~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/uapi/linux/btrfs_tree.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
  2 #ifndef _BTRFS_CTREE_H_
  3 #define _BTRFS_CTREE_H_
  4 
  5 #include <linux/btrfs.h>
  6 #include <linux/types.h>
  7 #ifdef __KERNEL__
  8 #include <linux/stddef.h>
  9 #else
 10 #include <stddef.h>
 11 #endif
 12 
 13 /* ASCII for _BHRfS_M, no terminating nul */
 14 #define BTRFS_MAGIC 0x4D5F53665248425FULL
 15 
 16 #define BTRFS_MAX_LEVEL 8
 17 
 18 /*
 19  * We can actually store much bigger names, but lets not confuse the rest of
 20  * linux.
 21  */
 22 #define BTRFS_NAME_LEN 255
 23 
 24 /*
 25  * Theoretical limit is larger, but we keep this down to a sane value. That
 26  * should limit greatly the possibility of collisions on inode ref items.
 27  */
 28 #define BTRFS_LINK_MAX 65535U
 29 
 30 /*
 31  * This header contains the structure definitions and constants used
 32  * by file system objects that can be retrieved using
 33  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
 34  * is needed to describe a leaf node's key or item contents.
 35  */
 36 
 37 /* holds pointers to all of the tree roots */
 38 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
 39 
 40 /* stores information about which extents are in use, and reference counts */
 41 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
 42 
 43 /*
 44  * chunk tree stores translations from logical -> physical block numbering
 45  * the super block points to the chunk tree
 46  */
 47 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
 48 
 49 /*
 50  * stores information about which areas of a given device are in use.
 51  * one per device.  The tree of tree roots points to the device tree
 52  */
 53 #define BTRFS_DEV_TREE_OBJECTID 4ULL
 54 
 55 /* one per subvolume, storing files and directories */
 56 #define BTRFS_FS_TREE_OBJECTID 5ULL
 57 
 58 /* directory objectid inside the root tree */
 59 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
 60 
 61 /* holds checksums of all the data extents */
 62 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
 63 
 64 /* holds quota configuration and tracking */
 65 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
 66 
 67 /* for storing items that use the BTRFS_UUID_KEY* types */
 68 #define BTRFS_UUID_TREE_OBJECTID 9ULL
 69 
 70 /* tracks free space in block groups. */
 71 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
 72 
 73 /* Holds the block group items for extent tree v2. */
 74 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
 75 
 76 /* Tracks RAID stripes in block groups. */
 77 #define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL
 78 
 79 /* device stats in the device tree */
 80 #define BTRFS_DEV_STATS_OBJECTID 0ULL
 81 
 82 /* for storing balance parameters in the root tree */
 83 #define BTRFS_BALANCE_OBJECTID -4ULL
 84 
 85 /* orphan objectid for tracking unlinked/truncated files */
 86 #define BTRFS_ORPHAN_OBJECTID -5ULL
 87 
 88 /* does write ahead logging to speed up fsyncs */
 89 #define BTRFS_TREE_LOG_OBJECTID -6ULL
 90 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
 91 
 92 /* for space balancing */
 93 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
 94 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
 95 
 96 /*
 97  * extent checksums all have this objectid
 98  * this allows them to share the logging tree
 99  * for fsyncs
100  */
101 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
102 
103 /* For storing free space cache */
104 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
105 
106 /*
107  * The inode number assigned to the special inode for storing
108  * free ino cache
109  */
110 #define BTRFS_FREE_INO_OBJECTID -12ULL
111 
112 /* dummy objectid represents multiple objectids */
113 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
114 
115 /*
116  * All files have objectids in this range.
117  */
118 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
119 #define BTRFS_LAST_FREE_OBJECTID -256ULL
120 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
121 
122 
123 /*
124  * the device items go into the chunk tree.  The key is in the form
125  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
126  */
127 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
128 
129 #define BTRFS_BTREE_INODE_OBJECTID 1
130 
131 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
132 
133 #define BTRFS_DEV_REPLACE_DEVID 0ULL
134 
135 /*
136  * inode items have the data typically returned from stat and store other
137  * info about object characteristics.  There is one for every file and dir in
138  * the FS
139  */
140 #define BTRFS_INODE_ITEM_KEY            1
141 #define BTRFS_INODE_REF_KEY             12
142 #define BTRFS_INODE_EXTREF_KEY          13
143 #define BTRFS_XATTR_ITEM_KEY            24
144 
145 /*
146  * fs verity items are stored under two different key types on disk.
147  * The descriptor items:
148  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
149  *
150  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
151  * of the descriptor item and some extra data for encryption.
152  * Starting at offset 1, these hold the generic fs verity descriptor.  The
153  * latter are opaque to btrfs, we just read and write them as a blob for the
154  * higher level verity code.  The most common descriptor size is 256 bytes.
155  *
156  * The merkle tree items:
157  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
158  *
159  * These also start at offset 0, and correspond to the merkle tree bytes.  When
160  * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
161  * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
162  * storing whatever fsverity sends down.
163  */
164 #define BTRFS_VERITY_DESC_ITEM_KEY      36
165 #define BTRFS_VERITY_MERKLE_ITEM_KEY    37
166 
167 #define BTRFS_ORPHAN_ITEM_KEY           48
168 /* reserve 2-15 close to the inode for later flexibility */
169 
170 /*
171  * dir items are the name -> inode pointers in a directory.  There is one
172  * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
173  * but it's still defined here for documentation purposes and to help avoid
174  * having its numerical value reused in the future.
