1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #ifndef KFD_IOCTL_H_INCLUDED 24 #define KFD_IOCTL_H_INCLUDED 25 26 #include <drm/drm.h> 27 #include <linux/ioctl.h> 28 29 /* 30 * - 1.1 - initial version 31 * - 1.3 - Add SMI events support 32 * - 1.4 - Indicate new SRAM EDC bit in device properties 33 * - 1.5 - Add SVM API 34 * - 1.6 - Query clear flags in SVM get_attr API 35 * - 1.7 - Checkpoint Restore (CRIU) API 36 * - 1.8 - CRIU - Support for SDMA transfers with GTT BOs 37 * - 1.9 - Add available memory ioctl 38 * - 1.10 - Add SMI profiler event log 39 * - 1.11 - Add unified memory for ctx save/restore area 40 * - 1.12 - Add DMA buf export ioctl 41 * - 1.13 - Add debugger API 42 * - 1.14 - Update kfd_event_data 43 * - 1.15 - Enable managing mappings in compute VMs with GEM_VA ioctl 44 * - 1.16 - Add contiguous VRAM allocation flag 45 */ 46 #define KFD_IOCTL_MAJOR_VERSION 1 47 #define KFD_IOCTL_MINOR_VERSION 16 48 49 struct kfd_ioctl_get_version_args { 50 __u32 major_version; /* from KFD */ 51 __u32 minor_version; /* from KFD */ 52 }; 53 54 /* For kfd_ioctl_create_queue_args.queue_type. */ 55 #define KFD_IOC_QUEUE_TYPE_COMPUTE 0x0 56 #define KFD_IOC_QUEUE_TYPE_SDMA 0x1 57 #define KFD_IOC_QUEUE_TYPE_COMPUTE_AQL 0x2 58 #define KFD_IOC_QUEUE_TYPE_SDMA_XGMI 0x3 59 60 #define KFD_MAX_QUEUE_PERCENTAGE 100 61 #define KFD_MAX_QUEUE_PRIORITY 15 62 63 struct kfd_ioctl_create_queue_args { 64 __u64 ring_base_address; /* to KFD */ 65 __u64 write_pointer_address; /* from KFD */ 66 __u64 read_pointer_address; /* from KFD */ 67 __u64 doorbell_offset; /* from KFD */ 68 69 __u32 ring_size; /* to KFD */ 70 __u32 gpu_id; /* to KFD */ 71 __u32 queue_type; /* to KFD */ 72 __u32 queue_percentage; /* to KFD */ 73 __u32 queue_priority; /* to KFD */ 74 __u32 queue_id; /* from KFD */ 75 76 __u64 eop_buffer_address; /* to KFD */ 77 __u64 eop_buffer_size; /* to KFD */ 78 __u64 ctx_save_restore_address; /* to KFD */ 79 __u32 ctx_save_restore_size; /* to KFD */ 80 __u32 ctl_stack_size; /* to KFD */ 81 }; 82 83 struct kfd_ioctl_destroy_queue_args { 84 __u32 queue_id; /* to KFD */ 85 __u32 pad; 86 }; 87 88 struct kfd_ioctl_update_queue_args { 89 __u64 ring_base_address; /* to KFD */ 90 91 __u32 queue_id; /* to KFD */ 92 __u32 ring_size; /* to KFD */ 93 __u32 queue_percentage; /* to KFD */ 94 __u32 queue_priority; /* to KFD */ 95 }; 96 97 struct kfd_ioctl_set_cu_mask_args { 98 __u32 queue_id; /* to KFD */ 99 __u32 num_cu_mask; /* to KFD */ 100 __u64 cu_mask_ptr; /* to KFD */ 101 }; 102 103 struct kfd_ioctl_get_queue_wave_state_args { 104 __u64 ctl_stack_address; /* to KFD */ 105 __u32 ctl_stack_used_size; /* from KFD */ 106 __u32 save_area_used_size; /* from KFD */ 107 __u32 queue_id; /* to KFD */ 108 __u32 pad; 109 }; 110 111 struct kfd_ioctl_get_available_memory_args { 112 __u64 available; /* from KFD */ 113 __u32 gpu_id; /* to KFD */ 114 __u32 pad; 115 }; 116 117 struct kfd_dbg_device_info_entry { 118 __u64 exception_status; 119 __u64 lds_base; 120 __u64 lds_limit; 121 __u64 scratch_base; 122 __u64 scratch_limit; 123 __u64 gpuvm_base; 124 __u64 gpuvm_limit; 125 __u32 gpu_id; 126 __u32 location_id; 127 __u32 vendor_id; 128 __u32 device_id; 129 __u32 revision_id; 130 __u32 subsystem_vendor_id; 131 __u32 subsystem_device_id; 132 __u32 fw_version; 133 __u32 gfx_target_version; 134 __u32 simd_count; 135 __u32 max_waves_per_simd; 136 __u32 array_count; 137 __u32 simd_arrays_per_engine; 138 __u32 num_xcc; 139 __u32 capability; 140 __u32 debug_prop; 141 }; 142 143 /* For kfd_ioctl_set_memory_policy_args.default_policy and alternate_policy */ 144 #define KFD_IOC_CACHE_POLICY_COHERENT 0 145 #define KFD_IOC_CACHE_POLICY_NONCOHERENT 1 146 147 struct kfd_ioctl_set_memory_policy_args { 148 __u64 alternate_aperture_base; /* to KFD */ 149 __u64 alternate_aperture_size; /* to KFD */ 150 151 __u32 gpu_id; /* to KFD */ 152 __u32 default_policy; /* to KFD */ 153 __u32 alternate_policy; /* to KFD */ 154 __u32 pad; 155 }; 156 157 /* 158 * All counters are monotonic. They are used for profiling of compute jobs. 159 * The profiling is done by userspace. 160 * 161 * In case of GPU reset, the counter should not be affected. 162 */ 163 164 struct kfd_ioctl_get_clock_counters_args { 165 __u64 gpu_clock_counter; /* from KFD */ 166 __u64 cpu_clock_counter; /* from KFD */ 167 __u64 system_clock_counter; /* from KFD */ 168 __u64 system_clock_freq; /* from KFD */ 169 170 __u32 gpu_id; /* to KFD */ 171 __u32 pad; 172 }; 173 174 struct kfd_process_device_apertures { 175 __u64 lds_base; /* from KFD */ 176 __u64 lds_limit; /* from KFD */ 177 __u64 scratch_base; /* from KFD */ 178 __u64 scratch_limit; /* from KFD */ 179 __u64 gpuvm_base; /* from KFD */ 180 __u64 gpuvm_limit; /* from KFD */ 181 __u32 gpu_id; /* from KFD */ 182 __u32 pad; 183 }; 184 185 /* 186 * AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use 187 * AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an 188 * unlimited number of GPUs. 189 */ 190 #define NUM_OF_SUPPORTED_GPUS 7 191 struct kfd_ioctl_get_process_apertures_args { 192 struct kfd_process_device_apertures 193 process_apertures[NUM_OF_SUPPORTED_GPUS];/* from KFD */ 194 195 /* from KFD, should be in the range [1 - NUM_OF_SUPPORTED_GPUS] */ 196 __u32 num_of_nodes; 197 __u32 pad; 198 }; 199 200 struct kfd_ioctl_get_process_apertures_new_args { 201 /* User allocated. Pointer to struct kfd_process_device_apertures 202 * filled in by Kernel 203 */ 204 __u64 kfd_process_device_apertures_ptr; 205 /* to KFD - indicates amount of memory present in 206 * kfd_process_device_apertures_ptr 207 * from KFD - Number of entries filled by KFD. 208 */ 209 __u32 num_of_nodes; 210 __u32 pad; 211 }; 212 213 #define MAX_ALLOWED_NUM_POINTS 100 214 #define MAX_ALLOWED_AW_BUFF_SIZE 4096 215 #define MAX_ALLOWED_WAC_BUFF_SIZE 128 216 217 struct kfd_ioctl_dbg_register_args { 218 __u32 gpu_id; /* to KFD */ 219 __u32 pad; 220 }; 221 222 struct kfd_ioctl_dbg_unregister_args { 223 __u32 gpu_id; /* to KFD */ 224 __u32 pad; 225 }; 226 227 struct kfd_ioctl_dbg_address_watch_args { 228 __u64 content_ptr; /* a pointer to the actual content */ 229 __u32 gpu_id; /* to KFD */ 230 __u32 buf_size_in_bytes; /*including gpu_id and buf_size */ 231 }; 232 233 struct kfd_ioctl_dbg_wave_control_args { 234 __u64 content_ptr; /* a pointer to the actual content */ 235 __u32 gpu_id; /* to KFD */ 236 __u32 buf_size_in_bytes; /*including gpu_id and buf_size */ 237 }; 238 239 #define KFD_INVALID_FD 0xffffffff 240 241 /* Matching HSA_EVENTTYPE */ 242 #define KFD_IOC_EVENT_SIGNAL 0 243 #define KFD_IOC_EVENT_NODECHANGE 1 244 #define KFD_IOC_EVENT_DEVICESTATECHANGE 2 245 #define KFD_IOC_EVENT_HW_EXCEPTION 3 246 #define KFD_IOC_EVENT_SYSTEM_EVENT 4 247 #define KFD_IOC_EVENT_DEBUG_EVENT 5 248 #define KFD_IOC_EVENT_PROFILE_EVENT 6 249 #define KFD_IOC_EVENT_QUEUE_EVENT 7 250 #define KFD_IOC_EVENT_MEMORY 8 251 252 #define KFD_IOC_WAIT_RESULT_COMPLETE 0 253 #define KFD_IOC_WAIT_RESULT_TIMEOUT 1 254 #define KFD_IOC_WAIT_RESULT_FAIL 2 255 256 #define KFD_SIGNAL_EVENT_LIMIT 4096 257 258 /* For kfd_event_data.hw_exception_data.reset_type. */ 259 #define KFD_HW_EXCEPTION_WHOLE_GPU_RESET 0 260 #define KFD_HW_EXCEPTION_PER_ENGINE_RESET 1 261 262 /* For kfd_event_data.hw_exception_data.reset_cause. */ 