1 /* SPDX-License-Identifier: MIT */ 2 /****************************************************************************** 3 * xen.h 4 * 5 * Guest OS interface to Xen. 6 * 7 * Copyright (c) 2004, K A Fraser 8 */ 9 10 #ifndef __XEN_PUBLIC_XEN_H__ 11 #define __XEN_PUBLIC_XEN_H__ 12 13 #include <asm/xen/interface.h> 14 15 /* 16 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS). 17 */ 18 19 /* 20 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5. 21 * EAX = return value 22 * (argument registers may be clobbered on return) 23 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6. 24 * RAX = return value 25 * (argument registers not clobbered on return; RCX, R11 are) 26 */ 27 #define __HYPERVISOR_set_trap_table 0 28 #define __HYPERVISOR_mmu_update 1 29 #define __HYPERVISOR_set_gdt 2 30 #define __HYPERVISOR_stack_switch 3 31 #define __HYPERVISOR_set_callbacks 4 32 #define __HYPERVISOR_fpu_taskswitch 5 33 #define __HYPERVISOR_sched_op_compat 6 34 #define __HYPERVISOR_platform_op 7 35 #define __HYPERVISOR_set_debugreg 8 36 #define __HYPERVISOR_get_debugreg 9 37 #define __HYPERVISOR_update_descriptor 10 38 #define __HYPERVISOR_memory_op 12 39 #define __HYPERVISOR_multicall 13 40 #define __HYPERVISOR_update_va_mapping 14 41 #define __HYPERVISOR_set_timer_op 15 42 #define __HYPERVISOR_event_channel_op_compat 16 43 #define __HYPERVISOR_xen_version 17 44 #define __HYPERVISOR_console_io 18 45 #define __HYPERVISOR_physdev_op_compat 19 46 #define __HYPERVISOR_grant_table_op 20 47 #define __HYPERVISOR_vm_assist 21 48 #define __HYPERVISOR_update_va_mapping_otherdomain 22 49 #define __HYPERVISOR_iret 23 /* x86 only */ 50 #define __HYPERVISOR_vcpu_op 24 51 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */ 52 #define __HYPERVISOR_mmuext_op 26 53 #define __HYPERVISOR_xsm_op 27 54 #define __HYPERVISOR_nmi_op 28 55 #define __HYPERVISOR_sched_op 29 56 #define __HYPERVISOR_callback_op 30 57 #define __HYPERVISOR_xenoprof_op 31 58 #define __HYPERVISOR_event_channel_op 32 59 #define __HYPERVISOR_physdev_op 33 60 #define __HYPERVISOR_hvm_op 34 61 #define __HYPERVISOR_sysctl 35 62 #define __HYPERVISOR_domctl 36 63 #define __HYPERVISOR_kexec_op 37 64 #define __HYPERVISOR_tmem_op 38 65 #define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */ 66 #define __HYPERVISOR_xenpmu_op 40 67 #define __HYPERVISOR_dm_op 41 68 69 /* Architecture-specific hypercall definitions. */ 70 #define __HYPERVISOR_arch_0 48 71 #define __HYPERVISOR_arch_1 49 72 #define __HYPERVISOR_arch_2 50 73 #define __HYPERVISOR_arch_3 51 74 #define __HYPERVISOR_arch_4 52 75 #define __HYPERVISOR_arch_5 53 76 #define __HYPERVISOR_arch_6 54 77 #define __HYPERVISOR_arch_7 55 78 79 /* 80 * VIRTUAL INTERRUPTS 81 * 82 * Virtual interrupts that a guest OS may receive from Xen. 83 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a 84 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound. 85 * The latter can be allocated only once per guest: they must initially be 86 * allocated to VCPU0 but can subsequently be re-bound. 87 */ 88 #define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */ 89 #define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */ 90 #define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */ 91 #define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */ 92 #define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */ 93 #define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */ 94 #define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */ 95 #define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */ 96 #define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */ 97 #define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */ 98 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */ 99 #define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */ 100 #define VIRQ_XENPMU 13 /* PMC interrupt */ 101 102 /* Architecture-specific VIRQ definitions. */ 103 #define VIRQ_ARCH_0 16 104 #define VIRQ_ARCH_1 17 105 #define VIRQ_ARCH_2 18 106 #define VIRQ_ARCH_3 19 107 #define VIRQ_ARCH_4 20 108 #define VIRQ_ARCH_5 21 109 #define VIRQ_ARCH_6 22 110 #define VIRQ_ARCH_7 23 111 112 #define NR_VIRQS 24 113 114 /* 115 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[], 116 * unsigned count, unsigned *done_out, 117 * unsigned foreigndom) 118 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs). 