175  */
176 #define BTRFS_DIR_LOG_ITEM_KEY  60
177 #define BTRFS_DIR_LOG_INDEX_KEY 72
178 #define BTRFS_DIR_ITEM_KEY      84
179 #define BTRFS_DIR_INDEX_KEY     96
180 /*
181  * extent data is for file data
182  */
183 #define BTRFS_EXTENT_DATA_KEY   108
184 
185 /*
186  * extent csums are stored in a separate tree and hold csums for
187  * an entire extent on disk.
188  */
189 #define BTRFS_EXTENT_CSUM_KEY   128
190 
191 /*
192  * root items point to tree roots.  They are typically in the root
193  * tree used by the super block to find all the other trees
194  */
195 #define BTRFS_ROOT_ITEM_KEY     132
196 
197 /*
198  * root backrefs tie subvols and snapshots to the directory entries that
199  * reference them
200  */
201 #define BTRFS_ROOT_BACKREF_KEY  144
202 
203 /*
204  * root refs make a fast index for listing all of the snapshots and
205  * subvolumes referenced by a given root.  They point directly to the
206  * directory item in the root that references the subvol
207  */
208 #define BTRFS_ROOT_REF_KEY      156
209 
210 /*
211  * extent items are in the extent map tree.  These record which blocks
212  * are used, and how many references there are to each block
213  */
214 #define BTRFS_EXTENT_ITEM_KEY   168
215 
216 /*
217  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
218  * the length, so we save the level in key->offset instead of the length.
219  */
220 #define BTRFS_METADATA_ITEM_KEY 169
221 
222 /*
223  * Special inline ref key which stores the id of the subvolume which originally
224  * created the extent. This subvolume owns the extent permanently from the
225  * perspective of simple quotas. Needed to know which subvolume to free quota
226  * usage from when the extent is deleted.
227  *
228  * Stored as an inline ref rather to avoid wasting space on a separate item on
229  * top of the existing extent item. However, unlike the other inline refs,
230  * there is one one owner ref per extent rather than one per extent.
231  *
232  * Because of this, it goes at the front of the list of inline refs, and thus
233  * must have a lower type value than any other inline ref type (to satisfy the
234  * disk format rule that inline refs have non-decreasing type).
235  */
236 #define BTRFS_EXTENT_OWNER_REF_KEY      172
237 
238 #define BTRFS_TREE_BLOCK_REF_KEY        176
239 
240 #define BTRFS_EXTENT_DATA_REF_KEY       178
241 
242 /*
243  * Obsolete key. Defintion removed in 6.6, value may be reused in the future.
244  *
245  * #define BTRFS_EXTENT_REF_V0_KEY      180
246  */
247 
248 #define BTRFS_SHARED_BLOCK_REF_KEY      182
249 
250 #define BTRFS_SHARED_DATA_REF_KEY       184
251 
252 /*
253  * block groups give us hints into the extent allocation trees.  Which
254  * blocks are free etc etc
255  */
256 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
257 
258 /*
259  * Every block group is represented in the free space tree by a free space info
260  * item, which stores some accounting information. It is keyed on
261  * (block_group_start, FREE_SPACE_INFO, block_group_length).
262  */
263 #define BTRFS_FREE_SPACE_INFO_KEY 198
264 
265 /*
266  * A free space extent tracks an extent of space that is free in a block group.
267  * It is keyed on (start, FREE_SPACE_EXTENT, length).
268  */
269 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
270 
271 /*
272  * When a block group becomes very fragmented, we convert it to use bitmaps
273  * instead of extents. A free space bitmap is keyed on
274  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
275  * (length / sectorsize) bits.
276  */
277 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
278 
279 #define BTRFS_DEV_EXTENT_KEY    204
280 #define BTRFS_DEV_ITEM_KEY      216
281 #define BTRFS_CHUNK_ITEM_KEY    228
282 
283 #define BTRFS_RAID_STRIPE_KEY   230
284 
285 /*
286  * Records the overall state of the qgroups.
287  * There's only one instance of this key present,
288  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
289  */
290 #define BTRFS_QGROUP_STATUS_KEY         240
291 /*
292  * Records the currently used space of the qgroup.
293  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
294  */
295 #define BTRFS_QGROUP_INFO_KEY           242
296 /*
297  * Contains the user configured limits for the qgroup.
298  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
299  */
300 #define BTRFS_QGROUP_LIMIT_KEY          244
301 /*
302  * Records the child-parent relationship of qgroups. For
303  * each relation, 2 keys are present:
304  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
305  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
306  */
307 #define BTRFS_QGROUP_RELATION_KEY       246
308 
309 /*
310  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
311  */
312 #define BTRFS_BALANCE_ITEM_KEY  248
313 
314 /*
315  * The key type for tree items that are stored persistently, but do not need to
316  * exist for extended period of time. The items can exist in any tree.
317  *
318  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
319  *
320  * Existing items:
321  *
322  * - balance status item
323  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
324  */
325 #define BTRFS_TEMPORARY_ITEM_KEY        248
326 
327 /*
328  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
329  */
330 #define BTRFS_DEV_STATS_KEY             249
331 
332 /*
333  * The key type for tree items that are stored persistently and usually exist
334  * for a long period, eg. filesystem lifetime. The item kinds can be status
335  * information, stats or preference values. The item can exist in any tree.