263 #define KFD_HW_EXCEPTION_GPU_HANG 0 264 #define KFD_HW_EXCEPTION_ECC 1 265 266 /* For kfd_hsa_memory_exception_data.ErrorType */ 267 #define KFD_MEM_ERR_NO_RAS 0 268 #define KFD_MEM_ERR_SRAM_ECC 1 269 #define KFD_MEM_ERR_POISON_CONSUMED 2 270 #define KFD_MEM_ERR_GPU_HANG 3 271 272 struct kfd_ioctl_create_event_args { 273 __u64 event_page_offset; /* from KFD */ 274 __u32 event_trigger_data; /* from KFD - signal events only */ 275 __u32 event_type; /* to KFD */ 276 __u32 auto_reset; /* to KFD */ 277 __u32 node_id; /* to KFD - only valid for certain 278 event types */ 279 __u32 event_id; /* from KFD */ 280 __u32 event_slot_index; /* from KFD */ 281 }; 282 283 struct kfd_ioctl_destroy_event_args { 284 __u32 event_id; /* to KFD */ 285 __u32 pad; 286 }; 287 288 struct kfd_ioctl_set_event_args { 289 __u32 event_id; /* to KFD */ 290 __u32 pad; 291 }; 292 293 struct kfd_ioctl_reset_event_args { 294 __u32 event_id; /* to KFD */ 295 __u32 pad; 296 }; 297 298 struct kfd_memory_exception_failure { 299 __u32 NotPresent; /* Page not present or supervisor privilege */ 300 __u32 ReadOnly; /* Write access to a read-only page */ 301 __u32 NoExecute; /* Execute access to a page marked NX */ 302 __u32 imprecise; /* Can't determine the exact fault address */ 303 }; 304 305 /* memory exception data */ 306 struct kfd_hsa_memory_exception_data { 307 struct kfd_memory_exception_failure failure; 308 __u64 va; 309 __u32 gpu_id; 310 __u32 ErrorType; /* 0 = no RAS error, 311 * 1 = ECC_SRAM, 312 * 2 = Link_SYNFLOOD (poison), 313 * 3 = GPU hang (not attributable to a specific cause), 314 * other values reserved 315 */ 316 }; 317 318 /* hw exception data */ 319 struct kfd_hsa_hw_exception_data { 320 __u32 reset_type; 321 __u32 reset_cause; 322 __u32 memory_lost; 323 __u32 gpu_id; 324 }; 325 326 /* hsa signal event data */ 327 struct kfd_hsa_signal_event_data { 328 __u64 last_event_age; /* to and from KFD */ 329 }; 330 331 /* Event data */ 332 struct kfd_event_data { 333 union { 334 /* From KFD */ 335 struct kfd_hsa_memory_exception_data memory_exception_data; 336 struct kfd_hsa_hw_exception_data hw_exception_data; 337 /* To and From KFD */ 338 struct kfd_hsa_signal_event_data signal_event_data; 339 }; 340 __u64 kfd_event_data_ext; /* pointer to an extension structure 341 for future exception types */ 342 __u32 event_id; /* to KFD */ 343 __u32 pad; 344 }; 345 346 struct kfd_ioctl_wait_events_args { 347 __u64 events_ptr; /* pointed to struct 348 kfd_event_data array, to KFD */ 349 __u32 num_events; /* to KFD */ 350 __u32 wait_for_all; /* to KFD */ 351 __u32 timeout; /* to KFD */ 352 __u32 wait_result; /* from KFD */ 353 }; 354 355 struct kfd_ioctl_set_scratch_backing_va_args { 356 __u64 va_addr; /* to KFD */ 357 __u32 gpu_id; /* to KFD */ 358 __u32 pad; 359 }; 360 361 struct kfd_ioctl_get_tile_config_args { 362 /* to KFD: pointer to tile array */ 363 __u64 tile_config_ptr; 364 /* to KFD: pointer to macro tile array */ 365 __u64 macro_tile_config_ptr; 366 /* to KFD: array size allocated by user mode 367 * from KFD: array size filled by kernel 368 */ 369 __u32 num_tile_configs; 370 /* to KFD: array size allocated by user mode 371 * from KFD: array size filled by kernel 372 */ 373 __u32 num_macro_tile_configs; 374 375 __u32 gpu_id; /* to KFD */ 376 __u32 gb_addr_config; /* from KFD */ 377 __u32 num_banks; /* from KFD */ 378 __u32 num_ranks; /* from KFD */ 379 /* struct size can be extended later if needed 380 * without breaking ABI compatibility 381 */ 382 }; 383 384 struct kfd_ioctl_set_trap_handler_args { 385 __u64 tba_addr; /* to KFD */ 386 __u64 tma_addr; /* to KFD */ 387 __u32 gpu_id; /* to KFD */ 388 __u32 pad; 389 }; 390 391 struct kfd_ioctl_acquire_vm_args { 392 __u32 drm_fd; /* to KFD */ 393 __u32 gpu_id; /* to KFD */ 394 }; 395 396 /* Allocation flags: memory types */ 397 #define KFD_IOC_ALLOC_MEM_FLAGS_VRAM (1 << 0) 398 #define KFD_IOC_ALLOC_MEM_FLAGS_GTT (1 << 1) 399 #define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR (1 << 2) 400 #define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL (1 << 3) 401 #define KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP (1 << 4) 402 /* Allocation flags: attributes/access options */ 403 #define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE (1 << 31) 404 #define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30) 405 #define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC (1 << 29) 406 #define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE (1 << 28) 407 #define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM (1 << 27) 408 #define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT (1 << 26) 409 #define KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED (1 << 25) 410 #define KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT (1 << 24) 411 #define KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS (1 << 23) 412 413 /* Allocate memory for later SVM (shared virtual memory) mapping. 414 * 415 * @va_addr: virtual address of the memory to be allocated 416 * all later mappings on all GPUs will use this address 417 * @size: size in bytes 418 * @handle: buffer handle returned to user mode, used to refer to 419 * this allocation for mapping, unmapping and freeing 420 * @mmap_offset: for CPU-mapping the allocation by mmapping a render node 421 * for userptrs this is overloaded to specify the CPU address 422 * @gpu_id: device identifier 423 * @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above 424 */ 425 struct kfd_ioctl_alloc_memory_of_gpu_args { 426 __u64 va_addr; /* to KFD */ 427 __u64 size; /* to KFD */ 428 __u64 handle; /* from KFD */ 429 __u64 mmap_offset; /* to KFD (userptr), from KFD (mmap offset) */ 430 __u32 gpu_id; /* to KFD */ 431 __u32 flags; 432 }; 433 434 /* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu 435 * 436 * @handle: memory handle returned by alloc 437 */ 438 struct kfd_ioctl_free_memory_of_gpu_args { 439 __u64 handle; /* to KFD */ 440 }; 441 442 /* Map memory to one or more GPUs 443 * 444 * @handle: memory handle returned by alloc 445 * @device_ids_array_ptr: array of gpu_ids (__u32 per device) 446 * @n_devices: number of devices in the array 447 * @n_success: number of devices mapped successfully 448 * 449 * @n_success returns information to the caller how many devices from 450 * the start of the array have mapped the buffer successfully. It can 451 * be passed into a subsequent retry call to skip those devices. For 452 * the first call the caller should initialize it to 0. 453 * 454 * If the ioctl completes with return code 0 (success), n_success == 455 * n_devices. 456 */ 457 struct kfd_ioctl_map_memory_to_gpu_args { 458 __u64 handle; /* to KFD */ 459 __u64 device_ids_array_ptr; /* to KFD */ 460 __u32 n_devices; /* to KFD */ 461 __u32 n_success; /* to/from KFD */ 462 }; 463 464 /* Unmap memory from one or more GPUs 465 * 466 * same arguments as for mapping 467 */ 468 struct kfd_ioctl_unmap_memory_from_gpu_args { 469 __u64 handle; /* to KFD */ 470 __u64 device_ids_array_ptr; /* to KFD */ 471 __u32 n_devices; /* to KFD */ 472 __u32 n_success; /* to/from KFD */ 473 }; 474 475 /* Allocate GWS for specific queue 476 * 477 * @queue_id: queue's id that GWS is allocated for 478 * @num_gws: how many GWS to allocate 479 * @first_gws: index of the first GWS allocated. 