119 * @count is the length of the above array. 120 * @pdone is an output parameter indicating number of completed operations 121 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this 122 * hypercall invocation. Can be DOMID_SELF. 123 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced 124 * in this hypercall invocation. The value of this field 125 * (x) encodes the PFD as follows: 126 * x == 0 => PFD == DOMID_SELF 127 * x != 0 => PFD == x - 1 128 * 129 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command. 130 * ------------- 131 * ptr[1:0] == MMU_NORMAL_PT_UPDATE: 132 * Updates an entry in a page table belonging to PFD. If updating an L1 table, 133 * and the new table entry is valid/present, the mapped frame must belong to 134 * FD. If attempting to map an I/O page then the caller assumes the privilege 135 * of the FD. 136 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller. 137 * FD == DOMID_XEN: Map restricted areas of Xen's heap space. 138 * ptr[:2] -- Machine address of the page-table entry to modify. 139 * val -- Value to write. 140 * 141 * There also certain implicit requirements when using this hypercall. The 142 * pages that make up a pagetable must be mapped read-only in the guest. 143 * This prevents uncontrolled guest updates to the pagetable. Xen strictly 144 * enforces this, and will disallow any pagetable update which will end up 145 * mapping pagetable page RW, and will disallow using any writable page as a 146 * pagetable. In practice it means that when constructing a page table for a 147 * process, thread, etc, we MUST be very dilligient in following these rules: 148 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out 149 * the entries. 150 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD 151 * or L2). 152 * 3). Start filling out the PTE table (L1) with the PTE entries. Once 153 * done, make sure to set each of those entries to RO (so writeable bit 154 * is unset). Once that has been completed, set the PMD (L2) for this 155 * PTE table as RO. 156 * 4). When completed with all of the PMD (L2) entries, and all of them have 157 * been set to RO, make sure to set RO the PUD (L3). Do the same 158 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry. 159 * 5). Now before you can use those pages (so setting the cr3), you MUST also 160 * pin them so that the hypervisor can verify the entries. This is done 161 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame 162 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op( 163 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be 164 * issued. 165 * For 32-bit guests, the L4 is not used (as there is less pagetables), so 166 * instead use L3. 167 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE 168 * hypercall. Also if so desired the OS can also try to write to the PTE 169 * and be trapped by the hypervisor (as the PTE entry is RO). 170 * 171 * To deallocate the pages, the operations are the reverse of the steps 172 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the 173 * pagetable MUST not be in use (meaning that the cr3 is not set to it). 174 * 175 * ptr[1:0] == MMU_MACHPHYS_UPDATE: 176 * Updates an entry in the machine->pseudo-physical mapping table. 177 * ptr[:2] -- Machine address within the frame whose mapping to modify. 178 * The frame must belong to the FD, if one is specified. 179 * val -- Value to write into the mapping entry. 180 * 181 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD: 182 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed 183 * with those in @val. 184 * 185 * @val is usually the machine frame number along with some attributes. 186 * The attributes by default follow the architecture defined bits. Meaning that 187 * if this is a X86_64 machine and four page table layout is used, the layout 188 * of val is: 189 * - 63 if set means No execute (NX) 190 * - 46-13 the machine frame number 191 * - 12 available for guest 192 * - 11 available for guest 193 * - 10 available for guest 194 * - 9 available for guest 195 * - 8 global 196 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages) 197 * - 6 dirty 198 * - 5 accessed 199 * - 4 page cached disabled 200 * - 3 page write through 201 * - 2 userspace accessible 202 * - 1 writeable 203 * - 0 present 204 * 205 * The one bits that does not fit with the default layout is the PAGE_PSE 206 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the 207 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB 208 * (or 2MB) instead of using the PAGE_PSE bit. 209 * 210 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen 211 * using it as the Page Attribute Table (PAT) bit - for details on it please 212 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of 213 * pages instead of using MTRRs. 