336  *
337  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
338  *
339  * Existing items:
340  *
341  * - device statistics, store IO stats in the device tree, one key for all
342  *   stats
343  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
344  */
345 #define BTRFS_PERSISTENT_ITEM_KEY       249
346 
347 /*
348  * Persistently stores the device replace state in the device tree.
349  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
350  */
351 #define BTRFS_DEV_REPLACE_KEY   250
352 
353 /*
354  * Stores items that allow to quickly map UUIDs to something else.
355  * These items are part of the filesystem UUID tree.
356  * The key is built like this:
357  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
358  */
359 #if BTRFS_UUID_SIZE != 16
360 #error "UUID items require BTRFS_UUID_SIZE == 16!"
361 #endif
362 #define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
363 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
364                                                  * received subvols */
365 
366 /*
367  * string items are for debugging.  They just store a short string of
368  * data in the FS
369  */
370 #define BTRFS_STRING_ITEM_KEY   253
371 
372 /* Maximum metadata block size (nodesize) */
373 #define BTRFS_MAX_METADATA_BLOCKSIZE                    65536
374 
375 /* 32 bytes in various csum fields */
376 #define BTRFS_CSUM_SIZE 32
377 
378 /* csum types */
379 enum btrfs_csum_type {
380         BTRFS_CSUM_TYPE_CRC32   = 0,
381         BTRFS_CSUM_TYPE_XXHASH  = 1,
382         BTRFS_CSUM_TYPE_SHA256  = 2,
383         BTRFS_CSUM_TYPE_BLAKE2  = 3,
384 };
385 
386 /*
387  * flags definitions for directory entry item type
388  *
389  * Used by:
390  * struct btrfs_dir_item.type
391  *
392  * Values 0..7 must match common file type values in fs_types.h.
393  */
394 #define BTRFS_FT_UNKNOWN        0
395 #define BTRFS_FT_REG_FILE       1
396 #define BTRFS_FT_DIR            2
397 #define BTRFS_FT_CHRDEV         3
398 #define BTRFS_FT_BLKDEV         4
399 #define BTRFS_FT_FIFO           5
400 #define BTRFS_FT_SOCK           6
401 #define BTRFS_FT_SYMLINK        7
402 #define BTRFS_FT_XATTR          8
403 #define BTRFS_FT_MAX            9
404 /* Directory contains encrypted data */
405 #define BTRFS_FT_ENCRYPTED      0x80
406 
407 static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags)
408 {
409         return flags & ~BTRFS_FT_ENCRYPTED;
410 }
411 
412 /*
413  * Inode flags
414  */
415 #define BTRFS_INODE_NODATASUM           (1U << 0)
416 #define BTRFS_INODE_NODATACOW           (1U << 1)
417 #define BTRFS_INODE_READONLY            (1U << 2)
418 #define BTRFS_INODE_NOCOMPRESS          (1U << 3)
419 #define BTRFS_INODE_PREALLOC            (1U << 4)
420 #define BTRFS_INODE_SYNC                (1U << 5)
421 #define BTRFS_INODE_IMMUTABLE           (1U << 6)
422 #define BTRFS_INODE_APPEND              (1U << 7)
423 #define BTRFS_INODE_NODUMP              (1U << 8)
424 #define BTRFS_INODE_NOATIME             (1U << 9)
425 #define BTRFS_INODE_DIRSYNC             (1U << 10)
426 #define BTRFS_INODE_COMPRESS            (1U << 11)
427 
428 #define BTRFS_INODE_ROOT_ITEM_INIT      (1U << 31)
429 
430 #define BTRFS_INODE_FLAG_MASK                                           \
431         (BTRFS_INODE_NODATASUM |                                        \
432          BTRFS_INODE_NODATACOW |                                        \
433          BTRFS_INODE_READONLY |                                         \
434          BTRFS_INODE_NOCOMPRESS |                                       \
435          BTRFS_INODE_PREALLOC |                                         \
436          BTRFS_INODE_SYNC |                                             \
437          BTRFS_INODE_IMMUTABLE |                                        \
438          BTRFS_INODE_APPEND |                                           \
439          BTRFS_INODE_NODUMP |                                           \
440          BTRFS_INODE_NOATIME |                                          \
441          BTRFS_INODE_DIRSYNC |                                          \
442          BTRFS_INODE_COMPRESS |                                         \
443          BTRFS_INODE_ROOT_ITEM_INIT)
444 
445 #define BTRFS_INODE_RO_VERITY           (1U << 0)
446 
447 #define BTRFS_INODE_RO_FLAG_MASK        (BTRFS_INODE_RO_VERITY)
448 
449 /*
450  * The key defines the order in the tree, and so it also defines (optimal)
451  * block layout.
452  *
453  * objectid corresponds to the inode number.
454  *
455  * type tells us things about the object, and is a kind of stream selector.
456  * so for a given inode, keys with type of 1 might refer to the inode data,
457  * type of 2 may point to file data in the btree and type == 3 may point to
458  * extents.
459  *
460  * offset is the starting byte offset for this key in the stream.
