.
 18  * Sections in this file are organized as follows:
 19  *   1. IOCTL definition
 20  *   2. Extension definition and helper structs
 21  *   3. IOCTL's Query structs in the order of the Query's entries.
 22  *   4. The rest of IOCTL structs in the order of IOCTL declaration.
 23  */
 24 
 25 /**
 26  * DOC: Xe Device Block Diagram
 27  *
 28  * The diagram below represents a high-level simplification of a discrete
 29  * GPU supported by the Xe driver. It shows some device components which
 30  * are necessary to understand this API, as well as how their relations
 31  * to each other. This diagram does not represent real hardware::
 32  *
 33  *   ┌──────────────────────────────────────────────────────────────────┐
 34  *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
 35  *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
 36  *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
 37  *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
 38  *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
 39  *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
 40  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
 41  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
 42  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
 43  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
 44  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
 45  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
 46  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
 47  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
 48  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
 49  *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
 50  *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
 51  *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
 52  *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
 53  *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
 54  *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
 55  *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
 56  *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
 57  *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
 58  *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
 59  *   └─────────────────────────────Device0───────┬──────────────────────┘
 60  *                                               │
 61  *                        ───────────────────────┴────────── PCI bus
 62  */
 63 
 64 /**
 65  * DOC: Xe uAPI Overview
 66  *
 67  * This section aims to describe the Xe's IOCTL entries, its structs, and other
 68  * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
 69  * entries and usage.
 70  *
 71  * List of supported IOCTLs:
 72  *  - &DRM_IOCTL_XE_DEVICE_QUERY
 73  *  - &DRM_IOCTL_XE_GEM_CREATE
 74  *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
 75  *  - &DRM_IOCTL_XE_VM_CREATE
 76  *  - &DRM_IOCTL_XE_VM_DESTROY
 77  *  - &DRM_IOCTL_XE_VM_BIND
 78  *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
 79  *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
 80  *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
 81  *  - &DRM_IOCTL_XE_EXEC
 82  *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
 83  *  - &DRM_IOCTL_XE_OBSERVATION
 84  */
 85 
 86 /*
 87  * xe specific ioctls.
 88  *
 89  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
 90  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
 91  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
 92  */
 93 #define DRM_XE_DEVICE_QUERY             0x00
 94 #define DRM_XE_GEM_CREATE               0x01
 95 #define DRM_XE_GEM_MMAP_OFFSET          0x02
 96 #define DRM_XE_VM_CREATE                0x03
 97 #define DRM_XE_VM_DESTROY               0x04
 98 #define DRM_XE_VM_BIND                  0x05
 99 #define DRM_XE_EXEC_QUEUE_CREATE        0x06
100 #define DRM_XE_EXEC_QUEUE_DESTROY       0x07
101 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY  0x08
102 #define DRM_XE_EXEC                     0x09
103 #define DRM_XE_WAIT_USER_FENCE          0x0a
104 #define DRM_XE_OBSERVATION              0x0b
105 
106 /* Must be kept compact -- no holes */
107 
108 #define DRM_IOCTL_XE_DEVICE_QUERY               DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
109 #define DRM_IOCTL_XE_GEM_CREATE                 DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
110 #define DRM_IOCTL_XE_GEM_MMAP_OFFSET            DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
111 #define DRM_IOCTL_XE_VM_CREATE                  DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
112 #define DRM_IOCTL_XE_VM_DESTROY                 DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
113 #define DRM_IOCTL_XE_VM_BIND                    DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
114 #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE          DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
115 #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY         DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
116 #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY    DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
117 #define DRM_IOCTL_XE_EXEC                       DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
118 #define DRM_IOCTL_XE_WAIT_USER_FENCE            DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
119 #define DRM_IOCTL_XE_OBSERVATION                DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
120 
121 /**
122  * DOC: Xe IOCTL Extensions
123  *
124  * Before detailing the IOCTLs and its structs, it is important to highlight
125  * that every IOCTL in Xe is extensible.
126  *
127  * Many interfaces need to grow over time. In most cases we can simply
128  * extend the struct and have userspace pass in more data. Another option,
129  * as demonstrated by Vulkan's approach to providing extensions for forward
130  * and backward compatibility, is to use a list of optional structs to
131  * provide those extra details.
132  *
133  * The key advantage to using an extension chain is that it allows us to
134  * redefine the interface more easily than an ever growing struct of
135  * increasing complexity, and for large parts of that interface to be
136  * entirely optional. The downside is more pointer chasing; chasing across
137  * the __user boundary with pointers encapsulated inside u64.
138  *
139  * Example chaining:
140  *
141  * .. code-block:: C
142  *
143  *      struct drm_xe_user_extension ext3 {
144  *              .next_extension = 0, // end
145  *              .name = ...,
146  *      };
147  *      struct drm_xe_user_extension ext2 {
148  *              .next_extension = (uintptr_t)&ext3,
149  *              .name = ...,
150  *      };
151  *      struct drm_xe_user_extension ext1 {
152  *              .next_extension = (uintptr_t)&ext2,
153  *              .name = ...,
154  *      };
155  *
156  * Typically the struct drm_xe_user_extension would be embedded in some uAPI
157  * struct, and in this case we would feed it the head of the chain(i.e ext1),
158  * which would then apply all of the above extensions.
159 */
160 
161 /**
162  * struct drm_xe_user_extension - Base class for defining a chain of extensions
163  */
164 struct drm_xe_user_extension {
165         /**
166          * @next_extension:
167          *
168          * Pointer to the next struct drm_xe_user_extension, or zero if the end.
169          */
170         __u64 next_extension;
171 
172         /**
173          * @name: Name of the extension.
174          *
175          * Note that the name here is just some integer.
176          *
177          * Also note that the name space for this is not global for the whole
178          * driver, but rather its scope/meaning is limited to the specific piece
179          * of uAPI which has embedded the struct drm_xe_user_extension.
180          */
181         __u32 name;
182 
183         /**
184          * @pad: MBZ
185          *
186          * All undefined bits must be zero.
187          */
188         __u32 pad;
189 };
190 
191 /**
192  * struct drm_xe_ext_set_property - Generic set property extension
193  *
194  * A generic struct that allows any of the Xe's IOCTL to be extended
195  * with a set_property operation.
196  */
197 struct drm_xe_ext_set_property {
198         /** @base: base user extension */
199         struct drm_xe_user_extension base;
200 
201         /** @property: property to set */
202         __u32 property;
203 
204         /** @pad: MBZ */
205         __u32 pad;
206 
207         /** @value: property value */
208         __u64 value;
209 
210         /** @reserved: Reserved */
211         __u64 reserved[2];
212 };
213 
214 /**
215  * struct drm_xe_engine_class_instance - instance of an engine class
216  *
217  * It is returned as part of the @drm_xe_engine, but it also is used as
218  * the input of engine selection for both @drm_xe_exec_queue_create and
219  * @drm_xe_query_engine_cycles
220  *
221  * The @engine_class can be:
222  *  - %DRM_XE_ENGINE_CLASS_RENDER
223  *  - %DRM_XE_ENGINE_CLASS_COPY
224  *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
225  *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
226  *  - %DRM_XE_ENGINE_CLASS_COMPUTE
227  *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
228  *    hardware engine class). Used for creating ordered queues of VM
229  *    bind operations.
