1 #ifndef IOU_CORE_H 2 #define IOU_CORE_H 3 4 #include <linux/errno.h> 5 #include <linux/lockdep.h> 6 #include <linux/resume_user_mode.h> 7 #include <linux/kasan.h> 8 #include <linux/poll.h> 9 #include <linux/io_uring_types.h> 10 #include <uapi/linux/eventpoll.h> 11 #include "io-wq.h" 12 #include "slist.h" 13 #include "filetable.h" 14 15 #ifndef CREATE_TRACE_POINTS 16 #include <trace/events/io_uring.h> 17 #endif 18 19 enum { 20 IOU_OK = 0, 21 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, 22 23 /* 24 * Requeue the task_work to restart operations on this request. The 25 * actual value isn't important, should just be not an otherwise 26 * valid error code, yet less than -MAX_ERRNO and valid internally. 27 */ 28 IOU_REQUEUE = -3072, 29 30 /* 31 * Intended only when both IO_URING_F_MULTISHOT is passed 32 * to indicate to the poll runner that multishot should be 33 * removed and the result is set on req->cqe.res. 34 */ 35 IOU_STOP_MULTISHOT = -ECANCELED, 36 }; 37 38 struct io_wait_queue { 39 struct wait_queue_entry wq; 40 struct io_ring_ctx *ctx; 41 unsigned cq_tail; 42 unsigned nr_timeouts; 43 ktime_t timeout; 44 45 #ifdef CONFIG_NET_RX_BUSY_POLL 46 ktime_t napi_busy_poll_dt; 47 bool napi_prefer_busy_poll; 48 #endif 49 }; 50 51 static inline bool io_should_wake(struct io_wait_queue *iowq) 52 { 53 struct io_ring_ctx *ctx = iowq->ctx; 54 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; 55 56 /* 57 * Wake up if we have enough events, or if a timeout occurred since we 58 * started waiting. For timeouts, we always want to return to userspace, 59 * regardless of event count. 60 */ 61 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; 62 } 63 64 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); 65 int io_run_task_work_sig(struct io_ring_ctx *ctx); 66 void io_req_defer_failed(struct io_kiocb *req, s32 res); 67 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 68 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); 69 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); 70 void __io_commit_cqring_flush(struct io_ring_ctx *ctx); 71 72 struct file *io_file_get_normal(struct io_kiocb *req, int fd); 73 struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 74 unsigned issue_flags); 75 76 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); 77 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 78 unsigned flags); 79 bool io_alloc_async_data(struct io_kiocb *req); 80 void io_req_task_queue(struct io_kiocb *req); 81 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); 82 void io_req_task_queue_fail(struct io_kiocb *req, int ret); 83 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); 84 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); 85 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); 86 void tctx_task_work(struct callback_head *cb); 87 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); 88 int io_uring_alloc_task_context(struct task_struct *task, 89 struct io_ring_ctx *ctx); 90 91 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, 92 int start, int end); 93 94 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); 95 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); 96 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); 97 void __io_submit_flush_completions(struct io_ring_ctx *ctx); 98 99 struct io_wq_work *io_wq_free_work(struct io_wq_work *work); 100 void io_wq_submit_work(struct io_wq_work *work); 101 102 void io_free_req(struct io_kiocb *req); 103 void io_queue_next(struct io_kiocb *req); 104 void io_task_refs_refill(struct io_uring_task *tctx); 105 bool __io_alloc_req_refill(struct io_ring_ctx *ctx); 106 107 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, 108 bool cancel_all); 109 110 void io_activate_pollwq(struct io_ring_ctx *ctx); 111 112 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) 113 { 114 #if defined(CONFIG_PROVE_LOCKING) 115 lockdep_assert(in_task()); 116 117 if (ctx->flags & IORING_SETUP_IOPOLL) { 118 lockdep_assert_held(&ctx->uring_lock); 119 } else if (!ctx->task_complete) { 120 lockdep_assert_held(&ctx->completion_lock); 121 } else if (ctx->submitter_task) { 122 /* 123 * ->submitter_task may be NULL and we can still post a CQE, 124 * if the ring has been setup with IORING_SETUP_R_DISABLED. 125 * Not from an SQE, as those cannot be submitted, but via 126 * updating tagged resources. 