461  *
462  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
463  * in cpu native order.  Otherwise they are identical and their sizes
464  * should be the same (ie both packed)
465  */
466 struct btrfs_disk_key {
467         __le64 objectid;
468         __u8 type;
469         __le64 offset;
470 } __attribute__ ((__packed__));
471 
472 struct btrfs_key {
473         __u64 objectid;
474         __u8 type;
475         __u64 offset;
476 } __attribute__ ((__packed__));
477 
478 /*
479  * Every tree block (leaf or node) starts with this header.
480  */
481 struct btrfs_header {
482         /* These first four must match the super block */
483         __u8 csum[BTRFS_CSUM_SIZE];
484         /* FS specific uuid */
485         __u8 fsid[BTRFS_FSID_SIZE];
486         /* Which block this node is supposed to live in */
487         __le64 bytenr;
488         __le64 flags;
489 
490         /* Allowed to be different from the super from here on down */
491         __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
492         __le64 generation;
493         __le64 owner;
494         __le32 nritems;
495         __u8 level;
496 } __attribute__ ((__packed__));
497 
498 /*
499  * This is a very generous portion of the super block, giving us room to
500  * translate 14 chunks with 3 stripes each.
501  */
502 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
503 
504 /*
505  * Just in case we somehow lose the roots and are not able to mount, we store
506  * an array of the roots from previous transactions in the super.
507  */
508 #define BTRFS_NUM_BACKUP_ROOTS 4
509 struct btrfs_root_backup {
510         __le64 tree_root;
511         __le64 tree_root_gen;
512 
513         __le64 chunk_root;
514         __le64 chunk_root_gen;
515 
516         __le64 extent_root;
517         __le64 extent_root_gen;
518 
519         __le64 fs_root;
520         __le64 fs_root_gen;
521 
522         __le64 dev_root;
523         __le64 dev_root_gen;
524 
525         __le64 csum_root;
526         __le64 csum_root_gen;
527 
528         __le64 total_bytes;
529         __le64 bytes_used;
530         __le64 num_devices;
531         /* future */
532         __le64 unused_64[4];
533 
534         __u8 tree_root_level;
535         __u8 chunk_root_level;
536         __u8 extent_root_level;
537         __u8 fs_root_level;
538         __u8 dev_root_level;
539         __u8 csum_root_level;
540         /* future and to align */
541         __u8 unused_8[10];
542 } __attribute__ ((__packed__));
543 
544 /*
545  * A leaf is full of items. offset and size tell us where to find the item in
546  * the leaf (relative to the start of the data area)
547  */
548 struct btrfs_item {
549         struct btrfs_disk_key key;
550         __le32 offset;
551         __le32 size;
552 } __attribute__ ((__packed__));
553 
554 /*
555  * Leaves have an item area and a data area:
556  * [item0, item1....itemN] [free space] [dataN...data1, data0]
557  *
558  * The data is separate from the items to get the keys closer together during
559  * searches.
560  */
561 struct btrfs_leaf {
562         struct btrfs_header header;
563         struct btrfs_item items[];
564 } __attribute__ ((__packed__));
565 
566 /*
567  * All non-leaf blocks are nodes, they hold only keys and pointers to other
568  * blocks.
569  */
570 struct btrfs_key_ptr {
571         struct btrfs_disk_key key;
572         __le64 blockptr;
573         __le64 generation;
574 } __attribute__ ((__packed__));
575 
576 struct btrfs_node {
577         struct btrfs_header header;
578         struct btrfs_key_ptr ptrs[];
579 } __attribute__ ((__packed__));
580 
581 struct btrfs_dev_item {
582         /* the internal btrfs device id */
583         __le64 devid;
584 
585         /* size of the device */
586         __le64 total_bytes;
587 
588         /* bytes used */
589         __le64 bytes_used;
590 
591         /* optimal io alignment for this device */
592         __le32 io_align;
593 
594         /* optimal io width for this device */
595         __le32 io_width;
596 
597         /* minimal io size for this device */
598         __le32 sector_size;
599 
600         /* type and info about this device */
601         __le64 type;
602 
603         /* expected generation for this device */
604         __le64 generation;
605 
606         /*
607          * starting byte of this partition on the device,
608          * to allow for stripe alignment in the future
609          */
610         __le64 start_offset;
611 
612         /* grouping information for allocation decisions */
613         __le32 dev_group;
614 
615         /* seek speed 0-100 where 100 is fastest */
616         __u8 seek_speed;
617 
618         /* bandwidth 0-100 where 100 is fastest */
619         __u8 bandwidth;
620 
621         /* btrfs generated uuid for this device */
622         __u8 uuid[BTRFS_UUID_SIZE];
623 
624         /* uuid of FS who owns this device */
625         __u8 fsid[BTRFS_UUID_SIZE];
626 } __attribute__ ((__packed__));
627 
628 struct btrfs_stripe {
629         __le64 devid;
630         __le64 offset;
631         __u8 dev_uuid[BTRFS_UUID_SIZE];
632 } __attribute__ ((__packed__));
633 
634 struct btrfs_chunk {
635         /* size of this chunk in bytes */
636         __le64 length;
637 
638         /* objectid of the root referencing this chunk */
639         __le64 owner;
640 
641         __le64 stripe_len;
642         __le64 type;
643 
644         /* optimal io alignment for this chunk */
645         __le32 io_align;
646 
647         /* optimal io width for this chunk */
648         __le32 io_width;
649 
650         /* minimal io size for this chunk */
651         __le32 sector_size;
652 
653         /* 2^16 stripes is quite a lot, a second limit is the size of a single
654          * item in the btree
655          */
656         __le16 num_stripes;
657 
658         /* sub stripes only matter for raid10 */
659         __le16 sub_stripes;
660         struct btrfs_stripe stripe;
661         /* additional stripes go here */
662 } __attribute__ ((__packed__));
663 
664 /*
665  * The super block basically lists the main trees of the FS.