230  */
231 struct drm_xe_engine_class_instance {
232 #define DRM_XE_ENGINE_CLASS_RENDER              0
233 #define DRM_XE_ENGINE_CLASS_COPY                1
234 #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE        2
235 #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE       3
236 #define DRM_XE_ENGINE_CLASS_COMPUTE             4
237 #define DRM_XE_ENGINE_CLASS_VM_BIND             5
238         /** @engine_class: engine class id */
239         __u16 engine_class;
240         /** @engine_instance: engine instance id */
241         __u16 engine_instance;
242         /** @gt_id: Unique ID of this GT within the PCI Device */
243         __u16 gt_id;
244         /** @pad: MBZ */
245         __u16 pad;
246 };
247 
248 /**
249  * struct drm_xe_engine - describe hardware engine
250  */
251 struct drm_xe_engine {
252         /** @instance: The @drm_xe_engine_class_instance */
253         struct drm_xe_engine_class_instance instance;
254 
255         /** @reserved: Reserved */
256         __u64 reserved[3];
257 };
258 
259 /**
260  * struct drm_xe_query_engines - describe engines
261  *
262  * If a query is made with a struct @drm_xe_device_query where .query
263  * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
264  * struct @drm_xe_query_engines in .data.
265  */
266 struct drm_xe_query_engines {
267         /** @num_engines: number of engines returned in @engines */
268         __u32 num_engines;
269         /** @pad: MBZ */
270         __u32 pad;
271         /** @engines: The returned engines for this device */
272         struct drm_xe_engine engines[];
273 };
274 
275 /**
276  * enum drm_xe_memory_class - Supported memory classes.
277  */
278 enum drm_xe_memory_class {
279         /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
280         DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
281         /**
282          * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
283          * represents the memory that is local to the device, which we
284          * call VRAM. Not valid on integrated platforms.
285          */
286         DRM_XE_MEM_REGION_CLASS_VRAM
287 };
288 
289 /**
290  * struct drm_xe_mem_region - Describes some region as known to
291  * the driver.
292  */
293 struct drm_xe_mem_region {
294         /**
295          * @mem_class: The memory class describing this region.
296          *
297          * See enum drm_xe_memory_class for supported values.
298          */
299         __u16 mem_class;
300         /**
301          * @instance: The unique ID for this region, which serves as the
302          * index in the placement bitmask used as argument for
303          * &DRM_IOCTL_XE_GEM_CREATE
304          */
305         __u16 instance;
306         /**
307          * @min_page_size: Min page-size in bytes for this region.
308          *
309          * When the kernel allocates memory for this region, the
310          * underlying pages will be at least @min_page_size in size.
311          * Buffer objects with an allowable placement in this region must be
312          * created with a size aligned to this value.
313          * GPU virtual address mappings of (parts of) buffer objects that
314          * may be placed in this region must also have their GPU virtual
315          * address and range aligned to this value.
316          * Affected IOCTLS will return %-EINVAL if alignment restrictions are
317          * not met.
318          */
319         __u32 min_page_size;
320         /**
321          * @total_size: The usable size in bytes for this region.
322          */
323         __u64 total_size;
324         /**
325          * @used: Estimate of the memory used in bytes for this region.
326          *
327          * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
328          * accounting.  Without this the value here will always equal
329          * zero.
330          */
331         __u64 used;
332         /**
333          * @cpu_visible_size: How much of this region can be CPU
334          * accessed, in bytes.
335          *
336          * This will always be <= @total_size, and the remainder (if
337          * any) will not be CPU accessible. If the CPU accessible part
338          * is smaller than @total_size then this is referred to as a
339          * small BAR system.
340          *
341          * On systems without small BAR (full BAR), the probed_size will
342          * always equal the @total_size, since all of it will be CPU
343          * accessible.
344          *
345          * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
346          * regions (for other types the value here will always equal
347          * zero).
348          */
349         __u64 cpu_visible_size;
350         /**
351          * @cpu_visible_used: Estimate of CPU visible memory used, in
352          * bytes.
353          *
354          * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
355          * accounting. Without this the value here will always equal
356          * zero.  Note this is only currently tracked for
357          * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
358          * here will always be zero).
359          */
360         __u64 cpu_visible_used;
361         /** @reserved: Reserved */
362         __u64 reserved[6];
363 };
364 
365 /**
366  * struct drm_xe_query_mem_regions - describe memory regions
367  *
368  * If a query is made with a struct drm_xe_device_query where .query
369  * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
370  * struct drm_xe_query_mem_regions in .data.
371  */
372 struct drm_xe_query_mem_regions {
373         /** @num_mem_regions: number of memory regions returned in @mem_regions */
374         __u32 num_mem_regions;
375         /** @pad: MBZ */
376         __u32 pad;
377         /** @mem_regions: The returned memory regions for this device */
378         struct drm_xe_mem_region mem_regions[];
379 };
380 
381 /**
382  * struct drm_xe_query_config - describe the device configuration
383  *
384  * If a query is made with a struct drm_xe_device_query where .query
385  * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
386  * struct drm_xe_query_config in .data.
387  *
388  * The index in @info can be:
389  *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
390  *    and the device revision (next 8 bits)
391  *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
392  *    configuration, see list below
393  *
394  *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
395  *      has usable VRAM
396  *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
397  *    required by this device, typically SZ_4K or SZ_64K
398  *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
399  *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
400  *    available exec queue priority
401  */
402 struct drm_xe_query_config {
403         /** @num_params: number of parameters returned in info */
404         __u32 num_params;
405 
406         /** @pad: MBZ */
407         __u32 pad;
408 
409 #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID   0
410 #define DRM_XE_QUERY_CONFIG_FLAGS                       1
411         #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM       (1 << 0)
412 #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT               2
413 #define DRM_XE_QUERY_CONFIG_VA_BITS                     3
414 #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY     4
415         /** @info: array of elements containing the config info */
416         __u64 info[];
417 };
418 
419 /**
420  * struct drm_xe_gt - describe an individual GT.
421  *
422  * To be used with drm_xe_query_gt_list, which will return a list with all the
423  * existing GT individual descriptions.
424  * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
425  * implementing graphics and/or media operations.