480 * only support contiguous GWS allocation 481 */ 482 struct kfd_ioctl_alloc_queue_gws_args { 483 __u32 queue_id; /* to KFD */ 484 __u32 num_gws; /* to KFD */ 485 __u32 first_gws; /* from KFD */ 486 __u32 pad; 487 }; 488 489 struct kfd_ioctl_get_dmabuf_info_args { 490 __u64 size; /* from KFD */ 491 __u64 metadata_ptr; /* to KFD */ 492 __u32 metadata_size; /* to KFD (space allocated by user) 493 * from KFD (actual metadata size) 494 */ 495 __u32 gpu_id; /* from KFD */ 496 __u32 flags; /* from KFD (KFD_IOC_ALLOC_MEM_FLAGS) */ 497 __u32 dmabuf_fd; /* to KFD */ 498 }; 499 500 struct kfd_ioctl_import_dmabuf_args { 501 __u64 va_addr; /* to KFD */ 502 __u64 handle; /* from KFD */ 503 __u32 gpu_id; /* to KFD */ 504 __u32 dmabuf_fd; /* to KFD */ 505 }; 506 507 struct kfd_ioctl_export_dmabuf_args { 508 __u64 handle; /* to KFD */ 509 __u32 flags; /* to KFD */ 510 __u32 dmabuf_fd; /* from KFD */ 511 }; 512 513 /* 514 * KFD SMI(System Management Interface) events 515 */ 516 enum kfd_smi_event { 517 KFD_SMI_EVENT_NONE = 0, /* not used */ 518 KFD_SMI_EVENT_VMFAULT = 1, /* event start counting at 1 */ 519 KFD_SMI_EVENT_THERMAL_THROTTLE = 2, 520 KFD_SMI_EVENT_GPU_PRE_RESET = 3, 521 KFD_SMI_EVENT_GPU_POST_RESET = 4, 522 KFD_SMI_EVENT_MIGRATE_START = 5, 523 KFD_SMI_EVENT_MIGRATE_END = 6, 524 KFD_SMI_EVENT_PAGE_FAULT_START = 7, 525 KFD_SMI_EVENT_PAGE_FAULT_END = 8, 526 KFD_SMI_EVENT_QUEUE_EVICTION = 9, 527 KFD_SMI_EVENT_QUEUE_RESTORE = 10, 528 KFD_SMI_EVENT_UNMAP_FROM_GPU = 11, 529 530 /* 531 * max event number, as a flag bit to get events from all processes, 532 * this requires super user permission, otherwise will not be able to 533 * receive event from any process. Without this flag to receive events 534 * from same process. 535 */ 536 KFD_SMI_EVENT_ALL_PROCESS = 64 537 }; 538 539 enum KFD_MIGRATE_TRIGGERS { 540 KFD_MIGRATE_TRIGGER_PREFETCH, 541 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, 542 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, 543 KFD_MIGRATE_TRIGGER_TTM_EVICTION 544 }; 545 546 enum KFD_QUEUE_EVICTION_TRIGGERS { 547 KFD_QUEUE_EVICTION_TRIGGER_SVM, 548 KFD_QUEUE_EVICTION_TRIGGER_USERPTR, 549 KFD_QUEUE_EVICTION_TRIGGER_TTM, 550 KFD_QUEUE_EVICTION_TRIGGER_SUSPEND, 551 KFD_QUEUE_EVICTION_CRIU_CHECKPOINT, 552 KFD_QUEUE_EVICTION_CRIU_RESTORE 553 }; 554 555 enum KFD_SVM_UNMAP_TRIGGERS { 556 KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY, 557 KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE, 558 KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU 559 }; 560 561 #define KFD_SMI_EVENT_MASK_FROM_INDEX(i) (1ULL << ((i) - 1)) 562 #define KFD_SMI_EVENT_MSG_SIZE 96 563 564 struct kfd_ioctl_smi_events_args { 565 __u32 gpuid; /* to KFD */ 566 __u32 anon_fd; /* from KFD */ 567 }; 568 569 /************************************************************************************************** 570 * CRIU IOCTLs (Checkpoint Restore In Userspace) 571 * 572 * When checkpointing a process, the userspace application will perform: 573 * 1. PROCESS_INFO op to determine current process information. This pauses execution and evicts 574 * all the queues. 575 * 2. CHECKPOINT op to checkpoint process contents (BOs, queues, events, svm-ranges) 576 * 3. UNPAUSE op to un-evict all the queues 577 * 578 * When restoring a process, the CRIU userspace application will perform: 579 * 580 * 1. RESTORE op to restore process contents 581 * 2. RESUME op to start the process 582 * 583 * Note: Queues are forced into an evicted state after a successful PROCESS_INFO. User 584 * application needs to perform an UNPAUSE operation after calling PROCESS_INFO. 585 */ 586 587 enum kfd_criu_op { 588 KFD_CRIU_OP_PROCESS_INFO, 589 KFD_CRIU_OP_CHECKPOINT, 590 KFD_CRIU_OP_UNPAUSE, 591 KFD_CRIU_OP_RESTORE, 592 KFD_CRIU_OP_RESUME, 593 }; 594 595 /** 596 * kfd_ioctl_criu_args - Arguments perform CRIU operation 597 * @devices: [in/out] User pointer to memory location for devices information. 598 * This is an array of type kfd_criu_device_bucket. 599 * @bos: [in/out] User pointer to memory location for BOs information 600 * This is an array of type kfd_criu_bo_bucket. 601 * @priv_data: [in/out] User pointer to memory location for private data 602 * @priv_data_size: [in/out] Size of priv_data in bytes 603 * @num_devices: [in/out] Number of GPUs used by process. Size of @devices array. 604 * @num_bos [in/out] Number of BOs used by process. Size of @bos array. 605 * @num_objects: [in/out] Number of objects used by process. Objects are opaque to 606 * user application. 607 * @pid: [in/out] PID of the process being checkpointed 608 * @op [in] Type of operation (kfd_criu_op) 609 * 610 * Return: 0 on success, -errno on failure 611 */ 612 struct kfd_ioctl_criu_args { 613 __u64 devices; /* Used during ops: CHECKPOINT, RESTORE */ 614 __u64 bos; /* Used during ops: CHECKPOINT, RESTORE */ 615 __u64 priv_data; /* Used during ops: CHECKPOINT, RESTORE */ 616 __u64 priv_data_size; /* Used during ops: PROCESS_INFO, RESTORE */ 617 __u32 num_devices; /* Used during ops: PROCESS_INFO, RESTORE */ 618 __u32 num_bos; /* Used during ops: PROCESS_INFO, RESTORE */ 619 __u32 num_objects; /* Used during ops: PROCESS_INFO, RESTORE */ 620 __u32 pid; /* Used during ops: PROCESS_INFO, RESUME */ 621 __u32 op; 622 }; 623 624 struct kfd_criu_device_bucket { 625 __u32 user_gpu_id; 626 __u32 actual_gpu_id; 627 __u32 drm_fd; 628 __u32 pad; 629 }; 630 631 struct kfd_criu_bo_bucket { 632 __u64 addr; 633 __u64 size; 634 __u64 offset; 635 __u64 restored_offset; /* During restore, updated offset for BO */ 636 __u32 gpu_id; /* This is the user_gpu_id */ 637 __u32 alloc_flags; 638 __u32 dmabuf_fd; 639 __u32 pad; 640 }; 641 642 /* CRIU IOCTLs - END */ 643 /**************************************************************************************************/ 644 645 /* Register offset inside the remapped mmio page 646 */ 647 enum kfd_mmio_remap { 648 KFD_MMIO_REMAP_HDP_MEM_FLUSH_CNTL = 0, 649 KFD_MMIO_REMAP_HDP_REG_FLUSH_CNTL = 4, 650 }; 651 652 /* Guarantee host access to memory */ 653 #define KFD_IOCTL_SVM_FLAG_HOST_ACCESS 0x00000001 654 /* Fine grained coherency between all devices with access */ 655 #define KFD_IOCTL_SVM_FLAG_COHERENT 0x00000002 656 /* Use any GPU in same hive as preferred device */ 657 #define KFD_IOCTL_SVM_FLAG_HIVE_LOCAL 0x00000004 658 /* GPUs only read, allows replication */ 659 #define KFD_IOCTL_SVM_FLAG_GPU_RO 0x00000008 660 /* Allow execution on GPU */ 661 #define KFD_IOCTL_SVM_FLAG_GPU_EXEC 0x00000010 662 /* GPUs mostly read, may allow similar optimizations as RO, but writes fault */ 663 #define KFD_IOCTL_SVM_FLAG_GPU_READ_MOSTLY 0x00000020 664 /* Keep GPU memory mapping always valid as if XNACK is disable */ 665 #define KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED 0x00000040 666 /* Fine grained coherency between all devices using device-scope atomics */ 667 #define KFD_IOCTL_SVM_FLAG_EXT_COHERENT 0x00000080 668 669 /** 670 * kfd_ioctl_svm_op - SVM ioctl operations 671 * 672 * @KFD_IOCTL_SVM_OP_SET_ATTR: Modify one or more attributes 673 * @KFD_IOCTL_SVM_OP_GET_ATTR: Query one or more attributes 674 */ 675 enum kfd_ioctl_svm_op { 676 KFD_IOCTL_SVM_OP_SET_ATTR, 677 KFD_IOCTL_SVM_OP_GET_ATTR 678 }; 679 680 /** kfd_ioctl_svm_location - Enum for preferred and prefetch locations 681 * 682 * GPU IDs are used to specify GPUs as preferred and prefetch locations. 