666  */
667 struct btrfs_super_block {
668         /* The first 4 fields must match struct btrfs_header */
669         __u8 csum[BTRFS_CSUM_SIZE];
670         /* FS specific UUID, visible to user */
671         __u8 fsid[BTRFS_FSID_SIZE];
672         /* This block number */
673         __le64 bytenr;
674         __le64 flags;
675 
676         /* Allowed to be different from the btrfs_header from here own down */
677         __le64 magic;
678         __le64 generation;
679         __le64 root;
680         __le64 chunk_root;
681         __le64 log_root;
682 
683         /*
684          * This member has never been utilized since the very beginning, thus
685          * it's always 0 regardless of kernel version.  We always use
686          * generation + 1 to read log tree root.  So here we mark it deprecated.
687          */
688         __le64 __unused_log_root_transid;
689         __le64 total_bytes;
690         __le64 bytes_used;
691         __le64 root_dir_objectid;
692         __le64 num_devices;
693         __le32 sectorsize;
694         __le32 nodesize;
695         __le32 __unused_leafsize;
696         __le32 stripesize;
697         __le32 sys_chunk_array_size;
698         __le64 chunk_root_generation;
699         __le64 compat_flags;
700         __le64 compat_ro_flags;
701         __le64 incompat_flags;
702         __le16 csum_type;
703         __u8 root_level;
704         __u8 chunk_root_level;
705         __u8 log_root_level;
706         struct btrfs_dev_item dev_item;
707 
708         char label[BTRFS_LABEL_SIZE];
709 
710         __le64 cache_generation;
711         __le64 uuid_tree_generation;
712 
713         /* The UUID written into btree blocks */
714         __u8 metadata_uuid[BTRFS_FSID_SIZE];
715 
716         __u64 nr_global_roots;
717 
718         /* Future expansion */
719         __le64 reserved[27];
720         __u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
721         struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
722 
723         /* Padded to 4096 bytes */
724         __u8 padding[565];
725 } __attribute__ ((__packed__));
726 
727 #define BTRFS_FREE_SPACE_EXTENT 1
728 #define BTRFS_FREE_SPACE_BITMAP 2
729 
730 struct btrfs_free_space_entry {
731         __le64 offset;
732         __le64 bytes;
733         __u8 type;
734 } __attribute__ ((__packed__));
735 
736 struct btrfs_free_space_header {
737         struct btrfs_disk_key location;
738         __le64 generation;
739         __le64 num_entries;
740         __le64 num_bitmaps;
741 } __attribute__ ((__packed__));
742 
743 struct btrfs_raid_stride {
744         /* The id of device this raid extent lives on. */
745         __le64 devid;
746         /* The physical location on disk. */
747         __le64 physical;
748 } __attribute__ ((__packed__));
749 
750 struct btrfs_stripe_extent {
751         /* An array of raid strides this stripe is composed of. */
752         __DECLARE_FLEX_ARRAY(struct btrfs_raid_stride, strides);
753 } __attribute__ ((__packed__));
754 
755 #define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
756 #define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
757 
758 /* Super block flags */
759 /* Errors detected */
760 #define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
761 
762 #define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
763 #define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
764 #define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
765 #define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
766 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
767 
768 /*
769  * Those are temporaray flags utilized by btrfs-progs to do offline conversion.
770  * They are rejected by kernel.
771  * But still keep them all here to avoid conflicts.