426  *
427  * The index in @type can be:
428  *  - %DRM_XE_QUERY_GT_TYPE_MAIN
429  *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
430  */
431 struct drm_xe_gt {
432 #define DRM_XE_QUERY_GT_TYPE_MAIN               0
433 #define DRM_XE_QUERY_GT_TYPE_MEDIA              1
434         /** @type: GT type: Main or Media */
435         __u16 type;
436         /** @tile_id: Tile ID where this GT lives (Information only) */
437         __u16 tile_id;
438         /** @gt_id: Unique ID of this GT within the PCI Device */
439         __u16 gt_id;
440         /** @pad: MBZ */
441         __u16 pad[3];
442         /** @reference_clock: A clock frequency for timestamp */
443         __u32 reference_clock;
444         /**
445          * @near_mem_regions: Bit mask of instances from
446          * drm_xe_query_mem_regions that are nearest to the current engines
447          * of this GT.
448          * Each index in this mask refers directly to the struct
449          * drm_xe_query_mem_regions' instance, no assumptions should
450          * be made about order. The type of each region is described
451          * by struct drm_xe_query_mem_regions' mem_class.
452          */
453         __u64 near_mem_regions;
454         /**
455          * @far_mem_regions: Bit mask of instances from
456          * drm_xe_query_mem_regions that are far from the engines of this GT.
457          * In general, they have extra indirections when compared to the
458          * @near_mem_regions. For a discrete device this could mean system
459          * memory and memory living in a different tile.
460          * Each index in this mask refers directly to the struct
461          * drm_xe_query_mem_regions' instance, no assumptions should
462          * be made about order. The type of each region is described
463          * by struct drm_xe_query_mem_regions' mem_class.
464          */
465         __u64 far_mem_regions;
466         /** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
467         __u16 ip_ver_major;
468         /** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
469         __u16 ip_ver_minor;
470         /** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
471         __u16 ip_ver_rev;
472         /** @pad2: MBZ */
473         __u16 pad2;
474         /** @reserved: Reserved */
475         __u64 reserved[7];
476 };
477 
478 /**
479  * struct drm_xe_query_gt_list - A list with GT description items.
480  *
481  * If a query is made with a struct drm_xe_device_query where .query
482  * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
483  * drm_xe_query_gt_list in .data.
484  */
485 struct drm_xe_query_gt_list {
486         /** @num_gt: number of GT items returned in gt_list */
487         __u32 num_gt;
488         /** @pad: MBZ */
489         __u32 pad;
490         /** @gt_list: The GT list returned for this device */
491         struct drm_xe_gt gt_list[];
492 };
493 
494 /**
495  * struct drm_xe_query_topology_mask - describe the topology mask of a GT
496  *
497  * This is the hardware topology which reflects the internal physical
498  * structure of the GPU.
499  *
500  * If a query is made with a struct drm_xe_device_query where .query
501  * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
502  * struct drm_xe_query_topology_mask in .data.
503  *
504  * The @type can be:
505  *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
506  *    (DSS) available for geometry operations. For example a query response
507  *    containing the following in mask:
508  *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
509  *    means 32 DSS are available for geometry.
510  *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
511  *    (DSS) available for compute operations. For example a query response
512  *    containing the following in mask:
513  *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
514  *    means 32 DSS are available for compute.
515  *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks
516  *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
517  *    available per Dual Sub Slices (DSS). For example a query response
518  *    containing the following in mask:
519  *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
520  *    means each DSS has 16 EU.
521  */
522 struct drm_xe_query_topology_mask {
523         /** @gt_id: GT ID the mask is associated with */
524         __u16 gt_id;
525 
526 #define DRM_XE_TOPO_DSS_GEOMETRY        1
527 #define DRM_XE_TOPO_DSS_COMPUTE         2
528 #define DRM_XE_TOPO_L3_BANK             3
529 #define DRM_XE_TOPO_EU_PER_DSS          4
530         /** @type: type of mask */
531         __u16 type;
532 
533         /** @num_bytes: number of bytes in requested mask */
534         __u32 num_bytes;
535 
536         /** @mask: little-endian mask of @num_bytes */
537         __u8 mask[];
538 };
539 
540 /**
541  * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
542  *
543  * If a query is made with a struct drm_xe_device_query where .query is equal to
544  * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
545  * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
546  * .data points to this allocated structure.
547  *
548  * The query returns the engine cycles, which along with GT's @reference_clock,
549  * can be used to calculate the engine timestamp. In addition the
550  * query returns a set of cpu timestamps that indicate when the command
551  * streamer cycle count was captured.
552  */
553 struct drm_xe_query_engine_cycles {
554         /**
555          * @eci: This is input by the user and is the engine for which command
556          * streamer cycles is queried.
557          */
558         struct drm_xe_engine_class_instance eci;
559 
560         /**
561          * @clockid: This is input by the user and is the reference clock id for
562          * CPU timestamp. For definition, see clock_gettime(2) and
563          * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
564          * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
565          */
566         __s32 clockid;
567 
568         /** @width: Width of the engine cycle counter in bits. */
569         __u32 width;
570 
571         /**
572          * @engine_cycles: Engine cycles as read from its register
573          * at 0x358 offset.
574          */
575         __u64 engine_cycles;
576 
577         /**
578          * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
579          * reading the engine_cycles register using the reference clockid set by the
580          * user.
581          */
582         __u64 cpu_timestamp;
583 
584         /**
585          * @cpu_delta: Time delta in ns captured around reading the lower dword
586          * of the engine_cycles register.
587          */
588         __u64 cpu_delta;
589 };
590 
591 /**
592  * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
593  *
594  * Given a uc_type this will return the branch, major, minor and patch version
595  * of the micro-controller firmware.
596  */
597 struct drm_xe_query_uc_fw_version {
598         /** @uc_type: The micro-controller type to query firmware version */
599 #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
600 #define XE_QUERY_UC_TYPE_HUC 1
601         __u16 uc_type;
602 
603         /** @pad: MBZ */
604         __u16 pad;
605 
606         /** @branch_ver: branch uc fw version */
607         __u32 branch_ver;
608         /** @major_ver: major uc fw version */
609         __u32 major_ver;
610         /** @minor_ver: minor uc fw version */
611         __u32 minor_ver;
612         /** @patch_ver: patch uc fw version */
613         __u32 patch_ver;
614 
615         /** @pad2: MBZ */
616         __u32 pad2;
617 
618         /** @reserved: Reserved */
619         __u64 reserved;
620 };
621 
622 /**
623  * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
624  * structure to query device information
625  *
626  * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
627  * and sets the value in the query member. This determines the type of
628  * the structure provided by the driver in data, among struct drm_xe_query_*.
629  *
630  * The @query can be:
631  *  - %DRM_XE_DEVICE_QUERY_ENGINES
632  *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
633  *  - %DRM_XE_DEVICE_QUERY_CONFIG
634  *  - %DRM_XE_DEVICE_QUERY_GT_LIST
635  *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
636  *    configuration of the device such as information on slices, memory,
637  *    caches, and so on. It is provided as a table of key / value
638  *    attributes.