683 * Below definitions are used for system memory or for leaving the preferred 684 * location unspecified. 685 */ 686 enum kfd_ioctl_svm_location { 687 KFD_IOCTL_SVM_LOCATION_SYSMEM = 0, 688 KFD_IOCTL_SVM_LOCATION_UNDEFINED = 0xffffffff 689 }; 690 691 /** 692 * kfd_ioctl_svm_attr_type - SVM attribute types 693 * 694 * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: gpuid of the preferred location, 0 for 695 * system memory 696 * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: gpuid of the prefetch location, 0 for 697 * system memory. Setting this triggers an 698 * immediate prefetch (migration). 699 * @KFD_IOCTL_SVM_ATTR_ACCESS: 700 * @KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: 701 * @KFD_IOCTL_SVM_ATTR_NO_ACCESS: specify memory access for the gpuid given 702 * by the attribute value 703 * @KFD_IOCTL_SVM_ATTR_SET_FLAGS: bitmask of flags to set (see 704 * KFD_IOCTL_SVM_FLAG_...) 705 * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS: bitmask of flags to clear 706 * @KFD_IOCTL_SVM_ATTR_GRANULARITY: migration granularity 707 * (log2 num pages) 708 */ 709 enum kfd_ioctl_svm_attr_type { 710 KFD_IOCTL_SVM_ATTR_PREFERRED_LOC, 711 KFD_IOCTL_SVM_ATTR_PREFETCH_LOC, 712 KFD_IOCTL_SVM_ATTR_ACCESS, 713 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE, 714 KFD_IOCTL_SVM_ATTR_NO_ACCESS, 715 KFD_IOCTL_SVM_ATTR_SET_FLAGS, 716 KFD_IOCTL_SVM_ATTR_CLR_FLAGS, 717 KFD_IOCTL_SVM_ATTR_GRANULARITY 718 }; 719 720 /** 721 * kfd_ioctl_svm_attribute - Attributes as pairs of type and value 722 * 723 * The meaning of the @value depends on the attribute type. 724 * 725 * @type: attribute type (see enum @kfd_ioctl_svm_attr_type) 726 * @value: attribute value 727 */ 728 struct kfd_ioctl_svm_attribute { 729 __u32 type; 730 __u32 value; 731 }; 732 733 /** 734 * kfd_ioctl_svm_args - Arguments for SVM ioctl 735 * 736 * @op specifies the operation to perform (see enum 737 * @kfd_ioctl_svm_op). @start_addr and @size are common for all 738 * operations. 739 * 740 * A variable number of attributes can be given in @attrs. 741 * @nattr specifies the number of attributes. New attributes can be 742 * added in the future without breaking the ABI. If unknown attributes 743 * are given, the function returns -EINVAL. 744 * 745 * @KFD_IOCTL_SVM_OP_SET_ATTR sets attributes for a virtual address 746 * range. It may overlap existing virtual address ranges. If it does, 747 * the existing ranges will be split such that the attribute changes 748 * only apply to the specified address range. 749 * 750 * @KFD_IOCTL_SVM_OP_GET_ATTR returns the intersection of attributes 751 * over all memory in the given range and returns the result as the 752 * attribute value. If different pages have different preferred or 753 * prefetch locations, 0xffffffff will be returned for 754 * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC or 755 * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC resepctively. For 756 * @KFD_IOCTL_SVM_ATTR_SET_FLAGS, flags of all pages will be 757 * aggregated by bitwise AND. That means, a flag will be set in the 758 * output, if that flag is set for all pages in the range. For 759 * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS, flags of all pages will be 760 * aggregated by bitwise NOR. That means, a flag will be set in the 761 * output, if that flag is clear for all pages in the range. 762 * The minimum migration granularity throughout the range will be 763 * returned for @KFD_IOCTL_SVM_ATTR_GRANULARITY. 764 * 765 * Querying of accessibility attributes works by initializing the 766 * attribute type to @KFD_IOCTL_SVM_ATTR_ACCESS and the value to the 767 * GPUID being queried. Multiple attributes can be given to allow 768 * querying multiple GPUIDs. The ioctl function overwrites the 769 * attribute type to indicate the access for the specified GPU. 770 */ 771 struct kfd_ioctl_svm_args { 772 __u64 start_addr; 773 __u64 size; 774 __u32 op; 775 __u32 nattr; 776 /* Variable length array of attributes */ 777 struct kfd_ioctl_svm_attribute attrs[]; 778 }; 779 780 /** 781 * kfd_ioctl_set_xnack_mode_args - Arguments for set_xnack_mode 782 * 783 * @xnack_enabled: [in/out] Whether to enable XNACK mode for this process 784 * 785 * @xnack_enabled indicates whether recoverable page faults should be 786 * enabled for the current process. 0 means disabled, positive means 787 * enabled, negative means leave unchanged. If enabled, virtual address 788 * translations on GFXv9 and later AMD GPUs can return XNACK and retry 789 * the access until a valid PTE is available. This is used to implement 790 * device page faults. 791 * 792 * On output, @xnack_enabled returns the (new) current mode (0 or 793 * positive). Therefore, a negative input value can be used to query 794 * the current mode without changing it. 795 * 796 * The XNACK mode fundamentally changes the way SVM managed memory works 797 * in the driver, with subtle effects on application performance and 798 * functionality. 799 * 800 * Enabling XNACK mode requires shader programs to be compiled 801 * differently. Furthermore, not all GPUs support changing the mode 802 * per-process. Therefore changing the mode is only allowed while no 803 * user mode queues exist in the process. This ensure that no shader 804 * code is running that may be compiled for the wrong mode. And GPUs 805 * that cannot change to the requested mode will prevent the XNACK 806 * mode from occurring. All GPUs used by the process must be in the 807 * same XNACK mode. 808 * 809 * GFXv8 or older GPUs do not support 48 bit virtual addresses or SVM. 810 * Therefore those GPUs are not considered for the XNACK mode switch. 811 * 812 * Return: 0 on success, -errno on failure 813 */ 814 struct kfd_ioctl_set_xnack_mode_args { 815 __s32 xnack_enabled; 816 }; 817 818 /* Wave launch override modes */ 819 enum kfd_dbg_trap_override_mode { 820 KFD_DBG_TRAP_OVERRIDE_OR = 0, 821 KFD_DBG_TRAP_OVERRIDE_REPLACE = 1 822 }; 823 824 /* Wave launch overrides */ 825 enum kfd_dbg_trap_mask { 826 KFD_DBG_TRAP_MASK_FP_INVALID = 1, 827 KFD_DBG_TRAP_MASK_FP_INPUT_DENORMAL = 2, 828 KFD_DBG_TRAP_MASK_FP_DIVIDE_BY_ZERO = 4, 829 KFD_DBG_TRAP_MASK_FP_OVERFLOW = 8, 830 KFD_DBG_TRAP_MASK_FP_UNDERFLOW = 16, 831 KFD_DBG_TRAP_MASK_FP_INEXACT = 32, 832 KFD_DBG_TRAP_MASK_INT_DIVIDE_BY_ZERO = 64, 833 KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH = 128, 834 KFD_DBG_TRAP_MASK_DBG_MEMORY_VIOLATION = 256, 835 KFD_DBG_TRAP_MASK_TRAP_ON_WAVE_START = (1 << 30), 836 KFD_DBG_TRAP_MASK_TRAP_ON_WAVE_END = (1 << 31) 837 }; 838 839 /* Wave launch modes */ 840 enum kfd_dbg_trap_wave_launch_mode { 841 KFD_DBG_TRAP_WAVE_LAUNCH_MODE_NORMAL = 0, 842 KFD_DBG_TRAP_WAVE_LAUNCH_MODE_HALT = 1, 843 KFD_DBG_TRAP_WAVE_LAUNCH_MODE_DEBUG = 3 844 }; 845 846 /* Address watch modes */ 847 enum kfd_dbg_trap_address_watch_mode { 848 KFD_DBG_TRAP_ADDRESS_WATCH_MODE_READ = 0, 849 KFD_DBG_TRAP_ADDRESS_WATCH_MODE_NONREAD = 1, 850 KFD_DBG_TRAP_ADDRESS_WATCH_MODE_ATOMIC = 2, 851 KFD_DBG_TRAP_ADDRESS_WATCH_MODE_ALL = 3 852 }; 853 854 /* Additional wave