772  */
773 #define BTRFS_SUPER_FLAG_CHANGING_BG_TREE       (1ULL << 38)
774 #define BTRFS_SUPER_FLAG_CHANGING_DATA_CSUM     (1ULL << 39)
775 #define BTRFS_SUPER_FLAG_CHANGING_META_CSUM     (1ULL << 40)
776 
777 /*
778  * items in the extent btree are used to record the objectid of the
779  * owner of the block and the number of references
780  */
781 
782 struct btrfs_extent_item {
783         __le64 refs;
784         __le64 generation;
785         __le64 flags;
786 } __attribute__ ((__packed__));
787 
788 struct btrfs_extent_item_v0 {
789         __le32 refs;
790 } __attribute__ ((__packed__));
791 
792 
793 #define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
794 #define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
795 
796 /* following flags only apply to tree blocks */
797 
798 /* use full backrefs for extent pointers in the block */
799 #define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
800 
801 #define BTRFS_BACKREF_REV_MAX           256
802 #define BTRFS_BACKREF_REV_SHIFT         56
803 #define BTRFS_BACKREF_REV_MASK          (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
804                                          BTRFS_BACKREF_REV_SHIFT)
805 
806 #define BTRFS_OLD_BACKREF_REV           0
807 #define BTRFS_MIXED_BACKREF_REV         1
808 
809 /*
810  * this flag is only used internally by scrub and may be changed at any time
811  * it is only declared here to avoid collisions
812  */
813 #define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
814 
815 struct btrfs_tree_block_info {
816         struct btrfs_disk_key key;
817         __u8 level;
818 } __attribute__ ((__packed__));
819 
820 struct btrfs_extent_data_ref {
821         __le64 root;
822         __le64 objectid;
823         __le64 offset;
824         __le32 count;
825 } __attribute__ ((__packed__));
826 
827 struct btrfs_shared_data_ref {
828         __le32 count;
829 } __attribute__ ((__packed__));
830 
831 struct btrfs_extent_owner_ref {
832         __le64 root_id;
833 } __attribute__ ((__packed__));
834 
835 struct btrfs_extent_inline_ref {
836         __u8 type;
837         __le64 offset;
838 } __attribute__ ((__packed__));
839 
840 /* dev extents record free space on individual devices.  The owner
841  * field points back to the chunk allocation mapping tree that allocated
842  * the extent.  The chunk tree uuid field is a way to double check the owner
843  */
844 struct btrfs_dev_extent {
845         __le64 chunk_tree;
846         __le64 chunk_objectid;
847         __le64 chunk_offset;
848         __le64 length;
849         __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
850 } __attribute__ ((__packed__));
851 
852 struct btrfs_inode_ref {
853         __le64 index;
854         __le16 name_len;
855         /* name goes here */
856 } __attribute__ ((__packed__));
857 
858 struct btrfs_inode_extref {
859         __le64 parent_objectid;
860         __le64 index;
861         __le16 name_len;
862         __u8   name[];
863         /* name goes here */
864 } __attribute__ ((__packed__));
865 
866 struct btrfs_timespec {
867         __le64 sec;
868         __le32 nsec;
869 } __attribute__ ((__packed__));
870 
871 struct btrfs_inode_item {
872         /* nfs style generation number */
873         __le64 generation;
874         /* transid that last touched this inode */
875         __le64 transid;
876         __le64 size;
877         __le64 nbytes;
878         __le64 block_group;
879         __le32 nlink;
880         __le32 uid;
881         __le32 gid;
882         __le32 mode;
883         __le64 rdev;
884         __le64 flags;
885 
886         /* modification sequence number for NFS */
887         __le64 sequence;
888 
889         /*
890          * a little future expansion, for more than this we can
891          * just grow the inode item and version it
892          */
893         __le64 reserved[4];
894         struct btrfs_timespec atime;
895         struct btrfs_timespec ctime;
896         struct btrfs_timespec mtime;
897         struct btrfs_timespec otime;
898 } __attribute__ ((__packed__));
899 
900 struct btrfs_dir_log_item {
901         __le64 end;
902 } __attribute__ ((__packed__));
903 
904 struct btrfs_dir_item {
905         struct btrfs_disk_key location;
906         __le64 transid;
907         __le16 data_len;
908         __le16 name_len;
909         __u8 type;
910 } __attribute__ ((__packed__));
911 
912 #define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
913 
914 /*
915  * Internal in-memory flag that a subvolume has been marked for deletion but
916  * still visible as a directory
917  */
918 #define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
919 
920 struct btrfs_root_item {
921         struct btrfs_inode_item inode;
922         __le64 generation;
923         __le64 root_dirid;
924         __le64 bytenr;
925         __le64 byte_limit;
926         __le64 bytes_used;
927         __le64 last_snapshot;
928         __le64 flags;
929         __le32 refs;
930         struct btrfs_disk_key drop_progress;
931         __u8 drop_level;
932         __u8 level;
933 
934         /*
935          * The following fields appear after subvol_uuids+subvol_times
936          * were introduced.
937          */
938 
939         /*
940          * This generation number is used to test if the new fields are valid
941          * and up to date while reading the root item. Every time the root item
942          * is written out, the "generation" field is copied into this field. If
943          * anyone ever mounted the fs with an older kernel, we will have
944          * mismatching generation values here and thus must invalidate the
945          * new fields. See btrfs_update_root and btrfs_find_last_root for
946          * details.
947          * the offset of generation_v2 is also used as the start for the memset
948          * when invalidating the fields.
949          */
950         __le64 generation_v2;
951         __u8 uuid[BTRFS_UUID_SIZE];
952         __u8 parent_uuid[BTRFS_UUID_SIZE];
953         __u8 received_uuid[BTRFS_UUID_SIZE];
954         __le64 ctransid; /* updated when an inode changes */
955         __le64 otransid; /* trans when created */
956         __le64 stransid; /* trans when sent. non-zero for received subvol */
957         __le64 rtransid; /* trans when received. non-zero for received subvol */
958         struct btrfs_timespec ctime;
959         struct btrfs_timespec otime;
960         struct btrfs_timespec stime;
961         struct btrfs_timespec rtime;
962         __le64 reserved[8]; /* for future */
963 } __attribute__ ((__packed__));
964 
965 /*
966  * Btrfs root item used to be smaller than current size.  The old format ends
967  * at where member generation_v2 is.