639  *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
640  *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
641  *
642  * If size is set to 0, the driver fills it with the required size for
643  * the requested type of data to query. If size is equal to the required
644  * size, the queried information is copied into data. If size is set to
645  * a value different from 0 and different from the required size, the
646  * IOCTL call returns -EINVAL.
647  *
648  * For example the following code snippet allows retrieving and printing
649  * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
650  *
651  * .. code-block:: C
652  *
653  *     struct drm_xe_query_engines *engines;
654  *     struct drm_xe_device_query query = {
655  *         .extensions = 0,
656  *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
657  *         .size = 0,
658  *         .data = 0,
659  *     };
660  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
661  *     engines = malloc(query.size);
662  *     query.data = (uintptr_t)engines;
663  *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
664  *     for (int i = 0; i < engines->num_engines; i++) {
665  *         printf("Engine %d: %s\n", i,
666  *             engines->engines[i].instance.engine_class ==
667  *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
668  *             engines->engines[i].instance.engine_class ==
669  *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
670  *             engines->engines[i].instance.engine_class ==
671  *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
672  *             engines->engines[i].instance.engine_class ==
673  *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
674  *             engines->engines[i].instance.engine_class ==
675  *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
676  *             "UNKNOWN");
677  *     }
678  *     free(engines);
679  */
680 struct drm_xe_device_query {
681         /** @extensions: Pointer to the first extension struct, if any */
682         __u64 extensions;
683 
684 #define DRM_XE_DEVICE_QUERY_ENGINES             0
685 #define DRM_XE_DEVICE_QUERY_MEM_REGIONS         1
686 #define DRM_XE_DEVICE_QUERY_CONFIG              2
687 #define DRM_XE_DEVICE_QUERY_GT_LIST             3
688 #define DRM_XE_DEVICE_QUERY_HWCONFIG            4
689 #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY         5
690 #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES       6
691 #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION       7
692 #define DRM_XE_DEVICE_QUERY_OA_UNITS            8
693         /** @query: The type of data to query */
694         __u32 query;
695 
696         /** @size: Size of the queried data */
697         __u32 size;
698 
699         /** @data: Queried data is placed here */
700         __u64 data;
701 
702         /** @reserved: Reserved */
703         __u64 reserved[2];
704 };
705 
706 /**
707  * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
708  * gem creation
709  *
710  * The @flags can be:
711  *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
712  *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
713  *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
714  *    possible placement, ensure that the corresponding VRAM allocation
715  *    will always use the CPU accessible part of VRAM. This is important
716  *    for small-bar systems (on full-bar systems this gets turned into a
717  *    noop).
718  *    Note1: System memory can be used as an extra placement if the kernel
719  *    should spill the allocation to system memory, if space can't be made
720  *    available in the CPU accessible part of VRAM (giving the same
721  *    behaviour as the i915 interface, see
722  *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
723  *    Note2: For clear-color CCS surfaces the kernel needs to read the
724  *    clear-color value stored in the buffer, and on discrete platforms we
725  *    need to use VRAM for display surfaces, therefore the kernel requires
726  *    setting this flag for such objects, otherwise an error is thrown on
727  *    small-bar systems.
728  *
729  * @cpu_caching supports the following values:
730  *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
731  *    caching. On iGPU this can't be used for scanout surfaces. Currently
732  *    not allowed for objects placed in VRAM.
733  *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
734  *    is uncached. Scanout surfaces should likely use this. All objects
735  *    that can be placed in VRAM must use this.
736  */
737 struct drm_xe_gem_create {
738         /** @extensions: Pointer to the first extension struct, if any */
739         __u64 extensions;
740 
741         /**
742          * @size: Size of the object to be created, must match region
743          * (system or vram) minimum alignment (&min_page_size).
744          */
745         __u64 size;
746 
747         /**
748          * @placement: A mask of memory instances of where BO can be placed.
749          * Each index in this mask refers directly to the struct
750          * drm_xe_query_mem_regions' instance, no assumptions should
751          * be made about order. The type of each region is described
752          * by struct drm_xe_query_mem_regions' mem_class.
753          */
754         __u32 placement;
755 
756 #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING            (1 << 0)
757 #define DRM_XE_GEM_CREATE_FLAG_SCANOUT                  (1 << 1)
758 #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM       (1 << 2)
759         /**
760          * @flags: Flags, currently a mask of memory instances of where BO can
761          * be placed
762          */
763         __u32 flags;
764 
765         /**
766          * @vm_id: Attached VM, if any
767          *
768          * If a VM is specified, this BO must:
769          *
770          *  1. Only ever be bound to that VM.
771          *  2. Cannot be exported as a PRIME fd.
772          */
773         __u32 vm_id;
774 
775         /**
776          * @handle: Returned handle for the object.
777          *
778          * Object handles are nonzero.
779          */
780         __u32 handle;
781 
782 #define DRM_XE_GEM_CPU_CACHING_WB                      1
783 #define DRM_XE_GEM_CPU_CACHING_WC                      2
784         /**
785          * @cpu_caching: The CPU caching mode to select for this object. If
786          * mmaping the object the mode selected here will also be used. The
787          * exception is when mapping system memory (including data evicted
788          * to system) on discrete GPUs. The caching mode selected will
789          * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
790          * between GPU- and CPU is guaranteed. The caching mode of
791          * existing CPU-mappings will be updated transparently to
792          * user-space clients.
793          */
794         __u16 cpu_caching;
795         /** @pad: MBZ */
796         __u16 pad[3];
797 
798         /** @reserved: Reserved */
799         __u64 reserved[2];
800 };
801 
802 /**
803  * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
804  */
805 struct drm_xe_gem_mmap_offset {
806         /** @extensions: Pointer to the first extension struct, if any */
807         __u64 extensions;
808 
809         /** @handle: Handle for the object being mapped. */
810         __u32 handle;
811 
812         /** @flags: Must be zero */
813         __u32 flags;
814 
815         /** @offset: The fake offset to use for subsequent mmap call */
816         __u64 offset;
817 
818         /** @reserved: Reserved */
819         __u64 reserved[2];
820 };
821 
822 /**
823  * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
824  *
825  * The @flags can be:
826  *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
827  *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
828  *    exec submissions to its exec_queues that don't have an upper time
829  *    limit on the job execution time. But exec submissions to these
830  *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
831  *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
832  *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
833  *    LR VMs can be created in recoverable page-fault mode using
834  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
835  *    If that flag is omitted, the UMD can not rely on the slightly
836  *    different per-VM overcommit semantics that are enabled by
837  *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
838  *    still enable recoverable pagefaults if supported by the device.