214 * 215 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits): 216 * PAT4 PAT0 217 * +-----+-----+----+----+----+-----+----+----+ 218 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux 219 * +-----+-----+----+----+----+-----+----+----+ 220 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots) 221 * +-----+-----+----+----+----+-----+----+----+ 222 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen 223 * +-----+-----+----+----+----+-----+----+----+ 224 * 225 * The lookup of this index table translates to looking up 226 * Bit 7, Bit 4, and Bit 3 of val entry: 227 * 228 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3). 229 * 230 * If all bits are off, then we are using PAT0. If bit 3 turned on, 231 * then we are using PAT1, if bit 3 and bit 4, then PAT2.. 232 * 233 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means 234 * that if a guest that follows Linux's PAT setup and would like to set Write 235 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is 236 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the 237 * caching as: 238 * 239 * WB = none (so PAT0) 240 * WC = PWT (bit 3 on) 241 * UC = PWT | PCD (bit 3 and 4 are on). 242 * 243 * To make it work with Xen, it needs to translate the WC bit as so: 244 * 245 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3 246 * 247 * And to translate back it would: 248 * 249 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7. 250 */ 251 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */ 252 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */ 253 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */ 254 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA. */ 255 256 /* 257 * MMU EXTENDED OPERATIONS 258 * 259 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[], 260 * unsigned int count, 261 * unsigned int *pdone, 262 * unsigned int foreigndom) 263 */ 264 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures. 265 * A foreigndom (FD) can be specified (or DOMID_SELF for none). 266 * Where the FD has some effect, it is described below. 267 * 268 * cmd: MMUEXT_(UN)PIN_*_TABLE 269 * mfn: Machine frame number to be (un)pinned as a p.t. page. 270 * The frame must belong to the FD, if one is specified. 271 * 272 * cmd: MMUEXT_NEW_BASEPTR 273 * mfn: Machine frame number of new page-table base to install in MMU. 274 * 275 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only] 276 * mfn: Machine frame number of new page-table base to install in MMU 277 * when in user space. 278 * 279 * cmd: MMUEXT_TLB_FLUSH_LOCAL 280 * No additional arguments. Flushes local TLB. 281 * 282 * cmd: MMUEXT_INVLPG_LOCAL 283 * linear_addr: Linear address to be flushed from the local TLB. 284 * 285 * cmd: MMUEXT_TLB_FLUSH_MULTI 286 * vcpumask: Pointer to bitmap of VCPUs to be flushed. 287 * 288 * cmd: MMUEXT_INVLPG_MULTI 289 * linear_addr: Linear address to be flushed. 290 * vcpumask: Pointer to bitmap of VCPUs to be flushed. 291 * 292 * cmd: MMUEXT_TLB_FLUSH_ALL 293 * No additional arguments. Flushes all VCPUs' TLBs. 294 * 295 * cmd: MMUEXT_INVLPG_ALL 296 * linear_addr: Linear address to be flushed from all VCPUs' TLBs. 297 * 298 * cmd: MMUEXT_FLUSH_CACHE 299 * No additional arguments. Writes back and flushes cache contents. 300 * 301 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL 302 * No additional arguments. Writes back and flushes cache contents 303 * on all CPUs in the system. 304 * 305 * cmd: MMUEXT_SET_LDT 306 * linear_addr: Linear address of LDT base (NB. must be page-aligned). 307 * nr_ents: Number of entries in LDT. 308 * 309 * cmd: MMUEXT_CLEAR_PAGE 310 * mfn: Machine frame number to be cleared. 311 * 312 * cmd: MMUEXT_COPY_PAGE 313 * mfn: Machine frame number of the destination page. 314 * src_mfn: Machine frame number of the source page. 315 * 316 * cmd: MMUEXT_[UN]MARK_SUPER 317 * mfn: Machine frame number of head of superpage to be [un]marked. 