968  */
969 static inline __u32 btrfs_legacy_root_item_size(void)
970 {
971         return offsetof(struct btrfs_root_item, generation_v2);
972 }
973 
974 /*
975  * this is used for both forward and backward root refs
976  */
977 struct btrfs_root_ref {
978         __le64 dirid;
979         __le64 sequence;
980         __le16 name_len;
981 } __attribute__ ((__packed__));
982 
983 struct btrfs_disk_balance_args {
984         /*
985          * profiles to operate on, single is denoted by
986          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
987          */
988         __le64 profiles;
989 
990         /*
991          * usage filter
992          * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
993          * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
994          */
995         union {
996                 __le64 usage;
997                 struct {
998                         __le32 usage_min;
999                         __le32 usage_max;
1000                 };
1001         };
1002 
1003         /* devid filter */
1004         __le64 devid;
1005 
1006         /* devid subset filter [pstart..pend) */
1007         __le64 pstart;
1008         __le64 pend;
1009 
1010         /* btrfs virtual address space subset filter [vstart..vend) */
1011         __le64 vstart;
1012         __le64 vend;
1013 
1014         /*
1015          * profile to convert to, single is denoted by
1016          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
1017          */
1018         __le64 target;
1019 
1020         /* BTRFS_BALANCE_ARGS_* */
1021         __le64 flags;
1022 
1023         /*
1024          * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
1025          * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
1026          * and maximum
1027          */
1028         union {
1029                 __le64 limit;
1030                 struct {
1031                         __le32 limit_min;
1032                         __le32 limit_max;
1033                 };
1034         };
1035 
1036         /*
1037          * Process chunks that cross stripes_min..stripes_max devices,
1038          * BTRFS_BALANCE_ARGS_STRIPES_RANGE
1039          */
1040         __le32 stripes_min;
1041         __le32 stripes_max;
1042 
1043         __le64 unused[6];
1044 } __attribute__ ((__packed__));
1045 
1046 /*
1047  * store balance parameters to disk so that balance can be properly
1048  * resumed after crash or unmount
1049  */
1050 struct btrfs_balance_item {
1051         /* BTRFS_BALANCE_* */
1052         __le64 flags;
1053 
1054         struct btrfs_disk_balance_args data;
1055         struct btrfs_disk_balance_args meta;
1056         struct btrfs_disk_balance_args sys;
1057 
1058         __le64 unused[4];
1059 } __attribute__ ((__packed__));
1060 
1061 enum {
1062         BTRFS_FILE_EXTENT_INLINE   = 0,
1063         BTRFS_FILE_EXTENT_REG      = 1,
1064         BTRFS_FILE_EXTENT_PREALLOC = 2,
1065         BTRFS_NR_FILE_EXTENT_TYPES = 3,
1066 };
1067 
1068 struct btrfs_file_extent_item {
1069         /*
1070          * transaction id that created this extent
1071          */
1072         __le64 generation;
1073         /*
1074          * max number of bytes to hold this extent in ram
1075          * when we split a compressed extent we can't know how big
1076          * each of the resulting pieces will be.  So, this is
1077          * an upper limit on the size of the extent in ram instead of
1078          * an exact limit.
1079          */
1080         __le64 ram_bytes;
1081 
1082         /*
1083          * 32 bits for the various ways we might encode the data,
1084          * including compression and encryption.  If any of these
1085          * are set to something a given disk format doesn't understand
1086          * it is treated like an incompat flag for reading and writing,
1087          * but not for stat.
1088          */
1089         __u8 compression;
1090         __u8 encryption;
1091         __le16 other_encoding; /* spare for later use */
1092 
1093         /* are we inline data or a real extent? */
1094         __u8 type;
1095 
1096         /*
1097          * disk space consumed by the extent, checksum blocks are included
1098          * in these numbers
1099          *
1100          * At this offset in the structure, the inline extent data start.
1101          */
1102         __le64 disk_bytenr;
1103         __le64 disk_num_bytes;
1104         /*
1105          * the logical offset in file blocks (no csums)
1106          * this extent record is for.  This allows a file extent to point
1107          * into the middle of an existing extent on disk, sharing it
1108          * between two snapshots (useful if some bytes in the middle of the
1109          * extent have changed
1110          */
1111         __le64 offset;
1112         /*
1113          * the logical number of file blocks (no csums included).  This
1114          * always reflects the size uncompressed and without encoding.
1115          */
1116         __le64 num_bytes;
1117 
1118 } __attribute__ ((__packed__));
1119 
1120 struct btrfs_csum_item {
1121         __u8 csum;
1122 } __attribute__ ((__packed__));
1123 
1124 struct btrfs_dev_stats_item {
1125         /*
1126          * grow this item struct at the end for future enhancements and keep
1127          * the existing values unchanged
1128          */
1129         __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
1130 } __attribute__ ((__packed__));
1131 
1132 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
1133 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
1134 
1135 struct btrfs_dev_replace_item {
1136         /*
1137          * grow this item struct at the end for future enhancements and keep
1138          * the existing values unchanged
1139          */
1140         __le64 src_devid;
1141         __le64 cursor_left;
1142         __le64 cursor_right;
1143         __le64 cont_reading_from_srcdev_mode;
1144 
1145         __le64 replace_state;
1146         __le64 time_started;
1147         __le64 time_stopped;
1148         __le64 num_write_errors;
1149         __le64 num_uncorrectable_read_errors;
1150 } __attribute__ ((__packed__));
1151 
1152 /* different types of block groups (and chunks) */
1153 #define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
1154 #define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
1155 #define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
1156 #define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
1157 #define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
1158 #define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
1159 #define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
1160 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1161 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1162 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
1163 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
1164 #define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1165                                          BTRFS_SPACE_INFO_GLOBAL_RSV)
1166 
1167 #define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
1168                                          BTRFS_BLOCK_GROUP_SYSTEM |  \
1169                                          BTRFS_BLOCK_GROUP_METADATA)
1170 
1171 #define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
1172                                          BTRFS_BLOCK_GROUP_RAID1 |   \
1173                                          BTRFS_BLOCK_GROUP_RAID1C3 | \
1174                                          BTRFS_BLOCK_GROUP_RAID1C4 | \
1175                                          BTRFS_BLOCK_GROUP_RAID5 |   \
1176                                          BTRFS_BLOCK_GROUP_RAID6 |   \
1177                                          BTRFS_BLOCK_GROUP_DUP |     \
1178                                          BTRFS_BLOCK_GROUP_RAID10)
1179 #define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
1180                                          BTRFS_BLOCK_GROUP_RAID6)
1181 
1182 #define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1 |   \
1183                                          BTRFS_BLOCK_GROUP_RAID1C3 | \
1184                                          BTRFS_BLOCK_GROUP_RAID1C4)
1185 
1186 /*
1187  * We need a bit for restriper to be able to tell when chunks of type
1188  * SINGLE are available.  This "extended" profile format is used in
1189  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1190  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1191  * to avoid remappings between two formats in future.