839  *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
840  *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
841  *    demand when accessed, and also allows per-VM overcommit of memory.
842  *    The xe driver internally uses recoverable pagefaults to implement
843  *    this.
844  */
845 struct drm_xe_vm_create {
846         /** @extensions: Pointer to the first extension struct, if any */
847         __u64 extensions;
848 
849 #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE      (1 << 0)
850 #define DRM_XE_VM_CREATE_FLAG_LR_MODE           (1 << 1)
851 #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE        (1 << 2)
852         /** @flags: Flags */
853         __u32 flags;
854 
855         /** @vm_id: Returned VM ID */
856         __u32 vm_id;
857 
858         /** @reserved: Reserved */
859         __u64 reserved[2];
860 };
861 
862 /**
863  * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
864  */
865 struct drm_xe_vm_destroy {
866         /** @vm_id: VM ID */
867         __u32 vm_id;
868 
869         /** @pad: MBZ */
870         __u32 pad;
871 
872         /** @reserved: Reserved */
873         __u64 reserved[2];
874 };
875 
876 /**
877  * struct drm_xe_vm_bind_op - run bind operations
878  *
879  * The @op can be:
880  *  - %DRM_XE_VM_BIND_OP_MAP
881  *  - %DRM_XE_VM_BIND_OP_UNMAP
882  *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
883  *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
884  *  - %DRM_XE_VM_BIND_OP_PREFETCH
885  *
886  * and the @flags can be:
887  *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
888  *    to ensure write protection
889  *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
890  *    MAP operation immediately rather than deferring the MAP to the page
891  *    fault handler. This is implied on a non-faulting VM as there is no
892  *    fault handler to defer to.
893  *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
894  *    tables are setup with a special bit which indicates writes are
895  *    dropped and all reads return zero. In the future, the NULL flags
896  *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
897  *    handle MBZ, and the BO offset MBZ. This flag is intended to
898  *    implement VK sparse bindings.
899  */
900 struct drm_xe_vm_bind_op {
901         /** @extensions: Pointer to the first extension struct, if any */
902         __u64 extensions;
903 
904         /**
905          * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
906          */
907         __u32 obj;
908 
909         /**
910          * @pat_index: The platform defined @pat_index to use for this mapping.
911          * The index basically maps to some predefined memory attributes,
912          * including things like caching, coherency, compression etc.  The exact
913          * meaning of the pat_index is platform specific and defined in the
914          * Bspec and PRMs.  When the KMD sets up the binding the index here is
915          * encoded into the ppGTT PTE.
916          *
917          * For coherency the @pat_index needs to be at least 1way coherent when
918          * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
919          * will extract the coherency mode from the @pat_index and reject if
920          * there is a mismatch (see note below for pre-MTL platforms).
921          *
922          * Note: On pre-MTL platforms there is only a caching mode and no
923          * explicit coherency mode, but on such hardware there is always a
924          * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
925          * CPU caches even with the caching mode set as uncached.  It's only the
926          * display engine that is incoherent (on dgpu it must be in VRAM which
927          * is always mapped as WC on the CPU). However to keep the uapi somewhat
928          * consistent with newer platforms the KMD groups the different cache
929          * levels into the following coherency buckets on all pre-MTL platforms:
930          *
931          *      ppGTT UC -> COH_NONE
932          *      ppGTT WC -> COH_NONE
933          *      ppGTT WT -> COH_NONE
934          *      ppGTT WB -> COH_AT_LEAST_1WAY
935          *
936          * In practice UC/WC/WT should only ever used for scanout surfaces on
937          * such platforms (or perhaps in general for dma-buf if shared with
938          * another device) since it is only the display engine that is actually
939          * incoherent.  Everything else should typically use WB given that we
940          * have a shared-LLC.  On MTL+ this completely changes and the HW
941          * defines the coherency mode as part of the @pat_index, where
942          * incoherent GT access is possible.
943          *
944          * Note: For userptr and externally imported dma-buf the kernel expects
945          * either 1WAY or 2WAY for the @pat_index.
946          *
947          * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
948          * on the @pat_index. For such mappings there is no actual memory being
949          * mapped (the address in the PTE is invalid), so the various PAT memory
950          * attributes likely do not apply.  Simply leaving as zero is one
951          * option (still a valid pat_index).
952          */
953         __u16 pat_index;
954 
955         /** @pad: MBZ */
956         __u16 pad;
957 
958         union {
959                 /**
960                  * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
961                  * ignored for unbind
962                  */
963                 __u64 obj_offset;
964 
965                 /** @userptr: user pointer to bind on */
966                 __u64 userptr;
967         };
968 
969         /**
970          * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
971          */
972         __u64 range;
973 
974         /** @addr: Address to operate on, MBZ for UNMAP_ALL */
975         __u64 addr;
976 
977 #define DRM_XE_VM_BIND_OP_MAP           0x0
978 #define DRM_XE_VM_BIND_OP_UNMAP         0x1
979 #define DRM_XE_VM_BIND_OP_MAP_USERPTR   0x2
980 #define DRM_XE_VM_BIND_OP_UNMAP_ALL     0x3
981 #define DRM_XE_VM_BIND_OP_PREFETCH      0x4
982         /** @op: Bind operation to perform */
983         __u32 op;
984 
985 #define DRM_XE_VM_BIND_FLAG_READONLY    (1 << 0)
986 #define DRM_XE_VM_BIND_FLAG_IMMEDIATE   (1 << 1)
987 #define DRM_XE_VM_BIND_FLAG_NULL        (1 << 2)
988 #define DRM_XE_VM_BIND_FLAG_DUMPABLE    (1 << 3)
989         /** @flags: Bind flags */
990         __u32 flags;
991 
992         /**
993          * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
994          * It is a region instance, not a mask.
995          * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
996          */
997         __u32 prefetch_mem_region_instance;
998 
999         /** @pad2: MBZ */
1000         __u32 pad2;
1001 
1002         /** @reserved: Reserved */
1003         __u64 reserved[3];
1004 };
1005 
1006 /**
1007  * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1008  *
1009  * Below is an example of a minimal use of @drm_xe_vm_bind to
1010  * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1011  * illustrate `userptr`. It can be synchronized by using the example
1012  * provided for @drm_xe_sync.
1013  *
1014  * .. code-block:: C
1015  *
1016  *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1017  *     struct drm_xe_vm_bind bind = {
1018  *         .vm_id = vm,
1019  *         .num_binds = 1,
1020  *         .bind.obj = 0,
1021  *         .bind.obj_offset = to_user_pointer(data),
1022  *         .bind.range = BO_SIZE,
1023  *         .bind.addr = BIND_ADDRESS,
1024  *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1025  *         .bind.flags = 0,
1026  *         .num_syncs = 1,
1027  *         .syncs = &sync,
1028  *         .exec_queue_id = 0,
1029  *     };
1030  *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1031  *
1032  */
1033 struct drm_xe_vm_bind {
1034         /** @extensions: Pointer to the first extension struct, if any */
1035         __u64 extensions;
1036 
1037         /** @vm_id: The ID of the VM to bind to */
1038         __u32 vm_id;
1039 
1040         /**
1041          * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1042          * and exec queue must have same vm_id. If zero, the default VM bind engine
1043          * is used.