318 */ 319 #define MMUEXT_PIN_L1_TABLE 0 320 #define MMUEXT_PIN_L2_TABLE 1 321 #define MMUEXT_PIN_L3_TABLE 2 322 #define MMUEXT_PIN_L4_TABLE 3 323 #define MMUEXT_UNPIN_TABLE 4 324 #define MMUEXT_NEW_BASEPTR 5 325 #define MMUEXT_TLB_FLUSH_LOCAL 6 326 #define MMUEXT_INVLPG_LOCAL 7 327 #define MMUEXT_TLB_FLUSH_MULTI 8 328 #define MMUEXT_INVLPG_MULTI 9 329 #define MMUEXT_TLB_FLUSH_ALL 10 330 #define MMUEXT_INVLPG_ALL 11 331 #define MMUEXT_FLUSH_CACHE 12 332 #define MMUEXT_SET_LDT 13 333 #define MMUEXT_NEW_USER_BASEPTR 15 334 #define MMUEXT_CLEAR_PAGE 16 335 #define MMUEXT_COPY_PAGE 17 336 #define MMUEXT_FLUSH_CACHE_GLOBAL 18 337 #define MMUEXT_MARK_SUPER 19 338 #define MMUEXT_UNMARK_SUPER 20 339 340 #ifndef __ASSEMBLY__ 341 struct mmuext_op { 342 unsigned int cmd; 343 union { 344 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR 345 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */ 346 xen_pfn_t mfn; 347 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */ 348 unsigned long linear_addr; 349 } arg1; 350 union { 351 /* SET_LDT */ 352 unsigned int nr_ents; 353 /* TLB_FLUSH_MULTI, INVLPG_MULTI */ 354 void *vcpumask; 355 /* COPY_PAGE */ 356 xen_pfn_t src_mfn; 357 } arg2; 358 }; 359 DEFINE_GUEST_HANDLE_STRUCT(mmuext_op); 360 #endif 361 362 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */ 363 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */ 364 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */ 365 #define UVMF_NONE (0UL<<0) /* No flushing at all. */ 366 #define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */ 367 #define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */ 368 #define UVMF_FLUSHTYPE_MASK (3UL<<0) 369 #define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */ 370 #define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */ 371 #define UVMF_ALL (1UL<<2) /* Flush all TLBs. */ 372 373 /* 374 * Commands to HYPERVISOR_console_io(). 375 */ 376 #define CONSOLEIO_write 0 377 #define CONSOLEIO_read 1 378 379 /* 380 * Commands to HYPERVISOR_vm_assist(). 381 */ 382 #define VMASST_CMD_enable 0 383 #define VMASST_CMD_disable 1 384 385 /* x86/32 guests: simulate full 4GB segment limits. */ 386 #define VMASST_TYPE_4gb_segments 0 387 388 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */ 389 #define VMASST_TYPE_4gb_segments_notify 1 390 391 /* 392 * x86 guests: support writes to bottom-level PTEs. 393 * NB1. Page-directory entries cannot be written. 394 * NB2. Guest must continue to remove all writable mappings of PTEs. 395 */ 396 #define VMASST_TYPE_writable_pagetables 2 397 398 /* x86/PAE guests: support PDPTs above 4GB. */ 399 #define VMASST_TYPE_pae_extended_cr3 3 400 401 /* 402 * x86 guests: Sane behaviour for virtual iopl 403 * - virtual iopl updated from do_iret() hypercalls. 404 * - virtual iopl reported in bounce frames. 405 * - guest kernels assumed to be level 0 for the purpose of iopl checks. 406 */ 407 #define VMASST_TYPE_architectural_iopl 4 408 409 /* 410 * All guests: activate update indicator in vcpu_runstate_info 411 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped 412 * vcpu_runstate_info during updates of the runstate information. 413 */ 414 #define VMASST_TYPE_runstate_update_flag 5 415 416 #define MAX_VMASST_TYPE 5 417 418 #ifndef __ASSEMBLY__ 419 420 typedef uint16_t domid_t; 421 422 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */ 423 #define DOMID_FIRST_RESERVED (0x7FF0U) 424 425 /* DOMID_SELF is used in certain contexts to refer to oneself. */ 426 #define DOMID_SELF (0x7FF0U) 427 428 /* 429 * DOMID_IO is used to restrict page-table updates to mapping I/O memory. 430 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO 431 * is useful to ensure that no mappings to the OS's own heap are accidentally 432 * installed. (e.g., in Linux this could cause havoc as reference counts 433 * aren't adjusted on the I/O-mapping code path). 434 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can 435 * be specified by any calling domain. 436 */ 437 #define DOMID_IO (0x7FF1U) 438 439 /* 440 * DOMID_XEN is used to allow privileged domains to map restricted parts of 441 * Xen's heap space (e.g., the machine_to_phys table). 442 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if 443 * the caller is privileged. 