127 */ 128 if (ctx->submitter_task->flags & PF_EXITING) 129 lockdep_assert(current_work()); 130 else 131 lockdep_assert(current == ctx->submitter_task); 132 } 133 #endif 134 } 135 136 static inline void io_req_task_work_add(struct io_kiocb *req) 137 { 138 __io_req_task_work_add(req, 0); 139 } 140 141 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) 142 { 143 if (!wq_list_empty(&ctx->submit_state.compl_reqs) || 144 ctx->submit_state.cq_flush) 145 __io_submit_flush_completions(ctx); 146 } 147 148 #define io_for_each_link(pos, head) \ 149 for (pos = (head); pos; pos = pos->link) 150 151 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, 152 struct io_uring_cqe **ret, 153 bool overflow) 154 { 155 io_lockdep_assert_cq_locked(ctx); 156 157 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { 158 if (unlikely(!io_cqe_cache_refill(ctx, overflow))) 159 return false; 160 } 161 *ret = ctx->cqe_cached; 162 ctx->cached_cq_tail++; 163 ctx->cqe_cached++; 164 if (ctx->flags & IORING_SETUP_CQE32) 165 ctx->cqe_cached++; 166 return true; 167 } 168 169 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) 170 { 171 return io_get_cqe_overflow(ctx, ret, false); 172 } 173 174 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, 175 struct io_kiocb *req) 176 { 177 struct io_uring_cqe *cqe; 178 179 /* 180 * If we can't get a cq entry, userspace overflowed the 181 * submission (by quite a lot). Increment the overflow count in 182 * the ring. 183 */ 184 if (unlikely(!io_get_cqe(ctx, &cqe))) 185 return false; 186 187 if (trace_io_uring_complete_enabled()) 188 trace_io_uring_complete(req->ctx, req, req->cqe.user_data, 189 req->cqe.res, req->cqe.flags, 190 req->big_cqe.extra1, req->big_cqe.extra2); 191 192 memcpy(cqe, &req->cqe, sizeof(*cqe)); 193 if (ctx->flags & IORING_SETUP_CQE32) { 194 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); 195 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 196 } 197 return true; 198 } 199 200 static inline void req_set_fail(struct io_kiocb *req) 201 { 202 req->flags |= REQ_F_FAIL; 203 if (req->flags & REQ_F_CQE_SKIP) { 204 req->flags &= ~REQ_F_CQE_SKIP; 205 req->flags |= REQ_F_SKIP_LINK_CQES; 206 } 207 } 208 209 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) 210 { 211 req->cqe.res = res; 212 req->cqe.flags = cflags; 213 } 214 215 static inline bool req_has_async_data(struct io_kiocb *req) 216 { 217 return req->flags & REQ_F_ASYNC_DATA; 218 } 219 220 static inline void io_put_file(struct io_kiocb *req) 221 { 222 if (!(req->flags & REQ_F_FIXED_FILE) && req->file) 223 fput(req->file); 224 } 225 226 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, 227 unsigned issue_flags) 228 { 229 lockdep_assert_held(&ctx->uring_lock); 230 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 231 mutex_unlock(&ctx->uring_lock); 232 } 233 234 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, 235 unsigned issue_flags) 236 { 237 /* 238 * "Normal" inline submissions always hold the uring_lock, since we 239 * grab it from the system call. Same is true for the SQPOLL offload. 240 * The only exception is when we've detached the request and issue it 241 * from an async worker thread, grab the lock for that case. 242 */ 243 if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) 244 mutex_lock(&ctx->uring_lock); 245 lockdep_assert_held(&ctx->uring_lock); 246 } 247 248 static inline void io_commit_cqring(struct io_ring_ctx *ctx) 249 { 250 /* order cqe stores with ring update */ 251 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); 252 } 253 254 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) 255 { 256 if (wq_has_sleeper(&ctx->poll_wq)) 257 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, 258 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 259 } 260 261 static inline void io_cqring_wake(struct io_ring_ctx *ctx) 262 { 263 /* 264 * Trigger waitqueue handler on all waiters on our waitqueue. This 265 * won't necessarily wake up all the tasks, io_should_wake() will make 266 * that decision. 267 * 268 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter 269 * set in the mask so that if we recurse back into our own poll 270 * waitqueue handlers, we know we have a dependency between eventfd or 271 * epoll and should terminate multishot poll at that point. 272 */ 273 if (wq_has_sleeper(&ctx->cq_wait)) 274 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, 275 poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); 276 } 277 278 static inline bool io_sqring_full(struct io_ring_ctx *ctx) 279 { 280 struct io_rings *r = ctx->rings; 281 282 /* 283 * SQPOLL must use the actual sqring head, as using the cached_sq_head 284 * is race prone if the SQPOLL thread has grabbed entries but not yet 285 * committed them to the ring. For !SQPOLL, this doesn't matter, but 286 * since this helper is just used for SQPOLL sqring waits (or POLLOUT), 287 * just read the actual sqring head unconditionally. 