1044          */
1045         __u32 exec_queue_id;
1046 
1047         /** @pad: MBZ */
1048         __u32 pad;
1049 
1050         /** @num_binds: number of binds in this IOCTL */
1051         __u32 num_binds;
1052 
1053         union {
1054                 /** @bind: used if num_binds == 1 */
1055                 struct drm_xe_vm_bind_op bind;
1056 
1057                 /**
1058                  * @vector_of_binds: userptr to array of struct
1059                  * drm_xe_vm_bind_op if num_binds > 1
1060                  */
1061                 __u64 vector_of_binds;
1062         };
1063 
1064         /** @pad2: MBZ */
1065         __u32 pad2;
1066 
1067         /** @num_syncs: amount of syncs to wait on */
1068         __u32 num_syncs;
1069 
1070         /** @syncs: pointer to struct drm_xe_sync array */
1071         __u64 syncs;
1072 
1073         /** @reserved: Reserved */
1074         __u64 reserved[2];
1075 };
1076 
1077 /**
1078  * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1079  *
1080  * The example below shows how to use @drm_xe_exec_queue_create to create
1081  * a simple exec_queue (no parallel submission) of class
1082  * &DRM_XE_ENGINE_CLASS_RENDER.
1083  *
1084  * .. code-block:: C
1085  *
1086  *     struct drm_xe_engine_class_instance instance = {
1087  *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1088  *     };
1089  *     struct drm_xe_exec_queue_create exec_queue_create = {
1090  *          .extensions = 0,
1091  *          .vm_id = vm,
1092  *          .num_bb_per_exec = 1,
1093  *          .num_eng_per_bb = 1,
1094  *          .instances = to_user_pointer(&instance),
1095  *     };
1096  *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1097  *
1098  */
1099 struct drm_xe_exec_queue_create {
1100 #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY                0
1101 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY               0
1102 #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE              1
1103 
1104         /** @extensions: Pointer to the first extension struct, if any */
1105         __u64 extensions;
1106 
1107         /** @width: submission width (number BB per exec) for this exec queue */
1108         __u16 width;
1109 
1110         /** @num_placements: number of valid placements for this exec queue */
1111         __u16 num_placements;
1112 
1113         /** @vm_id: VM to use for this exec queue */
1114         __u32 vm_id;
1115 
1116         /** @flags: MBZ */
1117         __u32 flags;
1118 
1119         /** @exec_queue_id: Returned exec queue ID */
1120         __u32 exec_queue_id;
1121 
1122         /**
1123          * @instances: user pointer to a 2-d array of struct
1124          * drm_xe_engine_class_instance
1125          *
1126          * length = width (i) * num_placements (j)
1127          * index = j + i * width
1128          */
1129         __u64 instances;
1130 
1131         /** @reserved: Reserved */
1132         __u64 reserved[2];
1133 };
1134 
1135 /**
1136  * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1137  */
1138 struct drm_xe_exec_queue_destroy {
1139         /** @exec_queue_id: Exec queue ID */
1140         __u32 exec_queue_id;
1141 
1142         /** @pad: MBZ */
1143         __u32 pad;
1144 
1145         /** @reserved: Reserved */
1146         __u64 reserved[2];
1147 };
1148 
1149 /**
1150  * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1151  *
1152  * The @property can be:
1153  *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1154  */
1155 struct drm_xe_exec_queue_get_property {
1156         /** @extensions: Pointer to the first extension struct, if any */
1157         __u64 extensions;
1158 
1159         /** @exec_queue_id: Exec queue ID */
1160         __u32 exec_queue_id;
1161 
1162 #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN      0
1163         /** @property: property to get */
1164         __u32 property;
1165 
1166         /** @value: property value */
1167         __u64 value;
1168 
1169         /** @reserved: Reserved */
1170         __u64 reserved[2];
1171 };
1172 
1173 /**
1174  * struct drm_xe_sync - sync object
1175  *
1176  * The @type can be:
1177  *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1178  *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1179  *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1180  *
1181  * and the @flags can be:
1182  *  - %DRM_XE_SYNC_FLAG_SIGNAL
1183  *
1184  * A minimal use of @drm_xe_sync looks like this:
1185  *
1186  * .. code-block:: C
1187  *
1188  *     struct drm_xe_sync sync = {
1189  *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1190  *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1191  *     };
1192  *     struct drm_syncobj_create syncobj_create = { 0 };
1193  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1194  *     sync.handle = syncobj_create.handle;
1195  *         ...
1196  *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1197  *         ...
1198  *     struct drm_syncobj_wait wait = {
1199  *         .handles = &sync.handle,
1200  *         .timeout_nsec = INT64_MAX,
1201  *         .count_handles = 1,
1202  *         .flags = 0,
1203  *         .first_signaled = 0,
1204  *         .pad = 0,
1205  *     };
1206  *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1207  */
1208 struct drm_xe_sync {
1209         /** @extensions: Pointer to the first extension struct, if any */
1210         __u64 extensions;
1211 
1212 #define DRM_XE_SYNC_TYPE_SYNCOBJ                0x0
1213 #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ       0x1
1214 #define DRM_XE_SYNC_TYPE_USER_FENCE             0x2
1215         /** @type: Type of the this sync object */
1216         __u32 type;
1217 
1218 #define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0)
1219         /** @flags: Sync Flags */
1220         __u32 flags;
1221 
1222         union {
1223                 /** @handle: Handle for the object */
1224                 __u32 handle;
1225 
1226                 /**
1227                  * @addr: Address of user fence. When sync is passed in via exec
1228                  * IOCTL this is a GPU address in the VM. When sync passed in via
1229                  * VM bind IOCTL this is a user pointer. In either case, it is
1230                  * the users responsibility that this address is present and
1231                  * mapped when the user fence is signalled. Must be qword
1232                  * aligned.
1233                  */
1234                 __u64 addr;
1235         };
1236 
1237         /**
1238          * @timeline_value: Input for the timeline sync object. Needs to be
1239          * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1240          */
1241         __u64 timeline_value;
1242 
1243         /** @reserved: Reserved */
1244         __u64 reserved[2];
1245 };
1246 
1247 /**
1248  * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1249  *
1250  * This is an example to use @drm_xe_exec for execution of the object
1251  * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1252  * (see example in @drm_xe_exec_queue_create). It can be synchronized
1253  * by using the example provided for @drm_xe_sync.