settings */ 855 enum kfd_dbg_trap_flags { 856 KFD_DBG_TRAP_FLAG_SINGLE_MEM_OP = 1, 857 KFD_DBG_TRAP_FLAG_SINGLE_ALU_OP = 2, 858 }; 859 860 /* Trap exceptions */ 861 enum kfd_dbg_trap_exception_code { 862 EC_NONE = 0, 863 /* per queue */ 864 EC_QUEUE_WAVE_ABORT = 1, 865 EC_QUEUE_WAVE_TRAP = 2, 866 EC_QUEUE_WAVE_MATH_ERROR = 3, 867 EC_QUEUE_WAVE_ILLEGAL_INSTRUCTION = 4, 868 EC_QUEUE_WAVE_MEMORY_VIOLATION = 5, 869 EC_QUEUE_WAVE_APERTURE_VIOLATION = 6, 870 EC_QUEUE_PACKET_DISPATCH_DIM_INVALID = 16, 871 EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID = 17, 872 EC_QUEUE_PACKET_DISPATCH_CODE_INVALID = 18, 873 EC_QUEUE_PACKET_RESERVED = 19, 874 EC_QUEUE_PACKET_UNSUPPORTED = 20, 875 EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID = 21, 876 EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID = 22, 877 EC_QUEUE_PACKET_VENDOR_UNSUPPORTED = 23, 878 EC_QUEUE_PREEMPTION_ERROR = 30, 879 EC_QUEUE_NEW = 31, 880 /* per device */ 881 EC_DEVICE_QUEUE_DELETE = 32, 882 EC_DEVICE_MEMORY_VIOLATION = 33, 883 EC_DEVICE_RAS_ERROR = 34, 884 EC_DEVICE_FATAL_HALT = 35, 885 EC_DEVICE_NEW = 36, 886 /* per process */ 887 EC_PROCESS_RUNTIME = 48, 888 EC_PROCESS_DEVICE_REMOVE = 49, 889 EC_MAX 890 }; 891 892 /* Mask generated by ecode in kfd_dbg_trap_exception_code */ 893 #define KFD_EC_MASK(ecode) (1ULL << (ecode - 1)) 894 895 /* Masks for exception code type checks below */ 896 #define KFD_EC_MASK_QUEUE (KFD_EC_MASK(EC_QUEUE_WAVE_ABORT) | \ 897 KFD_EC_MASK(EC_QUEUE_WAVE_TRAP) | \ 898 KFD_EC_MASK(EC_QUEUE_WAVE_MATH_ERROR) | \ 899 KFD_EC_MASK(EC_QUEUE_WAVE_ILLEGAL_INSTRUCTION) | \ 900 KFD_EC_MASK(EC_QUEUE_WAVE_MEMORY_VIOLATION) | \ 901 KFD_EC_MASK(EC_QUEUE_WAVE_APERTURE_VIOLATION) | \ 902 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_DIM_INVALID) | \ 903 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID) | \ 904 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_CODE_INVALID) | \ 905 KFD_EC_MASK(EC_QUEUE_PACKET_RESERVED) | \ 906 KFD_EC_MASK(EC_QUEUE_PACKET_UNSUPPORTED) | \ 907 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID) | \ 908 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID) | \ 909 KFD_EC_MASK(EC_QUEUE_PACKET_VENDOR_UNSUPPORTED) | \ 910 KFD_EC_MASK(EC_QUEUE_PREEMPTION_ERROR) | \ 911 KFD_EC_MASK(EC_QUEUE_NEW)) 912 #define KFD_EC_MASK_DEVICE (KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE) | \ 913 KFD_EC_MASK(EC_DEVICE_RAS_ERROR) | \ 914 KFD_EC_MASK(EC_DEVICE_FATAL_HALT) | \ 915 KFD_EC_MASK(EC_DEVICE_MEMORY_VIOLATION) | \ 916 KFD_EC_MASK(EC_DEVICE_NEW)) 917 #define KFD_EC_MASK_PROCESS (KFD_EC_MASK(EC_PROCESS_RUNTIME) | \ 918 KFD_EC_MASK(EC_PROCESS_DEVICE_REMOVE)) 919 #define KFD_EC_MASK_PACKET (KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_DIM_INVALID) | \ 920 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID) | \ 921 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_CODE_INVALID) | \ 922 KFD_EC_MASK(EC_QUEUE_PACKET_RESERVED) | \ 923 KFD_EC_MASK(EC_QUEUE_PACKET_UNSUPPORTED) | \ 924 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_WORK_GROUP_SIZE_INVALID) | \ 925 KFD_EC_MASK(EC_QUEUE_PACKET_DISPATCH_REGISTER_INVALID) | \ 926 KFD_EC_MASK(EC_QUEUE_PACKET_VENDOR_UNSUPPORTED)) 927 928 /* Checks for exception code types for KFD search */ 929 #define KFD_DBG_EC_IS_VALID(ecode) (ecode > EC_NONE && ecode < EC_MAX) 930 #define KFD_DBG_EC_TYPE_IS_QUEUE(ecode) \ 931 (KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_QUEUE)) 932 #define KFD_DBG_EC_TYPE_IS_DEVICE(ecode) \ 933 (KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_DEVICE)) 934 #define KFD_DBG_EC_TYPE_IS_PROCESS(ecode) \ 935 (KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_PROCESS)) 936 #define KFD_DBG_EC_TYPE_IS_PACKET(ecode) \ 937 (KFD_DBG_EC_IS_VALID(ecode) && !!(KFD_EC_MASK(ecode) & KFD_EC_MASK_PACKET)) 938 939 940 /* Runtime enable states */ 941 enum kfd_dbg_runtime_state { 942 DEBUG_RUNTIME_STATE_DISABLED = 0, 943 DEBUG_RUNTIME_STATE_ENABLED = 1, 944 DEBUG_RUNTIME_STATE_ENABLED_BUSY = 2, 945 DEBUG_RUNTIME_STATE_ENABLED_ERROR = 3 946 }; 947 948 /* Runtime enable status */ 949 struct kfd_runtime_info { 950 __u64 r_debug; 951 __u32 runtime_state; 952 __u32 ttmp_setup; 953 }; 954 955 /* Enable modes for runtime enable */ 956 #define KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK 1 957 #define KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK 2 958 959 /** 960 * kfd_ioctl_runtime_enable_args - Arguments for runtime enable 961 * 962 * Coordinates debug exception signalling and debug device enablement with runtime. 963 * 964 * @r_debug - pointer to user struct for sharing information between ROCr and the debuggger 965 * @mode_mask - mask to set mode 966 * KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK - enable runtime for debugging, otherwise disable 967 * KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK - enable trap temporary setup (ignore on disable) 968 * @capabilities_mask - mask to notify runtime on what KFD supports 969 * 970 * Return - 0 on SUCCESS. 971 * - EBUSY if runtime enable call already pending. 972 * - EEXIST if user queues already active prior to call. 973 * If process is debug enabled, runtime enable will enable debug devices and 974 * wait for debugger process to send runtime exception EC_PROCESS_RUNTIME 975 * to unblock - see kfd_ioctl_dbg_trap_args. 976 * 977 */ 978 struct kfd_ioctl_runtime_enable_args { 979 __u64 r_debug; 980 __u32 mode_mask; 981 __u32 capabilities_mask; 982 }; 983 984 /* Queue information */ 985 struct kfd_queue_snapshot_entry { 986 __u64 exception_status; 987 __u64 ring_base_address; 988 __u64 write_pointer_address; 989 __u64 read_pointer_address; 990 __u64 ctx_save_restore_address; 991 __u32 queue_id; 992 __u32 gpu_id; 993 __u32 ring_size; 994 __u32 queue_type; 995 __u32 ctx_save_restore_area_size; 996 __u32 reserved; 997 }; 998 999 /* Queue status return for suspend/resume */ 1000 #define KFD_DBG_QUEUE_ERROR_BIT 30 1001 #define KFD_DBG_QUEUE_INVALID_BIT 31 1002 #define KFD_DBG_QUEUE_ERROR_MASK (1 << KFD_DBG_QUEUE_ERROR_BIT) 1003 #define KFD_DBG_QUEUE_INVALID_MASK (1 << KFD_DBG_QUEUE_INVALID_BIT) 1004 1005 /* Context save area header information */ 1006 struct kfd_context_save_area_header { 1007 struct { 1008 __u32 control_stack_offset; 1009 __u32 control_stack_size; 1010 __u32 wave_state_offset; 1011 __u32 wave_state_size; 1012 } wave_state; 1013 __u32 debug_offset; 1014 __u32 debug_size; 1015 __u64 err_payload_addr; 1016 __u32 err_event_id; 1017 __u32 reserved1; 1018 }; 1019 1020 /* 1021 * Debug operations 1022 * 1023 * For specifics on usage and return values, see documentation per operation 1024 * below. Otherwise, generic error returns apply: 1025 * - ESRCH if the process to debug does not exist. 1026 * 1027 * - EINVAL (with KFD_IOC_DBG_TRAP_ENABLE exempt) if operation 1028 * KFD_IOC_DBG_TRAP_ENABLE has not succeeded prior. 1029 * Also returns this error if GPU hardware scheduling is not supported. 1030 * 1031 * - EPERM (with KFD_IOC_DBG_TRAP_DISABLE exempt) if target process is not 1032 * PTRACE_ATTACHED. KFD_IOC_DBG_TRAP_DISABLE is exempt to allow 1033 * clean up of debug mode as long as process is debug enabled. 1034 * 1035 * - EACCES if any DBG_HW_OP (debug hardware operation) is requested when 1036 * AMDKFD_IOC_RUNTIME_ENABLE has not succeeded prior. 