288 */ 289 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; 290 } 291 292 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) 293 { 294 struct io_rings *rings = ctx->rings; 295 unsigned int entries; 296 297 /* make sure SQ entry isn't read before tail */ 298 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; 299 return min(entries, ctx->sq_entries); 300 } 301 302 static inline int io_run_task_work(void) 303 { 304 bool ret = false; 305 306 /* 307 * Always check-and-clear the task_work notification signal. With how 308 * signaling works for task_work, we can find it set with nothing to 309 * run. We need to clear it for that case, like get_signal() does. 310 */ 311 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 312 clear_notify_signal(); 313 /* 314 * PF_IO_WORKER never returns to userspace, so check here if we have 315 * notify work that needs processing. 316 */ 317 if (current->flags & PF_IO_WORKER) { 318 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 319 __set_current_state(TASK_RUNNING); 320 resume_user_mode_work(NULL); 321 } 322 if (current->io_uring) { 323 unsigned int count = 0; 324 325 __set_current_state(TASK_RUNNING); 326 tctx_task_work_run(current->io_uring, UINT_MAX, &count); 327 if (count) 328 ret = true; 329 } 330 } 331 if (task_work_pending(current)) { 332 __set_current_state(TASK_RUNNING); 333 task_work_run(); 334 ret = true; 335 } 336 337 return ret; 338 } 339 340 static inline bool io_task_work_pending(struct io_ring_ctx *ctx) 341 { 342 return task_work_pending(current) || !llist_empty(&ctx->work_llist); 343 } 344 345 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) 346 { 347 lockdep_assert_held(&ctx->uring_lock); 348 } 349 350 /* 351 * Don't complete immediately but use deferred completion infrastructure. 352 * Protected by ->uring_lock and can only be used either with 353 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. 354 */ 355 static inline void io_req_complete_defer(struct io_kiocb *req) 356 __must_hold(&req->ctx->uring_lock) 357 { 358 struct io_submit_state *state = &req->ctx->submit_state; 359 360 lockdep_assert_held(&req->ctx->uring_lock); 361 362 wq_list_add_tail(&req->comp_list, &state->compl_reqs); 363 } 364 365 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) 366 { 367 if (unlikely(ctx->off_timeout_used || ctx->drain_active || 368 ctx->has_evfd || ctx->poll_activated)) 369 __io_commit_cqring_flush(ctx); 370 } 371 372 static inline void io_get_task_refs(int nr) 373 { 374 struct io_uring_task *tctx = current->io_uring; 375 376 tctx->cached_refs -= nr; 377 if (unlikely(tctx->cached_refs < 0)) 378 io_task_refs_refill(tctx); 379 } 380 381 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) 382 { 383 return !ctx->submit_state.free_list.next; 384 } 385 386 extern struct kmem_cache *req_cachep; 387 extern struct kmem_cache *io_buf_cachep; 388 389 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) 390 { 391 struct io_kiocb *req; 392 393 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); 394 wq_stack_extract(&ctx->submit_state.free_list); 395 return req; 396 } 397 398 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) 399 { 400 if (unlikely(io_req_cache_empty(ctx))) { 401 if (!__io_alloc_req_refill(ctx)) 402 return false; 403 } 404 *req = io_extract_req(ctx); 405 return true; 406 } 407 408 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) 409 { 410 return likely(ctx->submitter_task == current); 411 } 412 413 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) 414 { 415 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || 416 ctx->submitter_task == current); 417 } 418 419 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) 420 { 421 io_req_set_res(req, res, 0); 422 req->io_task_work.func = io_req_task_complete; 423 io_req_task_work_add(req); 424 } 425 426 /* 427 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each 428 * slot. 429 */ 430 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) 431 { 432 if (ctx->flags & IORING_SETUP_SQE128) 433 return 2 * sizeof(struct io_uring_sqe); 434 return sizeof(struct io_uring_sqe); 435 } 436 437 static inline bool io_file_can_poll(struct io_kiocb *req) 438 { 439 if (req->flags & REQ_F_CAN_POLL) 440 return true; 441 if (req->file && file_can_poll(req->file)) { 442 req->flags |= REQ_F_CAN_POLL; 443 return true; 444 } 445 return false; 446 } 447 448 enum { 449 IO_CHECK_CQ_OVERFLOW_BIT, 450 IO_CHECK_CQ_DROPPED_BIT, 451 }; 452 453 static inline bool io_has_work(struct io_ring_ctx *ctx) 454 { 455 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || 456 !llist_empty(&ctx->work_llist); 457 } 458 #endif 459
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.