1254  *
1255  * .. code-block:: C
1256  *
1257  *     struct drm_xe_exec exec = {
1258  *         .exec_queue_id = exec_queue,
1259  *         .syncs = &sync,
1260  *         .num_syncs = 1,
1261  *         .address = BIND_ADDRESS,
1262  *         .num_batch_buffer = 1,
1263  *     };
1264  *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1265  *
1266  */
1267 struct drm_xe_exec {
1268         /** @extensions: Pointer to the first extension struct, if any */
1269         __u64 extensions;
1270 
1271         /** @exec_queue_id: Exec queue ID for the batch buffer */
1272         __u32 exec_queue_id;
1273 
1274         /** @num_syncs: Amount of struct drm_xe_sync in array. */
1275         __u32 num_syncs;
1276 
1277         /** @syncs: Pointer to struct drm_xe_sync array. */
1278         __u64 syncs;
1279 
1280         /**
1281          * @address: address of batch buffer if num_batch_buffer == 1 or an
1282          * array of batch buffer addresses
1283          */
1284         __u64 address;
1285 
1286         /**
1287          * @num_batch_buffer: number of batch buffer in this exec, must match
1288          * the width of the engine
1289          */
1290         __u16 num_batch_buffer;
1291 
1292         /** @pad: MBZ */
1293         __u16 pad[3];
1294 
1295         /** @reserved: Reserved */
1296         __u64 reserved[2];
1297 };
1298 
1299 /**
1300  * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1301  *
1302  * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1303  * instances list and check if user fence is complete::
1304  *
1305  *      (*addr & MASK) OP (VALUE & MASK)
1306  *
1307  * Returns to user on user fence completion or timeout.
1308  *
1309  * The @op can be:
1310  *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1311  *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1312  *  - %DRM_XE_UFENCE_WAIT_OP_GT
1313  *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1314  *  - %DRM_XE_UFENCE_WAIT_OP_LT
1315  *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1316  *
1317  * and the @flags can be:
1318  *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1319  *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1320  *
1321  * The @mask values can be for example:
1322  *  - 0xffu for u8
1323  *  - 0xffffu for u16
1324  *  - 0xffffffffu for u32
1325  *  - 0xffffffffffffffffu for u64
1326  */
1327 struct drm_xe_wait_user_fence {
1328         /** @extensions: Pointer to the first extension struct, if any */
1329         __u64 extensions;
1330 
1331         /**
1332          * @addr: user pointer address to wait on, must qword aligned
1333          */
1334         __u64 addr;
1335 
1336 #define DRM_XE_UFENCE_WAIT_OP_EQ        0x0
1337 #define DRM_XE_UFENCE_WAIT_OP_NEQ       0x1
1338 #define DRM_XE_UFENCE_WAIT_OP_GT        0x2
1339 #define DRM_XE_UFENCE_WAIT_OP_GTE       0x3
1340 #define DRM_XE_UFENCE_WAIT_OP_LT        0x4
1341 #define DRM_XE_UFENCE_WAIT_OP_LTE       0x5
1342         /** @op: wait operation (type of comparison) */
1343         __u16 op;
1344 
1345 #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0)
1346         /** @flags: wait flags */
1347         __u16 flags;
1348 
1349         /** @pad: MBZ */
1350         __u32 pad;
1351 
1352         /** @value: compare value */
1353         __u64 value;
1354 
1355         /** @mask: comparison mask */
1356         __u64 mask;
1357 
1358         /**
1359          * @timeout: how long to wait before bailing, value in nanoseconds.
1360          * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1361          * it contains timeout expressed in nanoseconds to wait (fence will
1362          * expire at now() + timeout).
1363          * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1364          * will end at timeout (uses system MONOTONIC_CLOCK).
1365          * Passing negative timeout leads to neverending wait.
1366          *
1367          * On relative timeout this value is updated with timeout left
1368          * (for restarting the call in case of signal delivery).
1369          * On absolute timeout this value stays intact (restarted call still
1370          * expire at the same point of time).
1371          */
1372         __s64 timeout;
1373 
1374         /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1375         __u32 exec_queue_id;
1376 
1377         /** @pad2: MBZ */
1378         __u32 pad2;
1379 
1380         /** @reserved: Reserved */
1381         __u64 reserved[2];
1382 };
1383 
1384 /**
1385  * enum drm_xe_observation_type - Observation stream types
1386  */
1387 enum drm_xe_observation_type {
1388         /** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1389         DRM_XE_OBSERVATION_TYPE_OA,
1390 };
1391 
1392 /**
1393  * enum drm_xe_observation_op - Observation stream ops
1394  */
1395 enum drm_xe_observation_op {
1396         /** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1397         DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1398 
1399         /** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1400         DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1401 
1402         /** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1403         DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1404 };
1405 
1406 /**
1407  * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1408  *
1409  * The observation layer enables multiplexing observation streams of
1410  * multiple types. The actual params for a particular stream operation are
1411  * supplied via the @param pointer (use __copy_from_user to get these
1412  * params).
1413  */
1414 struct drm_xe_observation_param {
1415         /** @extensions: Pointer to the first extension struct, if any */
1416         __u64 extensions;
1417         /** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1418         __u64 observation_type;
1419         /** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1420         __u64 observation_op;
1421         /** @param: Pointer to actual stream params */
1422         __u64 param;
1423 };
1424 
1425 /**
1426  * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1427  *
1428  * Information exchanged between userspace and kernel for observation fd
1429  * ioctl's is stream type specific
1430  */
1431 enum drm_xe_observation_ioctls {
1432         /** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1433         DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1434 
1435         /** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1436         DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1437 
1438         /** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1439         DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1440 
1441         /** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1442         DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1443 
1444         /** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1445         DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1446 };
1447 
1448 /**
1449  * enum drm_xe_oa_unit_type - OA unit types
1450  */
1451 enum drm_xe_oa_unit_type {
1452         /**
1453          * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1454          * sub-types of OAG. For OAR/OAC, use OAG.
1455          */
1456         DRM_XE_OA_UNIT_TYPE_OAG,
1457 
1458         /** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1459         DRM_XE_OA_UNIT_TYPE_OAM,
1460 };
1461 
1462 /**
1463  * struct drm_xe_oa_unit - describe OA unit
1464  */
1465 struct drm_xe_oa_unit {
1466         /** @extensions: Pointer to the first extension struct, if any */
1467         __u64 extensions;
1468 
1469         /** @oa_unit_id: OA unit ID */
1470         __u32 oa_unit_id;
1471 
1472         /** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1473         __u32 oa_unit_type;
1474 
1475         /** @capabilities: OA capabilities bit-mask */
1476         __u64 capabilities;
1477 #define DRM_XE_OA_CAPS_BASE             (1 << 0)
1478 
1479         /** @oa_timestamp_freq: OA timestamp freq */
1480         __u64 oa_timestamp_freq;
1481 
1482         /** @reserved: MBZ */
1483         __u64 reserved[4];
1484 
1485         /** @num_engines: number of engines in @eci array */
1486         __u64 num_engines;
1487 
1488         /** @eci: engines attached to this OA unit */
1489         struct drm_xe_engine_class_instance eci[];
1490 };
1491 
1492 /**
1493  * struct drm_xe_query_oa_units - describe OA units
1494  *
1495  * If a query is made with a struct drm_xe_device_query where .query
1496  * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1497  * drm_xe_query_oa_units in .data.