1037 * 1038 * - ENODEV if any GPU does not support debugging on a DBG_HW_OP call. 1039 * 1040 * - Other errors may be returned when a DBG_HW_OP occurs while the GPU 1041 * is in a fatal state. 1042 * 1043 */ 1044 enum kfd_dbg_trap_operations { 1045 KFD_IOC_DBG_TRAP_ENABLE = 0, 1046 KFD_IOC_DBG_TRAP_DISABLE = 1, 1047 KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT = 2, 1048 KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED = 3, 1049 KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE = 4, /* DBG_HW_OP */ 1050 KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE = 5, /* DBG_HW_OP */ 1051 KFD_IOC_DBG_TRAP_SUSPEND_QUEUES = 6, /* DBG_HW_OP */ 1052 KFD_IOC_DBG_TRAP_RESUME_QUEUES = 7, /* DBG_HW_OP */ 1053 KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH = 8, /* DBG_HW_OP */ 1054 KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH = 9, /* DBG_HW_OP */ 1055 KFD_IOC_DBG_TRAP_SET_FLAGS = 10, 1056 KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT = 11, 1057 KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO = 12, 1058 KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT = 13, 1059 KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT = 14 1060 }; 1061 1062 /** 1063 * kfd_ioctl_dbg_trap_enable_args 1064 * 1065 * Arguments for KFD_IOC_DBG_TRAP_ENABLE. 1066 * 1067 * Enables debug session for target process. Call @op KFD_IOC_DBG_TRAP_DISABLE in 1068 * kfd_ioctl_dbg_trap_args to disable debug session. 1069 * 1070 * @exception_mask (IN) - exceptions to raise to the debugger 1071 * @rinfo_ptr (IN) - pointer to runtime info buffer (see kfd_runtime_info) 1072 * @rinfo_size (IN/OUT) - size of runtime info buffer in bytes 1073 * @dbg_fd (IN) - fd the KFD will nofify the debugger with of raised 1074 * exceptions set in exception_mask. 1075 * 1076 * Generic errors apply (see kfd_dbg_trap_operations). 1077 * Return - 0 on SUCCESS. 1078 * Copies KFD saved kfd_runtime_info to @rinfo_ptr on enable. 1079 * Size of kfd_runtime saved by the KFD returned to @rinfo_size. 1080 * - EBADF if KFD cannot get a reference to dbg_fd. 1081 * - EFAULT if KFD cannot copy runtime info to rinfo_ptr. 1082 * - EINVAL if target process is already debug enabled. 1083 * 1084 */ 1085 struct kfd_ioctl_dbg_trap_enable_args { 1086 __u64 exception_mask; 1087 __u64 rinfo_ptr; 1088 __u32 rinfo_size; 1089 __u32 dbg_fd; 1090 }; 1091 1092 /** 1093 * kfd_ioctl_dbg_trap_send_runtime_event_args 1094 * 1095 * 1096 * Arguments for KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT. 1097 * Raises exceptions to runtime. 1098 * 1099 * @exception_mask (IN) - exceptions to raise to runtime 1100 * @gpu_id (IN) - target device id 1101 * @queue_id (IN) - target queue id 1102 * 1103 * Generic errors apply (see kfd_dbg_trap_operations). 1104 * Return - 0 on SUCCESS. 1105 * - ENODEV if gpu_id not found. 1106 * If exception_mask contains EC_PROCESS_RUNTIME, unblocks pending 1107 * AMDKFD_IOC_RUNTIME_ENABLE call - see kfd_ioctl_runtime_enable_args. 1108 * All other exceptions are raised to runtime through err_payload_addr. 1109 * See kfd_context_save_area_header. 1110 */ 1111 struct kfd_ioctl_dbg_trap_send_runtime_event_args { 1112 __u64 exception_mask; 1113 __u32 gpu_id; 1114 __u32 queue_id; 1115 }; 1116 1117 /** 1118 * kfd_ioctl_dbg_trap_set_exceptions_enabled_args 1119 * 1120 * Arguments for KFD_IOC_SET_EXCEPTIONS_ENABLED 1121 * Set new exceptions to be raised to the debugger. 1122 * 1123 * @exception_mask (IN) - new exceptions to raise the debugger 1124 * 1125 * Generic errors apply (see kfd_dbg_trap_operations). 1126 * Return - 0 on SUCCESS. 1127 */ 1128 struct kfd_ioctl_dbg_trap_set_exceptions_enabled_args { 1129 __u64 exception_mask; 1130 }; 1131 1132 /** 1133 * kfd_ioctl_dbg_trap_set_wave_launch_override_args 1134 * 1135 * Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE 1136 * Enable HW exceptions to raise trap. 1137 * 1138 * @override_mode (IN) - see kfd_dbg_trap_override_mode 1139 * @enable_mask (IN/OUT) - reference kfd_dbg_trap_mask. 1140 * IN is the override modes requested to be enabled. 1141 * OUT is referenced in Return below. 1142 * @support_request_mask (IN/OUT) - reference kfd_dbg_trap_mask. 1143 * IN is the override modes requested for support check. 1144 * OUT is referenced in Return below. 1145 * 1146 * Generic errors apply (see kfd_dbg_trap_operations). 1147 * Return - 0 on SUCCESS. 1148 * Previous enablement is returned in @enable_mask. 1149 * Actual override support is returned in @support_request_mask. 1150 * - EINVAL if override mode is not supported. 1151 * - EACCES if trap support requested is not actually supported. 1152 * i.e. enable_mask (IN) is not a subset of support_request_mask (OUT). 1153 * Otherwise it is considered a generic error (see kfd_dbg_trap_operations). 1154 */ 1155 struct kfd_ioctl_dbg_trap_set_wave_launch_override_args { 1156 __u32 override_mode; 1157 __u32 enable_mask; 1158 __u32 support_request_mask; 1159 __u32 pad; 1160 }; 1161 1162 /** 1163 * kfd_ioctl_dbg_trap_set_wave_launch_mode_args 1164 * 1165 * Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE 1166 * Set wave launch mode. 1167 * 1168 * @mode (IN) - see kfd_dbg_trap_wave_launch_mode 1169 * 1170 * Generic errors apply (see kfd_dbg_trap_operations). 1171 * Return - 0 on SUCCESS. 1172 */ 1173 struct kfd_ioctl_dbg_trap_set_wave_launch_mode_args { 1174 __u32 launch_mode; 1175 __u32 pad; 1176 }; 1177 1178 /** 1179 * kfd_ioctl_dbg_trap_suspend_queues_ags 1180 * 1181 * Arguments for KFD_IOC_DBG_TRAP_SUSPEND_QUEUES 1182 * Suspend queues. 1183 * 1184 * @exception_mask (IN) - raised exceptions to clear 1185 * @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id) 1186 * to suspend 1187 * @num_queues (IN) - number of queues to suspend in @queue_array_ptr 1188 * @grace_period (IN) - wave time allowance before preemption 1189 * per 1K GPU clock cycle unit 1190 * 1191 * Generic errors apply (see kfd_dbg_trap_operations). 1192 * Destruction of a suspended queue is blocked until the queue is 1193 * resumed. This allows the debugger to access queue information and 1194 * the its context save area without running into a race condition on 1195 * queue destruction. 1196 * Automatically copies per queue context save area header information 1197 * into the save area base 1198 * (see kfd_queue_snapshot_entry and kfd_context_save_area_header). 1199 * 1200 * Return - Number of queues suspended on SUCCESS. 1201 * . KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK masked 1202 * for each queue id in @queue_array_ptr array reports unsuccessful 1203 * suspend reason. 1204 * KFD_DBG_QUEUE_ERROR_MASK = HW failure. 1205 * KFD_DBG_QUEUE_INVALID_MASK = queue does not exist, is new or 1206 * is being destroyed. 1207 */ 1208 struct kfd_ioctl_dbg_trap_suspend_queues_args { 1209 __u64 exception_mask; 1210 __u64 queue_array_ptr; 1211 __u32 num_queues; 1212 __u32 grace_period; 1213 }; 1214 1215 /** 1216 * kfd_ioctl_dbg_trap_resume_queues_args 1217 * 1218 * Arguments for KFD_IOC_DBG_TRAP_RESUME_QUEUES 1219 * Resume queues. 1220 * 1221 * @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id) 1222 * to resume 1223 * @num_queues (IN) - number of queues to resume in @queue_array_ptr 1224 * 1225 * Generic errors apply (see kfd_dbg_trap_operations). 