444 */ 445 #define DOMID_XEN (0x7FF2U) 446 447 /* DOMID_COW is used as the owner of sharable pages */ 448 #define DOMID_COW (0x7FF3U) 449 450 /* DOMID_INVALID is used to identify pages with unknown owner. */ 451 #define DOMID_INVALID (0x7FF4U) 452 453 /* Idle domain. */ 454 #define DOMID_IDLE (0x7FFFU) 455 456 /* 457 * Send an array of these to HYPERVISOR_mmu_update(). 458 * NB. The fields are natural pointer/address size for this architecture. 459 */ 460 struct mmu_update { 461 uint64_t ptr; /* Machine address of PTE. */ 462 uint64_t val; /* New contents of PTE. */ 463 }; 464 DEFINE_GUEST_HANDLE_STRUCT(mmu_update); 465 466 /* 467 * Send an array of these to HYPERVISOR_multicall(). 468 * NB. The fields are logically the natural register size for this 469 * architecture. In cases where xen_ulong_t is larger than this then 470 * any unused bits in the upper portion must be zero. 471 */ 472 struct multicall_entry { 473 xen_ulong_t op; 474 xen_long_t result; 475 xen_ulong_t args[6]; 476 }; 477 DEFINE_GUEST_HANDLE_STRUCT(multicall_entry); 478 479 struct vcpu_time_info { 480 /* 481 * Updates to the following values are preceded and followed 482 * by an increment of 'version'. The guest can therefore 483 * detect updates by looking for changes to 'version'. If the 484 * least-significant bit of the version number is set then an 485 * update is in progress and the guest must wait to read a 486 * consistent set of values. The correct way to interact with 487 * the version number is similar to Linux's seqlock: see the 488 * implementations of read_seqbegin/read_seqretry. 489 */ 490 uint32_t version; 491 uint32_t pad0; 492 uint64_t tsc_timestamp; /* TSC at last update of time vals. */ 493 uint64_t system_time; /* Time, in nanosecs, since boot. */ 494 /* 495 * Current system time: 496 * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul 497 * CPU frequency (Hz): 498 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift 499 */ 500 uint32_t tsc_to_system_mul; 501 int8_t tsc_shift; 502 int8_t pad1[3]; 503 }; /* 32 bytes */ 504 505 struct vcpu_info { 506 /* 507 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate 508 * a pending notification for a particular VCPU. It is then cleared 509 * by the guest OS /before/ checking for pending work, thus avoiding 510 * a set-and-check race. Note that the mask is only accessed by Xen 511 * on the CPU that is currently hosting the VCPU. This means that the 512 * pending and mask flags can be updated by the guest without special 513 * synchronisation (i.e., no need for the x86 LOCK prefix). 514 * This may seem suboptimal because if the pending flag is set by 515 * a different CPU then an IPI may be scheduled even when the mask 516 * is set. However, note: 517 * 1. The task of 'interrupt holdoff' is covered by the per-event- 518 * channel mask bits. A 'noisy' event that is continually being 519 * triggered can be masked at source at this very precise 520 * granularity. 521 * 2. The main purpose of the per-VCPU mask is therefore to restrict 522 * reentrant execution: whether for concurrency control, or to 523 * prevent unbounded stack usage. Whatever the purpose, we expect 524 * that the mask will be asserted only for short periods at a time, 525 * and so the likelihood of a 'spurious' IPI is suitably small. 526 * The mask is read before making an event upcall to the guest: a 527 * non-zero mask therefore guarantees that the VCPU will not receive 528 * an upcall activation. The mask is cleared when the VCPU requests 529 * to block: this avoids wakeup-waiting races. 530 */ 531 uint8_t evtchn_upcall_pending; 532 uint8_t evtchn_upcall_mask; 533 xen_ulong_t evtchn_pending_sel; 534 struct arch_vcpu_info arch; 535 struct pvclock_vcpu_time_info time; 536 }; /* 64 bytes (x86) */ 537 538 /* 539 * Xen/kernel shared data -- pointer provided in start_info. 540 * NB. We expect that this struct is smaller than a page. 541 */ 542 struct shared_info { 543 struct vcpu_info vcpu_info[MAX_VIRT_CPUS]; 544 545 /* 546 * A domain can create "event channels" on which it can send and receive 547 * asynchronous event notifications. There are three classes of event that 548 * are delivered by this mechanism: 549 * 1. Bi-directional inter- and intra-domain connections. Domains must 550 * arrange out-of-band to set up a connection (usually by allocating 551 * an unbound 'listener' port and avertising that via a storage service 552 * such as xenstore). 