1498  *
1499  * OA unit properties for all OA units can be accessed using a code block
1500  * such as the one below:
1501  *
1502  * .. code-block:: C
1503  *
1504  *      struct drm_xe_query_oa_units *qoa;
1505  *      struct drm_xe_oa_unit *oau;
1506  *      u8 *poau;
1507  *
1508  *      // malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1509  *      poau = (u8 *)&qoa->oa_units[0];
1510  *      for (int i = 0; i < qoa->num_oa_units; i++) {
1511  *              oau = (struct drm_xe_oa_unit *)poau;
1512  *              // Access 'struct drm_xe_oa_unit' fields here
1513  *              poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1514  *      }
1515  */
1516 struct drm_xe_query_oa_units {
1517         /** @extensions: Pointer to the first extension struct, if any */
1518         __u64 extensions;
1519         /** @num_oa_units: number of OA units returned in oau[] */
1520         __u32 num_oa_units;
1521         /** @pad: MBZ */
1522         __u32 pad;
1523         /**
1524          * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1525          * Written below as a u64 array to avoid problems with nested flexible
1526          * arrays with some compilers
1527          */
1528         __u64 oa_units[];
1529 };
1530 
1531 /**
1532  * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1533  * 52198/60942
1534  */
1535 enum drm_xe_oa_format_type {
1536         /** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1537         DRM_XE_OA_FMT_TYPE_OAG,
1538         /** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1539         DRM_XE_OA_FMT_TYPE_OAR,
1540         /** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1541         DRM_XE_OA_FMT_TYPE_OAM,
1542         /** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1543         DRM_XE_OA_FMT_TYPE_OAC,
1544         /** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1545         DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1546         /** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1547         DRM_XE_OA_FMT_TYPE_PEC,
1548 };
1549 
1550 /**
1551  * enum drm_xe_oa_property_id - OA stream property id's
1552  *
1553  * Stream params are specified as a chain of @drm_xe_ext_set_property
1554  * struct's, with @property values from enum @drm_xe_oa_property_id and
1555  * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1556  * @param field in struct @drm_xe_observation_param points to the first
1557  * @drm_xe_ext_set_property struct.
1558  *
1559  * Exactly the same mechanism is also used for stream reconfiguration using the
1560  * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1561  * subset of properties below can be specified for stream reconfiguration.
1562  */
1563 enum drm_xe_oa_property_id {
1564 #define DRM_XE_OA_EXTENSION_SET_PROPERTY        0
1565         /**
1566          * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1567          * the OA stream, see @oa_unit_id in 'struct
1568          * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1569          */
1570         DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1571 
1572         /**
1573          * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1574          * OA unit reports or stream samples in a global buffer attached to an
1575          * OA unit.
1576          */
1577         DRM_XE_OA_PROPERTY_SAMPLE_OA,
1578 
1579         /**
1580          * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1581          * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1582          */
1583         DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1584 
1585         /** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1586         DRM_XE_OA_PROPERTY_OA_FORMAT,
1587         /*
1588          * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1589          * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1590          * b. Counter select c. Counter size and d. BC report. Also refer to the
1591          * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1592          */
1593 #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE          (0xff << 0)
1594 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL       (0xff << 8)
1595 #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE      (0xff << 16)
1596 #define DRM_XE_OA_FORMAT_MASK_BC_REPORT         (0xff << 24)
1597 
1598         /**
1599          * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1600          * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1601          */
1602         DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1603 
1604         /**
1605          * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1606          * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1607          */
1608         DRM_XE_OA_PROPERTY_OA_DISABLED,
1609 
1610         /**
1611          * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1612          * @exec_queue_id. OA queries can be executed on this exec queue.
1613          */
1614         DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1615 
1616         /**
1617          * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1618          * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1619          */
1620         DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1621 
1622         /**
1623          * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1624          * to be disabled for the stream exec queue.
1625          */
1626         DRM_XE_OA_PROPERTY_NO_PREEMPT,
1627 };
1628 
1629 /**
1630  * struct drm_xe_oa_config - OA metric configuration
1631  *
1632  * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1633  * particular config can be specified when opening an OA stream using
1634  * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1635  */
1636 struct drm_xe_oa_config {
1637         /** @extensions: Pointer to the first extension struct, if any */
1638         __u64 extensions;
1639 
1640         /** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1641         char uuid[36];
1642 
1643         /** @n_regs: Number of regs in @regs_ptr */
1644         __u32 n_regs;
1645 
1646         /**
1647          * @regs_ptr: Pointer to (register address, value) pairs for OA config
1648          * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1649          */
1650         __u64 regs_ptr;
1651 };
1652 
1653 /**
1654  * struct drm_xe_oa_stream_status - OA stream status returned from
1655  * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1656  * call the ioctl to query stream status in response to EIO errno from
1657  * observation fd read().
1658  */
1659 struct drm_xe_oa_stream_status {
1660         /** @extensions: Pointer to the first extension struct, if any */
1661         __u64 extensions;
1662 
1663         /** @oa_status: OA stream status (see Bspec 46717/61226) */
1664         __u64 oa_status;
1665 #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL         (1 << 3)
1666 #define DRM_XE_OASTATUS_COUNTER_OVERFLOW        (1 << 2)
1667 #define DRM_XE_OASTATUS_BUFFER_OVERFLOW         (1 << 1)
1668 #define DRM_XE_OASTATUS_REPORT_LOST             (1 << 0)
1669 
1670         /** @reserved: reserved for future use */
1671         __u64 reserved[3];
1672 };
1673 
1674 /**
1675  * struct drm_xe_oa_stream_info - OA stream info returned from
1676  * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1677  */
1678 struct drm_xe_oa_stream_info {
1679         /** @extensions: Pointer to the first extension struct, if any */
1680         __u64 extensions;
1681 
1682         /** @oa_buf_size: OA buffer size */
1683         __u64 oa_buf_size;
1684 
1685         /** @reserved: reserved for future use */
1686         __u64 reserved[3];
1687 };
1688 
1689 #if defined(__cplusplus)
1690 }
1691 #endif
1692 
1693 #endif /* _UAPI_XE_DRM_H_ */
1694 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php