1226 * Return - Number of queues resumed on SUCCESS. 1227 * KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK mask 1228 * for each queue id in @queue_array_ptr array reports unsuccessful 1229 * resume reason. 1230 * KFD_DBG_QUEUE_ERROR_MASK = HW failure. 1231 * KFD_DBG_QUEUE_INVALID_MASK = queue does not exist. 1232 */ 1233 struct kfd_ioctl_dbg_trap_resume_queues_args { 1234 __u64 queue_array_ptr; 1235 __u32 num_queues; 1236 __u32 pad; 1237 }; 1238 1239 /** 1240 * kfd_ioctl_dbg_trap_set_node_address_watch_args 1241 * 1242 * Arguments for KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH 1243 * Sets address watch for device. 1244 * 1245 * @address (IN) - watch address to set 1246 * @mode (IN) - see kfd_dbg_trap_address_watch_mode 1247 * @mask (IN) - watch address mask 1248 * @gpu_id (IN) - target gpu to set watch point 1249 * @id (OUT) - watch id allocated 1250 * 1251 * Generic errors apply (see kfd_dbg_trap_operations). 1252 * Return - 0 on SUCCESS. 1253 * Allocated watch ID returned to @id. 1254 * - ENODEV if gpu_id not found. 1255 * - ENOMEM if watch IDs can be allocated 1256 */ 1257 struct kfd_ioctl_dbg_trap_set_node_address_watch_args { 1258 __u64 address; 1259 __u32 mode; 1260 __u32 mask; 1261 __u32 gpu_id; 1262 __u32 id; 1263 }; 1264 1265 /** 1266 * kfd_ioctl_dbg_trap_clear_node_address_watch_args 1267 * 1268 * Arguments for KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH 1269 * Clear address watch for device. 1270 * 1271 * @gpu_id (IN) - target device to clear watch point 1272 * @id (IN) - allocated watch id to clear 1273 * 1274 * Generic errors apply (see kfd_dbg_trap_operations). 1275 * Return - 0 on SUCCESS. 1276 * - ENODEV if gpu_id not found. 1277 * - EINVAL if watch ID has not been allocated. 1278 */ 1279 struct kfd_ioctl_dbg_trap_clear_node_address_watch_args { 1280 __u32 gpu_id; 1281 __u32 id; 1282 }; 1283 1284 /** 1285 * kfd_ioctl_dbg_trap_set_flags_args 1286 * 1287 * Arguments for KFD_IOC_DBG_TRAP_SET_FLAGS 1288 * Sets flags for wave behaviour. 1289 * 1290 * @flags (IN/OUT) - IN = flags to enable, OUT = flags previously enabled 1291 * 1292 * Generic errors apply (see kfd_dbg_trap_operations). 1293 * Return - 0 on SUCCESS. 1294 * - EACCESS if any debug device does not allow flag options. 1295 */ 1296 struct kfd_ioctl_dbg_trap_set_flags_args { 1297 __u32 flags; 1298 __u32 pad; 1299 }; 1300 1301 /** 1302 * kfd_ioctl_dbg_trap_query_debug_event_args 1303 * 1304 * Arguments for KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT 1305 * 1306 * Find one or more raised exceptions. This function can return multiple 1307 * exceptions from a single queue or a single device with one call. To find 1308 * all raised exceptions, this function must be called repeatedly until it 1309 * returns -EAGAIN. Returned exceptions can optionally be cleared by 1310 * setting the corresponding bit in the @exception_mask input parameter. 1311 * However, clearing an exception prevents retrieving further information 1312 * about it with KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO. 1313 * 1314 * @exception_mask (IN/OUT) - exception to clear (IN) and raised (OUT) 1315 * @gpu_id (OUT) - gpu id of exceptions raised 1316 * @queue_id (OUT) - queue id of exceptions raised 1317 * 1318 * Generic errors apply (see kfd_dbg_trap_operations). 1319 * Return - 0 on raised exception found 1320 * Raised exceptions found are returned in @exception mask 1321 * with reported source id returned in @gpu_id or @queue_id. 1322 * - EAGAIN if no raised exception has been found 1323 */ 1324 struct kfd_ioctl_dbg_trap_query_debug_event_args { 1325 __u64 exception_mask; 1326 __u32 gpu_id; 1327 __u32 queue_id; 1328 }; 1329 1330 /** 1331 * kfd_ioctl_dbg_trap_query_exception_info_args 1332 * 1333 * Arguments KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO 1334 * Get additional info on raised exception. 1335 * 1336 * @info_ptr (IN) - pointer to exception info buffer to copy to 1337 * @info_size (IN/OUT) - exception info buffer size (bytes) 1338 * @source_id (IN) - target gpu or queue id 1339 * @exception_code (IN) - target exception 1340 * @clear_exception (IN) - clear raised @exception_code exception 1341 * (0 = false, 1 = true) 1342 * 1343 * Generic errors apply (see kfd_dbg_trap_operations). 1344 * Return - 0 on SUCCESS. 1345 * If @exception_code is EC_DEVICE_MEMORY_VIOLATION, copy @info_size(OUT) 1346 * bytes of memory exception data to @info_ptr. 1347 * If @exception_code is EC_PROCESS_RUNTIME, copy saved 1348 * kfd_runtime_info to @info_ptr. 1349 * Actual required @info_ptr size (bytes) is returned in @info_size. 1350 */ 1351 struct kfd_ioctl_dbg_trap_query_exception_info_args { 1352 __u64 info_ptr; 1353 __u32 info_size; 1354 __u32 source_id; 1355 __u32 exception_code; 1356 __u32 clear_exception; 1357 }; 1358 1359 /** 1360 * kfd_ioctl_dbg_trap_get_queue_snapshot_args 1361 * 1362 * Arguments KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT 1363 * Get queue information. 1364 * 1365 * @exception_mask (IN) - exceptions raised to clear 1366 * @snapshot_buf_ptr (IN) - queue snapshot entry buffer (see kfd_queue_snapshot_entry) 1367 * @num_queues (IN/OUT) - number of queue snapshot entries 1368 * The debugger specifies the size of the array allocated in @num_queues. 1369 * KFD returns the number of queues that actually existed. If this is 1370 * larger than the size specified by the debugger, KFD will not overflow 1371 * the array allocated by the debugger. 1372 * 1373 * @entry_size (IN/OUT) - size per entry in bytes 1374 * The debugger specifies sizeof(struct kfd_queue_snapshot_entry) in 1375 * @entry_size. KFD returns the number of bytes actually populated per 1376 * entry. The debugger should use the KFD_IOCTL_MINOR_VERSION to determine, 1377 * which fields in struct kfd_queue_snapshot_entry are valid. This allows 1378 * growing the ABI in a backwards compatible manner. 1379 * Note that entry_size(IN) should still be used to stride the snapshot buffer in the 1380 * event that it's larger than actual kfd_queue_snapshot_entry. 1381 * 1382 * Generic errors apply (see kfd_dbg_trap_operations). 1383 * Return - 0 on SUCCESS. 1384 * Copies @num_queues(IN) queue snapshot entries of size @entry_size(IN) 1385 * into @snapshot_buf_ptr if @num_queues(IN) > 0. 1386 * Otherwise return @num_queues(OUT) queue snapshot entries that exist. 1387 */ 1388 struct kfd_ioctl_dbg_trap_queue_snapshot_args { 1389 __u64 exception_mask; 1390 __u64 snapshot_buf_ptr; 1391 __u32 num_queues; 1392 __u32 entry_size; 1393 }; 1394 1395 /** 1396 * kfd_ioctl_dbg_trap_get_device_snapshot_args 1397 * 1398 * Arguments for KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT 1399 * Get device information. 1400 * 1401 * @exception_mask (IN) - exceptions raised to clear 1402 * @snapshot_buf_ptr (IN) - pointer to snapshot buffer (see kfd_dbg_device_info_entry) 1403 * @num_devices (IN/OUT) - number of debug devices to snapshot 1404 * The debugger specifies the size of the array allocated in @num_devices. 1405 * KFD returns the number of devices that actually existed. If this is 1406 * larger than the size specified by the debugger, KFD will not overflow 1407 * the array allocated by the debugger. 