553 * 2. Physical interrupts. A domain with suitable hardware-access 554 * privileges can bind an event-channel port to a physical interrupt 555 * source. 556 * 3. Virtual interrupts ('events'). A domain can bind an event-channel 557 * port to a virtual interrupt source, such as the virtual-timer 558 * device or the emergency console. 559 * 560 * Event channels are addressed by a "port index". Each channel is 561 * associated with two bits of information: 562 * 1. PENDING -- notifies the domain that there is a pending notification 563 * to be processed. This bit is cleared by the guest. 564 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING 565 * will cause an asynchronous upcall to be scheduled. This bit is only 566 * updated by the guest. It is read-only within Xen. If a channel 567 * becomes pending while the channel is masked then the 'edge' is lost 568 * (i.e., when the channel is unmasked, the guest must manually handle 569 * pending notifications as no upcall will be scheduled by Xen). 570 * 571 * To expedite scanning of pending notifications, any 0->1 pending 572 * transition on an unmasked channel causes a corresponding bit in a 573 * per-vcpu selector word to be set. Each bit in the selector covers a 574 * 'C long' in the PENDING bitfield array. 575 */ 576 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8]; 577 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8]; 578 579 /* 580 * Wallclock time: updated only by control software. Guests should base 581 * their gettimeofday() syscall on this wallclock-base value. 582 */ 583 struct pvclock_wall_clock wc; 584 #ifndef CONFIG_X86_32 585 uint32_t wc_sec_hi; 586 #endif 587 struct arch_shared_info arch; 588 589 }; 590 591 /* 592 * Start-of-day memory layout 593 * 594 * 1. The domain is started within contiguous virtual-memory region. 595 * 2. The contiguous region begins and ends on an aligned 4MB boundary. 596 * 3. This the order of bootstrap elements in the initial virtual region: 597 * a. relocated kernel image 598 * b. initial ram disk [mod_start, mod_len] 599 * (may be omitted) 600 * c. list of allocated page frames [mfn_list, nr_pages] 601 * (unless relocated due to XEN_ELFNOTE_INIT_P2M) 602 * d. start_info_t structure [register ESI (x86)] 603 * in case of dom0 this page contains the console info, too 604 * e. unless dom0: xenstore ring page 605 * f. unless dom0: console ring page 606 * g. bootstrap page tables [pt_base, CR3 (x86)] 607 * h. bootstrap stack [register ESP (x86)] 608 * 4. Bootstrap elements are packed together, but each is 4kB-aligned. 609 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory 610 * layout for the domain. In particular, the bootstrap virtual-memory 611 * region is a 1:1 mapping to the first section of the pseudo-physical map. 612 * 6. All bootstrap elements are mapped read-writable for the guest OS. The 613 * only exception is the bootstrap page table, which is mapped read-only. 614 * 7. There is guaranteed to be at least 512kB padding after the final 615 * bootstrap element. If necessary, the bootstrap virtual region is 616 * extended by an extra 4MB to ensure this. 617 */ 618 619 #define MAX_GUEST_CMDLINE 1024 620 struct start_info { 621 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */ 622 char magic[32]; /* "xen-<version>-<platform>". */ 623 unsigned long nr_pages; /* Total pages allocated to this domain. */ 624 unsigned long shared_info; /* MACHINE address of shared info struct. */ 625 uint32_t flags; /* SIF_xxx flags. */ 626 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */ 627 uint32_t store_evtchn; /* Event channel for store communication. */ 628 union { 629 struct { 630 xen_pfn_t mfn; /* MACHINE page number of console page. */ 631 uint32_t evtchn; /* Event channel for console page. */ 632 } domU; 633 struct { 634 uint32_t info_off; /* Offset of console_info struct. */ 635 uint32_t info_size; /* Size of console_info struct from start.