1192  */
1193 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
1194 
1195 /*
1196  * A fake block group type that is used to communicate global block reserve
1197  * size to userspace via the SPACE_INFO ioctl.
1198  */
1199 #define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
1200 
1201 #define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1202                                          BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1203 
1204 static inline __u64 chunk_to_extended(__u64 flags)
1205 {
1206         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1207                 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1208 
1209         return flags;
1210 }
1211 static inline __u64 extended_to_chunk(__u64 flags)
1212 {
1213         return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1214 }
1215 
1216 struct btrfs_block_group_item {
1217         __le64 used;
1218         __le64 chunk_objectid;
1219         __le64 flags;
1220 } __attribute__ ((__packed__));
1221 
1222 struct btrfs_free_space_info {
1223         __le32 extent_count;
1224         __le32 flags;
1225 } __attribute__ ((__packed__));
1226 
1227 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1228 
1229 #define BTRFS_QGROUP_LEVEL_SHIFT                48
1230 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
1231 {
1232         return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
1233 }
1234 
1235 /*
1236  * is subvolume quota turned on?
1237  */
1238 #define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
1239 /*
1240  * RESCAN is set during the initialization phase
1241  */
1242 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
1243 /*
1244  * Some qgroup entries are known to be out of date,
1245  * either because the configuration has changed in a way that
1246  * makes a rescan necessary, or because the fs has been mounted
1247  * with a non-qgroup-aware version.
1248  * Turning qouta off and on again makes it inconsistent, too.
1249  */
1250 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
1251 
1252 /*
1253  * Whether or not this filesystem is using simple quotas.  Not exactly the
1254  * incompat bit, because we support using simple quotas, disabling it, then
1255  * going back to full qgroup quotas.
1256  */
1257 #define BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE    (1ULL << 3)
1258 
1259 #define BTRFS_QGROUP_STATUS_FLAGS_MASK  (BTRFS_QGROUP_STATUS_FLAG_ON |          \
1260                                          BTRFS_QGROUP_STATUS_FLAG_RESCAN |      \
1261                                          BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT | \
1262                                          BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
1263 
1264 #define BTRFS_QGROUP_STATUS_VERSION        1
1265 
1266 struct btrfs_qgroup_status_item {
1267         __le64 version;
1268         /*
1269          * the generation is updated during every commit. As older
1270          * versions of btrfs are not aware of qgroups, it will be
1271          * possible to detect inconsistencies by checking the
1272          * generation on mount time
1273          */
1274         __le64 generation;
1275 
1276         /* flag definitions see above */
1277         __le64 flags;
1278 
1279         /*
1280          * only used during scanning to record the progress
1281          * of the scan. It contains a logical address
1282          */
1283         __le64 rescan;
1284 
1285         /*
1286          * The generation when quotas were last enabled. Used by simple quotas to
1287          * avoid decrementing when freeing an extent that was written before
1288          * enable.
1289          *
1290          * Set only if flags contain BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
1291          */
1292         __le64 enable_gen;
1293 } __attribute__ ((__packed__));
1294 
1295 struct btrfs_qgroup_info_item {
1296         __le64 generation;
1297         __le64 rfer;
1298         __le64 rfer_cmpr;
1299         __le64 excl;
1300         __le64 excl_cmpr;
1301 } __attribute__ ((__packed__));
1302 
1303 struct btrfs_qgroup_limit_item {
1304         /*
1305          * only updated when any of the other values change
1306          */
1307         __le64 flags;
1308         __le64 max_rfer;
1309         __le64 max_excl;
1310         __le64 rsv_rfer;
1311         __le64 rsv_excl;
1312 } __attribute__ ((__packed__));
1313 
1314 struct btrfs_verity_descriptor_item {
1315         /* Size of the verity descriptor in bytes */
1316         __le64 size;
1317         /*
1318          * When we implement support for fscrypt, we will need to encrypt the
1319          * Merkle tree for encrypted verity files. These 128 bits are for the
1320          * eventual storage of an fscrypt initialization vector.
1321          */
1322         __le64 reserved[2];
1323         __u8 encryption;
1324 } __attribute__ ((__packed__));
1325 
1326 #endif /* _BTRFS_CTREE_H_ */
1327 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php