1408 * 1409 * @entry_size (IN/OUT) - size per entry in bytes 1410 * The debugger specifies sizeof(struct kfd_dbg_device_info_entry) in 1411 * @entry_size. KFD returns the number of bytes actually populated. The 1412 * debugger should use KFD_IOCTL_MINOR_VERSION to determine, which fields 1413 * in struct kfd_dbg_device_info_entry are valid. This allows growing the 1414 * ABI in a backwards compatible manner. 1415 * Note that entry_size(IN) should still be used to stride the snapshot buffer in the 1416 * event that it's larger than actual kfd_dbg_device_info_entry. 1417 * 1418 * Generic errors apply (see kfd_dbg_trap_operations). 1419 * Return - 0 on SUCCESS. 1420 * Copies @num_devices(IN) device snapshot entries of size @entry_size(IN) 1421 * into @snapshot_buf_ptr if @num_devices(IN) > 0. 1422 * Otherwise return @num_devices(OUT) queue snapshot entries that exist. 1423 */ 1424 struct kfd_ioctl_dbg_trap_device_snapshot_args { 1425 __u64 exception_mask; 1426 __u64 snapshot_buf_ptr; 1427 __u32 num_devices; 1428 __u32 entry_size; 1429 }; 1430 1431 /** 1432 * kfd_ioctl_dbg_trap_args 1433 * 1434 * Arguments to debug target process. 1435 * 1436 * @pid - target process to debug 1437 * @op - debug operation (see kfd_dbg_trap_operations) 1438 * 1439 * @op determines which union struct args to use. 1440 * Refer to kern docs for each kfd_ioctl_dbg_trap_*_args struct. 1441 */ 1442 struct kfd_ioctl_dbg_trap_args { 1443 __u32 pid; 1444 __u32 op; 1445 1446 union { 1447 struct kfd_ioctl_dbg_trap_enable_args enable; 1448 struct kfd_ioctl_dbg_trap_send_runtime_event_args send_runtime_event; 1449 struct kfd_ioctl_dbg_trap_set_exceptions_enabled_args set_exceptions_enabled; 1450 struct kfd_ioctl_dbg_trap_set_wave_launch_override_args launch_override; 1451 struct kfd_ioctl_dbg_trap_set_wave_launch_mode_args launch_mode; 1452 struct kfd_ioctl_dbg_trap_suspend_queues_args suspend_queues; 1453 struct kfd_ioctl_dbg_trap_resume_queues_args resume_queues; 1454 struct kfd_ioctl_dbg_trap_set_node_address_watch_args set_node_address_watch; 1455 struct kfd_ioctl_dbg_trap_clear_node_address_watch_args clear_node_address_watch; 1456 struct kfd_ioctl_dbg_trap_set_flags_args set_flags; 1457 struct kfd_ioctl_dbg_trap_query_debug_event_args query_debug_event; 1458 struct kfd_ioctl_dbg_trap_query_exception_info_args query_exception_info; 1459 struct kfd_ioctl_dbg_trap_queue_snapshot_args queue_snapshot; 1460 struct kfd_ioctl_dbg_trap_device_snapshot_args device_snapshot; 1461 }; 1462 }; 1463 1464 #define AMDKFD_IOCTL_BASE 'K' 1465 #define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr) 1466 #define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type) 1467 #define AMDKFD_IOW(nr, type) _IOW(AMDKFD_IOCTL_BASE, nr, type) 1468 #define AMDKFD_IOWR(nr, type) _IOWR(AMDKFD_IOCTL_BASE, nr, type) 1469 1470 #define AMDKFD_IOC_GET_VERSION \ 1471 AMDKFD_IOR(0x01, struct kfd_ioctl_get_version_args) 1472 1473 #define AMDKFD_IOC_CREATE_QUEUE \ 1474 AMDKFD_IOWR(0x02, struct kfd_ioctl_create_queue_args) 1475 1476 #define AMDKFD_IOC_DESTROY_QUEUE \ 1477 AMDKFD_IOWR(0x03, struct kfd_ioctl_destroy_queue_args) 1478 1479 #define AMDKFD_IOC_SET_MEMORY_POLICY \ 1480 AMDKFD_IOW(0x04, struct kfd_ioctl_set_memory_policy_args) 1481 1482 #define AMDKFD_IOC_GET_CLOCK_COUNTERS \ 1483 AMDKFD_IOWR(0x05, struct kfd_ioctl_get_clock_counters_args) 1484 1485 #define AMDKFD_IOC_GET_PROCESS_APERTURES \ 1486 AMDKFD_IOR(0x06, struct kfd_ioctl_get_process_apertures_args) 1487 1488 #define AMDKFD_IOC_UPDATE_QUEUE \ 1489 AMDKFD_IOW(0x07, struct kfd_ioctl_update_queue_args) 1490 1491 #define AMDKFD_IOC_CREATE_EVENT \ 1492 AMDKFD_IOWR(0x08, struct kfd_ioctl_create_event_args) 1493 1494 #define AMDKFD_IOC_DESTROY_EVENT \ 1495 AMDKFD_IOW(0x09, struct kfd_ioctl_destroy_event_args) 1496 1497 #define AMDKFD_IOC_SET_EVENT \ 1498 AMDKFD_IOW(0x0A, struct kfd_ioctl_set_event_args) 1499 1500 #define AMDKFD_IOC_RESET_EVENT \ 1501 AMDKFD_IOW(0x0B, struct kfd_ioctl_reset_event_args) 1502 1503 #define AMDKFD_IOC_WAIT_EVENTS \ 1504 AMDKFD_IOWR(0x0C, struct kfd_ioctl_wait_events_args) 1505 1506 #define AMDKFD_IOC_DBG_REGISTER_DEPRECATED \ 1507 AMDKFD_IOW(0x0D, struct kfd_ioctl_dbg_register_args) 1508 1509 #define AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED \ 1510 AMDKFD_IOW(0x0E, struct kfd_ioctl_dbg_unregister_args) 1511 1512 #define AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED \ 1513 AMDKFD_IOW(0x0F, struct kfd_ioctl_dbg_address_watch_args) 1514 1515 #define AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED \ 1516 AMDKFD_IOW(0x10, struct kfd_ioctl_dbg_wave_control_args) 1517 1518 #define AMDKFD_IOC_SET_SCRATCH_BACKING_VA \ 1519 AMDKFD_IOWR(0x11, struct kfd_ioctl_set_scratch_backing_va_args) 1520 1521 #define AMDKFD_IOC_GET_TILE_CONFIG \ 1522 AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args) 1523 1524 #define AMDKFD_IOC_SET_TRAP_HANDLER \ 1525 AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args) 1526 1527 #define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW \ 1528 AMDKFD_IOWR(0x14, \ 1529 struct kfd_ioctl_get_process_apertures_new_args) 1530 1531 #define AMDKFD_IOC_ACQUIRE_VM \ 1532 AMDKFD_IOW(0x15, struct kfd_ioctl_acquire_vm_args) 1533 1534 #define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU \ 1535 AMDKFD_IOWR(0x16, struct kfd_ioctl_alloc_memory_of_gpu_args) 1536 1537 #define AMDKFD_IOC_FREE_MEMORY_OF_GPU \ 1538 AMDKFD_IOW(0x17, struct kfd_ioctl_free_memory_of_gpu_args) 1539 1540 #define AMDKFD_IOC_MAP_MEMORY_TO_GPU \ 1541 AMDKFD_IOWR(0x18, struct kfd_ioctl_map_memory_to_gpu_args) 1542 1543 #define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU \ 1544 AMDKFD_IOWR(0x19, struct kfd_ioctl_unmap_memory_from_gpu_args) 1545 1546 #define AMDKFD_IOC_SET_CU_MASK \ 1547 AMDKFD_IOW(0x1A, struct kfd_ioctl_set_cu_mask_args) 1548 1549 #define AMDKFD_IOC_GET_QUEUE_WAVE_STATE \ 1550 AMDKFD_IOWR(0x1B, struct kfd_ioctl_get_queue_wave_state_args) 1551 1552 #define AMDKFD_IOC_GET_DMABUF_INFO \ 1553 AMDKFD_IOWR(0x1C, struct kfd_ioctl_get_dmabuf_info_args) 1554 1555 #define AMDKFD_IOC_IMPORT_DMABUF \ 1556 AMDKFD_IOWR(0x1D, struct kfd_ioctl_import_dmabuf_args) 1557 1558 #define AMDKFD_IOC_ALLOC_QUEUE_GWS \ 1559 AMDKFD_IOWR(0x1E, struct kfd_ioctl_alloc_queue_gws_args) 1560 1561 #define AMDKFD_IOC_SMI_EVENTS \ 1562 AMDKFD_IOWR(0x1F, struct kfd_ioctl_smi_events_args) 1563 1564 #define AMDKFD_IOC_SVM AMDKFD_IOWR(0x20, struct kfd_ioctl_svm_args) 1565 1566 #define AMDKFD_IOC_SET_XNACK_MODE \ 1567 AMDKFD_IOWR(0x21, struct kfd_ioctl_set_xnack_mode_args) 1568 1569 #define AMDKFD_IOC_CRIU_OP \ 1570 AMDKFD_IOWR(0x22, struct kfd_ioctl_criu_args) 1571 1572 #define AMDKFD_IOC_AVAILABLE_MEMORY \ 1573 AMDKFD_IOWR(0x23, struct kfd_ioctl_get_available_memory_args) 1574 1575 #define AMDKFD_IOC_EXPORT_DMABUF \ 1576 AMDKFD_IOWR(0x24, struct kfd_ioctl_export_dmabuf_args) 1577 1578 #define AMDKFD_IOC_RUNTIME_ENABLE \ 1579 AMDKFD_IOWR(0x25, struct kfd_ioctl_runtime_enable_args) 1580 1581 #define AMDKFD_IOC_DBG_TRAP \ 1582 AMDKFD_IOWR(0x26, struct kfd_ioctl_dbg_trap_args) 1583 1584 #define AMDKFD_COMMAND_START 0x01 1585 #define AMDKFD_COMMAND_END 0x27 1586 1587 #endif 1588
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.