*/ 636 } dom0; 637 } console; 638 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */ 639 unsigned long pt_base; /* VIRTUAL address of page directory. */ 640 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */ 641 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */ 642 unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */ 643 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */ 644 int8_t cmd_line[MAX_GUEST_CMDLINE]; 645 /* The pfn range here covers both page table and p->m table frames. */ 646 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */ 647 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */ 648 }; 649 650 /* These flags are passed in the 'flags' field of start_info_t. */ 651 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */ 652 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */ 653 #define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */ 654 #define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */ 655 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */ 656 /* P->M making the 3 level tree obsolete? */ 657 #define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */ 658 659 /* 660 * A multiboot module is a package containing modules very similar to a 661 * multiboot module array. The only differences are: 662 * - the array of module descriptors is by convention simply at the beginning 663 * of the multiboot module, 664 * - addresses in the module descriptors are based on the beginning of the 665 * multiboot module, 666 * - the number of modules is determined by a termination descriptor that has 667 * mod_start == 0. 668 * 669 * This permits to both build it statically and reference it in a configuration 670 * file, and let the PV guest easily rebase the addresses to virtual addresses 671 * and at the same time count the number of modules. 672 */ 673 struct xen_multiboot_mod_list { 674 /* Address of first byte of the module */ 675 uint32_t mod_start; 676 /* Address of last byte of the module (inclusive) */ 677 uint32_t mod_end; 678 /* Address of zero-terminated command line */ 679 uint32_t cmdline; 680 /* Unused, must be zero */ 681 uint32_t pad; 682 }; 683 /* 684 * The console structure in start_info.console.dom0 685 * 686 * This structure includes a variety of information required to 687 * have a working VGA/VESA console. 688 */ 689 struct dom0_vga_console_info { 690 uint8_t video_type; 691 #define XEN_VGATYPE_TEXT_MODE_3 0x03 692 #define XEN_VGATYPE_VESA_LFB 0x23 693 #define XEN_VGATYPE_EFI_LFB 0x70 694 695 union { 696 struct { 697 /* Font height, in pixels. */ 698 uint16_t font_height; 699 /* Cursor location (column, row). */ 700 uint16_t cursor_x, cursor_y; 701 /* Number of rows and columns (dimensions in characters). */ 702 uint16_t rows, columns; 703 } text_mode_3; 704 705 struct { 706 /* Width and height, in pixels. */ 707 uint16_t width, height; 708 /* Bytes per scan line. */ 709 uint16_t bytes_per_line; 710 /* Bits per pixel. */ 711 uint16_t bits_per_pixel; 712 /* LFB physical address, and size (in units of 64kB). */ 713 uint32_t lfb_base; 714 uint32_t lfb_size; 715 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */ 716 uint8_t red_pos, red_size; 717 uint8_t green_pos, green_size; 718 uint8_t blue_pos, blue_size; 719 uint8_t rsvd_pos, rsvd_size; 720 721 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */ 722 uint32_t gbl_caps; 723 /* Mode attributes (offset 0x0, VESA command 0x4f01). */ 724 uint16_t mode_attrs; 725 uint16_t pad; 726 /* high 32 bits of lfb_base */ 727 uint32_t ext_lfb_base; 728 } vesa_lfb; 729 } u; 730 }; 731 732 typedef uint64_t cpumap_t; 733 734 typedef uint8_t xen_domain_handle_t[16]; 735 736 /* Turn a plain number into a C unsigned long constant. */ 737 #define __mk_unsigned_long(x) x ## UL 738 #define mk_unsigned_long(x) __mk_unsigned_long(x) 739 740 #define TMEM_SPEC_VERSION 1 741 742 struct tmem_op { 743 uint32_t cmd; 744 int32_t pool_id; 745 union { 746 struct { /* for cmd == TMEM_NEW_POOL */ 747 uint64_t uuid[2]; 748 uint32_t flags; 749 } new; 750 struct { 751 uint64_t oid[3]; 752 uint32_t index; 753 uint32_t tmem_offset; 754 uint32_t pfn_offset; 755 uint32_t len; 756 GUEST_HANDLE(void) gmfn; /* guest machine page frame */ 757 } gen; 758 } u; 759 }; 760 761 DEFINE_GUEST_HANDLE(u64); 762 763 #else /* __ASSEMBLY__ */ 764 765 /* In assembly code we cannot use C numeric constant suffixes. */ 766 #define mk_unsigned_long(x) x 767 768 #endif /* !__ASSEMBLY__ */ 769 770 #endif /* __XEN_PUBLIC_XEN_H__ */ 771
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.